JP2018076259A - 化合物、組成物、有機エレクトロルミネッセンス素子、及び電子機器 - Google Patents

化合物、組成物、有機エレクトロルミネッセンス素子、及び電子機器 Download PDF

Info

Publication number
JP2018076259A
JP2018076259A JP2016219249A JP2016219249A JP2018076259A JP 2018076259 A JP2018076259 A JP 2018076259A JP 2016219249 A JP2016219249 A JP 2016219249A JP 2016219249 A JP2016219249 A JP 2016219249A JP 2018076259 A JP2018076259 A JP 2018076259A
Authority
JP
Japan
Prior art keywords
group
substituted
general formula
unsubstituted
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016219249A
Other languages
English (en)
Other versions
JP6829583B2 (ja
Inventor
雅俊 齊藤
Masatoshi Saito
雅俊 齊藤
圭 吉田
Kei Yoshida
圭 吉田
祐一郎 河村
Yuichiro Kawamura
祐一郎 河村
俊成 荻原
Toshinari Ogiwara
俊成 荻原
圭 吉崎
Kei Yoshizaki
圭 吉崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2016219249A priority Critical patent/JP6829583B2/ja
Publication of JP2018076259A publication Critical patent/JP2018076259A/ja
Application granted granted Critical
Publication of JP6829583B2 publication Critical patent/JP6829583B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Furan Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

【課題】有機エレクトロルミネッセンス素子の発光効率を向上させることができる化合物、及び該化合物を含有する組成物の提供。【解決手段】式(BD−2)を代表例とする化合物、及び該化合物を含有する組成物。【選択図】なし

Description

本発明は、化合物、組成物、有機エレクトロルミネッセンス素子、及び電子機器に関する。
有機エレクトロルミネッセンス素子(以下、「有機EL素子」という場合がある。)に電圧を印加すると、陽極から正孔が、また陰極から電子が、それぞれ発光層に注入される。そして、発光層において、注入された正孔と電子とが再結合し、励起子が形成される。このとき、電子スピンの統計則により、一重項励起子が25%の割合で生成し、及び三重項励起子が75%の割合で生成する。
一重項励起子からの発光を用いる蛍光型の有機EL素子は、携帯電話やテレビ等のフルカラーディスプレイへ応用されつつあるが、内部量子効率25%が限界といわれている。一重項励起子に加えて三重項励起子を利用し、有機EL素子をさらに効率的に発光させることが期待されている。
このような背景から、遅延蛍光を利用した高効率の蛍光型の有機EL素子が提案され、研究がなされている。
例えば、TADF(Thermally Activated Delayed Fluorescence、熱活性化遅延蛍光)機構が研究されている。このTADF機構は、一重項準位と三重項準位とのエネルギー差(ΔST)の小さな材料を用いた場合に、三重項励起子から一重項励起子への逆項間交差が熱的に生じる現象を利用する機構である。熱活性化遅延蛍光については、例えば、『安達千波矢編、「有機半導体のデバイス物性」、講談社、2012年4月1日発行、261−262ページ』に記載されている。このTADF機構を利用した有機EL素子が、例えば、非特許文献1に開示されている。
非特許文献1に開示された有機EL素子は、アシストドーパントとしてのTADF化合物、発光材料としてのペリレン誘導体(TBPe;2,5,8,11-tetra-tert-butylperylene
)、及びホスト材料としてのDPEPO(bis-(2-(diphenylphosphino)phenyl)ether oxide)を含んだ発光層を備える。この発光層は、青色に発光する。
また、従来の蛍光型の有機EL素子においても、青色発光素子用の発光材料の研究がなされている。特許文献1、特許文献2、特許文献3、及び特許文献4には、青色発光素子に用いる有機化合物として、アセナフト[1,2−k]ベンゾ[e]アセフェナンスレン誘導体が記載されている。
また、特許文献5においては、従来の蛍光型の有機EL素子における、緑色発光素子用の発光材料の研究がなされている。特許文献5には、緑色発光素子に用いる有機化合物として、アセナフト[1,2−k]ベンゾ[e]アセフェナンスレン誘導体が記載されている。
特許文献1、特許文献2、特許文献3、特許文献4、及び特許文献5に記載された有機化合物は、従来の蛍光型の有機EL素子における発光材料として用いられている。特許文献1、特許文献2、特許文献3、特許文献4、及び特許文献5における有機EL素子は、TADF機構を利用していない。
特開2012−246258号公報 特開2010−270103号公報 特開2010−254610号公報 特開2011−231086号公報 特開2011−207829号公報
Hajime Nakanotani et al,"High-efficiency organic light-emitting diodes with fluorescent emitters", NATURE COMMUNICATIONS, 5, 4016,2014
非特許文献1に記載された有機エレクトロルミネッセンス素子は、ホスト材料としてTADF化合物を用い、発光材料としてペリレン誘導体(化合物TBPe)を用いたことで青色発光するが、発光効率が十分ではない。
また、特許文献1〜5においても、アセナフト[1,2−k]ベンゾ[e]アセフェナンスレン誘導体を用いた発光素子の発光効率が十分ではない。
そのため、高効率で発光する有機エレクトロルミネッセンス素子が要望されている。
本発明の目的は、有機EL素子の発光効率を向上させることができる化合物及び組成物を提供すること、当該化合物を用いた有機エレクトロルミネッセンス素子を提供すること、並びに当該有機エレクトロルミネッセンス素子を備える電子機器を提供することである。
本発明の一態様によれば、下記一般式(2)で表される化合物が提供される。
(前記一般式(2)において、
乃至X16は、それぞれ独立に、CRx1であるか、または下記一般式(2a)で表される基が結合する炭素原子であり、
x1は、それぞれ独立に、水素原子、または置換基であり、
置換基としてのRx1は、それぞれ独立に、
置換または無置換の炭素数1〜30のアルキル基、
置換または無置換の炭素数1〜30のアルコキシ基、
置換または無置換の炭素数1〜30のアルキルチオ基、
置換または無置換のアミノ基、
置換または無置換の環形成炭素数6〜30のアリール基、
置換または無置換の環形成原子数5〜30のヘテロアリール基、
置換または無置換の炭素数2〜30のアルケニル基、
置換または無置換の環形成炭素数6〜30のアリールオキシ基、
置換または無置換の環形成炭素数6〜30のアリールチオ基、
置換または無置換のホスファニル基、
置換または無置換のホスホリル基、
置換または無置換のシリル基、
置換または無置換の環形成炭素数6〜30のアリールカルボニル基、
シアノ基、
ニトロ基、
カルボキシ基、及び
ハロゲン原子
からなる群から選択され、
複数のRx1は、互いに同一であるかまたは異なり、
乃至X16のうち、複数がRx1であって、Rx1が置換基である場合、置換基としての複数のRx1同士が互いに結合して環を形成する場合と、環を形成しない場合とがある。
ただし、X乃至X16のうちの1つは、前記一般式(2a)で表される基が結合する炭素原子である。)
(前記一般式(2a)において、*2は、前記一般式(2)のX乃至X16のいずれかにおける炭素原子との結合部位を表し、
は、単結合、または連結基であり、
連結基としてのLは、
置換または無置換の環形成炭素数6〜30のアリール基、及び
置換または無置換の環形成原子数5〜30の芳香族複素環基
からなる群から選択され、
Xは、酸素原子、または硫黄原子であり、
21乃至X28は、それぞれ独立に、CRx2、またはLと結合する炭素原子であり、
x2は、それぞれ独立に、水素原子、または置換基であり、
置換基としてのRx2は、それぞれ独立に、
置換または無置換の炭素数1〜30のアルキル基、
置換または無置換の炭素数1〜30のアルコキシ基、
置換または無置換の炭素数1〜30のアルキルチオ基、
置換または無置換のアミノ基、
置換または無置換の環形成炭素数6〜30のアリール基、
置換または無置換の環形成原子数5〜30のヘテロアリール基、
置換または無置換の炭素数2〜30のアルケニル基、
置換または無置換の環形成炭素数6〜30のアリールオキシ基、
置換または無置換の環形成炭素数6〜30のアリールチオ基、
置換または無置換のホスファニル基、
置換または無置換のホスホリル基、
置換または無置換のシリル基、
置換または無置換の環形成炭素数6〜30のアリールカルボニル基、
シアノ基、
ニトロ基、
カルボキシ基、及び
ハロゲン原子
からなる群から選択され、
複数のRx2は、互いに同一であるかまたは異なり、
x2のうち、複数が置換基である場合、置換基としての複数のRx2同士が互いに結合して環を形成する場合と、環を形成しない場合とがある。
ただし、X21乃至X28のうちの1つは、Lと結合する炭素原子である。)
本発明の一態様によれば、下記一般式(2)で表される化合物を複数種含有する組成物が提供される。
(前記一般式(2)において、
乃至X16は、それぞれ独立に、CRx1であるか、または下記一般式(2a)で表される基が結合する炭素原子であり、
x1は、それぞれ独立に、水素原子、または置換基であり、
置換基としてのRx1は、それぞれ独立に、
置換または無置換の炭素数1〜30のアルキル基、
置換または無置換の炭素数1〜30のアルコキシ基、
置換または無置換の炭素数1〜30のアルキルチオ基、
置換または無置換のアミノ基、
置換または無置換の環形成炭素数6〜30のアリール基、
置換または無置換の環形成原子数5〜30のヘテロアリール基、
置換または無置換の炭素数2〜30のアルケニル基、
置換または無置換の環形成炭素数6〜30のアリールオキシ基、
置換または無置換の環形成炭素数6〜30のアリールチオ基、
置換または無置換のホスファニル基、
置換または無置換のホスホリル基、
置換または無置換のシリル基、
置換または無置換の環形成炭素数6〜30のアリールカルボニル基、
シアノ基、
ニトロ基、
カルボキシ基、及び
ハロゲン原子
からなる群から選択され、
複数のRx1は、互いに同一であるかまたは異なり、
乃至X16のうち、複数がRx1であって、Rx1が置換基である場合、置換基としての複数のRx1同士が互いに結合して環を形成する場合と、環を形成しない場合とがある。
ただし、X乃至X16のうちの1つは、前記一般式(2a)で表される基が結合する炭素原子である。)
(前記一般式(2a)において、*2は、前記一般式(2)のX乃至X16のいずれかにおける炭素原子との結合部位を表し、
は、単結合、または連結基であり、
連結基としてのLは、
置換または無置換の環形成炭素数6〜30のアリール基、及び
置換または無置換の環形成原子数5〜30の芳香族複素環基
からなる群から選択され、
Xは、酸素原子、または硫黄原子であり、
21乃至X28は、それぞれ独立に、CRx2、またはLと結合する炭素原子であり、
x2は、それぞれ独立に、水素原子、または置換基であり、
置換基としてのRx2は、それぞれ独立に、
置換または無置換の炭素数1〜30のアルキル基、
置換または無置換の炭素数1〜30のアルコキシ基、
置換または無置換の炭素数1〜30のアルキルチオ基、
置換または無置換のアミノ基、
置換または無置換の環形成炭素数6〜30のアリール基、
置換または無置換の環形成原子数5〜30のヘテロアリール基、
置換または無置換の炭素数2〜30のアルケニル基、
置換または無置換の環形成炭素数6〜30のアリールオキシ基、
置換または無置換の環形成炭素数6〜30のアリールチオ基、
置換または無置換のホスファニル基、
置換または無置換のホスホリル基、
置換または無置換のシリル基、
置換または無置換の環形成炭素数6〜30のアリールカルボニル基、
シアノ基、
ニトロ基、
カルボキシ基、及び
ハロゲン原子
からなる群から選択され、
複数のRx2は、互いに同一であるかまたは異なり、
x2のうち、複数が置換基である場合、置換基としての複数のRx2同士が互いに結合して環を形成する場合と、環を形成しない場合とがある。
ただし、X21乃至X28のうちの1つは、Lと結合する炭素原子である。)
本発明の一態様によれば、陽極と、発光層と、陰極と、を有し、前記発光層は、第一の化合物及び第二の化合物を含み、前記第二の化合物は、前述の本発明の一態様に係る化合物である有機エレクトロルミネッセンス素子が提供される。
本発明の一態様によれば、前述の本発明の一態様に係る有機エレクトロルミネッセンス素子を備える電子機器が提供される。
本発明によれば、有機EL素子の発光効率を向上させることができる化合物及び組成物を提供すること、当該化合物を用いた有機エレクトロルミネッセンス素子を提供すること、並びに当該有機エレクトロルミネッセンス素子を備える電子機器を提供することができる。
本発明の第一実施形態に係る有機エレクトロルミネッセンス素子の一例の概略構成を示す図である。 過渡PLを測定する装置の概略図である。 過渡PLの減衰曲線の一例を示す図である。 本発明の第一実施形態に係る有機エレクトロルミネッセンス素子の一例の発光層における第一の化合物、及び第二の化合物の、エネルギー準位、及びエネルギー移動の関係を示す図である。 本発明の第二実施形態に係る有機エレクトロルミネッセンス素子の一例の発光層における第一の化合物、第二の化合物、及び第三の化合物の、エネルギー準位、及びエネルギー移動の関係を示す図である。
〔第一実施形態〕
[化合物]
本実施形態に係る化合物は、下記一般式(2)で表される。
前記一般式(2)において、
乃至X16は、それぞれ独立に、CRx1であるか、または下記一般式(2a)で表される基が結合する炭素原子であり、
x1は、それぞれ独立に、水素原子、または置換基であり、
置換基としてのRx1は、それぞれ独立に、
置換または無置換の炭素数1〜30のアルキル基、
置換または無置換の炭素数1〜30のアルコキシ基、
置換または無置換の炭素数1〜30のアルキルチオ基、
置換または無置換のアミノ基、
置換または無置換の環形成炭素数6〜30のアリール基、
置換または無置換の環形成原子数5〜30のヘテロアリール基、
置換または無置換の炭素数2〜30のアルケニル基、
置換または無置換の環形成炭素数6〜30のアリールオキシ基、
置換または無置換の環形成炭素数6〜30のアリールチオ基、
置換または無置換のホスファニル基、
置換または無置換のホスホリル基、
置換または無置換のシリル基、
置換または無置換の環形成炭素数6〜30のアリールカルボニル基、
シアノ基、
ニトロ基、
カルボキシ基、及び
ハロゲン原子
からなる群から選択され、
複数のRx1は、互いに同一であるかまたは異なり、
乃至X16のうち、複数がRx1であって、Rx1が置換基である場合、置換基としての複数のRx1同士が互いに結合して環を形成する場合と、環を形成しない場合とがある。
ただし、X乃至X16のうちの1つは、前記一般式(2a)で表される基が結合する炭素原子である。
前記一般式(2a)において、*2は、前記一般式(2)のX乃至X16のいずれかにおける炭素原子との結合部位を表し、
は、単結合、または連結基であり、
連結基としてのLは、
置換または無置換の環形成炭素数6〜30のアリール基、及び
置換または無置換の環形成原子数5〜30の芳香族複素環基
からなる群から選択され、
Xは、酸素原子、または硫黄原子であり、
21乃至X28は、それぞれ独立に、CRx2、またはLと結合する炭素原子であり、
x2は、それぞれ独立に、水素原子、または置換基であり、
置換基としてのRx2は、それぞれ独立に、
置換または無置換の炭素数1〜30のアルキル基、
置換または無置換の炭素数1〜30のアルコキシ基、
置換または無置換の炭素数1〜30のアルキルチオ基、
置換または無置換のアミノ基、
置換または無置換の環形成炭素数6〜30のアリール基、
置換または無置換の環形成原子数5〜30のヘテロアリール基、
置換または無置換の炭素数2〜30のアルケニル基、
置換または無置換の環形成炭素数6〜30のアリールオキシ基、
置換または無置換の環形成炭素数6〜30のアリールチオ基、
置換または無置換のホスファニル基、
置換または無置換のホスホリル基、
置換または無置換のシリル基、
置換または無置換の環形成炭素数6〜30のアリールカルボニル基、
シアノ基、
ニトロ基、
カルボキシ基、及び
ハロゲン原子
からなる群から選択され、
複数のRx2は、互いに同一であるかまたは異なり、
x2のうち、複数が置換基である場合、置換基としての複数のRx2同士が互いに結合して環を形成する場合と、環を形成しない場合とがある。
ただし、X21乃至X28のうちの1つは、Lと結合する炭素原子である。
本実施形態において、前記一般式(2)におけるRx1は、それぞれ独立に、水素原子であるか、あるいは環形成炭素数6〜30のアリール基、環形成原子数5〜30のヘテロアリール基、炭素数1〜30のアルキル基(直鎖または分岐鎖のアルキル基)、ハロゲン原子、及びシアノ基からなる群から選択される基であることが好ましい。
本実施形態において、前記一般式(2a)におけるRx2は、それぞれ独立に、水素原子であるか、あるいは環形成炭素数6〜30のアリール基、環形成原子数5〜30のヘテロアリール基、炭素数1〜30のアルキル基(直鎖または分岐鎖のアルキル基)、ハロゲン原子、及びシアノ基からなる群から選択される基であることが好ましい。
本実施形態において、前記一般式(2)におけるRx1同士が環を形成しないことが好ましい。
本実施形態において、前記一般式(2)におけるX乃至Xのうちのいずれかが、前記一般式(2a)で表される基と結合する炭素原子であることが好ましい。
本実施形態の化合物は、前記一般式(2a)におけるX21またはX28が、Lと結合する炭素原子であることが好ましい。
本実施形態において、前記一般式(2)で表される化合物が、下記一般式(21A)で表されることが好ましい。
前記一般式(21A)において、X、X乃至X16、及びRx1は、前記一般式(2)におけるX、X乃至X16、及びRx1とそれぞれ同義であり、L、X、X21乃至X27、及びRx2は、前記一般式(2a)におけるL、X、X21乃至X27、及びRx2とそれぞれ同義である。
本実施形態において、前記一般式(21A)におけるRx1及びRx2は、それぞれ独立に、水素原子であるか、あるいは環形成炭素数6〜30のアリール基、環形成原子数5〜30のヘテロアリール基、炭素数1〜30のアルキル基(直鎖または分岐鎖のアルキル基)、ハロゲン原子、及びシアノ基からなる群から選択される基であることが好ましい。
本実施形態において、前記一般式(2)で表される化合物が、下記一般式(21B)で表されることも好ましい。
前記一般式(21B)において、X、X、X乃至X16、及びRx1は、前記一般式(2)におけるX、X、X乃至X16、及びRx1とそれぞれ同義であり、L、X、X22乃至X28、及びRx2は、前記一般式(2a)におけるL、X、X22乃至X28、及びRx2とそれぞれ同義である。
本実施形態において、前記一般式(21B)におけるRx1及びRx2は、それぞれ独立に、水素原子であるか、あるいは環形成炭素数6〜30のアリール基、環形成原子数5〜30のヘテロアリール基、炭素数1〜30のアルキル基(直鎖または分岐鎖のアルキル基)、ハロゲン原子、及びシアノ基からなる群から選択される基であることが好ましい。
本実施形態において、前記一般式(2)で表される化合物が、下記一般式(22A)で表されることも好ましい。
前記一般式(22A)において、X、X乃至X16、及びRx1は、前記一般式(2)におけるX、X乃至X16、及びRx1とそれぞれ同義であり、L、X、X21乃至X23、X25乃至X28、及びRx2は、前記一般式(2a)におけるL、X、X21乃至X23、X25乃至X28、及びRx2とそれぞれ同義である。
本実施形態において、前記一般式(22A)におけるRx1及びRx2は、それぞれ独立に、水素原子であるか、あるいは環形成炭素数6〜30のアリール基、環形成原子数5〜30のヘテロアリール基、炭素数1〜30のアルキル基(直鎖または分岐鎖のアルキル基)、ハロゲン原子、及びシアノ基からなる群から選択される基であることが好ましい。
本実施形態において、前記一般式(2)で表される化合物が、下記一般式(22B)で表されることも好ましい。
前記一般式(22B)において、X、X、X乃至X16、及びRx1は、前記一般式(2)におけるX、X、X乃至X16、及びRx1とそれぞれ同義であり、L、X、X21乃至X24、X26乃至X28、及びRx2は、前記一般式(2a)におけるL、X、X21乃至X24、X26乃至X28、及びRx2とそれぞれ同義である。
本実施形態において、前記一般式(22B)におけるRx1及びRx2は、それぞれ独立に、水素原子であるか、あるいは環形成炭素数6〜30のアリール基、環形成原子数5〜30のヘテロアリール基、炭素数1〜30のアルキル基(直鎖または分岐鎖のアルキル基)、ハロゲン原子、及びシアノ基からなる群から選択される基であることが好ましい。
本実施形態において、前記一般式(2)で表される化合物が、下記一般式(23A)で表されることも好ましい。
前記一般式(23A)において、X、X乃至X16、及びRx1は、前記一般式(2)におけるX、X乃至X16、及びRx1とそれぞれ同義であり、L、X、X21乃至X25、X27、X28、及びRx2は、前記一般式(2a)におけるL、X、X21乃至X25、X27、X28、及びRx2とそれぞれ同義である。
本実施形態において、前記一般式(23A)におけるRx1及びRx2は、それぞれ独立に、水素原子であるか、あるいは環形成炭素数6〜30のアリール基、環形成原子数5〜30のヘテロアリール基、炭素数1〜30のアルキル基(直鎖または分岐鎖のアルキル基)、ハロゲン原子、及びシアノ基からなる群から選択される基であることが好ましい。
本実施形態において、前記一般式(2)で表される化合物が、下記一般式(23B)で表されることも好ましい。
前記一般式(23B)において、X、X、X乃至X16、及びRx1は、前記一般式(2)におけるX、X、X乃至X16、及びRx1とそれぞれ同義であり、L、X、X21、X22、X24乃至X28、及びRx2は、前記一般式(2a)におけるL、X、X21、X22、X24乃至X28、及びRx2とそれぞれ同義である。
本実施形態において、前記一般式(23B)におけるRx1及びRx2は、それぞれ独立に、水素原子であるか、あるいは環形成炭素数6〜30のアリール基、環形成原子数5〜30のヘテロアリール基、炭素数1〜30のアルキル基(直鎖または分岐鎖のアルキル基)、ハロゲン原子、及びシアノ基からなる群から選択される基であることが好ましい。
本実施形態の化合物は、前記一般式(2a)におけるLが、単結合であることが好ましい。
本実施形態の化合物は、前記一般式(2)におけるXがCR、X15がCR15であり、R及びR15が、それぞれ独立に、置換または無置換の環形成炭素数6〜30のアリール基であることが好ましい。
本実施形態の化合物は、前記一般式(2)におけるXがCR、X15がCR15であり、R及びR15が、それぞれ独立に、置換または無置換のフェニル基であることが好ましい。
本実施形態の化合物は、前記一般式(2)におけるXがCR、XがCR、XがCR、XがCR、X10がCR10、X11がCR11、X12がCR12、X13がCR13、X14がCR14、及びX16がCR16であり、R、R乃至R14、及びR16が水素原子であることが好ましい。
本実施形態の化合物は、前記一般式(2)におけるXがCR、XがCR、XがCR、XがCR、XがCR、X10がCR10、X11がCR11、X12がCR12、X13がCR13、X14がCR14、X15がCR15、X16がCR16であり、R及びR15が、それぞれ独立に、置換または無置換のフェニル基であり、R、R乃至R14、及びR16が水素原子であることが好ましい。
本実施形態の化合物によれば、有機EL素子の発光効率を向上させることができる。
これは、本実施形態の化合物が前述の特定の構造を有しているためと考えられる。前記一般式(2)には、前記一般式(2a)で表される基が結合している。このように、アセナフト[1,2−k]ベンゾ[e]アセフェナンスレン骨格に対して共役を伸ばすことでモル吸光係数を高めることができるため、本実施形態の化合物を有機EL素子の発光材料(ドーパント)として用いることで、ホストからドーパントへと移動するエネルギーを十分に吸収することができ、発光効率を向上させることができると考えられる。
本実施形態の化合物を、青色発光素子の発光材料(ドーパント)として用いる場合、前記一般式(2a)におけるLが単結合であることが好ましい。このように、アセナフト[1,2−k]ベンゾ[e]アセフェナンスレン骨格に対して、前記一般式(2a)で表される基が、連結基を介することなく、直接結合することで、青色の波長領域での発光が得られやすくなる。
また、本実施形態の化合物は、前記一般式(2a)におけるRx2の選択により、波長を微調整することができる。
(化合物の製造方法)
本実施形態に係る化合物は、例えば、後述する実施例に記載の方法により製造することができる。また、本実施形態に係る化合物は、後述する実施例で説明する反応に倣い、目的物に合わせた既知の代替反応や原料を用いることで、製造することができる。
本実施形態に係る化合物の具体例を以下に示す。本発明の化合物は、これらの具体例に限定されない。
[組成物]
本実施形態の組成物は、下記一般式(2)で表される化合物を複数種含有する。
前記一般式(2)において、
乃至X16は、それぞれ独立に、CRx1であるか、または下記一般式(2a)で表される基が結合する炭素原子であり、
x1は、それぞれ独立に、水素原子、または置換基であり、
置換基としてのRx1は、それぞれ独立に、
置換または無置換の炭素数1〜30のアルキル基、
置換または無置換の炭素数1〜30のアルコキシ基、
置換または無置換の炭素数1〜30のアルキルチオ基、
置換または無置換のアミノ基、
置換または無置換の環形成炭素数6〜30のアリール基、
置換または無置換の環形成原子数5〜30のヘテロアリール基、
置換または無置換の炭素数2〜30のアルケニル基、
置換または無置換の環形成炭素数6〜30のアリールオキシ基、
置換または無置換の環形成炭素数6〜30のアリールチオ基、
置換または無置換のホスファニル基、
置換または無置換のホスホリル基、
置換または無置換のシリル基、
置換または無置換の環形成炭素数6〜30のアリールカルボニル基、
シアノ基、
ニトロ基、
カルボキシ基、及び
ハロゲン原子
からなる群から選択され、
複数のRx1は、互いに同一であるかまたは異なり、
乃至X16のうち、複数がRx1であって、Rx1が置換基である場合、置換基としての複数のRx1同士が互いに結合して環を形成する場合と、環を形成しない場合とがある。
ただし、X乃至X16のうちの1つは、前記一般式(2a)で表される基が結合する炭素原子である。
前記一般式(2a)において、*2は、前記一般式(2)のX乃至X16のいずれかにおける炭素原子との結合部位を表し、
は、単結合、または連結基であり、
連結基としてのLは、
置換または無置換の環形成炭素数6〜30のアリール基、及び
置換または無置換の環形成原子数5〜30の芳香族複素環基
からなる群から選択され、
Xは、酸素原子、または硫黄原子であり、
21乃至X28は、それぞれ独立に、CRx2、またはLと結合する炭素原子であり、
x2は、それぞれ独立に、水素原子、または置換基であり、
置換基としてのRx2は、それぞれ独立に、
置換または無置換の炭素数1〜30のアルキル基、
置換または無置換の炭素数1〜30のアルコキシ基、
置換または無置換の炭素数1〜30のアルキルチオ基、
置換または無置換のアミノ基、
置換または無置換の環形成炭素数6〜30のアリール基、
置換または無置換の環形成原子数5〜30のヘテロアリール基、
置換または無置換の炭素数2〜30のアルケニル基、
置換または無置換の環形成炭素数6〜30のアリールオキシ基、
置換または無置換の環形成炭素数6〜30のアリールチオ基、
置換または無置換のホスファニル基、
置換または無置換のホスホリル基、
置換または無置換のシリル基、
置換または無置換の環形成炭素数6〜30のアリールカルボニル基、
シアノ基、
ニトロ基、
カルボキシ基、及び
ハロゲン原子
からなる群から選択され、
複数のRx2は、互いに同一であるかまたは異なり、
x2のうち、複数が置換基である場合、置換基としての複数のRx2同士が互いに結合して環を形成する場合と、環を形成しない場合とがある。
ただし、X21乃至X28のうちの1つは、Lと結合する炭素原子である。
本実施形態において、前記一般式(2)におけるRx1は、それぞれ独立に、水素原子であるか、あるいは環形成炭素数6〜30のアリール基、環形成原子数5〜30のヘテロアリール基、炭素数1〜30のアルキル基(直鎖または分岐鎖のアルキル基)、ハロゲン原子、及びシアノ基からなる群から選択される基であることが好ましい。
本実施形態において、前記一般式(2a)におけるRx2は、それぞれ独立に、水素原子であるか、あるいは環形成炭素数6〜30のアリール基、環形成原子数5〜30のヘテロアリール基、炭素数1〜30のアルキル基(直鎖または分岐鎖のアルキル基)、ハロゲン原子、及びシアノ基からなる群から選択される基であることが好ましい。
本実施形態の組成物において、前記一般式(2)におけるRx1同士が環を形成しないことが好ましい。
本実施形態の組成物において、前記一般式(2)におけるX乃至Xのうちの少なくともいずれかが、前記一般式(2a)で表される基と結合する炭素原子であることが好ましい。
本実施形態の組成物は、前記一般式(2)で表される化合物として、下記一般式(21A)で表される化合物及び下記一般式(21B)で表される化合物を含むことが好ましい。
前記一般式(21A)において、X、及びX乃至X16は、前記一般式(2)におけるX、及びX乃至X16とそれぞれ同義であり、X21乃至X27は、前記一般式(2a)におけるX21乃至X27とそれぞれ同義である。
前記一般式(21B)において、X、X、及びX乃至X16は、前記一般式(2)におけるX、X、及びX乃至X16とそれぞれ同義であり、X22乃至X28は、前記一般式(2a)におけるX22乃至X28とそれぞれ同義である。
前記一般式(21A)及び(21B)において、Rx1は、前記一般式(2)におけるRx1とそれぞれ同義であり、L、X、及びRx2は、前記一般式(2a)におけるL、X、及びRx2とそれぞれ同義である。
本実施形態において、前記一般式(21A)におけるRx1及びRx2は、それぞれ独立に、水素原子であるか、あるいは環形成炭素数6〜30のアリール基、環形成原子数5〜30のヘテロアリール基、炭素数1〜30のアルキル基(直鎖または分岐鎖のアルキル基)、ハロゲン原子、及びシアノ基からなる群から選択される基であることが好ましい。
また、本実施形態において、前記一般式(21B)におけるRx1及びRx2は、それぞれ独立に、水素原子であるか、あるいは環形成炭素数6〜30のアリール基、環形成原子数5〜30のヘテロアリール基、炭素数1〜30のアルキル基(直鎖または分岐鎖のアルキル基)、ハロゲン原子、及びシアノ基からなる群から選択される基であることが好ましい。
本実施形態の組成物は、前記一般式(2)で表される化合物として、下記一般式(22A)で表される化合物及び下記一般式(22B)で表される化合物を含むことも好ましい。
前記一般式(22A)において、X、及びX乃至X16は、前記一般式(2)におけるX、及びX乃至X16とそれぞれ同義であり、X21乃至X23、及びX25乃至X28は、前記一般式(2a)におけるX21乃至X23、及びX25乃至X28とそれぞれ同義である。
前記一般式(22B)において、X、X、及びX乃至X16は、前記一般式(2)におけるX、X、及びX乃至X16とそれぞれ同義であり、X21乃至X24、及びX26乃至X28は、前記一般式(2a)におけるX21乃至X24、及びX26乃至X28とそれぞれ同義である。
前記一般式(22A)及び(22B)において、Rx1は、前記一般式(2)におけるRx1とそれぞれ同義であり、L、X、及びRx2は、前記一般式(2a)におけるL、X、及びRx2とそれぞれ同義である。
本実施形態において、前記一般式(22A)におけるRx1及びRx2は、それぞれ独立に、水素原子であるか、あるいは環形成炭素数6〜30のアリール基、環形成原子数5〜30のヘテロアリール基、炭素数1〜30のアルキル基(直鎖または分岐鎖のアルキル基)、ハロゲン原子、及びシアノ基からなる群から選択される基であることが好ましい。
また、本実施形態において、前記一般式(22B)におけるRx1及びRx2は、それぞれ独立に、水素原子であるか、あるいは環形成炭素数6〜30のアリール基、環形成原子数5〜30のヘテロアリール基、炭素数1〜30のアルキル基(直鎖または分岐鎖のアルキル基)、ハロゲン原子、及びシアノ基からなる群から選択される基であることが好ましい。
本実施形態の組成物は、前記一般式(2)で表される化合物として、下記一般式(23A)で表される化合物及び下記一般式(23B)で表される化合物を含むことも好ましい。
前記一般式(23A)において、X、及びX乃至X16は、前記一般式(2)におけるX、及びX乃至X16とそれぞれ同義であり、X21乃至X25、X27、及びX28は、前記一般式(2a)におけるX21乃至X25、X27、及びX28とそれぞれ同義である。
前記一般式(23B)において、X、X、及びX乃至X16は、前記一般式(2)におけるX、X、及びX乃至X16とそれぞれ同義であり、X21、X22、及びX24乃至X28は、前記一般式(2a)におけるX21、X22、及びX24乃至X28とそれぞれ同義である。
前記一般式(23A)及び(23B)において、Rx1は、前記一般式(2)におけるRx1とそれぞれ同義であり、L、X、及びRx2は、前記一般式(2a)におけるL、X、及びRx2とそれぞれ同義である。
本実施形態において、前記一般式(23A)におけるRx1及びRx2は、それぞれ独立に、水素原子であるか、あるいは環形成炭素数6〜30のアリール基、環形成原子数5〜30のヘテロアリール基、炭素数1〜30のアルキル基(直鎖または分岐鎖のアルキル基)、ハロゲン原子、及びシアノ基からなる群から選択される基であることが好ましい。
また、本実施形態において、前記一般式(23B)におけるRx1及びRx2は、それぞれ独立に、水素原子であるか、あるいは環形成炭素数6〜30のアリール基、環形成原子数5〜30のヘテロアリール基、炭素数1〜30のアルキル基(直鎖または分岐鎖のアルキル基)、ハロゲン原子、及びシアノ基からなる群から選択される基であることが好ましい。
本実施形態の組成物における、前記一般式(2)で表される化合物の具体的な構造及び好ましい態様としては、本実施形態において、一般式で示した構造等の他に、上述の本実施形態の化合物の説明において、一般式で示した構造及び好ましい態様が挙げられる。
本実施形態に係る組成物に含まれる化合物の組み合わせについて、具体例([1]〜[23])を以下に示す。本発明の組成物は、これらの具体例に限定されない。
本実施形態の組成物によれば、有機EL素子の発光効率を向上させることができる。
また、本実施形態の組成物によれば、特に、青色の波長領域において、有機EL素子の発光効率を向上させることができる。
[有機EL素子]
(有機EL素子の素子構成)
以下、本実施形態に係る有機EL素子の素子構成について説明する。
本実施形態に係る有機素子は、一対の電極間に有機層を備える。この有機層は、有機化合物で構成される層を少なくとも一つ含む。あるいは、この有機層は、有機化合物で構成される複数の層が積層されてなる。有機層は、無機化合物をさらに含んでいてもよい。本実施形態の有機EL素子において、有機層のうち少なくとも一層は、発光層である。ゆえに、有機層は、例えば、一つの発光層で構成されていてもよいし、有機EL素子に採用され得る層を含んでいてもよい。有機EL素子に採用され得る層としては、特に限定されないが、例えば、正孔注入層、正孔輸送層、電子注入層、電子輸送層、及び障壁層からなる群から選択される少なくともいずれかの層が挙げられる。
有機EL素子の代表的な素子構成としては、例えば、次の(a)〜(f)等の構成を挙げることができる。
(a)陽極/発光層/陰極
(b)陽極/正孔注入・輸送層/発光層/陰極
(c)陽極/発光層/電子注入・輸送層/陰極
(d)陽極/正孔注入・輸送層/発光層/電子注入・輸送層/陰極
(e)陽極/正孔注入・輸送層/発光層/障壁層/電子注入・輸送層/陰極
(f)陽極/正孔注入・輸送層/障壁層/発光層/障壁層/電子注入・輸送層/陰極
上記の中で(d)の構成が好ましく用いられる。ただし、本発明は、これらの構成に限定されない。なお、上記「発光層」とは、発光機能を有する有機層である。前記「正孔注入・輸送層」は「正孔注入層、及び正孔輸送層のうちの少なくともいずれか1つ」を意味する。前記「電子注入・輸送層」は「電子注入層、及び電子輸送層のうちの少なくともいずれか1つ」を意味する。有機EL素子が、正孔注入層、及び正孔輸送層を有する場合には、正孔輸送層と陽極との間に正孔注入層が設けられていることが好ましい。また、有機EL素子が電子注入層、及び電子輸送層を有する場合には、電子輸送層と陰極との間に電子注入層が設けられていることが好ましい。また、正孔注入層、正孔輸送層、電子輸送層、及び電子注入層のそれぞれは、一層で構成されていてもよいし、複数の層で構成されていてもよい。
図1に、本実施形態に係る有機EL素子の一例の概略構成を示す。
有機EL素子1は、透光性の基板2と、陽極3と、陰極4と、陽極3と陰極4との間に配置された有機層10と、を有する。有機層10は、正孔注入層6、正孔輸送層7、発光層5、電子輸送層8、及び電子注入層9を含む。有機層10は、陽極3側から順に、正孔注入層6、正孔輸送層7、発光層5、電子輸送層8、及び電子注入層9が、この順番で積層されている。
(発光層)
有機EL素子1の発光層5は、第一の化合物、及び第二の化合物を含む。発光層5は、金属錯体を含んでもよい。発光層5は、燐光発光性の金属錯体を含まないことが好ましい。
第一の化合物は、ホスト材料(マトリックス材料と称する場合もある。)であることも好ましい。第二の化合物は、ドーパント材料(ゲスト材料、エミッター、発光材料と称する場合もある。)であることも好ましい。
本実施形態において、発光層5は、複数種の第二の化合物を含んでいてもよい。
なお、本実施形態において、「発光層5が複数種の第二の化合物を含む」場合には、例えば、発光層5が上述の本実施形態の組成物を含む場合も含まれる。
<第一の化合物>
第一の化合物は、遅延蛍光性の化合物であってもよいし、遅延蛍光性を示さない化合物であってもよい。第一の化合物は、遅延蛍光性の化合物であることが好ましい。
第一の化合物が遅延蛍光性の化合物である場合は、第一の化合物は、下記一般式(1)で表される化合物であることが好ましい。
前記一般式(1)において、
Aは、下記一般式(a−1)〜(a−7)からなる群から選ばれる部分構造を有する基であり、
複数のAは、互いに同一であるかまたは異なり、
A同士が結合して飽和もしくは不飽和の環を形成するかまたは環を形成せず、
Bは、下記一般式(b−1)〜(b−6)からなる群から選ばれる部分構造を有する基であり、
複数のBは、互いに同一であるかまたは異なり、
B同士が結合して飽和もしくは不飽和の環を形成するかまたは環を形成せず、
a、b、及びdは、それぞれ独立に、1〜5の整数であり、
cは、0〜5の整数であり、
cが0のとき、AとBとは単結合またはスピロ結合で結合し、
cが1〜5の整数のとき、Lは、
置換または無置換の環形成炭素数6〜30のアリール基、及び
置換または無置換の環形成原子数5〜30のヘテロアリール基
からなる群から選択される連結基であり、
cが2〜5の整数のとき、複数のLは、互いに同一であるかまたは異なり、
複数のL同士が結合して飽和もしくは不飽和の環を形成するかまたは環を形成しない。
前記一般式(b−1)〜(b−6)において、
Rは、それぞれ独立に、水素原子または置換基であり、
置換基としてのRは、
置換または無置換の環形成炭素数6〜30のアリール基、
置換または無置換の環形成原子数5〜30のヘテロアリール基、及び
置換または無置換の炭素数1〜30のアルキル基
からなる群から選択される基であり、
複数のRは、互いに同一であるかまたは異なり、
R同士が結合して飽和もしくは不飽和の環を形成するかまたは環を形成しない。
前記一般式(1)において、Aは、アクセプター性(電子受容性)部位であり、Bは、ドナー性(電子供与性)部位である。
前記一般式(a−1)〜(a−7)からなる群から選ばれる部分構造を有する基について、例を次に示す。
例えば、前記一般式(a−3)の部分構造を有する基として、下記一般式(a−3−1)で表される基が挙げられる。
前記一般式(a−3−1)において、Xは、単結合、酸素原子、硫黄原子、または前記一般式(1)中のLもしくはBと結合する炭素原子である。
前記一般式(a−5)の部分構造を有する基として、例えば、下記一般式(a−5−1)で表される基が挙げられる。
前記一般式(b−1)〜(b−6)からなる群から選ばれる部分構造を有する基について、例を次に示す。
例えば、前記一般式(b−2)の部分構造を有する基として、下記一般式(b−2−1)で表される基が挙げられる。
前記一般式(b−2−1)において、Xは、単結合、酸素原子、硫黄原子、CRb1b2、または前記一般式(1)中のLもしくはAと結合する炭素原子である。
前記一般式(b−2−1)は、Xが単結合のとき、下記一般式(b−2−2)で表される基であり、Xが酸素原子のとき、下記一般式(b−2−3)で表される基であり、Xが硫黄原子のとき、下記一般式(b−2−4)で表される基であり、XがCRb1b2のとき、下記一般式(b−2−5)で表される基である。
b1及びRb2は、それぞれ独立に、水素原子または置換基であり、置換基としてのRb1及び置換基としてのRb2は、それぞれ独立に、置換または無置換の炭素数1〜30のアルキル基、及び置換または無置換の環形成炭素数6〜30のアリール基からなる群から選択されるいずれかの置換基である。
b1及びRb2は、それぞれ独立に、置換または無置換の炭素数1〜30のアルキル基、及び置換または無置換の環形成炭素数6〜30のアリール基からなる群から選択されるいずれかの置換基であることが好ましく、置換または無置換の炭素数1〜30のアルキル基からなる群から選択されるいずれかの置換基であることがより好ましい。
本実施形態の有機エレクトロルミネッセンス素子において、Aは、前記一般式(a−1)、(a−2)、(a−3)及び(a−5)からなる群から選ばれる部分構造を有する基であることが好ましい。
本実施形態の有機エレクトロルミネッセンス素子において、Bは、前記一般式(b−2)、(b−3)及び(b−4)からなる群から選ばれる部分構造を有する基であることが好ましい。
前記一般式(1)で表される化合物の結合様式の一例として、例えば、下記表1に示す結合様式が挙げられる。
前記一般式(1)におけるBは、下記一般式(100)で表されることも好ましい。
前記一般式(100)において、
101〜R108は、それぞれ独立に、水素原子または置換基であり、
置換基としてのR101〜R108は、それぞれ独立に、
置換または無置換の環形成炭素数6〜30のアリール基、
置換または無置換の環形成原子数5〜30のヘテロアリール基、
置換または無置換の炭素数1〜30のアルキル基、
置換シリル基、
置換または無置換の炭素数1〜30のアルコキシ基、
置換または無置換の環形成炭素数6〜30のアリールオキシ基、
置換または無置換の炭素数2〜30のアルキルアミノ基、
置換または無置換の環形成炭素数6〜60のアリールアミノ基、
置換または無置換の炭素数1〜30のアルキルチオ基、及び
置換または無置換の環形成炭素数6〜30のアリールチオ基
からなる群から選択され、
ただし、R101及びR102の組、R102及びR103の組、R103及びR104の組、R105及びR106の組、R106及びR107の組、並びにR107及びR108の組からなる群から選択されるいずれかの組み合わせにおいて、置換基同士が飽和もしくは不飽和の環を形成するかまたは環を形成せず、
100は、下記一般式(111)〜(117)からなる群から選ばれる連結基であり、
sは、0〜3の整数であり、複数のL100は、互いに同一であるかまたは異なり、
100は、下記一般式(121)〜(125)からなる群から選ばれる連結基である。
前記一般式(113)〜(117)において、R109は、それぞれ独立に、前記一般式(100)におけるR101〜R108と同義である。
ただし、前記一般式(100)において、R101〜R108のうち一つまたはR109のうち一つは、前記一般式(1)中のLまたはAに対して結合する単結合である。
109と前記一般式(100)中のR104との組合せ、またはR109と前記一般式(100)中のR105との組合せにおいて、置換基同士が飽和もしくは不飽和の環を形成するかまたは環を形成せず、
複数のR109は、互いに同一であるかまたは異なる。
前記一般式(123)〜(125)において、
110は、それぞれ独立に、水素原子または置換基であり、
置換基としてのR110は、
置換または無置換の環形成炭素数6〜30のアリール基、
置換または無置換の環形成原子数5〜30のヘテロアリール基、及び
置換または無置換の炭素数1〜30のアルキル基
からなる群から選択される基であり、
複数のR110は、互いに同一であるかまたは異なる。
110と前記一般式(100)中のR101との組み合わせ、またはR110と前記一般式(100)中のR108との組み合せにおいて、置換基同士が飽和もしくは不飽和の環を形成するかまたは環を形成しない。
前記一般式(100)におけるsは、0または1であることが好ましい。
前記一般式(100)におけるsが0である場合、前記一般式(1)におけるBは、下記一般式(100A)で表される。
前記一般式(100A)におけるX100、R101〜R108は、それぞれ、前記一般式(100)におけるX100、R101〜R108と同義である。
100は、前記一般式(111)〜(114)のいずれかで表されることが好ましく、前記一般式(113)または(114)で表されることがより好ましい。
100は、前記一般式(121)〜(124)のいずれかで表されることが好ましく、前記一般式(123)または(124)で表されることがより好ましい。
本実施形態の有機エレクトロルミネッセンス素子において、第一の化合物は、下記一般式(11)で表される化合物であることも好ましい。
前記一般式(11)において、
Azは、
置換または無置換のピリジン環、
置換または無置換のピリミジン環、
置換または無置換のトリアジン環、及び
置換または無置換のピラジン環
からなる群から選択される環構造であり、
cは0〜5の整数であり、
cが0のとき、CzとAzとが単結合で結合し、
cが1〜5の整数のとき、Lは、
置換または無置換の環形成炭素数6〜30のアリール基、及び
置換または無置換の環形成原子数5〜30のヘテロアリール基
からなる群から選択される連結基であり、
cが2〜5の整数のとき、複数のLは、互いに同一であるかまたは異なり、
複数のL同士が結合して環を形成するかまたは環を形成せず、
Czは、下記一般式(12)で表される。
前記一般式(12)において、
21乃至Y28は、それぞれ独立に、窒素原子またはCRであり、
は、それぞれ独立に、水素原子または置換基であり、
置換基としてのRは、
置換または無置換の環形成炭素数6〜30のアリール基、
置換または無置換の環形成原子数5〜30のヘテロアリール基、
置換または無置換の炭素数1〜30のアルキル基、
置換または無置換の炭素数1〜30のフルオロアルキル基、
置換または無置換の環形成炭素数3〜30のシクロアルキル基、
置換または無置換の炭素数7〜30のアラルキル基、
置換ホスホリル基、
置換シリル基、
シアノ基、
ニトロ基、及び
カルボキシ基
からなる群から選択される基であり、
複数のRは、互いに同一であるかまたは異なり、
21乃至Y28のうち、複数がCRであって、Rが置換基である場合、置換基としての複数のR同士が結合して環を形成する場合と、環を形成しない場合とがあり、
*1は、Lで表される連結基の構造中の炭素原子との結合部位、またはAzで表される環構造中の炭素原子との結合部位を表す。
21乃至Y28は、CRであることも好ましい。
前記一般式(11)におけるcは、0または1であることが好ましい。
前記一般式(11)で表される化合物は、下記一般式(11A)で表される化合物であることも好ましい。
前記一般式(11A)における、Az、Cz、及びLは、前記一般式(11)におけるAz、Cz、及びLと同義である。
前記一般式(11A)におけるLは、置換または無置換の環形成炭素数6〜30のアリール基からなる群から選択される連結基であることが好ましい。
前記一般式(11A)で表される化合物は、下記一般式(11B)で表される化合物であることも好ましい。
前記一般式(11B)における、Az、及びCzは、前記一般式(11)におけるAz、及びCzと同義であり、c3は、4であり、R100は、水素原子または置換基であり、置換基としてのR100は、置換または無置換の環形成炭素数6〜30のアリール基、置換または無置換の環形成原子数5〜30のヘテロアリール基、置換または無置換の炭素数1〜30のアルキル基、置換または無置換の炭素数1〜30のフルオロアルキル基、置換または無置換の環形成炭素数3〜30のシクロアルキル基、置換または無置換の炭素数7〜30のアラルキル基、置換ホスホリル基、置換シリル基、シアノ基、ニトロ基、及びカルボキシ基からなる群から選択されるいずれかの置換基であり、複数のR100は、同一であるかまたは異なる。
前記一般式(11A)で表される化合物は、下記一般式(11C)で表される化合物であることも好ましい。
前記一般式(11C)において、
Az、及びCzは、前記一般式(11)におけるAz、及びCzと同義であり、
41乃至R44は、それぞれ独立に、水素原子または置換基であり、
置換基としてのR41〜R44は、それぞれ独立に、
置換または無置換の環形成炭素数6〜30のアリール基、
置換または無置換の環形成原子数5〜30のヘテロアリール基、
置換または無置換の炭素数1〜30のアルキル基、
置換または無置換の炭素数1〜30のフルオロアルキル基、
置換または無置換の環形成炭素数3〜30のシクロアルキル基、
置換または無置換の炭素数7〜30のアラルキル基、
置換ホスホリル基、
置換シリル基、
シアノ基、
ニトロ基、及び
カルボキシ基
からなる群から選択されるいずれかの置換基である。
前記Czは、下記一般式(12a)、一般式(12b)または一般式(12c)で表されることも好ましい。
前記一般式(12a)、一般式(12b)及び一般式(12c)において、Y21乃至Y28、及びY51乃至Y58は、それぞれ独立に、窒素原子またはCRであり、
ただし、前記一般式(12a)中、Y25乃至Y28のうち、少なくとも一つは、Y51乃至Y54のいずれかと結合する炭素原子であり、Y51乃至Y54のうち、少なくとも一つは、Y25乃至Y28のいずれかと結合する炭素原子であり、
前記一般式(12b)中、Y25乃至Y28のうち、少なくとも一つは、Y51乃至Y58を含有する含窒素縮合環の5員環中の窒素原子と結合する炭素原子であり、
前記一般式(12c)中、*a及び*bは、それぞれ、Y21乃至Y28のうちのいずれかとの結合部位を表し、Y25乃至Y28のうち、少なくとも一つは、*aで表される結合部位であり、Y25乃至Y28のうち、少なくとも一つは、*bで表される結合部位であり、
nは、1以上4以下の整数であり、
は、それぞれ独立に、水素原子または置換基であり、
置換基としてのRは、それぞれ独立に、
置換または無置換の環形成炭素数6〜30のアリール基、
置換または無置換の環形成原子数5〜30のヘテロアリール基、
置換または無置換の炭素数1〜30のアルキル基、
置換または無置換の炭素数1〜30のフルオロアルキル基、
置換または無置換の環形成炭素数3〜30のシクロアルキル基、
置換または無置換の炭素数7〜30のアラルキル基、
置換ホスホリル基、
置換シリル基、
シアノ基、
ニトロ基、及び
カルボキシ基
からなる群から選択されるいずれかの置換基であり、
複数のRは、互いに同一であるかまたは異なり、
21乃至Y28のうち、複数がCRであって、Rが置換基である場合、R同士が結合して環を形成するか、または環を形成せず、
51乃至Y58のうち、複数がCRであって、Rが置換基である場合、R同士が結合して環を形成するか、または環を形成せず、
11は、酸素原子、硫黄原子、NR45、及びCR4647からなる群から選択されるいずれか一種であり、
45乃至R47は、それぞれ独立に、水素原子または置換基であり、
置換基としてのR45乃至R47は、それぞれ独立に、
置換または無置換の環形成炭素数6〜30のアリール基、
置換または無置換の環形成原子数5〜30のヘテロアリール基、
置換または無置換の炭素数1〜30のアルキル基、
置換または無置換の炭素数1〜30のフルオロアルキル基、
置換または無置換の環形成炭素数3〜30のシクロアルキル基、
置換または無置換の炭素数7〜30のアラルキル基、
置換ホスホリル基、
置換シリル基、
シアノ基、
ニトロ基、及び
カルボキシ基
からなる群から選択されるいずれかの置換基であり、
複数のR45は、互いに同一であるかまたは異なり、
複数のR46は、互いに同一であるかまたは異なり、
複数のR47は、互いに同一であるかまたは異なり、
46及びR47が互いに置換基である場合、当該置換基同士が結合して環を形成するかまたは環を形成せず、
*は、Azで表される環構造中の炭素原子との結合部位を表す。
11は、NR45であることが好ましい。
11がNR45である場合、R45は、置換または無置換の環形成炭素数6〜30のアリール基であることが好ましい。
51乃至Y58は、CRであることが好ましく、ただし、この場合、Y51乃至Y58のうち、少なくともいずれかが、前記一般式(12)で表される環構造と結合する炭素原子である。
Czは、前記一般式(12c)で表され、nは、1であることも好ましい。
Czは、下記一般式(12c−1)で表されることも好ましい。下記一般式(12c−1)で表される基は、前記一般式(12c)中のY26が*aで表される結合部位であり、Y27が*bで表される結合部位である場合を例示した基である。
前記一般式(12c−1)において、
21乃至Y25、Y28、及びY51乃至Y54は、それぞれ独立に、窒素原子またはCRであり、
は、それぞれ独立に、水素原子または置換基であり、
置換基としてのRは、それぞれ独立に、
置換または無置換の環形成炭素数6〜30のアリール基、
置換または無置換の環形成原子数5〜30のヘテロアリール基、
置換または無置換の炭素数1〜30のアルキル基、
置換または無置換の炭素数1〜30のフルオロアルキル基、
置換または無置換の環形成炭素数3〜30のシクロアルキル基、
置換または無置換の炭素数7〜30のアラルキル基、
置換ホスホリル基、
置換シリル基、
シアノ基、
ニトロ基、及び
カルボキシ基
からなる群から選択されるいずれかの置換基であり、
複数のRは、互いに同一であるかまたは異なり、
21乃至Y25、及びY28のうち、複数がCRであって、Rが置換基である場合、R同士が結合して環を形成するか、または環を形成せず、
51乃至Y54のうち、複数がCRであって、Rが置換基である場合、R同士が結合して環を形成するか、または環を形成せず、
11は、酸素原子、硫黄原子、NR45、及びCR4647からなる群から選択されるいずれか一種であり、
45乃至R47は、それぞれ独立に、水素原子または置換基であり、
置換基としてのR45乃至R47は、それぞれ独立に、
置換または無置換の環形成炭素数6〜30のアリール基、
置換または無置換の環形成原子数5〜30のヘテロアリール基、
置換または無置換の炭素数1〜30のアルキル基、
置換または無置換の炭素数1〜30のフルオロアルキル基、
置換または無置換の環形成炭素数3〜30のシクロアルキル基、
置換または無置換の炭素数7〜30のアラルキル基、
置換ホスホリル基、
置換シリル基、
シアノ基、
ニトロ基、及び
カルボキシ基
からなる群から選択されるいずれかの置換基であり、
複数のR45は、互いに同一であるかまたは異なり、
複数のR46は、互いに同一であるかまたは異なり、
複数のR47は、互いに同一であるかまたは異なり、
46及びR47が互いに置換基である場合、当該置換基同士が結合して環を形成するかまたは環を形成せず、
*は、Azで表される環構造中の炭素原子との結合部位を表す。
前記一般式(12c)におけるnが2である場合、Czは、例えば、下記一般式(12c−2)で表される。nが2である場合、添え字nが付された括弧内の構造が、2つ、前記一般式(12)で表される環構造に縮合する。下記一般式(12c−2)で表されるCzは、前記一般式(12c)中のY22が*bで表される結合部位であり、Y23が*aで表される結合部位であり、Y26が*aで表される結合部位であり、Y27が*bで表される結合部位である場合の例示である。
前記一般式(12c−2)において、Y21、Y24、Y25、Y28、Y51乃至Y54、Z11、及び*は、それぞれ、前記一般式(12c−1)中のY21、Y24、Y25、Y28、Y51乃至Y54、Z11、及び*と同義である。複数のY51は、互いに同一であるかまたは異なり、複数のY52は、互いに同一であるかまたは異なり、複数のY53は、互いに同一であるかまたは異なり、複数のY54は、互いに同一であるかまたは異なる。複数のZ11は、互いに同一であるかまたは異なる。
Azは、置換または無置換のピリミジン環、及び置換または無置換のトリアジン環からなる群から選択される環構造であることが好ましい。
Azは、置換基を有するピリミジン環、及び置換基を有するトリアジン環からなる群から選択される環構造であり、これらピリミジン環、及びトリアジン環が有する置換基は、置換または無置換の環形成炭素数6〜30のアリール基、及び置換または無置換の環形成原子数5〜30のヘテロアリール基からなる群から選択される基であることがより好ましく、置換または無置換の環形成炭素数6〜30のアリール基であることがさらに好ましい。
Azとしてのピリミジン環及びトリアジン環が、置換または無置換のアリール基を置換基として有する場合、当該アリール基の環形成炭素数は、6〜20であることが好ましく、6〜14であることがより好ましく、6〜12であることがさらに好ましい。
Azが、置換または無置換のアリール基を置換基として有する場合、当該置換基は、置換または無置換のフェニル基、置換または無置換のビフェニル基、置換または無置換のナフチル基、置換または無置換のフェナントリル基、置換または無置換のターフェニル基、及び置換または無置換のフルオレニル基からなる群から選択されるいずれかの置換基であることが好ましく、置換または無置換のフェニル基、置換または無置換のビフェニル基、及び置換または無置換のナフチル基からなる群から選択されるいずれかの置換基であることがより好ましい。
Azが、置換または無置換のヘテロアリール基を置換基として有する場合、当該置換基は、置換または無置換のカルバゾリル基、置換または無置換のジベンゾフラニル基、及び置換または無置換のジベンゾチオフェニル基からなる群から選択されるいずれかの置換基であることが好ましい。
は、それぞれ独立に、水素原子または置換基であり、置換基としてのRは、置換または無置換の環形成炭素数6〜30のアリール基、及び置換または無置換の環形成原子数5〜30のヘテロアリール基からなる群から選択されるいずれかの置換基であることが好ましい。
置換基としてのRが置換または無置換の環形成炭素数6〜30のアリール基である場合、置換基としてのRは、置換または無置換のフェニル基、置換または無置換のビフェニル基、置換または無置換のナフチル基、置換または無置換のフェナントリル基、置換または無置換のターフェニル基、及び置換または無置換のフルオレニル基からなる群から選択されるいずれかの置換基であることが好ましく、置換または無置換のフェニル基、置換または無置換のビフェニル基、及び置換または無置換のナフチル基からなる群から選択されるいずれかの置換基であることがより好ましい。
置換基としてのRが置換または無置換の環形成原子数5〜30のヘテロアリール基である場合、置換基としてのRは、置換または無置換のカルバゾリル基、置換または無置換のジベンゾフラニル基、及び置換または無置換のジベンゾチオフェニル基からなる群から選択されるいずれかの置換基であることが好ましい。
置換基としてのR45乃至R47は、それぞれ独立に、置換または無置換の環形成炭素数6〜30のアリール基、置換または無置換の環形成原子数5〜30のヘテロアリール基、及び置換または無置換の炭素数1〜30のアルキル基からなる群から選択されるいずれかの置換基であることが好ましい。
第一の化合物は、下記一般式(13)で表される化合物であることも好ましい。
(前記一般式(13)において、
c2は、2であり、
a2は、0または1であり、複数のa2は、互いに同一であるかまたは異なり、
c1は、1〜5の整数であり、複数のc1は、互いに同一であるかまたは異なり、
a2が0のとき、R48及びR49は、それぞれ独立に、水素原子または1価の置換基であり、
置換基としてのR48及びR49は、それぞれ独立に、
置換または無置換の環形成炭素数6〜30のアリール基、
置換または無置換の環形成原子数5〜30のヘテロアリール基、
置換または無置換の炭素数1〜30のアルキル基、
置換または無置換の炭素数1〜30のアルコキシ基、
置換または無置換の炭素数7〜30のアラルキル基、
置換または無置換の環形成炭素数6〜30のアリールオキシ基、及び
置換シリル基
からなる群から選択される基であり、
a2が1のとき、R48及びR49は、それぞれ独立に、
置換または無置換の環形成炭素数6〜30のアリール基、
置換または無置換の環形成原子数5〜30のヘテロアリール基、
置換または無置換の炭素数1〜30のアルキル基、
置換または無置換の炭素数1〜30のアルコキシ基、
置換または無置換の炭素数7〜30のアラルキル基、
置換または無置換の環形成炭素数6〜30のアリールオキシ基、及び
置換シリル基
からなる群から選択される連結基であり、
複数のR48は、互いに同一であるかまたは異なり、
複数のR49は、互いに同一であるかまたは異なり、
11及びA12は、それぞれ独立に、前記一般式(a−1)〜(a−7)から選ばれる部分構造を有する基であり、
複数のA12は、互いに同一であるかまたは異なり、
12は、単結合または連結基であり、
連結基としてのL12は、
置換または無置換の環形成炭素数6〜30のアリール基、及び
置換または無置換の環形成原子数5〜30のヘテロアリール基
からなる群から選択される連結基であり、
複数のL12は、互いに同一であるかまたは異なり、
11は、単結合または連結基であり、
連結基としてのL11は、
置換または無置換の環形成炭素数6〜30のアリール基、及び
置換または無置換の環形成原子数5〜30のヘテロアリール基
からなる群から選択される連結基であり、
複数のL11は、互いに同一であるかまたは異なる。)
前記一般式(13)におけるa2が0のとき、第一の化合物は、下記一般式(131)で表される。下記一般式(131)におけるc1、c2、A11、L11、L12、R48及びR49は、前述と同義である。
前記一般式(131)において、R48及びR49は、置換または無置換の環形成炭素数6〜30のアリール基、置換または無置換の環形成原子数5〜30のヘテロアリール基、置換または無置換の炭素数1〜30のアルキル基、及び置換シリル基からなる群から選択されるいずれかの置換基であることが好ましく、置換または無置換の環形成炭素数6〜30のアリール基、置換または無置換の環形成原子数5〜30のヘテロアリール基、及び置換または無置換の炭素数1〜30のアルキル基からなる群から選択されるいずれかの置換基であることがより好ましい。
前記一般式(13)におけるa2が1のとき、第一の化合物は、下記一般式(132)で表される。下記一般式(132)におけるc1、c2、A11、A12、L11、L12、R48及びR49は、前述と同義である。
前記一般式(132)において、R48及びR49は、置換または無置換の環形成炭素数6〜30のアリール基、置換または無置換の環形成原子数5〜30のヘテロアリール基、及び置換シリル基からなる群から選択される連結基であることが好ましく、置換または無置換の環形成炭素数6〜30のアリール基、及び置換または無置換の環形成原子数5〜30のヘテロアリール基からなる群から選択される連結基であることがより好ましい。
第一の化合物は、例えば、下記一般式(14)で表される化合物であることも好ましい
前記一般式(14)において、
a1は0または1であり、
a2は0または1であり、
ただし、a1+a2≧1であり、
c1は、1〜5の整数であり、
a2が0のとき、R48及びR49は、それぞれ独立に、水素原子または1価の置換基であり、
置換基としてのR48及びR49は、それぞれ独立に、
置換または無置換の環形成炭素数6〜30のアリール基、
置換または無置換の環形成原子数5〜30のヘテロアリール基、
置換または無置換の炭素数1〜30のアルキル基、
置換または無置換の炭素数1〜30のアルコキシ基、
置換または無置換の炭素数7〜30のアラルキル基、
置換または無置換の環形成炭素数6〜30のアリールオキシ基、及び
置換シリル基
からなる群から選択される基であり、
a2が1のとき、R48及びR49は、それぞれ独立に、
置換または無置換の環形成炭素数6〜30のアリール基、
置換または無置換の環形成原子数5〜30のヘテロアリール基、
置換または無置換の炭素数1〜30のアルキル基、
置換または無置換の炭素数1〜30のアルコキシ基、
置換または無置換の炭素数7〜30のアラルキル基、
置換または無置換の環形成炭素数6〜30のアリールオキシ基、及び
置換シリル基
からなる群から選択される連結基であり、
複数のR48は、互いに同一であるかまたは異なり、
複数のR49は、互いに同一であるかまたは異なり、
11及びA12は、それぞれ独立に、前記一般式(a−1)〜(a−7)から選ばれる部分構造を有する基であり、
複数のA12は互いに同一であるかまたは異なり、
a1が0のとき、L12は、水素原子、または1価の置換基であり、
1価の置換基としてのL12は、
置換または無置換の環形成炭素数6〜30のアリール基、及び
置換または無置換の環形成原子数5〜30のヘテロアリール基
からなる群から選択される基であり、
a1が1のとき、L12は単結合、または連結基であり、
連結基としてのL12は、
置換または無置換の環形成炭素数6〜30のアリール基、及び
置換または無置換の環形成原子数5〜30のヘテロアリール基
からなる群から選択される連結基であり、
11は、単結合、または連結基であり、
連結基としてのL11は、
置換または無置換の環形成炭素数6〜30のアリール基、及び
置換または無置換の環形成原子数5〜30のヘテロアリール基
からなる群から選択される連結基であり、
複数のL11は、互いに同一、または異なる。
前記一般式(14)で表される化合物としては、例えば、下記一般式(14A)で表される化合物が挙げられる。
前記一般式(14A)において、a1、c1、A11、A12、L11、及びL12は、それぞれ、前記一般式(14)におけるa1、c1、A11、A12、L11、及びL12と同義である。
前記一般式(13)、または前記一般式(14)で表される化合物としては、例えば、下記一般式(10B)〜(10E)で表される化合物が挙げられる。
前記一般式(10D)において、Zは、=N−L11−L12−A11、酸素原子、硫黄原子、及びセレン原子からなる群から選択される。
前記一般式(10B)、(10C)、(10D)、及び(10E)において、R48、R49、A11、A12、L11、及びL12は、前記一般式(14)におけるR48、R49、A11、A12、L11、及びL12と、それぞれ同義である。
前記一般式(131)で表される化合物は、下記一般式(10F)で表される化合物であることも好ましい。
前記一般式(10F)において、R48、R49、及びL11は、前記一般式(13)におけるR48、R49、及びL11と、それぞれ同義であり、複数のR48は、互いに同一であるかまたは異なり、複数のR49は、互いに同一であるかまたは異なり、複数のL11は、互いに同一であるかまたは異なる。
・遅延蛍光性
遅延蛍光(熱活性化遅延蛍光)については、「有機半導体のデバイス物性」(安達千波矢編、講談社発行)の261〜268ページで解説されている。その文献の中で、蛍光発光材料の励起一重項状態と励起三重項状態のエネルギー差ΔE13を小さくすることができれば、通常は遷移確率が低い励起三重項状態から励起一重項状態への逆エネルギー移動が高効率で生じ、熱活性化遅延蛍光(Thermally Activated delayed Fluorescence, TADF)が発現すると説明されている。さらに、当該文献中の図10.38で、遅延蛍光の発生メカニズムが説明されている。本実施形態における第一の化合物は、このようなメカニズムで発生する熱活性化遅延蛍光を示す化合物である。
遅延蛍光の発光は過渡PL(Photo Luminescence)測定により確認できる。
過渡PL測定から得た減衰曲線に基づいて遅延蛍光の挙動を解析することもできる。過渡PL測定とは、試料にパルスレーザーを照射して励起させ、照射を止めた後のPL発光の減衰挙動(過渡特性)を測定する手法である。TADF材料におけるPL発光は、最初のPL励起で生成する一重項励起子からの発光成分と、三重項励起子を経由して生成する一重項励起子からの発光成分に分類される。最初のPL励起で生成する一重項励起子の寿命は、ナノ秒オーダーであり、非常に短い。そのため、当該一重項励起子からの発光は、パルスレーザーを照射後、速やかに減衰する。
一方、遅延蛍光は、寿命の長い三重項励起子を経由して生成する一重項励起子からの発光のため、ゆるやかに減衰する。このように最初のPL励起で生成する一重項励起子からの発光と、三重項励起子を経由して生成する一重項励起子からの発光とでは、時間的に大きな差がある。そのため、遅延蛍光由来の発光強度を求めることができる。
図2には、過渡PLを測定するための例示的装置の概略図が示されている。
本実施形態の過渡PL測定装置100は、所定波長の光を照射可能なパルスレーザー部101と、測定試料を収容する試料室102と、測定試料から放射された光を分光する分光器103と、2次元像を結像するためのストリークカメラ104と、2次元像を取り込んで解析するパーソナルコンピュータ105とを備える。なお、過渡PLの測定は、本実施形態で説明する装置に限定されない。
試料室102に収容される試料は、マトリックス材料に対し、ドーピング材料が12質量%の濃度でドープされた薄膜を石英基板に成膜することで得られる。
試料室102に収容された薄膜試料に対し、パルスレーザー部101からパルスレーザーを照射して、ドーピング材料を励起させる。励起光の照射方向に対して90度の方向へ発光を取り出し、取り出した光を分光器103で分光し、ストリークカメラ104内で2次元像を結像する。その結果、縦軸が時間に対応し、横軸が波長に対応し、輝点が発光強度に対応する2次元画像を得ることができる。この2次元画像を所定の時間軸で切り出すと、縦軸が発光強度であり、横軸が波長である発光スペクトルを得ることができる。また、当該2次元画像を波長軸で切り出すと、縦軸が発光強度の対数であり、横軸が時間である減衰曲線(過渡PL)を得ることができる。
例えば、マトリックス材料として、下記参考化合物H1を用い、ドーピング材料として下記参考化合物D1を用いて上述のようにして薄膜試料Aを作製し、過渡PL測定を行った。
ここでは、前述の薄膜試料A、及び薄膜試料Bを用いて減衰曲線を解析した。薄膜試料Bは、マトリックス材料として下記参考化合物H2を用い、ドーピング材料として前記参考化合物D1を用いて、上述のようにして薄膜試料を作製した。
図3には、薄膜試料A及び薄膜試料Bについて測定した過渡PLから得た減衰曲線が示されている。
上記したように過渡PL測定によって、縦軸を発光強度とし、横軸を時間とする発光減衰曲線を得ることができる。この発光減衰曲線に基づいて、光励起により生成した一重項励起状態から発光する蛍光と、三重項励起状態を経由し、逆エネルギー移動により生成する一重項励起状態から発光する遅延蛍光との、蛍光強度比を見積もることができる。遅延蛍光性の材料では、素早く減衰する蛍光の強度に対し、緩やかに減衰する遅延蛍光の強度の割合が、ある程度大きい。
本実施形態における遅延蛍光発光量は、図2の装置を用いて求めることができる。前記第一の化合物は、当該第一の化合物が吸収する波長のパルス光(パルスレーザーから照射される光)で励起された後、当該励起状態から即座に観察されるPrompt発光(即時発光)と、当該励起後、即座には観察されず、その後観察されるDelay発光(遅延発光)とが存在する。本実施形態においては、Prompt発光(即時発光)の量をXとし、Delay発光(遅延発光)の量をXとしたときに、X/Xの値が0.05以上であることが好ましい。
Prompt発光とDelay発光の量は、“Nature 492, 234−238, 2012”に記載された方法と同様の方法により求めることができる。なお、Prompt発光とDelay発光の量の算出に使用される装置は、前記の文献に記載の装置に限定されない。
また、遅延蛍光性の測定に用いられる試料は、例えば、第一の化合物と下記化合物TH−2とを、第一の化合物の割合が12質量%となるように石英基板上に共蒸着し、膜厚100nmの薄膜を形成した試料を使用することができる。
・第一の化合物の製造方法
第一の化合物は、例えば、Chemical Communications,p.10385−10387(2013)及びNATURE Photonics,p.326−332(2014)に記載された方法により製造できる。また、例えば、国際公開第2013/180241号、国際公開第2014/092083号、及び国際公開第2014/104346号等に記載された方法により製造できる。また、例えば、後述する実施例で説明する反応に倣い、目的物に合わせた既知の代替反応や原料を用いることで、第一の化合物を製造できる。
本実施形態に係る第一の化合物の具体例を以下に示す。本発明における第一の化合物は、これらの具体例に限定されない。
<第二の化合物>
第二の化合物は、前記一般式(2)で表される化合物である。
第二の化合物の主ピーク波長の範囲は、430nm以上480nm以下であることが好ましく、445nm以上480nm以下であることがより好ましい。
本明細書において、主ピーク波長とは、測定対象化合物が10−6モル/リットル以上10−5モル/リットル以下の濃度で溶解しているトルエン溶液について、測定した発光スペクトルにおける発光強度が最大となる発光スペクトルのピーク波長をいう。
第二の化合物は、青色の蛍光発光を示すことが好ましい。
第二の化合物は、発光量子収率の高い材料であることが好ましい。
<発光層における第一の化合物、及び第二の化合物の関係>
第一の化合物が遅延蛍光性を示す化合物である場合、第一の化合物の一重項エネルギーS(M1)と、第二の化合物の一重項エネルギーS(M2)とが、下記数式(数1)の関係を満たすことが好ましい。
(M1)>S(M2) …(数1)
第一の化合物の77[K]におけるエネルギーギャップT77K(M1)は、第二の化合物の77[K]におけるエネルギーギャップT77K(M2)よりも大きいことが好ましい。すなわち、下記数式(数4)の関係を満たすことが好ましい。
77K(M1)>T77K(M2) …(数4)
本実施形態の有機EL素子1を発光させたときに、発光層5において、主に第二の化合物が発光していることが好ましい。
・三重項エネルギーと77[K]におけるエネルギーギャップとの関係
ここで、三重項エネルギーと77[K]におけるエネルギーギャップとの関係について説明する。本実施形態では、77[K]におけるエネルギーギャップは、通常定義される三重項エネルギーとは異なる点がある。
三重項エネルギーの測定は、次のようにして行われる。まず、測定対象となる化合物を適切な溶媒中に溶解した溶液を石英ガラス管内に封入した試料を作製する。この試料について、低温(77[K])で燐光スペクトル(縦軸:燐光発光強度、横軸:波長とする。)を測定し、この燐光スペクトルの短波長側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値に基づいて、所定の換算式から三重項エネルギーを算出する。
ここで、本実施形態に用いる遅延蛍光性化合物としては、ΔSTが小さい化合物であることが好ましい。ΔSTが小さいと、低温(77[K])状態でも、項間交差、及び逆項間交差が起こりやすく、励起一重項状態と励起三重項状態とが混在する。その結果、上記と同様にして測定されるスペクトルは、励起一重項状態及び励起三重項状態の両者からの発光を含んでおり、いずれの状態から発光したのかについて峻別することは困難であるが、基本的には三重項エネルギーの値が支配的と考えられる。
そのため、本実施形態では、通常の三重項エネルギーTと測定手法は同じであるが、その厳密な意味において異なることを区別するため、次のようにして測定される値をエネルギーギャップT77Kと称する。測定対象となる化合物をEPA(ジエチルエーテル:イソペンタン:エタノール=5:5:2(容積比))中に、濃度が10μmol/Lとなるように溶解し、この溶液を石英セル中に入れて測定試料とする。この測定試料について、低温(77[K])で燐光スペクトル(縦軸:燐光発光強度、横軸:波長とする。)を測定し、この燐光スペクトルの短波長側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値λedge[nm]に基づいて、次の換算式(F1)から算出されるエネルギー量を77[K]におけるエネルギーギャップT77Kとする。
換算式(F1):T77K[eV]=1239.85/λedge
燐光スペクトルの短波長側の立ち上がりに対する接線は以下のように引く。燐光スペクトルの短波長側から、スペクトルの極大値のうち、最も短波長側の極大値までスペクトル曲線上を移動する際に、長波長側に向けて曲線上の各点における接線を考える。この接線は、曲線が立ち上がるにつれ(つまり縦軸が増加するにつれ)、傾きが増加する。この傾きの値が極大値をとる点において引いた接線(すなわち変曲点における接線)が、当該燐光スペクトルの短波長側の立ち上がりに対する接線とする。
なお、スペクトルの最大ピーク強度の15%以下のピーク強度をもつ極大点は、上述の最も短波長側の極大値には含めず、最も短波長側の極大値に最も近い、傾きの値が極大値をとる点において引いた接線を当該燐光スペクトルの短波長側の立ち上がりに対する接線とする。
燐光の測定には、(株)日立ハイテクノロジー製のF−4500形分光蛍光光度計本体を用いることができる。なお、測定装置はこの限りではなく、冷却装置及び低温用容器と、励起光源と、受光装置とを組み合わせることにより、測定してもよい。
・一重項エネルギーS
溶液を用いた一重項エネルギーSの測定方法(溶液法と称する場合がある。)としては、下記の方法が挙げられる。
測定対象となる化合物の10μmol/Lトルエン溶液を調製して石英セルに入れ、常温(300K)でこの試料の吸収スペクトル(縦軸:発光強度、横軸:波長とする。)を測定する。この吸収スペクトルの長波長側の立ち下がりに対して接線を引き、その接線と横軸との交点の波長値λedge[nm]を次に示す換算式(F2)に代入して一重項エネルギーを算出する。
換算式(F2):S[eV]=1239.85/λedge
吸収スペクトル測定装置としては、例えば、日立社製の分光光度計(装置名:U3310)が挙げられるが、これに限定されない。
吸収スペクトルの長波長側の立ち下がりに対する接線は以下のように引く。吸収スペクトルの極大値のうち、最も長波長側の極大値から長波長方向にスペクトル曲線上を移動する際に、曲線上の各点における接線を考える。この接線は、曲線が立ち下がるにつれ(つまり縦軸の値が減少するにつれ)、傾きが減少しその後増加することを繰り返す。傾きの値が最も長波長側(ただし、吸光度が0.1以下となる場合は除く)で極小値をとる点において引いた接線を当該吸収スペクトルの長波長側の立ち下がりに対する接線とする。
なお、吸光度の値が0.2以下の極大点は、上記最も長波長側の極大値には含めない。
・発光層における化合物の含有率
発光層5に含まれている第一の化合物、及び第二の化合物の含有率は、例えば、以下の範囲であることが好ましい。
第一の化合物の含有率は、90質量%以上99.9質量%以下であることが好ましく、95質量%以上99.9質量%以下であることがより好ましく、99質量%以上99.9質量%以下であることがさらに好ましい。
第二の化合物の含有率は、0.01質量%以上10質量%以下であることが好ましく、0.01質量%以上5質量%以下であることがより好ましく、0.01質量%以上1質量%以下であることがさらに好ましい。
なお、本実施形態は、発光層5に、第一の化合物、及び第二の化合物以外の材料が含まれることを除外しない。
・発光層の膜厚
発光層5の膜厚は、好ましくは5nm以上50nm以下、より好ましくは7nm以上50nm以下、さらに好ましくは10nm以上50nm以下である。発光層5の膜厚が5nm以上であれば発光層5を形成し易く、色度を調整し易い。また、発光層5の膜厚が50nm以下であれば、駆動電圧の上昇を抑制できる。
・TADF機構
図4は、発光層における第一の化合物、及び第二の化合物のエネルギー準位の関係の一例を示す図である。図4において、S0は、基底状態を表す。S1(M1)は、第一の化合物の最低励起一重項状態を表す。T1(M1)は、第一の化合物の最低励起三重項状態を表す。S1(M2)は、第二の化合物の最低励起一重項状態を表す。T1(M2)は、第二の化合物の最低励起三重項状態を表す。
図4中のS1(M1)からS1(M2)へ向かう破線の矢印は、第一の化合物の最低励起一重項状態から第二の化合物へのフェルスター型エネルギー移動を表す。
図4に示すように、第一の化合物としてΔST(M1)の小さな化合物を用いると、最低励起三重項状態T1(M1)は、熱エネルギーにより、最低励起一重項状態S1(M1)に逆項間交差が可能である。そして、第一の化合物の最低励起一重項状態S1(M1)から第二の化合物へのフェルスター型エネルギー移動が生じ、最低励起一重項状態S1(M2)が生成する。この結果、第二の化合物の最低励起一重項状態S1(M2)からの蛍光発光を観測することができる。このTADF機構による遅延蛍光を利用することによっても、理論的に内部効率を100%まで高めることができると考えられている。
(基板)
基板2は、有機EL素子1の支持体として用いられる。基板2としては、例えば、ガラス、石英、及びプラスチック等を用いることができる。また、可撓性基板を用いてもよい。可撓性基板とは、折り曲げることができる(フレキシブル)基板のことであり、例えば、プラスチック基板等が挙げられる。プラスチック基板を形成する材料としては、例えば、ポリカーボネート、ポリアリレート、ポリエーテルスルフォン、ポリプロピレン、ポリエステル、ポリフッ化ビニル、ポリ塩化ビニル、ポリイミド、及びポリエチレンナフタレート等が挙げられる。また、無機蒸着フィルムを用いることもできる。
(陽極)
基板2上に形成される陽極3には、仕事関数の大きい(具体的には4.0eV以上)金属、合金、電気伝導性化合物、及びこれらの混合物等を用いることが好ましい。具体的には、例えば、酸化インジウム−酸化スズ(ITO:Indium Tin Oxide)、珪素または酸化珪素を含有した酸化インジウム−酸化スズ、酸化インジウム−酸化亜鉛、酸化タングステン及び酸化亜鉛を含有した酸化インジウム、並びにグラフェン等が挙げられる。この他、金(Au)、白金(Pt)、ニッケル(Ni)、タングステン(W)、クロム(Cr)、モリブデン(Mo)、鉄(Fe)、コバルト(Co)、銅(Cu)、パラジウム(Pd)、チタン(Ti)、及びこれら金属材料の窒化物(例えば、窒化チタン)等が挙げられる。
これらの材料は、通常、スパッタリング法により成膜される。例えば、酸化インジウム−酸化亜鉛は、酸化インジウムに対し1質量%以上10質量%以下の酸化亜鉛を加えたターゲットを用いることにより、スパッタリング法で形成することができる。また、例えば、酸化タングステン及び酸化亜鉛を含有した酸化インジウムは、酸化インジウムに対し酸化タングステンを0.5質量%以上5質量%以下、酸化亜鉛を0.1質量%以上1質量%以下含有したターゲットを用いることにより、スパッタリング法で形成することができる。その他、真空蒸着法、塗布法、インクジェット法、及びスピンコート法等により作製してもよい。
陽極3上に形成される有機層のうち、陽極3に接して形成される正孔注入層6は、陽極3の仕事関数に関係なく正孔(ホール)注入が容易である複合材料を用いて形成される。そのため、その他電極材料として使用可能な材料(例えば、金属、合金、電気伝導性化合物、及びこれらの混合物、その他、元素周期表の第1族または第2族に属する元素も含む)を陽極3として用いることもできる。
仕事関数の小さい材料である、元素周期表の第1族に属する元素、元素周期表の第2族に属する元素、希土類金属、及びこれらを含む合金等を陽極3として用いることもできる。元素周期表の第1族に属する元素としては、アルカリ金属が挙げられる。元素周期表の第2族に属する元素としては、アルカリ土類金属が挙げられる。アルカリ金属としては、例えば、リチウム(Li)及びセシウム(Cs)等が挙げられる。アルカリ土類金属としては、例えば、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)等が挙げられる。希土類金属としては、例えば、ユーロピウム(Eu)、及びイッテルビウム(Yb)等が挙げられる。これらの金属を含む合金としては、例えば、MgAg、及びAlLi等が挙げられる。
なお、アルカリ金属、アルカリ土類金属、及びこれらを含む合金を用いて陽極3を形成する場合には、真空蒸着法やスパッタリング法を用いることができる。さらに、銀ペースト等を用いる場合には、塗布法やインクジェット法等を用いることができる。
(正孔注入層)
正孔注入層6は、正孔注入性の高い物質を含む層である。正孔注入性の高い物質としては、例えば、モリブデン酸化物、チタン酸化物、バナジウム酸化物、レニウム酸化物、ルテニウム酸化物、クロム酸化物、ジルコニウム酸化物、ハフニウム酸化物、タンタル酸化物、銀酸化物、タングステン酸化物、及びマンガン酸化物等を用いることができる。
また、正孔注入性の高い物質としては、例えば、低分子の有機化合物である4,4’,4’’−トリス(N,N−ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4’’−トリス[N−(3−メチルフェニル)−N−フェニルアミノ]トリフェニルアミン(略称:MTDATA)、4,4’−ビス[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]ビフェニル(略称:DPAB)、4,4’−ビス(N−{4−[N’−(3−メチルフェニル)−N’−フェニルアミノ]フェニル}−N−フェニルアミノ)ビフェニル(略称:DNTPD)、1,3,5−トリス[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]ベンゼン(略称:DPA3B)、3−[N−(9−フェニルカルバゾール−3−イル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzPCA1)、3,6−ビス[N−(9−フェニルカルバゾール−3−イル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzPCA2)、及び3−[N−(1−ナフチル)−N−(9−フェニルカルバゾール−3−イル)アミノ]−9−フェニルカルバゾール(略称:PCzPCN1)等の芳香族アミン化合物等、並びにジピラジノ[2,3−f:20,30−h]キノキサリン−2,3,6,7,10,11−ヘキサカルボニトリル(HAT−CN)等も挙げられる。
また、正孔注入性の高い物質としては、高分子化合物を用いることもできる。高分子化合物としては、例えば、オリゴマー、デンドリマー、及びポリマー等が挙げられる。具体的には、ポリ(N−ビニルカルバゾール)(略称:PVK)、ポリ(4−ビニルトリフェニルアミン)(略称:PVTPA)、ポリ[N−(4−{N’−[4−(4−ジフェニルアミノ)フェニル]フェニル−N’−フェニルアミノ}フェニル)メタクリルアミド](略称:PTPDMA)、及びポリ[N,N’−ビス(4−ブチルフェニル)−N,N’−ビス(フェニル)ベンジジン](略称:Poly−TPD)等の高分子化合物が挙げられる。また、ポリ(3,4−エチレンジオキシチオフェン)/ポリ(スチレンスルホン酸)(PEDOT/PSS)、及びポリアニリン/ポリ(スチレンスルホン酸)(PAni/PSS)等の酸を添加した高分子化合物を用いることもできる。
(正孔輸送層)
正孔輸送層7は、正孔輸送性の高い物質を含む層である。正孔輸送層7には、例えば、芳香族アミン化合物、カルバゾール誘導体、及びアントラセン誘導体等を使用することができる。具体的には、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル(略称:NPB)、N,N’−ビス(3−メチルフェニル)−N,N’−ジフェニル−[1,1’−ビフェニル]−4,4’−ジアミン(略称:TPD)、4−フェニル−4’−(9−フェニルフルオレン−9−イル)トリフェニルアミン(略称:BAFLP)、4,4’−ビス[N−(9,9−ジメチルフルオレン−2−イル)−N−フェニルアミノ]ビフェニル(略称:DFLDPBi)、4,4’,4’’−トリス(N,N−ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4’’−トリス[N−(3−メチルフェニル)−N−フェニルアミノ]トリフェニルアミン(略称:MTDATA)、及び4,4’−ビス[N−(スピロ−9,9’−ビフルオレン−2−イル)−N―フェニルアミノ]ビフェニル(略称:BSPB)等の芳香族アミン化合物等を用いることができる。ここに述べた物質は、主に10−6cm/(V・s)以上の正孔移動度を有する物質である。
正孔輸送層7には、CBP、9−[4−(N−カルバゾリル)]フェニル−10−フェニルアントラセン(CzPA)、及び9−フェニル−3−[4−(10−フェニル−9−アントリル)フェニル]−9H−カルバゾール(PCzPA)のようなカルバゾール誘導体、並びにt−BuDNA、DNA、及びDPAnthのようなアントラセン誘導体等を用いてもよい。ポリ(N−ビニルカルバゾール)(略称:PVK)、及びポリ(4−ビニルトリフェニルアミン)(略称:PVTPA)等の高分子化合物を用いることもできる。
但し、電子よりも正孔の輸送性の高い物質であれば、これら以外の物質を用いてもよい。なお、正孔輸送性の高い物質を含む層は、単層だけでなく、上記物質からなる層が二層以上積層した層としてもよい。
正孔輸送層を二層以上配置する場合、エネルギーギャップのより大きい材料を含む層を、発光層5に近い側に配置することが好ましい。
(電子輸送層)
電子輸送層8は、電子輸送性の高い物質を含む層である。電子輸送層8には、(1)アルミニウム錯体、ベリリウム錯体、及び亜鉛錯体等の金属錯体、(2)イミダゾール誘導体、ベンゾイミダゾール誘導体、アジン誘導体、カルバゾール誘導体、及びフェナントロリン誘導体等の複素芳香族化合物、並びに(3)高分子化合物を使用することができる。具体的には低分子の有機化合物として、Alq、トリス(4−メチル−8−キノリノラト)アルミニウム(略称:Almq)、ビス(10−ヒドロキシベンゾ[h]キノリナト)ベリリウム(略称:BeBq)、BAlq、Znq、ZnPBO、及びZnBTZ等の金属錯体等を用いることができる。また、金属錯体以外にも、2−(4−ビフェニリル)−5−(4−tert−ブチルフェニル)−1,3,4−オキサジアゾール(略称:PBD)、1,3−ビス[5−(ptert−ブチルフェニル)−1,3,4−オキサジアゾール−2−イル]ベンゼン(略称:OXD−7)、3−(4−tert−ブチルフェニル)−4−フェニル−5−(4−ビフェニリル)−1,2,4−トリアゾール(略称:TAZ)、3−(4−tert−ブチルフェニル)−4−(4−エチルフェニル)−5−(4−ビフェニリル)−1,2,4−トリアゾール(略称:p−EtTAZ)、バソフェナントロリン(略称:BPhen)、バソキュプロイン(略称:BCP)、及び4,4’−ビス(5−メチルベンゾオキサゾール−2−イル)スチルベン(略称:BzOs)等の複素芳香族化合物も用いることができる。本実施形態においては、ベンゾイミダゾール化合物を好適に用いることができる。ここに述べた物質は、主に10−6cm/(V・s)以上の電子移動度を有する物質である。なお、正孔輸送性よりも電子輸送性の高い物質であれば、上記以外の物質を電子輸送層8として用いてもよい。また、電子輸送層8は、単層だけでなく、上記物質からなる層が二層以上積層した層としてもよい。
また、電子輸送層8には、高分子化合物を用いることもできる。例えば、ポリ[(9,9−ジヘキシルフルオレン−2,7−ジイル)−co−(ピリジン−3,5−ジイル)](略称:PF−Py)、及びポリ[(9,9−ジオクチルフルオレン−2,7−ジイル)−co−(2,2’−ビピリジン−6,6’−ジイル)](略称:PF−BPy)等を用いることができる。
(電子注入層)
電子注入層9は、電子注入性の高い物質を含む層である。電子注入層9には、リチウム(Li)、セシウム(Cs)、カルシウム(Ca)、フッ化リチウム(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(CaF)、及びリチウム酸化物(LiOx)等のような、アルカリ金属、アルカリ土類金属、またはそれらの化合物を用いることができる。その他、電子輸送性を有する物質にアルカリ金属、アルカリ土類金属、またはそれらの化合物を含有させた物質、具体的にはAlq中にマグネシウム(Mg)を含有させた物質等を用いてもよい。なお、この場合には、陰極4からの電子注入をより効率よく行うことができる。
あるいは、電子注入層9に、有機化合物と電子供与体(ドナー)とを混合してなる複合材料を用いてもよい。このような複合材料は、電子供与体によって有機化合物に電子が発生するため、電子注入性、及び電子輸送性に優れている。この場合、有機化合物としては、発生した電子の輸送に優れた材料であることが好ましく、具体的には、例えば上述した電子輸送層8を構成する物質(金属錯体や複素芳香族化合物等)を用いることができる。電子供与体としては、有機化合物に対し電子供与性を示す物質であればよい。具体的には、アルカリ金属、アルカリ土類金属、または希土類金属が好ましく、例えば、リチウム、セシウム、マグネシウム、カルシウム、エルビウム、及びイッテルビウム等が挙げられる。また、アルカリ金属酸化物、またはアルカリ土類金属酸化物を電子供与体として用いることも好ましく、例えば、リチウム酸化物、カルシウム酸化物、及びバリウム酸化物等が挙げられる。また、酸化マグネシウムのようなルイス塩基を用いることもできる。また、テトラチアフルバレン(略称:TTF)等の有機化合物を用いることもできる。
(陰極)
陰極4には、仕事関数の小さい(具体的には3.8eV以下)金属、合金、電気伝導性化合物、及びこれらの混合物等を用いることが好ましい。このような陰極材料の具体例としては、元素周期表の第1族に属する元素、元素周期表の第2族に属する元素、希土類金属、及びこれらを含む合金等が挙げられる。元素周期表の第1族に属する元素としては、アルカリ金属が挙げられる。元素周期表の第2族に属する元素としては、アルカリ土類金属が挙げられる。アルカリ金属としては、例えば、リチウム(Li)、及びセシウム(Cs)等が挙げられる。アルカリ土類金属としては、例えば、マグネシウム(Mg)、カルシウム(Ca)、及びストロンチウム(Sr)等が挙げられる。希土類金属としては、例えば、ユーロピウム(Eu)、及びイッテルビウム(Yb)等が挙げられる。これらの金属を含む合金としては、例えば、MgAg、及びAlLi等が挙げられる。
なお、アルカリ金属、アルカリ土類金属、及びこれらを含む合金を用いて陰極4を形成する場合には、真空蒸着法やスパッタリング法を用いることができる。また、銀ペースト等を用いる場合には、塗布法やインクジェット法等を用いることができる。
なお、電子注入層9を設けることにより、仕事関数の大小に関わらず、Al、Ag、ITO、グラフェン、及び珪素または酸化珪素を含有した酸化インジウム−酸化スズ等、様々な導電性材料を用いて陰極4を形成することができる。これらの導電性材料は、スパッタリング法、インクジェット法、及びスピンコート法等を用いて成膜することができる。
(層形成方法)
本実施形態の有機EL素子1の各層の形成方法としては、上記で特に言及した以外には制限されず、乾式成膜法、及び湿式成膜法等の公知の方法を採用できる。乾式成膜法としては、真空蒸着法、スパッタリング法、プラズマ法、イオンプレーティング法等が挙げられる。湿式成膜法としては、スピンコーティング法、ディッピング法、フローコーティング法、インクジェット法等が挙げられる。
(膜厚)
本実施形態の有機EL素子1の各有機層の膜厚は、上記で特に言及した以外には制限されない。一般に、ピンホール等の欠陥を生じ難くするため、かつ高い印加電圧が必要となることによる効率の悪化を防止するため、通常、膜厚は、数nmから1μmの範囲が好ましい。
本明細書において、環形成炭素数とは、原子が環状に結合した構造の化合物(例えば、単環化合物、縮合環化合物、架橋化合物、炭素環化合物、複素環化合物)の当該環自体を構成する原子のうちの炭素原子の数を表す。当該環が置換基によって置換される場合、置換基に含まれる炭素は環形成炭素数には含まない。以下で記載される「環形成炭素数」については、特筆しない限り同様とする。例えば、ベンゼン環は環形成炭素数が6であり、ナフタレン環は環形成炭素数が10であり、ピリジニル基は環形成炭素数が5であり、フラニル基は環形成炭素数4である。また、ベンゼン環やナフタレン環に置換基として例えばアルキル基が置換している場合、当該アルキル基の炭素数は、環形成炭素数の数に含めない。また、フルオレン環に置換基として例えばフルオレン環が結合している場合(スピロフルオレン環を含む)、置換基としてのフルオレン環の炭素数は環形成炭素数の数に含めない。
本明細書において、環形成原子数とは、原子が環状に結合した構造(例えば単環、縮合環、環集合)の化合物(例えば単環化合物、縮合環化合物、架橋化合物、炭素環化合物、複素環化合物)の当該環自体を構成する原子の数を表す。環を構成しない原子や、当該環が置換基によって置換される場合の置換基に含まれる原子は環形成原子数には含まない。以下で記載される「環形成原子数」については、特筆しない限り同様とする。例えば、ピリジン環は、環形成原子数が6であり、キナゾリン環は、環形成原子数が10であり、フラン環は、環形成原子数が5である。ピリジン環やキナゾリン環の炭素原子にそれぞれ結合している水素原子や置換基を構成する原子については、環形成原子数の数に含めない。また、フルオレン環に置換基として例えばフルオレン環が結合している場合(スピロフルオレン環を含む)、置換基としてのフルオレン環の原子数は環形成原子数の数に含めない。
次に前記一般式に記載の各置換基について説明する。
本明細書における環形成炭素数6〜30のアリール基(芳香族炭化水素基と称する場合がある。)としては、例えば、フェニル基、ビフェニル基、ターフェニル基、ナフチル基、アントリル基、フェナントリル基、フルオレニル基、ピレニル基、クリセニル基、フルオランテニル基、ベンゾ[a]アントリル基、ベンゾ[c]フェナントリル基、トリフェニレニル基、ベンゾ[k]フルオランテニル基、ベンゾ[g]クリセニル基、ベンゾ[b]トリフェニレニル基、ピセニル基、及びペリレニル基等が挙げられる。
本明細書におけるアリール基としては、環形成炭素数が6〜20であることが好ましく、6〜14であることがより好ましく、6〜12であることがさらに好ましい。上記アリール基の中でもフェニル基、ビフェニル基、ナフチル基、フェナントリル基、ターフェニル基、フルオレニル基がさらにより好ましい。1−フルオレニル基、2−フルオレニル基、3−フルオレニル基及び4−フルオレニル基については、9位の炭素原子に、後述する本明細書における置換または無置換の炭素数1〜30のアルキル基や、置換または無置換の環形成炭素数6〜18のアリール基が置換されていることが好ましい。
本明細書における環形成原子数5〜30のヘテロアリール基(複素環基、ヘテロ芳香族環基、または芳香族複素環基と称する場合がある。)は、ヘテロ原子として、窒素、硫黄、酸素、ケイ素、セレン原子、及びゲルマニウム原子からなる群から選択される少なくともいずれかの原子を含むことが好ましく、窒素、硫黄、及び酸素からなる群から選択される少なくともいずれかの原子を含むことがより好ましい。
本明細書における環形成原子数5〜30の複素環基としては、例えば、ピリジル基、ピリミジニル基、ピラジニル基、ピリダジニル基、トリアジニル基、キノリル基、イソキノリニル基、ナフチリジニル基、フタラジニル基、キノキサリニル基、キナゾリニル基、フェナントリジニル基、アクリジニル基、フェナントロリニル基、ピロリル基、イミダゾリル基、ピラゾリル基、トリアゾリル基、テトラゾリル基、インドリル基、ベンズイミダゾリル基、インダゾリル基、イミダゾピリジニル基、ベンズトリアゾリル基、カルバゾリル基、フリル基、チエニル基、オキサゾリル基、チアゾリル基、イソキサゾリル基、イソチアゾリル基、オキサジアゾリル基、チアジアゾリル基、ベンゾフラニル基、ベンゾチオフェニル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、ベンゾイソキサゾリル基、ベンゾイソチアゾリル基、ベンゾオキサジアゾリル基、ベンゾチアジアゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、ピペリジニル基、ピロリジニル基、ピペラジニル基、モルホリル基、フェナジニル基、フェノチアジニル基、及びフェノキサジニル基等が挙げられる。
本明細書における複素環基の環形成原子数は、5〜20であることが好ましく、5〜14であることがさらに好ましい。上記複素環基の中でも1−ジベンゾフラニル基、2−ジベンゾフラニル基、3−ジベンゾフラニル基、4−ジベンゾフラニル基、1−ジベンゾチオフェニル基、2−ジベンゾチオフェニル基、3−ジベンゾチオフェニル基、4−ジベンゾチオフェニル基、1−カルバゾリル基、2−カルバゾリル基、3−カルバゾリル基、4−カルバゾリル基、及び9−カルバゾリル基がさらにより好ましい。1−カルバゾリル基、2−カルバゾリル基、3−カルバゾリル基及び4−カルバゾリル基については、9位の窒素原子に、本明細書における置換または無置換の環形成炭素数6〜30のアリール基や、置換または無置換の環形成原子数5〜30の複素環基が置換していることが好ましい。
また、本明細書において、複素環基は、例えば、下記一般式(XY−1)〜(XY−18)で表される部分構造から誘導される基であってもよい。
前記一般式(XY−1)〜(XY−18)において、X及びYは、それぞれ独立に、ヘテロ原子であり、酸素原子、硫黄原子、セレン原子、ケイ素原子、またはゲルマニウム原子であることが好ましい。前記一般式(XY−1)〜(XY−18)で表される部分構造は、任意の位置で結合手を有して複素環基となり、この複素環基は、置換基を有していてもよい。
また、本明細書において、置換または無置換のカルバゾリル基としては、例えば、下記式で表されるような、カルバゾール環に対してさらに環が縮合した基も含み得る。このような基も置換基を有していてもよい。また、結合手の位置も適宜変更され得る。
本明細書における炭素数1〜30のアルキル基としては、直鎖、分岐鎖または環状のいずれであってもよい。また、ハロゲン化アルキル基であってもよい。
直鎖または分岐鎖のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、s−ブチル基、イソブチル基、t−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、n−ノニル基、n−デシル基、n−ウンデシル基、n−ドデシル基、n−トリデシル基、n−テトラデシル基、n−ペンタデシル基、n−ヘキサデシル基、n−ヘプタデシル基、n−オクタデシル基、ネオペンチル基、アミル基、イソアミル基、1−メチルペンチル基、2−メチルペンチル基、1−ペンチルヘキシル基、1−ブチルペンチル基、1−ヘプチルオクチル基、及び3−メチルペンチル基等が挙げられる。
本明細書における直鎖または分岐鎖のアルキル基の炭素数は、1〜10であることが好ましく、1〜6であることがさらに好ましい。上記直鎖または分岐鎖のアルキル基の中でもメチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、s−ブチル基、イソブチル基、t−ブチル基、n−ペンチル基、n−ヘキシル基、アミル基、イソアミル基、及びネオペンチル基がさらにより好ましい。
本明細書における環状のアルキル基としては、例えば、環形成炭素数3〜30のシクロアルキル基が挙げられる。
本明細書における環形成炭素数3〜30のシクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、4−メチルシクロヘキシル基、アダマンチル基、及びノルボルニル基等が挙げられる。シクロアルキル基の環形成炭素数は、3〜10であることが好ましく、5〜8であることがさらに好ましい。上記シクロアルキル基の中でも、シクロペンチル基やシクロヘキシル基がさらにより好ましい。
本明細書におけるアルキル基がハロゲン原子で置換されたハロゲン化アルキル基としては、例えば、上記炭素数1〜30のアルキル基が1以上のハロゲン原子、好ましくはフッ素原子で置換された基が挙げられる。
本明細書における炭素数1〜30のハロゲン化アルキル基としては、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、フルオロエチル基、トリフルオロメチルメチル基、トリフルオロエチル基、ペンタフルオロエチル基等が挙げられる。
本明細書における置換シリル基としては、例えば、炭素数3〜30のアルキルシリル基、及び環形成炭素数6〜30のアリールシリル基が挙げられる。
本明細書における炭素数3〜30のアルキルシリル基としては、上記炭素数1〜30のアルキル基で例示したアルキル基を有するトリアルキルシリル基が挙げられ、具体的にはトリメチルシリル基、トリエチルシリル基、トリ−n−ブチルシリル基、トリ−n−オクチルシリル基、トリイソブチルシリル基、ジメチルエチルシリル基、ジメチルイソプロピルシリル基、ジメチル−n−プロピルシリル基、ジメチル−n−ブチルシリル基、ジメチル−t−ブチルシリル基、ジエチルイソプロピルシリル基、ビニルジメチルシリル基、プロピルジメチルシリル基、及びトリイソプロピルシリル基等が挙げられる。トリアルキルシリル基における3つのアルキル基は、互いに同一でも異なっていてもよい。
本明細書における環形成炭素数6〜30のアリールシリル基としては、例えば、ジアルキルアリールシリル基、アルキルジアリールシリル基、及びトリアリールシリル基が挙げられる。
ジアルキルアリールシリル基は、例えば、上記炭素数1〜30のアルキル基で例示したアルキル基を2つ有し、上記環形成炭素数6〜30のアリール基を1つ有するジアルキルアリールシリル基が挙げられる。ジアルキルアリールシリル基の炭素数は、8〜30であることが好ましい。
アルキルジアリールシリル基は、例えば、上記炭素数1〜30のアルキル基で例示したアルキル基を1つ有し、上記環形成炭素数6〜30のアリール基を2つ有するアルキルジアリールシリル基が挙げられる。アルキルジアリールシリル基の炭素数は、13〜30であることが好ましい。
トリアリールシリル基は、例えば、上記環形成炭素数6〜30のアリール基を3つ有するトリアリールシリル基が挙げられる。トリアリールシリル基の炭素数は、18〜30であることが好ましい。
本明細書において、アラルキル基(アリールアルキル基と称する場合がある)におけるアリール基は、芳香族炭化水素基、または複素環基である。
本明細書における炭素数7〜30のアラルキル基としては、環形成炭素数6〜30のアリール基を有する基であることが好ましく、−Z−Zと表される。このZの例として、上記炭素数1〜30のアルキル基に対応するアルキレン基等が挙げられる。このZの例として、例えば、上記環形成炭素数6〜30のアリール基の例が挙げられる。このアラルキル基は、アリール部分が炭素数6〜30(好ましくは6〜20、より好ましくは6〜12)、アルキル部分が炭素数1〜30(好ましくは1〜20、より好ましくは1〜10、さらに好ましくは1〜6)であることが好ましい。このアラルキル基としては、例えば、ベンジル基、2−フェニルプロパン−2−イル基、1−フェニルエチル基、2−フェニルエチル基、1−フェニルイソプロピル基、2−フェニルイソプロピル基、フェニル−t−ブチル基、α−ナフチルメチル基、1−α−ナフチルエチル基、2−α−ナフチルエチル基、1−α−ナフチルイソプロピル基、2−α−ナフチルイソプロピル基、β−ナフチルメチル基、1−β−ナフチルエチル基、2−β−ナフチルエチル基、1−β−ナフチルイソプロピル基、及び2−β−ナフチルイソプロピル基等が挙げられる。
本明細書における置換ホスホリル基は、下記一般式(P)で表される。
前記一般式(P)において、ArP1及びArP2は、それぞれ独立に、置換基であり、炭素数1〜30のアルキル基、及び環形成炭素数6〜30のアリール基からなる群から選択されるいずれかの置換基であることが好ましく、炭素数1〜10のアルキル基、及び環形成炭素数6〜20のアリール基からなる群から選択されるいずれかの置換基であることがより好ましく、炭素数1〜6のアルキル基、及び環形成炭素数6〜14のアリール基からなる群から選択されるいずれかの置換基であることがさらに好ましい。
本明細書における炭素数1〜30のアルコキシ基は、−OZと表される。このZの例として、上記炭素数1〜30のアルキル基が挙げられる。アルコキシ基は、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、及びヘキシルオキシ基等が挙げられる。アルコキシ基の炭素数は、1〜20であることが好ましい。
アルコキシ基がハロゲン原子で置換されたハロゲン化アルコキシ基としては、例えば、上記炭素数1〜30のアルコキシ基が1以上のフッ素原子で置換された基が挙げられる。
本明細書において、アリールオキシ基(アリールアルコキシ基と称する場合がある)におけるアリール基は、ヘテロアリール基も含む。
本明細書における環形成炭素数6〜30のアリールアルコキシ基は、−OZと表される。このZの例として、例えば、上記環形成炭素数6〜30のアリール基等が挙げられる。アリールアルコキシ基の環形成炭素数は、6〜20であることが好ましい。このアリールアルコキシ基としては、例えば、フェノキシ基が挙げられる。
本明細書における置換アミノ基は、−NHR、または−N(Rと表される。このRの例として、例えば、上記炭素数1〜30のアルキル基、及び上記環形成炭素数6〜30のアリール基等が挙げられる。
本明細書における炭素数2〜30のアルケニル基としては、直鎖または分岐鎖のいずれかであり、例えば、ビニル基、プロペニル基、ブテニル基、オレイル基、エイコサペンタエニル基、ドコサヘキサエニル基、スチリル基、2,2−ジフェニルビニル基、1,2,2−トリフェニルビニル基、及び2−フェニル−2−プロペニル基等が挙げられる。
本明細書における置換ホスファニル基としては、例えば、フェニルホスファニル基等が挙げられる。
本明細書における環形成炭素数6〜30のアリールカルボニル基は、−COY’と表される。このY’の例として、上記アリール基が挙げられる。
本明細書における環形成炭素数6〜30のアリールカルボニル基としては、例えば、フェニルカルボニル基、ジフェニルカルボニル基、ナフチルカルボニル基、及びトリフェニルカルボニル基等が挙げられる。
本明細書における炭素数1〜30のアルキルチオ基及び環形成炭素数6〜30のアリールチオ基は、−SRと表される。このRの例として、上記炭素数1〜30のアルキル基及び上記環形成炭素数6〜30のアリール基が挙げられる。アルキルチオ基の炭素数は、1〜20であることが好ましく、アリールチオ基の環形成炭素数は、6〜20であることが好ましい。
本明細書におけるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、及びヨウ素原子等が挙げられ、フッ素原子が好ましい。
本明細書において、「環形成炭素」とは飽和環、不飽和環、または芳香環を構成する炭素原子を意味する。「環形成原子」とはヘテロ環(飽和環、不飽和環、及び芳香環を含む)を構成する炭素原子及びヘテロ原子を意味する。
また、本明細書において、水素原子とは、中性子数の異なる同位体、すなわち、軽水素(Protium)、重水素(Deuterium)、三重水素(Tritium)を包含する。
本明細書において、「置換または無置換の」という場合における置換基としては、環形成炭素数6〜30のアリール基、環形成原子数5〜30のヘテロアリール基、炭素数1〜30のアルキル基(直鎖または分岐鎖のアルキル基)、環形成炭素数3〜30のシクロアルキル基、炭素数1〜30のハロゲン化アルキル基、炭素数3〜30のアルキルシリル基、環形成炭素数6〜30のアリールシリル基、炭素数1〜30のアルコキシ基、炭素数6〜30のアリールオキシ基、置換アミノ基、炭素数1〜30のアルキルチオ基、環形成炭素数6〜30のアリールチオ基、炭素数7〜30のアラルキル基、炭素数2〜30のアルケニル基(直鎖または分岐鎖のアルケニル基)、ハロゲン原子の他に、炭素数2〜30のアルキニル基、シアノ基、ヒドロキシル基、ニトロ基、及びカルボキシ基からなる群から選択される少なくとも一種の基が挙げられる。
本明細書において、「置換または無置換の」という場合における置換基としては、環形成炭素数6〜30のアリール基、環形成原子数5〜30のヘテロアリール基、炭素数1〜30のアルキル基(直鎖または分岐鎖のアルキル基)、ハロゲン原子、及びシアノ基からなる群から選択される少なくとも一種の基が好ましく、さらには、各置換基の説明において好ましいとした具体的な置換基が好ましい。
本明細書において、「置換または無置換の」という場合における置換基は、環形成炭素数6〜30のアリール基、環形成原子数5〜30のヘテロアリール基、炭素数1〜30のアルキル基(直鎖または分岐鎖のアルキル基)、環形成炭素数3〜30のシクロアルキル基、炭素数1〜30のハロゲン化アルキル基、炭素数3〜30のアルキルシリル基、環形成炭素数6〜30のアリールシリル基、炭素数1〜30のアルコキシ基、環形成炭素数6〜30のアリールオキシ基、置換アミノ基、炭素数1〜30のアルキルチオ基、環形成炭素数6〜30のアリールチオ基、炭素数7〜30のアラルキル基、炭素数2〜30のアルケニル基、炭素数2〜30のアルキニル基、ハロゲン原子、シアノ基、ヒドロキシル基、ニトロ基、及びカルボキシ基からなる群から選択される少なくとも一種の基によってさらに置換されてもよい。また、これらの置換基は複数が互いに結合して環を形成してもよい。
本明細書において、「置換または無置換の」という場合における置換基に、さらに置換する置換基としては、環形成炭素数6〜30のアリール基、環形成原子数5〜30のヘテロアリール基、炭素数1〜30のアルキル基(直鎖または分岐鎖のアルキル基)、ハロゲン原子、及びシアノ基からなる群から選択される少なくとも一種の基であることが好ましく、各置換基の説明において好ましいとした具体的な置換基から選択される少なくとも一種の基であることがさらに好ましい。
「置換または無置換の」という場合における「無置換」とは前記置換基で置換されておらず、水素原子が結合していることを意味する。
なお、本明細書において、「置換または無置換の炭素数XX〜YYのZZ基」という表現における「炭素数XX〜YY」は、ZZ基が無置換である場合の炭素数を表し、置換されている場合の置換基の炭素数は含めない。
本明細書において、「置換または無置換の原子数XX〜YYのZZ基」という表現における「原子数XX〜YY」は、ZZ基が無置換である場合の原子数を表し、置換されている場合の置換基の原子数は含めない。
本明細書において説明する化合物、またはその部分構造において、「置換または無置換の」という場合についても、前記と同様である。
本明細書において、置換基同士が互いに結合して環が構築される場合、当該環の構造は、飽和環、不飽和環、芳香族炭化水素環、または複素環である。
本明細書において、連結基における芳香族炭化水素基や複素環基等としては、上述した一価の基から、1つ以上の原子を除いて得られる二価以上の基が挙げられる。
本実施形態に係る有機EL素子によれば、高効率で発光する。
また、本実施形態に係る有機EL素子によれば、特に、青色の波長領域において、有機EL素子の発光効率を向上させることができる。
(電子機器)
本発明の一実施形態に係る有機EL素子1は、表示装置や発光装置等の電子機器に使用できる。表示装置としては、例えば、表示部品(有機ELパネルモジュール等)、テレビ、携帯電話、タブレット、及びパーソナルコンピュータ等が挙げられる。発光装置としては、例えば、照明、及び車両用灯具等が挙げられる。
〔第二実施形態〕
第二実施形態に係る有機EL素子の構成について説明する。第二実施形態の説明において第一実施形態と同一の構成要素は、同一符号や名称を付す等して説明を省略もしくは簡略化する。また、第二実施形態では、特に言及されない材料や化合物については、第一実施形態で説明した材料や化合物と同様の材料や化合物を用いることができる。
第二実施形態に係る有機EL素子は、発光層が、第三の化合物をさらに含んでいる点で、第一実施形態に係る有機EL素子と異なる。その他の点については第一実施形態と同様である。
<第三の化合物>
前記第三の化合物の一重項エネルギーS(M3)と、前記第一の化合物の一重項エネルギーS(M1)とが、下記数式(数2)の関係を満たすことが好ましい。
(M3)>S(M1) …(数2)
第三の化合物は、遅延蛍光性の化合物でもよいし、遅延蛍光性を示さない化合物でもよい。
第三の化合物は、ホスト材料(マトリックス材料と称する場合もある。)であることも好ましい。第一の化合物及び第三の化合物がホスト材料である場合、例えば、一方を第一のホスト材料と称し、他方を第二のホスト材料と称する場合もある。
第三の化合物としては、特に限定されないが、アミン化合物以外の化合物であることが好ましい。また、例えば、第三の化合物としては、カルバゾール誘導体、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体を用いることができるが、これら誘導体に限定されない。
第三の化合物は、一つの分子中に下記一般式(31)で表される部分構造、及び下記一般式(32)で表される部分構造のうち少なくともいずれかを含む化合物であることも好ましい。
前記一般式(31)において、
31〜Y36は、それぞれ独立に、窒素原子、または第三の化合物の分子中における他の原子と結合する炭素原子であり、
ただし、Y31〜Y36のうち少なくともいずれかは、第三の化合物の分子中における他の原子と結合する炭素原子であり、
前記一般式(32)において、
41〜Y48は、それぞれ独立に、窒素原子、または第三の化合物の分子中における他の原子と結合する炭素原子であり、
ただし、Y41〜Y48のうち少なくともいずれかは、第三の化合物の分子中における他の原子と結合する炭素原子であり、
30は、第三の化合物の分子中における他の原子と結合する窒素原子、または酸素原子、もしくは硫黄原子である。
前記一般式(32)において、Y41〜Y48のうち少なくとも2つが第三の化合物の分子中における他の原子と結合する炭素原子であり、当該炭素原子を含む環構造が構築されていることも好ましい。
例えば、前記一般式(32)で表される部分構造が、下記一般式(321)、一般式(322)、一般式(323)、一般式(324)、一般式(325)、及び一般式(326)で表される部分構造からなる群から選択されるいずれかの部分構造であることが好ましい。
前記一般式(321)〜(326)において、
30は、それぞれ独立に、第三の化合物の分子中における他の原子と結合する窒素原子、または酸素原子、もしくは硫黄原子であり、
41〜Y48は、それぞれ独立に、窒素原子、または第三の化合物の分子中における他の原子と結合する炭素原子であり、
31は、それぞれ独立に、第三の化合物の分子中における他の原子と結合する窒素原子、酸素原子、硫黄原子、または第三の化合物の分子中における他の原子と結合する炭素原子であり、
61〜Y64は、それぞれ独立に、窒素原子、または第三の化合物の分子中における他の原子と結合する炭素原子である。
本実施形態においては、第三の化合物は、前記一般式(321)〜(326)のうち前記一般式(323)で表される部分構造を有することが好ましい。
前記一般式(31)で表される部分構造は、下記一般式(33)で表される基及び下記一般式(34)で表される基からなる群から選択される少なくともいずれかの基として第三の化合物に含まれることが好ましい。
第三の化合物は、下記一般式(33)及び下記一般式(34)で表される部分構造のうち少なくともいずれかの部分構造を有することも好ましい。下記一般式(33)及び下記一般式(34)で表される部分構造のように結合箇所が互いにメタ位に位置するため、第三の化合物の77[K]におけるエネルギーギャップT77K(M3)を高く保つことができる。
前記一般式(33)において、Y31、Y32、Y34、及びY36は、それぞれ独立に、窒素原子またはCR31である。
前記一般式(34)において、Y32、Y34、及びY36は、それぞれ独立に、窒素原子またはCR31である。
前記一般式(33)及び(34)において、
31は、それぞれ独立に、水素原子または置換基であり、
置換基としてのR31は、それぞれ独立に、
置換または無置換の環形成炭素数6〜30のアリール基、
置換または無置換の環形成原子数5〜30のヘテロアリール基、
置換または無置換の炭素数1〜30のアルキル基、
置換または無置換の炭素数1〜30のフルオロアルキル基、
置換または無置換の環形成炭素数3〜30のシクロアルキル基、
置換または無置換の炭素数7〜30のアラルキル基、
置換または無置換のシリル基、
置換ゲルマニウム基、
置換ホスフィンオキシド基、
ハロゲン原子、
シアノ基、
ニトロ基、及び
置換または無置換のカルボキシ基
からなる群から選択される。
ただし、前記R31における置換または無置換の環形成炭素数6〜30のアリール基は、非縮合環であることが好ましい。
前記一般式(33)及び前記一般式(34)において、波線部分は、第三の化合物の分子中における他の原子または他の構造との結合箇所を表す。
前記一般式(33)において、Y31、Y32、Y34及びY36は、それぞれ独立に、CR31であることが好ましく、複数のR31は、互いに同一であるか、または異なる。
また、前記一般式(34)において、Y32、Y34及びY36は、それぞれ独立に、CR31であることが好ましく、複数のR31は、互いに同一であるか、または異なる。
置換ゲルマニウム基は、−Ge(R301で表されることが好ましい。R301は、それぞれ独立に、置換基である。置換基R301は、置換または無置換の炭素数1〜30のアルキル基、または置換または無置換の環形成炭素数6〜30のアリール基であることが好ましい。複数のR301は、互いに同一であるかまたは異なる。
前記一般式(32)で表される部分構造は、下記一般式(35)〜(39)及び下記一般式(30a)で表される基からなる群から選択される少なくともいずれかの基として第三の化合物に含まれることが好ましい。
前記一般式(35)において、Y41乃至Y48は、それぞれ独立に、窒素原子またはCR32である。
前記一般式(36)及び(37)において、Y41〜Y45、Y47、及びY48は、それぞれ独立に、窒素原子またはCR32である。
前記一般式(38)において、Y41、Y42、Y44、Y45、Y47、及びY48は、それぞれ独立に、窒素原子またはCR32である。
前記一般式(39)において、Y42〜Y48は、それぞれ独立に、窒素原子またはCR32である。
前記一般式(30a)において、Y42〜Y47は、それぞれ独立に、窒素原子またはCR32である。
前記一般式(35)〜(39),及び(30a)において、
32は、それぞれ独立に、水素原子または置換基であり、
置換基としてのR32は、
置換または無置換の環形成炭素数6〜30のアリール基、
置換または無置換の環形成原子数5〜30のヘテロアリール基、
置換または無置換の炭素数1〜30のアルキル基、
置換または無置換の炭素数1〜30のフルオロアルキル基、
置換または無置換の環形成炭素数3〜30のシクロアルキル基、
置換または無置換の炭素数7〜30のアラルキル基、
置換または無置換のシリル基、
置換ゲルマニウム基、
置換ホスフィンオキシド基、
ハロゲン原子、
シアノ基、
ニトロ基、及び
置換または無置換のカルボキシ基
からなる群から選択され、
複数のR32は、互いに同一であるかまたは異なる。
前記一般式(35)及び(36)において、X30は、窒素原子である。
前記一般式(37)〜(39),及び(30a)において、
30は、NR33、酸素原子、または硫黄原子であり、
33は、
置換または無置換の環形成炭素数6〜30のアリール基、
置換または無置換の環形成原子数5〜30のヘテロアリール基、
置換または無置換の炭素数1〜30のアルキル基、
置換または無置換の炭素数1〜30のフルオロアルキル基、
置換または無置換の環形成炭素数3〜30のシクロアルキル基、
置換または無置換の炭素数7〜30のアラルキル基、
置換または無置換のシリル基、
置換ゲルマニウム基、
置換ホスフィンオキシド基、
フッ素原子、
シアノ基、
ニトロ基、及び
置換または無置換のカルボキシ基
からなる群から選択され、
複数のR33は、互いに同一であるかまたは異なる。
ただし、前記R33における置換または無置換の環形成炭素数6〜30のアリール基は、非縮合環であることが好ましい。
前記一般式(35)〜(39),(30a)において、波線部分は、第三の化合物の分子中における他の原子または他の構造との結合箇所を表す。
前記一般式(35)において、Y41〜Y48は、それぞれ独立に、CR32であることが好ましく、前記一般式(36)及び前記一般式(37)において、Y41〜Y45,Y47及びY48は、それぞれ独立に、CR32であることが好ましく、前記一般式(38)において、Y41,Y42,Y44,Y45,Y47及びY48は、それぞれ独立に、CR32であることが好ましく、前記一般式(39)において、Y42〜Y48は、それぞれ独立に、CR32であることが好ましく、前記一般式(30a)において、Y42〜Y47は、それぞれ独立に、CR32であることが好ましく、複数のR32は、互いに同一であるかまたは異なる。
第三の化合物において、X30は、酸素原子または硫黄原子であることが好ましく、酸素原子であることがより好ましい。
第三の化合物において、R31及びR32は、それぞれ独立に、水素原子または置換基であって、置換基としてのR31及び置換基としてのR32は、それぞれ独立に、フッ素原子、シアノ基、置換または無置換の炭素数1〜30のアルキル基、置換または無置換の環形成炭素数6〜30のアリール基、及び置換または無置換の環形成原子数5〜30のヘテロアリール基からなる群から選択されるいずれかの基であることが好ましい。R31及びR32は、水素原子、シアノ基、置換または無置換の環形成炭素数6〜30のアリール基、または置換または無置換の環形成原子数5〜30のヘテロアリール基であることがより好ましい。ただし、置換基としてのR31及び置換基としてのR32が置換または無置換の環形成炭素数6〜30のアリール基である場合、当該アリール基は、非縮合環であることが好ましい。
第三の化合物は、芳香族炭化水素化合物、または芳香族複素環化合物であることも好ましい。また、第三の化合物は、分子中に縮合芳香族炭化水素環を有していないことが好ましい。
・第三の化合物の製造方法
第三の化合物は、例えば、国際公開第2012/153780号及び国際公開第2013/038650号等に記載の方法により製造することができる。また、例えば、目的物に合わせた既知の代替反応や原料を用いることで、第三の化合物を製造できる。
第三の化合物における置換基の例は、例えば、以下のとおりであるが、本発明は、これらの例に限定されない。
アリ−ル基(芳香族炭化水素基と称する場合がある。)の具体例としては、フェニル基、トリル基、キシリル基、ナフチル基、フェナントリル基、ピレニル基、クリセニル基、ベンゾ[c]フェナントリル基、ベンゾ[g]クリセニル基、ベンゾアントリル基、トリフェニレニル基、フルオレニル基、9,9−ジメチルフルオレニル基、ベンゾフルオレニル基、ジベンゾフルオレニル基、ビフェニル基、ターフェニル基、クォーターフェニル基、フルオランテニル基等が挙げられ、好ましくはフェニル基、ビフェニル基、ターフェニル基、クォーターフェニル基、ナフチル基、トリフェニレニル基、及びフルオレニル基等を挙げることができる。
置換基を有するアリ−ル基としては、トリル基、キシリル基、及び9,9−ジメチルフルオレニル基等を挙げることができる。
具体例が示すように、アリール基は、縮合アリール基及び非縮合アリール基の両方を含む。
アリ−ル基としては、フェニル基、ビフェニル基、ターフェニル基、クォーターフェニル基、ナフチル基、トリフェニレニル基、及びフルオレニル基が好ましい。
ヘテロアリール基(複素環基、ヘテロ芳香族環基、または芳香族複素環基と称する場合がある。)の具体例としては、ピロリル基、ピラゾリル基、ピラジニル基、ピリミジニル基、ピリダジニル基、ピリジル基、トリアジニル基、インドリル基、イソインドリル基、イミダゾリル基、ベンズイミダゾリル基、インダゾリル基、イミダゾ[1,2−a]ピリジニル基、フリル基、ベンゾフラニル基、イソベンゾフラニル基、ジベンゾフラニル基、アザジベンゾフラニル基、チオフェニル基、ベンゾチオフェニル基、ジベンゾチオフェニル基、アザジベンゾチオフェニル基、キノリル基、イソキノリル基、キノキサリニル基、キナゾリニル基、ナフチリジニル基、カルバゾリル基、アザカルバゾリル基、フェナントリジニル基、アクリジニル基、フェナントロリニル基、フェナジニル基、フェノチアジニル基、フェノキサジニル基、オキサゾリル基、オキサジアゾリル基、フラザニル基、ベンズオキサゾリル基、チエニル基、チアゾリル基、チアジアゾリル基、ベンズチアゾリル基、トリアゾリル基、テトラゾリル基等が挙げられ、好ましくは、ジベンゾフラニル基、ジベンゾチオフェニル基、カルバゾリル基、ピリジル基、ピリミジニル基、トリアジニル基、アザジベンゾフラニル基、及びアザジベンゾチオフェニル基等を挙げることができる。
ヘテロアリール基としては、ジベンゾフラニル基、ジベンゾチオフェニル基、カルバゾリル基、ピリジル基、ピリミジニル基、トリアジニル基、アザジベンゾフラニル基、アザジベンゾチオフェニル基が好ましく、ジベンゾフラニル基、ジベンゾチオフェニル基、アザジベンゾフラニル基、及びアザジベンゾチオフェニル基がさらに好ましい。
第三の化合物において、置換シリル基は、置換または無置換のトリアルキルシリル基、置換または無置換のアリールアルキルシリル基、及び置換または無置換のトリアリールシリル基からなる群から選択されることも好ましい。
置換または無置換のトリアルキルシリル基の具体例としては、トリメチルシリル基、及びトリエチルシリル基を挙げることができる。
置換若しくは無置換のアリールアルキルシリル基の具体例としては、ジフェニルメチルシリル基、ジトリルメチルシリル基、及びフェニルジメチルシリル基等を挙げることができる。
置換または無置換のトリアリールシリル基の具体例としては、トリフェニルシリル基、及びトリトリルシリル基等を挙げることができる。
第三の化合物において、置換ホスフィンオキシド基は、置換または無置換のジアリールホスフィンオキシド基であることも好ましい。
置換または無置換のジアリールホスフィンオキシド基の具体例としては、ジフェニルホスフィンオキシド基、及びジトリルホスフィンオキシド基等を挙げることができる。
第三の化合物において、置換カルボキシ基としては、例えば、ベンゾイルオキシ基等が挙げられる。
<発光層における第一の化合物、第二の化合物、及び第三の化合物の関係>
発光層における第一の化合物、第二の化合物、及び第三の化合物は、前記数式(数1)及び前記数式(数2)の関係を満たすことが好ましい。すなわち、下記数式(数3)の関係を満たすことが好ましい。
(M3)>S(M1)>S(M2) …(数3)
第三の化合物の77[K]におけるエネルギーギャップT77K(M3)は、第一の化合物の77[K]におけるエネルギーギャップT77K(M1)よりも大きいことが好ましい。すなわち、下記数式(数5)の関係を満たすことが好ましい。
77K(M3)>T77K(M1) …(数5)
第三の化合物の77[K]におけるエネルギーギャップT77K(M3)は、第二の化合物の77[K]におけるエネルギーギャップT77K(M2)よりも大きいことが好ましい。すなわち、下記数式(数6)の関係を満たすことが好ましい。
77K(M3)>T77K(M2) …(数6)
発光層における第一の化合物、第二の化合物、及び第三の化合物は、前記数式(数4)及び前記数式(数5)の関係を満たすことが好ましい。すなわち、下記数式(数7)の関係を満たすことが好ましい。
77K(M3)>T77K(M1)>T77K(M2) …(数7)
本実施形態の有機EL素子を発光させたときに、発光層において、主に第二の化合物が発光していることが好ましい。
・発光層における化合物の含有率
発光層に含まれている第一の化合物、第二の化合物、及び第三の化合物の含有率は、例えば、以下の範囲であることが好ましい。
第一の化合物の含有率は、10質量%以上80質量%以下であることが好ましく、10質量%以上60質量%以下であることがより好ましく、20質量%以上60質量%であることがさらに好ましい。
第二の化合物の含有率は、0.01質量%以上10質量%以下であることが好ましく、0.01質量%以上5質量%以下であることがより好ましく、0.01質量%以上1質量%以下であることがさらに好ましい。
第三の化合物の含有率は、10質量%以上80質量%以下であることが好ましい。
発光層における第一の化合物、第二の化合物、及び第三の化合物の合計含有率の上限は、100質量%である。なお、本実施形態は、発光層に、第一の化合物、第二の化合物、及び第三の化合物以外の材料が含まれることを除外しない。
図5は、発光層における第一の化合物、第二の化合物、及び第三の化合物のエネルギー準位の関係の一例を示す図である。図5において、S0は、基底状態を表す。S1(M1)は、第一の化合物の最低励起一重項状態を表し、T1(M1)は、第一の化合物の最低励起三重項状態を表す。S1(M2)は、第二の化合物の最低励起一重項状態を表し、T1(M2)は、第二の化合物の最低励起三重項状態を表す。S1(M3)は、第三の化合物の最低励起一重項状態を表し、T1(M3)は、第三の化合物の最低励起三重項状態を表す。図5中のS1(M1)からS1(M2)へ向かう破線の矢印は、第一の化合物の最低励起一重項状態から第二の化合物の最低励起一重項状態へのフェルスター型エネルギー移動を表す。
図5に示すように、第一の化合物としてΔST(M1)の小さな化合物を用いると、最低励起三重項状態T1(M1)は、熱エネルギーにより、最低励起一重項状態S1(M1)に逆項間交差が可能である。そして、第一の化合物の最低励起一重項状態S1(M1)から第二の化合物へのフェルスター型エネルギー移動が生じ、最低励起一重項状態S1(M2)が生成する。この結果、第二の化合物の最低励起一重項状態S1(M2)からの蛍光発光を観測することができる。このTADF機構による遅延蛍光を利用することによっても、理論的に内部効率を100%まで高めることができると考えられている。
第二実施形態に係る有機EL素子によれば、高効率で発光する。
また、第二実施形態に係る有機EL素子によれば、特に、青色の波長領域において、有機EL素子の発光効率を向上させることができる。
第二実施形態の有機EL素子は、発光層に、遅延蛍光性の第一の化合物と、蛍光発光性の第二の化合物と、第一の化合物よりも大きな一重項エネルギーを有する第三の化合物と、を含んでおり、発光効率が向上する。発光効率が向上する理由としては、第三の化合物が含まれていることによって発光層のキャリアバランスが改善されるためと考えられる。
第二実施形態に係る有機EL素子は、第一の実施形態に係る有機EL素子と同様に、表示装置や発光装置等の電子機器に使用できる。
〔実施形態の変形〕
なお、本発明は、上述の実施形態に限定されず、本発明の目的を達成できる範囲での変更、改良等は、本発明に含まれる。
例えば、発光層は、1層に限られず、複数の発光層が積層されていてもよい。有機EL素子が複数の発光層を有する場合、少なくとも1つの発光層が上記実施形態で説明した条件を満たしていればよい。例えば、その他の発光層が、蛍光発光型の発光層であっても、三重項励起状態から直接基底状態への電子遷移による発光を利用した燐光発光型の発光層であってもよい。
また、有機EL素子が複数の発光層を有する場合、これらの発光層が互いに隣接して設けられていてもよいし、中間層を介して複数の発光ユニットが積層された、いわゆるタンデム型の有機EL素子であってもよい。
また、例えば、発光層の陽極側、及び陰極側の少なくとも一方に障壁層を隣接させて設けてもよい。障壁層は、発光層に接して配置され、正孔、電子、及び励起子の少なくともいずれかを阻止することが好ましい。
例えば、発光層の陰極側で接して障壁層が配置された場合、当該障壁層は、電子を輸送し、かつ正孔が当該障壁層よりも陰極側の層(例えば、電子輸送層)に到達することを阻止する。有機EL素子が、電子輸送層を含む場合は、発光層と電子輸送層との間に当該障壁層を含むことが好ましい。
また、発光層の陽極側で接して障壁層が配置された場合、当該障壁層は、正孔を輸送し、かつ電子が当該障壁層よりも陽極側の層(例えば、正孔輸送層)に到達することを阻止する。有機EL素子が、正孔輸送層を含む場合は、発光層と正孔輸送層との間に当該障壁層を含むことが好ましい。
また、励起エネルギーが発光層からその周辺層に漏れ出さないように、障壁層を発光層に隣接させて設けてもよい。発光層で生成した励起子が、当該障壁層よりも電極側の層(例えば、電子輸送層や正孔輸送層)に移動することを阻止する。
発光層と障壁層とは接合していることが好ましい。
その他、本発明の実施における具体的な構造、及び形状等は、本発明の目的を達成できる範囲で他の構造等としてもよい。
以下、本発明に係る実施例を説明する。本発明はこれらの実施例によって何ら限定されない。
<化合物>
有機EL素子の製造に用いた化合物を以下に示す。
<化合物の合成>
・合成実施例1:化合物BD−1の合成
三口フラスコに、原料(SM−1:異性体混合物)1.0g(1.65mmol)、ジベンゾチオフェン−4−ボロン酸0.45g(1.98mmol)、2M炭酸ナトリウム水溶液2.5mL、トルエン20mLを加え、次いで、テトラキス(トリフェニルホスフィン)パラジウム0.08g(0.07mmol)をさらに加えて、窒素雰囲気下にて7時間、90℃で加熱攪拌した。加熱攪拌の後、室温に戻して、析出した固体を濾集した。得られた固体をトルエンに溶解し、シリカゲルを加えて攪拌した後、濾過及び濃縮して、BD−1を得た。収量は0.62g、収率は52%であった。
FD−MS(Field Desorption Mass Spectrometry)分析の結果、分子量710に対してm/e=710であった。なお、出発原料(SM−1)が異性体混合物(SM−1aとSM−1bとの混合物)であることに由来し、BD−1はBD−1aとBD−1bとの混合物であった。ただし、本合成実施例1の反応式中では、「SM−1」としてはSM−1aの構造のみを、また「BD−1」としてはBD−1aの構造のみを代表として示した。以下の合成実施例においても同様である。
・合成実施例2:化合物BD−2の合成
三口フラスコに、原料(SM−1:異性体混合物)2.0g(3.29mmol)、ジベンゾフランン−4−ボロン酸0.84g(3.95mmol)、2M炭酸ナトリウム水溶液5mL、トルエン20mLを加え、次いで、テトラキス(トリフェニルホスフィン)パラジウム0.16g(0.14mmol)をさらに加えて、窒素雰囲気下にて7時間、90℃で加熱攪拌した。加熱攪拌の後、室温に戻して、析出した固体を濾集した。得られた固体をトルエンに溶解し、シリカゲルを加えて攪拌した後、濾過及び濃縮して、BD−2を得た。収量は2.08g、収率は91%であった。
FD−MS(Field Desorption Mass Spectrometry)分析の結果、分子量694に対してm/e=694であった。なお、出発原料(SM−1)が異性体混合物(SM−1aとSM−1bとの混合物)であることに由来し、BD−2はBD−2aとBD−2bとの混合物であった。
・合成実施例3:化合物TADF−1の合成
(1)中間体Aの合成
三口フラスコに、2−フルオロフェニルボロン酸 7.0g(50mmol)、2−クロロ−4,6−ジフェニルトリアジン13.4g(50mmol)、2M炭酸ナトリウム水溶液62.5mL、1,2−ジメトキシエタン(DME)100mL、及びトルエン100mLを加えた。次いで、この三口フラスコに、テトラキス(トリフェニルホスフィン)パラジウム1.73g(1.5mmol)をさらに加えて、アルゴン雰囲気下にて8時間、加熱還流攪拌した。加熱還流攪拌の後、有機層を分取した。分取した有機層を減圧下で濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーにより精製した。展開溶媒としてトルエン溶媒を用いた。精製後、得られた固体をメタノールを用いて懸濁洗浄し、中間体Aを白色固体として得た。収量は11.6g、収率は71%であった。
(2)化合物TADF−1の合成
三口フラスコに、カルバゾール7.3g(43.6mmol)、中間体A8.0g(24.4mmol)、炭酸カリウム7.4g(53.5mmol)、及びN−メチル−2−ピロリドン(NMP)50mLを加えて、アルゴン雰囲気下にて20時間、150℃で加熱撹拌した。加熱撹拌の後、反応溶液を水200mLに注ぎ、析出した固体を濾集した。次いで、この固体をエタノールを用いて繰り返し懸濁洗浄し、目的物(化合物TADF−1)を白色固体として得た。収量は6.3g、収率は54%であった。FD−MS分析の結果、分子量474に対してm/e=474であった。
<化合物の評価>
化合物の性質を測定する方法を以下に示す。
・遅延蛍光性
遅延蛍光性は図2に示す装置を利用して過渡PLを測定することにより確認した。前記化合物TADF−1と前記化合物TH−2とを、化合物TADF−1の割合が12質量%となるように石英基板上に共蒸着し、膜厚100nmの薄膜を形成して試料を作製した。前記化合物TADF−1が吸収する波長のパルス光(パルスレーザーから照射される光)で励起された後、当該励起状態から即座に観察されるPrompt発光(即時発光)と、当該励起後、即座には観察されず、その後観察されるDelay発光(遅延発光)とが存在する。本実施例における遅延蛍光発光とは、Prompt発光(即時発光)の量をXとし、Delay発光(遅延発光)の量をXとしたときに、X/Xの値が0.05以上であることを意味する。
化合物TADF−1について、X/Xの値が0.05以上であることが確認された。
Prompt発光とDelay発光の量は、“Nature 492, 234−238, 2012”に記載された方法と同様の方法により求めることができる。なお、Prompt発光とDelay発光の量の算出に使用される装置は、図2の装置や文献に記載された装置に限定されない。
・一重項エネルギーS
化合物TADF−1、化合物BD−1、及び化合物BD−2の一重項エネルギーSは、前述の溶液法により測定した。
化合物TADF−1の一重項エネルギーSは、2.90eVであった。
化合物BD−1の一重項エネルギーSは、2.73eVであった。
化合物BD−2の一重項エネルギーSは、2.73eVであった。
化合物DPEPOの一重項エネルギーは、文献(APPLIED PHYSICS LETTERS 101, 093306 (2012))に記載されているように、4.0eVである。
・化合物の主ピーク波長
測定対象の化合物が10−6モル/リットル以上10−5モル/リットル以下の濃度で溶解しているトルエン溶液を調製し、このトルエン溶液について発光スペクトルを測定した。発光スペクトルにおいて、発光強度が最大となる発光スペクトルのピーク波長を主ピーク波長とした。
化合物BD−1の主ピーク波長は452nmであった。
化合物BD−2の主ピーク波長は452nmであった。
<有機EL素子の作製>
有機EL素子を以下のように作製し、評価した。
(実施例1)
25mm×75mm×1.1mm厚のITO透明電極(陽極)付きガラス基板(ジオマティック社製)を、イソプロピルアルコール中で5分間超音波洗浄を行った後、UVオゾン洗浄を30分間行った。ITOの膜厚は、130nmとした。
洗浄後の透明電極ライン付き前記ガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に透明電極を覆うようにして化合物HIを蒸着し、膜厚5nmの正孔注入層を形成した。
次に、正孔注入層上に、化合物HT−1を蒸着し、HI膜上に膜厚80nmの第一正孔輸送層を形成した。
次に、この第一正孔輸送層上に、化合物HT−2を蒸着し、膜厚10nmの第二正孔輸送層を形成した。
さらに、この第二正孔輸送層上に、mCPを蒸着し、膜厚5nmの第三正孔輸送層を形成した。
第一の化合物としての化合物TADF−1と、第二の化合物としての化合物BD−1と、第三の化合物としての化合物DPEPOを共蒸着し、膜厚25nmの発光層を形成した。発光層における化合物TADF−1の濃度を24質量%とし、化合物BD−1の濃度を1質量%とし、化合物DPEPOの濃度を75質量%とした。
次に、この発光層上に、化合物ET−1を蒸着し、膜厚5nmの第一電子輸送層を形成した。
次に、この第一電子輸送層上に、化合物ET−2を蒸着し、膜厚20nmの第二電子輸送層を形成した。
次に、この第二電子輸送層上に、フッ化リチウム(LiF)を蒸着し、膜厚1nmの電子注入性電極(陰極)を形成した。
そして、この電子注入性電極上に、金属アルミニウム(Al)を蒸着し、膜厚80nmの金属Al陰極を形成した。
実施例1の有機EL素子の素子構成を略式的に示すと、次のとおりである。
ITO(130) / HI(5) / HT-1(80) / HT-2(10) / mCP(5)/ DPEPO : TADF-1 : BD-1 (25, 75%:24%:1%) / ET-1(5) / ET-2(20) / LiF(1) / Al(80)
なお、括弧内の数字は、膜厚(単位:nm)を示す。また、同じく括弧内において、パーセント表示された数字は、発光層における第一の化合物、第二の化合物及び第三の化合物の割合(質量%)を示す。
(実施例2)
実施例2の有機EL素子は、実施例1の発光層における化合物BD−1に代えて、化合物BD−2を用いたこと以外、実施例1と同様にして作製した。
実施例2の有機EL素子の素子構成を略式的に示すと、次のとおりである。
ITO(130) / HI(5) / HT-1(80) / HT-2(10 )/ mCP(5) / DPEPO : TADF-1 : BD-2 (25, 75% 24%, 1%) / ET-1(5) / ET-2(20) / LiF(1) / Al(80)
(比較例1)
比較例1の有機EL素子は、実施例1の発光層における化合物BD−1に代えて、化合物TBPeを用いたこと以外、実施例1と同様にして作製した。
比較例1の有機EL素子の素子構成を略式的に示すと、次のとおりである。
ITO(130) / HI(5) / HT-1(80) / HT-2(10) / mCP(5) / DPEPO : TADF-1 : TBPe (25, 75% 24%, 1%) / ET-1(5) / ET-2(20) / LiF(1) / Al(80)
(参考例1)
参考例1の有機EL素子は、実施例1の発光層における化合物BD−1に代えて、化合物ref-1を用いたこと以外、実施例1と同様にして作製した。
参考例1の有機EL素子の素子構成を略式的に示すと、次のとおりである。
ITO(130) / HI(5) / HT-1(80) / HT-2(10) / mCP(5) / DPEPO : TADF-1 : ref-1 (25, 75% 24%, 1%) / ET-1(5) / ET-2(20) / LiF(1) / Al(80)
<有機EL素子の評価>
実施例1及び2、比較例1、並びに参考例1において作製した有機EL素子について、以下の評価を行った。評価結果を表2に示す。
・外部量子効率EQE及び主ピーク波長λ
電流密度が0.1mA/cmとなるように素子に電圧を印加した時の分光放射輝度スペクトルを分光放射輝度計CS−1000(コニカミノルタ社製)で計測した。
得られた分光放射輝度スペクトルから、ランバシアン放射を行ったと仮定し外部量子効率EQE(単位:%)を算出した。
また、得られた分光放射輝度スペクトルから、主ピーク波長λ(単位:nm)を求めた。
遅延蛍光性の第一の化合物及び前記一般式(2)で表される第二の化合物を発光層に含む実施例1及び2の有機EL素子によれば、比較例1の有機EL素子に比べて、高効率で青色の波長領域の光を発した。また、実施例1及び2の有機EL素子は、参考例1の有機EL素子に比べて、さらに発光効率が向上した。
1…有機EL素子、3…陽極、4…陰極、5…発光層、7…正孔輸送層、8…電子輸送層。

Claims (33)

  1. 下記一般式(2)で表される化合物。

    (前記一般式(2)において、
    乃至X16は、それぞれ独立に、CRx1であるか、または下記一般式(2a)で表される基が結合する炭素原子であり、
    x1は、それぞれ独立に、水素原子、または置換基であり、
    置換基としてのRx1は、それぞれ独立に、
    置換または無置換の炭素数1〜30のアルキル基、
    置換または無置換の炭素数1〜30のアルコキシ基、
    置換または無置換の炭素数1〜30のアルキルチオ基、
    置換または無置換のアミノ基、
    置換または無置換の環形成炭素数6〜30のアリール基、
    置換または無置換の環形成原子数5〜30のヘテロアリール基、
    置換または無置換の炭素数2〜30のアルケニル基、
    置換または無置換の環形成炭素数6〜30のアリールオキシ基、
    置換または無置換の環形成炭素数6〜30のアリールチオ基、
    置換または無置換のホスファニル基、
    置換または無置換のホスホリル基、
    置換または無置換のシリル基、
    置換または無置換の環形成炭素数6〜30のアリールカルボニル基、
    シアノ基、
    ニトロ基、
    カルボキシ基、及び
    ハロゲン原子
    からなる群から選択され、
    複数のRx1は、互いに同一であるかまたは異なり、
    乃至X16のうち、複数がRx1であって、Rx1が置換基である場合、置換基としての複数のRx1同士が互いに結合して環を形成する場合と、環を形成しない場合とがある。
    ただし、X乃至X16のうちの1つは、前記一般式(2a)で表される基が結合する炭素原子である。)

    (前記一般式(2a)において、*2は、前記一般式(2)のX乃至X16のいずれかにおける炭素原子との結合部位を表し、
    は、単結合、または連結基であり、
    連結基としてのLは、
    置換または無置換の環形成炭素数6〜30のアリール基、及び
    置換または無置換の環形成原子数5〜30の芳香族複素環基
    からなる群から選択され、
    Xは、酸素原子、または硫黄原子であり、
    21乃至X28は、それぞれ独立に、CRx2、またはLと結合する炭素原子であり、
    x2は、それぞれ独立に、水素原子、または置換基であり、
    置換基としてのRx2は、それぞれ独立に、
    置換または無置換の炭素数1〜30のアルキル基、
    置換または無置換の炭素数1〜30のアルコキシ基、
    置換または無置換の炭素数1〜30のアルキルチオ基、
    置換または無置換のアミノ基、
    置換または無置換の環形成炭素数6〜30のアリール基、
    置換または無置換の環形成原子数5〜30のヘテロアリール基、
    置換または無置換の炭素数2〜30のアルケニル基、
    置換または無置換の環形成炭素数6〜30のアリールオキシ基、
    置換または無置換の環形成炭素数6〜30のアリールチオ基、
    置換または無置換のホスファニル基、
    置換または無置換のホスホリル基、
    置換または無置換のシリル基、
    置換または無置換の環形成炭素数6〜30のアリールカルボニル基、
    シアノ基、
    ニトロ基、
    カルボキシ基、及び
    ハロゲン原子
    からなる群から選択され、
    複数のRx2は、互いに同一であるかまたは異なり、
    x2のうち、複数が置換基である場合、置換基としての複数のRx2同士が互いに結合して環を形成する場合と、環を形成しない場合とがある。
    ただし、X21乃至X28のうちの1つは、Lと結合する炭素原子である。)
  2. 請求項1に記載の化合物において、
    前記一般式(2)におけるRx1同士が環を形成しない、化合物。
  3. 請求項1または請求項2に記載の化合物において、
    前記一般式(2)におけるX乃至Xのうちのいずれかが、前記一般式(2a)で表される基と結合する炭素原子である、化合物。
  4. 請求項1から請求項3のいずれか一項に記載の化合物において、
    前記一般式(2)で表される化合物が、下記一般式(21A)で表される、化合物。

    (前記一般式(21A)において、X、X乃至X16、及びRx1は、前記一般式(2)におけるX、X乃至X16、及びRx1とそれぞれ同義であり、L、X、X21乃至X27、及びRx2は、前記一般式(2a)におけるL、X、X21乃至X27、及びRx2とそれぞれ同義である。)
  5. 請求項1から請求項3のいずれか一項に記載の化合物において、
    前記一般式(2)で表される化合物が、下記一般式(21B)で表される、化合物。

    (前記一般式(21B)において、X、X、X乃至X16、及びRx1は、前記一般式(2)におけるX、X、X乃至X16、及びRx1とそれぞれ同義であり、L、X、X22乃至X28、及びRx2は、前記一般式(2a)におけるL、X、X22乃至X28、及びRx2とそれぞれ同義である。)
  6. 請求項1から請求項3のいずれか一項に記載の化合物において、
    前記一般式(2)で表される化合物が、下記一般式(22A)で表される、化合物。

    (前記一般式(22A)において、X、X乃至X16、及びRx1は、前記一般式(2)におけるX、X乃至X16、及びRx1とそれぞれ同義であり、L、X、X21乃至X23、X25乃至X28、及びRx2は、前記一般式(2a)におけるL、X、X21乃至X23、X25乃至X28、及びRx2とそれぞれ同義である。)
  7. 請求項1から請求項3のいずれか一項に記載の化合物において、
    前記一般式(2)で表される化合物が、下記一般式(22B)で表される、化合物。

    (前記一般式(22B)において、X、X、X乃至X16、及びRx1は、前記一般式(2)におけるX、X、X乃至X16、及びRx1とそれぞれ同義であり、L、X、X21乃至X24、X26乃至X28、及びRx2は、前記一般式(2a)におけるL、X、X21乃至X24、X26乃至X28、及びRx2とそれぞれ同義である。)
  8. 請求項1から請求項3のいずれか一項に記載の化合物において、
    前記一般式(2)で表される化合物が、下記一般式(23A)で表される、化合物。

    (前記一般式(23A)において、X、X乃至X16、及びRx1は、前記一般式(2)におけるX、X乃至X16、及びRx1とそれぞれ同義であり、L、X、X21乃至X25、X27、X28、及びRx2は、前記一般式(2a)におけるL、X、X21乃至X25、X27、X28、及びRx2とそれぞれ同義である。)
  9. 請求項1から請求項3のいずれか一項に記載の化合物において、
    前記一般式(2)で表される化合物が、下記一般式(23B)で表される、化合物。

    (前記一般式(23B)において、X、X、X乃至X16、及びRx1は、前記一般式(2)におけるX、X、X乃至X16、及びRx1とそれぞれ同義であり、L、X、X21、X22、X24乃至X28、及びRx2は、前記一般式(2a)におけるL、X、X21、X22、X24乃至X28、及びRx2とそれぞれ同義である。)
  10. 請求項1から請求項9のいずれか一項に記載の化合物において、
    前記一般式(2a)におけるLが、単結合である、化合物。
  11. 請求項1から請求項10のいずれか一項に記載の化合物において、
    前記一般式(2)におけるXがCR、X15がCR15であり、R及びR15が、それぞれ独立に、置換または無置換の環形成炭素数6〜30のアリール基である、化合物。
  12. 請求項1から請求項11のいずれか一項に記載の化合物において、
    前記一般式(2)におけるXがCR、X15がCR15であり、R及びR15が、それぞれ独立に、置換または無置換のフェニル基である、化合物。
  13. 請求項1から請求項12のいずれか一項に記載の化合物において、
    前記一般式(2)におけるXがCR、XがCR、XがCR、XがCR、XがCR、X10がCR10、X11がCR11、X12がCR12、X13がCR13、X14がCR14、X15がCR15、X16がCR16であり、R及びR15が、それぞれ独立に、置換または無置換のフェニル基であり、R、R乃至R14、及びR16が水素原子である、化合物。
  14. 下記一般式(2)で表される化合物を複数種含有する、組成物。

    (前記一般式(2)において、
    乃至X16は、それぞれ独立に、CRx1であるか、または下記一般式(2a)で表される基が結合する炭素原子であり、
    x1は、それぞれ独立に、水素原子、または置換基であり、
    置換基としてのRx1は、それぞれ独立に、
    置換または無置換の炭素数1〜30のアルキル基、
    置換または無置換の炭素数1〜30のアルコキシ基、
    置換または無置換の炭素数1〜30のアルキルチオ基、
    置換または無置換のアミノ基、
    置換または無置換の環形成炭素数6〜30のアリール基、
    置換または無置換の環形成原子数5〜30のヘテロアリール基、
    置換または無置換の炭素数2〜30のアルケニル基、
    置換または無置換の環形成炭素数6〜30のアリールオキシ基、
    置換または無置換の環形成炭素数6〜30のアリールチオ基、
    置換または無置換のホスファニル基、
    置換または無置換のホスホリル基、
    置換または無置換のシリル基、
    置換または無置換の環形成炭素数6〜30のアリールカルボニル基、
    シアノ基、
    ニトロ基、
    カルボキシ基、及び
    ハロゲン原子
    からなる群から選択され、
    複数のRx1は、互いに同一であるかまたは異なり、
    乃至X16のうち、複数がRx1であって、Rx1が置換基である場合、置換基としての複数のRx1同士が互いに結合して環を形成する場合と、環を形成しない場合とがある。
    ただし、X乃至X16のうちの1つは、前記一般式(2a)で表される基が結合する炭素原子である。)

    (前記一般式(2a)において、*2は、前記一般式(2)のX乃至X16のいずれかにおける炭素原子との結合部位を表し、
    は、単結合、または連結基であり、
    連結基としてのLは、
    置換または無置換の環形成炭素数6〜30のアリール基、及び
    置換または無置換の環形成原子数5〜30の芳香族複素環基
    からなる群から選択され、
    Xは、酸素原子、または硫黄原子であり、
    21乃至X28は、それぞれ独立に、CRx2、またはLと結合する炭素原子であり、
    x2は、それぞれ独立に、水素原子、または置換基であり、
    置換基としてのRx2は、それぞれ独立に、
    置換または無置換の炭素数1〜30のアルキル基、
    置換または無置換の炭素数1〜30のアルコキシ基、
    置換または無置換の炭素数1〜30のアルキルチオ基、
    置換または無置換のアミノ基、
    置換または無置換の環形成炭素数6〜30のアリール基、
    置換または無置換の環形成原子数5〜30のヘテロアリール基、
    置換または無置換の炭素数2〜30のアルケニル基、
    置換または無置換の環形成炭素数6〜30のアリールオキシ基、
    置換または無置換の環形成炭素数6〜30のアリールチオ基、
    置換または無置換のホスファニル基、
    置換または無置換のホスホリル基、
    置換または無置換のシリル基、
    置換または無置換の環形成炭素数6〜30のアリールカルボニル基、
    シアノ基、
    ニトロ基、
    カルボキシ基、及び
    ハロゲン原子
    からなる群から選択され、
    複数のRx2は、互いに同一であるかまたは異なり、
    x2のうち、複数が置換基である場合、置換基としての複数のRx2同士が互いに結合して環を形成する場合と、環を形成しない場合とがある。
    ただし、X21乃至X28のうちの1つは、Lと結合する炭素原子である。)
  15. 請求項14に記載の組成物において、
    前記一般式(2)におけるRx1同士が環を形成しない、組成物。
  16. 請求項14または請求項15に記載の組成物において、
    前記一般式(2)におけるX乃至Xのうちの少なくともいずれかが、前記一般式(2a)で表される基と結合する炭素原子である、組成物。
  17. 請求項14から請求項16のいずれか一項に記載の組成物であって、
    前記一般式(2)で表される化合物として、下記一般式(21A)で表される化合物及び下記一般式(21B)で表される化合物を含む、組成物。

    (前記一般式(21A)において、X、及びX乃至X16は、前記一般式(2)におけるX、及びX乃至X16とそれぞれ同義であり、X21乃至X27は、前記一般式(2a)におけるX21乃至X27とそれぞれ同義である。
    前記一般式(21B)において、X、X、及びX乃至X16は、前記一般式(2)におけるX、X、及びX乃至X16とそれぞれ同義であり、X22乃至X28は、前記一般式(2a)におけるX22乃至X28とそれぞれ同義である。
    前記一般式(21A)及び(21B)において、Rx1は、前記一般式(2)におけるRx1とそれぞれ同義であり、L、X、及びRx2は、前記一般式(2a)におけるL、X、及びRx2とそれぞれ同義である。)
  18. 請求項14から請求項16のいずれか一項に記載の組成物であって、
    前記一般式(2)で表される化合物として、下記一般式(22A)で表される化合物及び下記一般式(22B)で表される化合物を含む、組成物。

    (前記一般式(22A)において、X、及びX乃至X16は、前記一般式(2)におけるX、及びX乃至X16とそれぞれ同義であり、X21乃至X23、及びX25乃至X28は、前記一般式(2a)におけるX21乃至X23、及びX25乃至X28とそれぞれ同義である。
    前記一般式(22B)において、X、X、及びX乃至X16は、前記一般式(2)におけるX、X、及びX乃至X16とそれぞれ同義であり、X21乃至X24、及びX26乃至X28は、前記一般式(2a)におけるX21乃至X24、及びX26乃至X28とそれぞれ同義である。
    前記一般式(22A)及び(22B)において、Rx1は、前記一般式(2)におけるRx1とそれぞれ同義であり、L、X、及びRx2は、前記一般式(2a)におけるL、X、及びRx2とそれぞれ同義である。)
  19. 請求項14から請求項16のいずれか一項に記載の組成物であって、
    前記一般式(2)で表される化合物として、下記一般式(23A)で表される化合物及び下記一般式(23B)で表される化合物を含む、組成物。

    (前記一般式(23A)において、X、及びX乃至X16は、前記一般式(2)におけるX、及びX乃至X16とそれぞれ同義であり、X21乃至X25、X27、及びX28は、前記一般式(2a)におけるX21乃至X25、X27、及びX28とそれぞれ同義である。
    前記一般式(23B)において、X、X、及びX乃至X16は、前記一般式(2)におけるX、X、及びX乃至X16とそれぞれ同義であり、X21、X22、及びX24乃至X28は、前記一般式(2a)におけるX21、X22、及びX24乃至X28とそれぞれ同義である。
    前記一般式(23A)及び(23B)において、Rx1は、前記一般式(2)におけるRx1とそれぞれ同義であり、L、X、及びRx2は、前記一般式(2a)におけるL、X、及びRx2とそれぞれ同義である。)
  20. 陽極と、
    発光層と、
    陰極と、を有し、
    前記発光層は、第一の化合物及び第二の化合物を含み、
    前記第二の化合物は、請求項1から請求項13のいずれか一項に記載の化合物である、
    有機エレクトロルミネッセンス素子。
  21. 請求項20に記載の有機エレクトロルミネッセンス素子において、
    前記第一の化合物は、遅延蛍光性の化合物であり、
    前記第一の化合物の一重項エネルギーS(M1)と、前記第二の化合物の一重項エネルギーS(M2)とが、下記数式(数1)の関係を満たす、有機エレクトロルミネッセンス素子。
    (M1)>S(M2) …(数1)
  22. 請求項21に記載の有機エレクトロルミネッセンス素子において、
    前記第二の化合物の主ピーク波長の範囲は、430nm以上480nm以下である、有機エレクトロルミネッセンス素子。
  23. 請求項21または請求項22に記載の有機エレクトロルミネッセンス素子において、
    前記第二の化合物の主ピーク波長の範囲は、445nm以上480nm以下である、有機エレクトロルミネッセンス素子。
  24. 請求項21から請求項23のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
    前記第一の化合物は、下記一般式(1)で表される化合物である、有機エレクトロルミネッセンス素子。

    (前記一般式(1)において、
    Aは、下記一般式(a−1)〜(a−7)からなる群から選ばれる部分構造を有する基であり、
    複数のAは、互いに同一であるかまたは異なり、
    A同士が結合して飽和もしくは不飽和の環を形成するかまたは環を形成せず、
    Bは、下記一般式(b−1)〜(b−6)からなる群から選ばれる部分構造を有する基であり、
    複数のBは、互いに同一であるかまたは異なり、
    B同士が結合して飽和もしくは不飽和の環を形成するかまたは環を形成せず、
    a、b、及びdは、それぞれ独立に、1〜5の整数であり、
    cは、0〜5の整数であり、
    cが0のとき、AとBとは単結合またはスピロ結合で結合し、
    cが1〜5の整数のとき、Lは、
    置換または無置換の環形成炭素数6〜30のアリール基、及び
    置換または無置換の環形成原子数5〜30のヘテロアリール基
    からなる群から選択される連結基であり、
    cが2〜5の整数のとき、複数のLは、互いに同一であるかまたは異なり、
    複数のL同士が結合して飽和もしくは不飽和の環を形成するかまたは環を形成しない。)


    (前記一般式(b−1)〜(b−6)において、
    Rは、それぞれ独立に、水素原子または置換基であり、
    置換基としてのRは、
    置換または無置換の環形成炭素数6〜30のアリール基、
    置換または無置換の環形成原子数5〜30のヘテロアリール基、及び
    置換または無置換の炭素数1〜30のアルキル基
    からなる群から選択される基であり、
    複数のRは、互いに同一であるかまたは異なり、
    R同士が結合して飽和もしくは不飽和の環を形成するかまたは環を形成しない。)
  25. 請求項24に記載の有機エレクトロルミネッセンス素子において、
    Aは、前記一般式(a−1)、(a−2)、(a−3)及び(a−5)からなる群から選ばれる部分構造を有する基である、有機エレクトロルミネッセンス素子。
  26. 請求項24または請求項25に記載の有機エレクトロルミネッセンス素子において、
    Bは、前記一般式(b−2)、(b−3)及び(b−4)からなる群から選ばれる部分構造を有する基である、有機エレクトロルミネッセンス素子。
  27. 請求項21から請求項26のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
    前記第一の化合物は、下記一般式(11)で表される化合物である、有機エレクトロルミネッセンス素子。

    (前記一般式(11)において、
    Azは、
    置換または無置換のピリジン環、
    置換または無置換のピリミジン環、
    置換または無置換のトリアジン環、及び
    置換または無置換のピラジン環
    からなる群から選択される環構造であり、
    cは0〜5の整数であり、
    cが0のとき、CzとAzとが単結合で結合し、
    cが1〜5の整数のとき、Lは、
    置換または無置換の環形成炭素数6〜30のアリール基、及び
    置換または無置換の環形成原子数5〜30のヘテロアリール基
    からなる群から選択される連結基であり、
    cが2〜5の整数のとき、複数のLは、互いに同一であるかまたは異なり、
    複数のL同士が結合して環を形成するかまたは環を形成せず、
    Czは、下記一般式(12)で表される。)

    (前記一般式(12)において、
    21乃至Y28は、それぞれ独立に、窒素原子またはCRであり、
    は、それぞれ独立に、水素原子または置換基であり、
    置換基としてのRは、
    置換または無置換の環形成炭素数6〜30のアリール基、
    置換または無置換の環形成原子数5〜30のヘテロアリール基、
    置換または無置換の炭素数1〜30のアルキル基、
    置換または無置換の炭素数1〜30のフルオロアルキル基、
    置換または無置換の環形成炭素数3〜30のシクロアルキル基、
    置換または無置換の炭素数7〜30のアラルキル基、
    置換ホスホリル基、
    置換シリル基、
    シアノ基、
    ニトロ基、及び
    カルボキシ基
    からなる群から選択される基であり、
    複数のRは、互いに同一であるかまたは異なり、
    21乃至Y28のうち、複数がCRであって、Rが置換基である場合、置換基としての複数のR同士が結合して環を形成する場合と、環を形成しない場合とがあり、
    *1は、Lで表される連結基の構造中の炭素原子との結合部位、またはAzで表される環構造中の炭素原子との結合部位を表す。)
  28. 請求項21から請求項27のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
    前記発光層は、さらに第三の化合物を含み、
    前記第一の化合物の一重項エネルギーS(M1)と、前記第三の化合物の一重項エネルギーS(M3)とが、下記数式(数2)の関係を満たす、有機エレクトロルミネッセンス素子。
    (M3)>S(M1) …(数2)
  29. 請求項28に記載の有機エレクトロルミネッセンス素子において、
    前記発光層における前記第一の化合物の含有率が、10質量%以上80質量%以下である有機エレクトロルミネッセンス素子。
  30. 請求項20から請求項29のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
    前記発光層には、複数種の前記第二の化合物を含む、有機エレクトロルミネッセンス素子。
  31. 請求項20から請求項30のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
    前記陽極と前記発光層との間に正孔輸送層を含む、有機エレクトロルミネッセンス素子。
  32. 請求項20から請求項31のいずれか一項に記載の有機エレクトロルミネッセンス素子において、
    前記陰極と前記発光層との間に電子輸送層を含む、有機エレクトロルミネッセンス素子。
  33. 請求項20から請求項32のいずれか一項に記載の有機エレクトロルミネッセンス素子を備える電子機器。
JP2016219249A 2016-11-09 2016-11-09 化合物、組成物、有機エレクトロルミネッセンス素子、及び電子機器 Active JP6829583B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016219249A JP6829583B2 (ja) 2016-11-09 2016-11-09 化合物、組成物、有機エレクトロルミネッセンス素子、及び電子機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016219249A JP6829583B2 (ja) 2016-11-09 2016-11-09 化合物、組成物、有機エレクトロルミネッセンス素子、及び電子機器

Publications (2)

Publication Number Publication Date
JP2018076259A true JP2018076259A (ja) 2018-05-17
JP6829583B2 JP6829583B2 (ja) 2021-02-10

Family

ID=62149924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016219249A Active JP6829583B2 (ja) 2016-11-09 2016-11-09 化合物、組成物、有機エレクトロルミネッセンス素子、及び電子機器

Country Status (1)

Country Link
JP (1) JP6829583B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111233826A (zh) * 2018-11-29 2020-06-05 昱镭光电科技股份有限公司 含荧蒽基的二苯并噻吩化合物及其有机电致发光器件
US11807593B2 (en) 2019-10-03 2023-11-07 Canon Kabushiki Kaisha Organic compound, organic light-emitting element, display apparatus, image pickup apparatus, lighting apparatus, and moving object
US11964930B2 (en) 2019-11-07 2024-04-23 Canon Kabushiki Kaisha Organic compound and organic light-emitting element

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113321677B (zh) * 2021-06-30 2023-05-05 京东方科技集团股份有限公司 一种热活化延迟荧光材料、有机发光器件及显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009001499A (ja) * 2007-06-19 2009-01-08 Mitsui Chemicals Inc 芳香族炭化水素化合物、および該芳香族炭化水素化合物を含有する有機電界発光素子
JP2010254610A (ja) * 2009-04-23 2010-11-11 Canon Inc 新規有機化合物および発光素子および画像表示装置
JP2010270103A (ja) * 2009-04-23 2010-12-02 Canon Inc 新規有機化合物および発光素子および画像表示装置
JP2011207829A (ja) * 2010-03-30 2011-10-20 Canon Inc 新規有機化合物および有機発光素子
JP2011231086A (ja) * 2010-04-30 2011-11-17 Canon Inc 新規有機化合物およびそれを有する有機発光素子
JP2012246258A (ja) * 2011-05-30 2012-12-13 Canon Inc 縮合多環化合物及びこれを用いた有機発光素子

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009001499A (ja) * 2007-06-19 2009-01-08 Mitsui Chemicals Inc 芳香族炭化水素化合物、および該芳香族炭化水素化合物を含有する有機電界発光素子
JP2010254610A (ja) * 2009-04-23 2010-11-11 Canon Inc 新規有機化合物および発光素子および画像表示装置
JP2010270103A (ja) * 2009-04-23 2010-12-02 Canon Inc 新規有機化合物および発光素子および画像表示装置
JP2011207829A (ja) * 2010-03-30 2011-10-20 Canon Inc 新規有機化合物および有機発光素子
JP2011231086A (ja) * 2010-04-30 2011-11-17 Canon Inc 新規有機化合物およびそれを有する有機発光素子
JP2012246258A (ja) * 2011-05-30 2012-12-13 Canon Inc 縮合多環化合物及びこれを用いた有機発光素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FUTAGOISHI, TSUKASA ET AL: "Expansion of Orifices of Open C60 Derivatives and Formation of an Open C59S Derivative by Reaction w", ORGANIC LETTERS, vol. 15(11), JPN6020016692, 2013, pages 2750 - 2753, ISSN: 0004266953 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111233826A (zh) * 2018-11-29 2020-06-05 昱镭光电科技股份有限公司 含荧蒽基的二苯并噻吩化合物及其有机电致发光器件
US11807593B2 (en) 2019-10-03 2023-11-07 Canon Kabushiki Kaisha Organic compound, organic light-emitting element, display apparatus, image pickup apparatus, lighting apparatus, and moving object
US11964930B2 (en) 2019-11-07 2024-04-23 Canon Kabushiki Kaisha Organic compound and organic light-emitting element

Also Published As

Publication number Publication date
JP6829583B2 (ja) 2021-02-10

Similar Documents

Publication Publication Date Title
JP6761796B2 (ja) 有機エレクトロルミネッセンス素子、電子機器、および化合物
JP6722579B2 (ja) 有機エレクトロルミネッセンス素子、および電子機器
WO2018181188A1 (ja) 有機エレクトロルミネッセンス素子および電子機器
JP6742236B2 (ja) 有機エレクトロルミネッセンス素子および電子機器
WO2018088472A1 (ja) 化合物、組成物、有機エレクトロルミネッセンス素子、及び電子機器
WO2015098975A1 (ja) 有機エレクトロルミネッセンス素子および電子機器
JP6754422B2 (ja) 有機エレクトロルミネッセンス素子、及び電子機器
JP2016115940A (ja) 有機エレクトロルミネッセンス素子および電子機器
WO2015159706A1 (ja) 化合物、有機エレクトロルミネッセンス素子および電子機器
WO2017146191A1 (ja) 有機エレクトロルミネッセンス素子、及び電子機器
JP7393345B2 (ja) 有機エレクトロルミネッセンス素子、化合物、有機エレクトロルミネッセンス素子用材料、及び電子機器
WO2019181858A1 (ja) 有機エレクトロルミネッセンス素子、及び電子機器
WO2018066536A1 (ja) 化合物、組成物、有機エレクトロルミネッセンス素子、及び電子機器
WO2017115788A1 (ja) 有機エレクトロルミネッセンス素子及び電子機器
JP2019165101A (ja) 有機エレクトロルミネッセンス素子、及び電子機器
JP2019165102A (ja) 有機エレクトロルミネッセンス素子、及び電子機器
KR20220038370A (ko) 유기 일렉트로루미네센스 소자 및 전자 기기
JP6829583B2 (ja) 化合物、組成物、有機エレクトロルミネッセンス素子、及び電子機器
JP2020050650A (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、および電子機器
JP7374187B2 (ja) 有機エレクトロルミネッセンス素子、化合物及び電子機器
JP2021020857A (ja) 化合物、有機エレクトロルミネッセンス素子及び電子機器
JP2020174072A (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2017065295A1 (ja) 有機エレクトロルミネッセンス素子および電子機器
JP2022137315A (ja) 有機エレクトロルミネッセンス素子及び電子機器
JP6433935B2 (ja) 有機エレクトロルミネッセンス素子および電子機器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200722

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201118

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20201118

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20201127

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20201208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210122

R150 Certificate of patent or registration of utility model

Ref document number: 6829583

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150