JP2018074198A - 演算方法、基地局装置および演算回路 - Google Patents
演算方法、基地局装置および演算回路 Download PDFInfo
- Publication number
- JP2018074198A JP2018074198A JP2016208023A JP2016208023A JP2018074198A JP 2018074198 A JP2018074198 A JP 2018074198A JP 2016208023 A JP2016208023 A JP 2016208023A JP 2016208023 A JP2016208023 A JP 2016208023A JP 2018074198 A JP2018074198 A JP 2018074198A
- Authority
- JP
- Japan
- Prior art keywords
- correction coefficient
- power amplifier
- output
- transmission signal
- dpd
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004364 calculation method Methods 0.000 title claims abstract description 66
- 238000012937 correction Methods 0.000 claims abstract description 127
- 238000012545 processing Methods 0.000 claims abstract description 107
- 238000000034 method Methods 0.000 claims description 37
- 238000000605 extraction Methods 0.000 claims description 24
- 230000007613 environmental effect Effects 0.000 claims description 15
- 230000005540 biological transmission Effects 0.000 description 129
- 230000003044 adaptive effect Effects 0.000 description 22
- 230000006870 function Effects 0.000 description 21
- 238000010586 diagram Methods 0.000 description 18
- 101150093282 SG12 gene Proteins 0.000 description 10
- YBIDYTOJOXKBLO-USLOAXSXSA-N (4-nitrophenyl)methyl (5r,6s)-6-[(1r)-1-hydroxyethyl]-3,7-dioxo-1-azabicyclo[3.2.0]heptane-2-carboxylate Chemical compound C([C@@H]1[C@H](C(N11)=O)[C@H](O)C)C(=O)C1C(=O)OCC1=CC=C([N+]([O-])=O)C=C1 YBIDYTOJOXKBLO-USLOAXSXSA-N 0.000 description 7
- 230000015654 memory Effects 0.000 description 7
- 239000000284 extract Substances 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 230000003111 delayed effect Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000001934 delay Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/32—Modifications of amplifiers to reduce non-linear distortion
- H03F1/3241—Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
- H03F1/3282—Acting on the phase and the amplitude of the input signal
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/30—Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters
- H03F1/303—Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters using a switching device
- H03F1/304—Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters using a switching device and using digital means
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/32—Modifications of amplifiers to reduce non-linear distortion
- H03F1/3241—Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
- H03F1/3247—Modifications of amplifiers to reduce non-linear distortion using predistortion circuits using feedback acting on predistortion circuits
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/189—High-frequency amplifiers, e.g. radio frequency amplifiers
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/21—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/24—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/02—Transmitters
- H04B1/04—Circuits
- H04B1/0475—Circuits with means for limiting noise, interference or distortion
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/26—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
- H01Q3/30—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
- H01Q3/34—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/447—Indexing scheme relating to amplifiers the amplifier being protected to temperature influence
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/451—Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/468—Indexing scheme relating to amplifiers the temperature being sensed
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2201/00—Indexing scheme relating to details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements covered by H03F1/00
- H03F2201/32—Indexing scheme relating to modifications of amplifiers to reduce non-linear distortion
- H03F2201/3212—Using a control circuit to adjust amplitude and phase of a signal in a signal path
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2201/00—Indexing scheme relating to details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements covered by H03F1/00
- H03F2201/32—Indexing scheme relating to modifications of amplifiers to reduce non-linear distortion
- H03F2201/3233—Adaptive predistortion using lookup table, e.g. memory, RAM, ROM, LUT, to generate the predistortion
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/02—Transmitters
- H04B1/04—Circuits
- H04B2001/0408—Circuits with power amplifiers
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Transmitters (AREA)
- Amplifiers (AREA)
Abstract
【課題】演算処理における消費電力と回路規模との増大を抑制する。【解決手段】演算方法は、パワーアンプの出力からフィードバックされた第1のフィードバック信号とパワーアンプに入力される前の入力信号とに基づいて、パワーアンプによる歪を補正するための第1の補正係数を演算する。また、演算方法は、パワーアンプの後段のフィルタの出力からフィードバックされた第2のフィードバック信号と入力信号とに基づいて、フィルタから出力される信号の位相および振幅を補正するための第2の補正係数を演算する。【選択図】図1
Description
本発明は、演算方法、基地局装置および演算回路に関する。
スマートフォンや携帯端末などの無線端末と無線通信を行なう基地局装置では、送信側にパワーアンプが使用される。パワーアンプの入出力特性は、出力が小さい場合は直線性を有し、出力が大きくなると飽和して非直線性を有する。例えば、パワーアンプを飽和領域近くの高効率で動作させる場合、パワーアンプの入出力特性は非直線性を有する。この場合、非線形性の歪みが発生する。非線形性の歪みの関数を歪関数f(p)で表した場合、パワーアンプから出力される送信信号の波形は、歪関数f(0)周辺の周波数スペクトラムにおいて、サイドローブが持ち上がる。その結果、送信信号が隣接チャネルに漏洩してしまい、隣接妨害が生じる。すなわち、パワーアンプの非線形の歪特性により、隣接周波数チャネルに漏洩する送信波の電力が大きくなってしまう。そのため、ディジタルプリディストーション(DPD;Digital Pre-Distortion)を行なう基地局装置が増えている。
DPDとは、パワーアンプによる歪特性を改善するために、パワーアンプに入力される前の送信信号に対して、パワーアンプによる歪特性とは逆特性の歪み成分を重畳する処理である。この送信信号に逆特性の歪み成分を重畳することによって、パワーアンプを通過した送信信号の歪みが抑制され、パワーアンプによる歪特性が補正される。例えば、DPDを実行するDPD機能部は、演算部と、補正部とを有し、演算部は、パワーアンプに入力される前の送信信号と、パワーアンプの出力からフィードバックパスを介してフィードバックされた送信信号との誤差を演算する。演算部は、演算した誤差に基づいて、パワーアンプによる歪特性を補正するための補正係数(補正値)を演算し、テーブルに格納する。補正部は、テーブルの補正係数を、パワーアンプに入力される前の送信信号に適用することにより、パワーアンプによる歪特性を補正する。
一方、基地局装置において、アンテナビームフォーミングが実施される場合がある。アンテナビームフォーミングとは、近接する基地局が同じ周波数帯域を使えるようにするために、電波に指向性を持たせる技術であり、電波の利用効率を大幅に高める効果がある。この技術により、基地局装置は、遠くまで電波を飛ばすことができる。また、基地局装置は、近接する基地局や端末が発する電波と干渉しないように電波を送ることができる。例えば、基地局装置は、無線通信を行なう無線端末の方向に対して電波を集中させ、他の基地局装置と無線通信を行なっている無線端末には電波が届かないようにすることが可能である。電波の集中送出は、複数のアンテナの各々が送り出す信号の位相や電力を変えることで実現される。このアンテナビームフォーミングにはアレイアンテナの原理が用いられている。送信側にアレイアンテナ機能を実現する場合、基地局装置は、複数のアンテナに対応した複数の送信部(ブランチ)を備えている。そのため、アンテナビームフォーミングを実施する場合、アンテナキャリブレーション(ACAL;Antenna Calibration)が行なわれる。
ACALとは、複数のアンテナから放射される電波の位相および振幅を調整する処理である。例えば、アンテナビームフォーミングを実施する場合、各アンテナ間で予め決められたビーム角度に対する位相差が設定される。位相差はアンテナ素子間の関係に基づいて設定される。この位相差を設定する前提として、ブランチ間の位相誤差がキャリブレーションされる。この位相は、環境温度の変動や電源電圧の変動などに伴って変動するため、ACALは一定周期にて実行され、送信信号の位相および振幅の変動分が補正される。例えば、ACALを実行するACAL機能部は、演算部と、補正部とを有し、演算部は、アナログ回路に入力される前の送信信号と、アナログ回路のバンドパスフィルタの出力からフィードバックパスを介してフィードバックされた送信信号との誤差を演算する。演算部は、演算した誤差に基づいて、アナログ回路で発生する送信信号の位相および振幅の変動分を補正するための補正係数(補正値)を演算し、テーブルに格納する。補正部は、テーブルの補正係数を、アナログ回路に入力される前の送信信号に適用することにより、アナログ回路で発生する送信信号の位相および振幅の変動分を補正する。
例えば、複数ブランチでDPDおよびACALを実行する場合、各ブランチに対応した数だけのDPD機能部、ACAL機能部、およびフィードバックパスが設けられる。そのため、アナログ回路などの回路規模の増大が課題となる。その課題を解決するため、従来では、DPD機能部とACAL機能部とのフィードバックパスを共通化しておき、フィードバックパスをスイッチなどで時分割に切り替える技術が提案されている。
しかしながら、上記の従来技術では、DPD機能部とACAL機能部とのフィードバックパスを共通化しているため、演算処理によって消費する消費電力が増大してしまう。例えば、DPD機能部とACAL機能部とでフィードバックする共通のポイントが、バンドパスフィルタの出力にあるものとする。この場合、ACAL機能部が、パワーアンプに入力される前の送信信号と、バンドパスフィルタの出力からフィードバックされた送信信号とを比較するので、ACALの性能は維持できる。しかし、送信信号がバンドパスフィルタを通過しているので、バンドパスフィルタの出力からフィードバックされた送信信号には、パワーアンプによる歪特性以外の歪みも含まれる。そのため、DPD機能部が、パワーアンプに入力される前の送信信号と、バンドパスフィルタの出力からフィードバックされた送信信号とを比較しても、演算のループ処理が多くなってしまう。すなわち、補正係数が最適な補正係数の範囲内に収束するまでに、演算処理に時間がかかってしまう。その結果、演算処理によって消費する消費電力が増大してしまう。
また、従来技術では、複数ブランチでDPDおよびACALを実行する場合、DPD機能部およびACAL機能部の各々に演算回路(演算部)を設けることになるので、回路規模が増大してしまう。
本願に開示の技術は、演算処理によって消費する消費電力と回路規模との増大を抑制する。
1つの態様では、演算方法は、パワーアンプの出力からフィードバックされた第1のフィードバック信号とパワーアンプに入力される前の入力信号とに基づいて、パワーアンプによる歪を補正するための第1の補正係数を演算する。また、演算方法は、パワーアンプの後段のフィルタの出力からフィードバックされた第2のフィードバック信号と入力信号とに基づいて、フィルタから出力される信号の位相および振幅を補正するための第2の補正係数を演算する。
1つの側面では、演算処理によって消費する消費電力と回路規模との増大を抑制することができる。
以下に、本願の開示する演算方法、基地局装置および演算回路の実施例を、図面に基づいて詳細に説明する。なお、以下の実施例は開示の技術を限定するものではない。
[基地局装置の構成]
図1は、実施例1に係る基地局装置100の一例を示すブロック図である。基地局装置100は、デジタル処理部101と、アナログ回路104と、アンテナ8と、スイッチ(SW)9、10、12と、遅延回路11と、アナログデジタル変換器(ADC)13とを有している。
図1は、実施例1に係る基地局装置100の一例を示すブロック図である。基地局装置100は、デジタル処理部101と、アナログ回路104と、アンテナ8と、スイッチ(SW)9、10、12と、遅延回路11と、アナログデジタル変換器(ADC)13とを有している。
アナログ回路104は、デジタルアナログ変換器(DAC)3と、パワーアンプ(PA)4と、サーキュレータ5、7と、バンドパスフィルタ(BPF)6とを有している。
デジタル処理部101は、補正部105と、復調部14と、演算部15と、セレクタ18と、スイッチ(SW)19とを有している。補正部105は、適応フィルタ1、2と、DPDルックアップテーブル(DPD LUT)16と、BPFルックアップテーブル(BPF LUT)17と、スイッチ(SW)20とを有している。
基地局装置100は、更に、複数の送信部(ブランチ)を有している。複数のブランチの各々には補正部105、アナログ回路104、アンテナ8が設けられている。
適応フィルタ1は、デジタル信号である送信信号を受け取る。適応フィルタ1は、BPF LUT17に格納されたBPF補正係数を送信信号に適用する。すなわち、BPF LUT17に格納されたBPF補正係数と送信信号とが適応フィルタ1によって乗算される。これにより、BPF6で発生する送信信号の位相および振幅の変動分が補正される。適応フィルタ1は、補正後の送信信号を適応フィルタ2に出力する。
適応フィルタ2は、適応フィルタ1から送信信号を受け取る。適応フィルタ2は、DPD LUT16に格納されたDPD補正係数を送信信号に適用する。すなわち、DPD LUT16に格納されたDPD補正係数と送信信号とが適応フィルタ2によって乗算される。これにより、PA4による非線形の歪特性と、PA4の出力端までに発生する送信信号の位相および振幅の変動分とが補正される。適応フィルタ2は、補正後の送信信号をDAC3に出力する。
DAC3は、適応フィルタ2から送信信号を受け取る。DAC3は、送信信号をアナログ信号に変換し、PA4に出力する。
PA4は、DAC3から送信信号を受け取る。PA4は、送信信号の電力を増幅し、サーキュレータ5に出力する。
サーキュレータ5は、PA4から送信信号を受け取る。サーキュレータ5は、送信信号をBPF6に出力する。また、サーキュレータ5は、送信信号をSW9、DPDフィードバックパス(DPD FB)102を介してSW12に出力する。
SW9は、DPD FB102上に設けられている。具体的には、SW9は、複数のブランチにそれぞれ対応する複数のスイッチ部を有し、各スイッチ部はDPD FB102上に設けられている。例えば、SW9において、複数のスイッチ部が順番にオンすることにより、各ブランチのDPD FB102が順番に有効になる。すなわち、各ブランチにおいて、サーキュレータ5とSW12とがDPD FB102を介して接続される。
BPF6は、サーキュレータ5から送信信号を受け取る。BPF6は、送信信号に対して特定の周波数帯域の信号を通過させ、それ以外の周波数帯域の信号を減衰させる。BPF6を通過した信号は送信信号としてサーキュレータ7に出力される。
サーキュレータ7は、BPF6から送信信号を受け取る。サーキュレータ7は、送信信号をアンテナ8に出力する。アンテナ8は、サーキュレータ7からの送信信号を送信する。また、サーキュレータ7は、送信信号をSW10、ACALフィードバックパス(ACAL FB)103、遅延回路11を介してSW12に出力する。
SW10は、ACAL FB103上に設けられている。具体的には、SW10は、複数のブランチにそれぞれ対応する複数のスイッチ部を有し、各スイッチ部はACAL FB103上に設けられている。例えば、SW10において、複数のスイッチ部が順番にオンすることにより、各ブランチのACAL FB103が順番に有効になる。すなわち、各ブランチにおいて、サーキュレータ7とSW12とがACAL FB103を介して接続される。
SW12は、制御信号に応じてフィードバックパスを時分割に切り替える。制御信号は第1の値または第2の値を表す。例えば、制御信号が第1の値を表す場合、SW12はDPD FB102を選択する。この場合、SW12は、PA4の出力からサーキュレータ5、SW9、DPD FB102を介してフィードバックされた送信信号をADC13に出力する。また、制御信号が第2の値を表す場合、SW12はACAL FB103を選択する。この場合、SW12は、BPF6の出力からサーキュレータ7、SW10、ACAL FB103を介してフィードバックされた送信信号をADC13に出力する。制御信号の切り替えタイミングは、処理遅延に基づいて決定される。
遅延回路11は、ACAL FB103上に設けられている。具体的には、遅延回路11は、ACAL FB103上でSW10とSW12との間に設けられている。遅延回路11は、DPD FB102とACAL FB103とを時分割で切り替える際に、BPF6の出力からサーキュレータ7、SW10、ACAL FB103を介してフィードバックされた送信信号を所定時間遅延させる。
図2は、信号遅延の一例を示す図である。例えば、所定時間Tcは、処理時間Taと処理時間Tbとに基づいて決定される。具体的には、処理時間Taは、演算部15がDPDを実行するときの処理時間を表し、処理時間Tbは、送信信号がBPF6を通過するときの処理時間を表す。所定時間Tcは、処理時間Taから処理時間Tbを減算した時間を表す。これにより、所定時間Tc遅延した送信信号は、PA4の出力からサーキュレータ5、SW9、DPD FB102を介してフィードバックされた送信信号と同じタイミングの送信信号となる。
図1に示すように、ADC13は、SW12から送信信号を受け取る。ADC13は、送信信号をデジタル信号に変換し、復調部14に出力する。
復調部14は、ADC13から送信信号を受け取る。復調部14は、送信信号に対して復調を行ない、演算部15に出力する。
セレクタ18は、制御信号に応じて送信信号を選択する。例えば、制御信号が第1の値を表す場合、セレクタ18は送信信号SG11を選択する。制御信号が第2の値を表す場合、セレクタ18は送信信号SG12を選択する。送信信号SG11は、適応フィルタ1から出力され、かつ、適応フィルタ2に入力される前の送信信号である。送信信号SG12は、適応フィルタ1に入力される前の送信信号である。したがって、制御信号が第1の値を表す場合、セレクタ18は送信信号SG11を演算部15に出力する。また、制御信号が第2の値を表す場合、セレクタ18は送信信号SG12を演算部15に出力する。
SW19は、演算部15と補正部105との間に設けられている。具体的には、SW19は、複数のブランチにそれぞれ対応する複数のスイッチ部を有している。例えば、SW10において、複数のスイッチ部が順番にオンすることにより、各ブランチが順番に有効になる。すなわち、各ブランチにおいて、演算部15と補正部105とが接続される。
補正部105のSW20は、制御信号に応じてルックアップテーブルを選択する。例えば、制御信号が第1の値を表す場合、SW20はDPD LUT16を選択する。この場合、演算部15とDPD LUT16とがSW19、20を介して接続される。また、制御信号が第2の値を表す場合、SW20はBPF LUT17を選択する。この場合、演算部15とBPF LUT17とがSW19、20を介して接続される。
演算部15は、制御信号に応じて演算処理を実行する。例えば、制御信号が第1の値を表す場合、演算部15は、演算処理としてDPDを実行する。この場合、演算部15は、セレクタ18からの送信信号SG11と、復調部14からの第1の送信信号との誤差を演算する。復調部14からの第1の送信信号は、PA4からサーキュレータ5、SW9、DPD FB102、SW12、ADC13、復調部14を介してフィードバックされた送信信号である。演算部15は、演算した誤差に基づいて、PA4による非線形の歪特性と、PA4の出力端までに発生する送信信号の位相および振幅の変動分(以下、第1の変動分と記載する)とを補正するためのDPD補正係数を演算する。ここで、制御信号が第1の値を表す場合、SW20はDPD LUT16を選択する。したがって、演算部15は、演算したDPD補正係数を、SW19、SW20を介してDPD LUT16に格納する。DPD LUT16に格納されたDPD補正係数と送信信号とが適応フィルタ2によって乗算されることにより、PA4による歪特性と第1の変動分とが補正される。
また、制御信号が第2の値を表す場合、演算部15は、演算処理としてACALを実行する。この場合、演算部15は、セレクタ18からの送信信号SG12と、復調部14からの第2の送信信号との誤差を演算する。復調部14からの第2の送信信号は、BPF6からサーキュレータ7、SW10、ACAL FB103、遅延回路11、SW12、ADC13、復調部14を介してフィードバックされた送信信号である。演算部15は、演算した誤差に基づいて、BPF6で発生する送信信号の位相および振幅の変動分(以下、第2の変動分と記載する)を補正するためのBPF補正係数を演算する。ここで、制御信号が第2の値を表す場合、SW20はBPF LUT17を選択する。したがって、演算部15は、演算したBPF補正係数を、SW19、20を介してBPF LUT17に格納する。BPF LUT17に格納されたBPF補正係数と送信信号とが適応フィルタ1によって乗算されることにより、第2の変動分が補正される。
[演算部の構成]
図3は、演算部15の一例を示すブロック図である。演算部15は、LMS演算処理部1501と、誤差抽出処理部1502と、セレクタ1503と、帯域制限部1504とを有している。演算部15は演算回路の一例である。
図3は、演算部15の一例を示すブロック図である。演算部15は、LMS演算処理部1501と、誤差抽出処理部1502と、セレクタ1503と、帯域制限部1504とを有している。演算部15は演算回路の一例である。
帯域制限部1504は、復調部14から送信信号を受け取る。帯域制限部1504は、送信信号に対してBPF6と同じ周波数帯域の信号を通過させ、それ以外の周波数帯域の信号を減衰させる。帯域制限部1504を通過した信号はセレクタ1503に出力される。
セレクタ1503は、制御信号に応じて送信信号を選択する。例えば、制御信号が第1の値を表す場合、セレクタ1503は送信信号SG21を誤差抽出処理部1502に出力する。送信信号SG21は、復調部14からの第1の送信信号である。また、制御信号が第2の値を表す場合、セレクタ1503は送信信号SG22を誤差抽出処理部1502に出力する。送信信号SG22は、復調部14からの第2の送信信号である。したがって、制御信号が第1の値を表す場合、復調部14からの第1の送信信号が送信信号SG21として選択される。制御信号が第2の値を表す場合、復調部14から帯域制限部1504を通過した第2の送信信号が送信信号SG22として選択される。
誤差抽出処理部1502は、セレクタ18とセレクタ1503から送信信号を受け取る。例えば、制御信号が第1の値を表す場合、セレクタ18は送信信号SG11を誤差抽出処理部1502に出力し、セレクタ1503は送信信号SG21を誤差抽出処理部1502に出力する。この場合、誤差抽出処理部1502は、セレクタ18から送信信号SG11を受け取り、セレクタ1503から送信信号SG21を受け取る。誤差抽出処理部1502は、送信信号SG11と送信信号SG21との誤差を第1の誤差として抽出し、第1の誤差をLMS演算処理部1501に出力する。
また、制御信号が第2の値を表す場合、セレクタ18は送信信号SG12を誤差抽出処理部1502に出力し、セレクタ1503は送信信号SG22を誤差抽出処理部1502に出力する。この場合、誤差抽出処理部1502は、セレクタ18から送信信号SG12を受け取り、セレクタ1503から送信信号SG22を受け取る。誤差抽出処理部1502は、送信信号SG12と送信信号SG22との誤差を第2の誤差として抽出し、第2の誤差をLMS演算処理部1501に出力する。
LMS演算処理部1501は、制御信号に応じて、ルックアップテーブルを更新する。例えば、制御信号が第1の値を表す場合、LMS演算処理部1501はDPD LUT16を更新する。この場合、LMS演算処理部1501は、誤差抽出処理部1502から第1の誤差を受け取る。LMS演算処理部1501は、例えば誤差最小(LMS:Least Mean Square)アルゴリズムを用いた演算処理により、第1の誤差が0になるようにDPD補正係数を演算する。ここで、制御信号が第1の値を表す場合、SW20はDPD LUT16を選択する。したがって、LMS演算処理部1501は、DPD補正係数を、SW19、20を介してDPD LUT16に格納する。
また、制御信号が第2の値を表す場合、LMS演算処理部1501はBPF LUT17を更新する。この場合、LMS演算処理部1501は、誤差抽出処理部1502から第2の誤差を受け取る。LMS演算処理部1501は、例えばLMSアルゴリズムを用いた演算処理により、第2の誤差が0になるようにBPF補正係数を演算する。ここで、制御信号が第2の値を表す場合、SW20はBPF LUT17を選択する。したがって、LMS演算処理部1501は、BPF補正係数を、SW19、20を介してBPF LUT17に格納する。
[補正イメージ]
図4は、DPDによる補正イメージの一例を示す図である。図5は、DPD後のACALによる補正イメージの一例を示す図である。図6は、図5のX部分の拡大図である。
図4は、DPDによる補正イメージの一例を示す図である。図5は、DPD後のACALによる補正イメージの一例を示す図である。図6は、図5のX部分の拡大図である。
例えば、PA4を飽和領域近くの高効率で動作させる場合、PA4の入出力特性は非直線性を有する。この場合、非線形性の歪みが発生する。非線形性の歪みの関数を歪関数f(p)で表した場合、PA4から出力される送信信号の波形は、歪関数f(0)周辺の周波数スペクトラムにおいて、図4の破線301で示すようにサイドローブが持ち上がる。その結果、送信信号が隣接チャネルに漏洩してしまい、隣接妨害が生じる。そこで、DPDを実行することによって、図4の破線301で示す特性に対して、図4の実線302で示すように帯域外の歪みが補正される。すなわち、PA4による歪特性が補正される。
例えば、アンテナビームフォーミングを実施する場合、各アンテナ間で予め決められたビーム角度に対する位相差が設定される。位相差はアンテナ素子間の関係に基づいて設定される。この位相差を設定する前提として、ブランチ間の位相誤差がキャリブレーションされる。この位相は、環境温度の変動や電源電圧の変動などに伴って変動する。そこで、DPDを実行することによって、PA4から出力される送信信号に対して、図4の実線302で示す特性のように帯域内の位相および振幅の変動分も補正される。すなわち、第1の変動分が補正される。
第1の変動分は、主に熱や電源電圧の変動などに伴って発生する。一方、BPF6は主にパッシブ部品で形成されるため、BPF6から出力される送信信号の位相および振幅の変動分は、環境温度の変動などに伴って発生する。DPDでは、PA4による歪特性を補正すると共に、第1の変動分を補正する。そのため、第1の変動分に関しては、ACALに流用することができる。すなわち、第1の変動分の補正は、DPDとACALとで共通化することができる。この共通化により、ACALを簡素化することができる。具体的には、DPDの実行後にACALを実行することによって、図5、6の破線303で示す特性(図4の実線302で示す特性に相当)に対して、図5、6の実線304で示す特性のように帯域内の位相および振幅の変動分が補正される。すなわち、第2の変動分が補正される。このように、ACALでは第2の変動分を補正すればよい。
図7は、ACALの簡素化の一例を示す図である。図7では、複数のブランチが4ブランチであり、無線フレームとして1サブフレームにおいて、4ブランチ分のDPDおよびACALが実行される場合を例に説明する。
まず、ACALを簡素化しない場合、DPDでは、PA4による歪特性と第1の変動分とを補正するためのDPD補正係数が演算される。DPD補正係数により、PA4による歪特性と第1の変動分とが補正される。次に、ACALでは、BPF6の出力端までに発生する送信信号の位相および振幅の変動分(以下、第3の変動分と記載する)を補正するためのACAL補正係数が演算される。ACAL補正係数により、第3の変動分が補正される。しかし、第3の変動分は、DPDにより補正された第1の変動分と、第2の変動分とを含んでいる。したがって、ACALを簡素化しない場合、DPDにより補正された第1の変動分と、第2の変動分とに関して、演算処理が行なわれる。そのため、ACAL補正係数が最適な補正係数の範囲内に収束するまでに、演算処理に時間がかかってしまう。すなわち、演算のループ処理が多くなってしまう。その結果、演算処理によって消費する消費電力が増大してしまう。
次に、ACALを簡素化した場合、DPDでは、PA4による歪特性と第1の変動分とを補正するためのDPD補正係数が演算される。DPD補正係数により、PA4による歪特性と第1の変動分とが補正される。次に、ACAL(BPF補正処理)では、DPDの実行後に、第2の変動分を補正するためのBPF補正係数が演算される。BPF補正係数により、第2の変動分が補正される。すなわち、ACALを簡素化した場合、第2の変動分に関して、演算処理が行なわれる。そのため、図7に示すように、ACALを簡素化した場合では、ACALを簡素化しない場合に比べて、BPF補正係数が最適な補正係数の範囲内に収束するまでに演算処理にかかる時間は、時間Tだけ短縮できる。その結果、演算処理によって消費する消費電力の増大が抑制される。
[基地局装置の動作例]
次に、実施例1に係る基地局装置100の処理について説明する。図8は、実施例1に係る基地局装置の処理の一例を示すフローチャートである。
次に、実施例1に係る基地局装置100の処理について説明する。図8は、実施例1に係る基地局装置の処理の一例を示すフローチャートである。
まず、DPDが実行される(ステップS101)。ここで、ステップS101において、遅延回路11による遅延処理が実行される。すなわち、遅延回路11は、BPF6の出力からサーキュレータ7、SW10、ACAL FB103を介してフィードバックされた送信信号を所定時間Tc遅延させる。
次に、DPDの実行後に、ACALとしてBPF補正処理が実行される(ステップS102)。次に、SW9、10、19によりブランチの切り替えが行なわれ(ステップS103)、基地局装置100の処理はステップS101に戻る。
図9は、図8のDPDの一例を示すフローチャートである。まず、SW12によりDPD FB102の径路が選択される(ステップS201)。この場合、セレクタ18は送信信号SG11を誤差抽出処理部1502に出力し、セレクタ1503は送信信号SG21を誤差抽出処理部1502に出力する。また、SW20はDPD LUT16を選択する。
誤差抽出処理部1502は、セレクタ18から送信信号SG11を受け取り、セレクタ1503から送信信号SG21を受け取る。誤差抽出処理部1502は、送信信号SG11と送信信号SG21との誤差を第1の誤差として抽出する。LMS演算処理部1501は、第1の誤差に対して、LMSアルゴリズムを用いた演算処理(以下、LMS演算と記載する)を施す。このLMS演算により、PA4による非線形の歪特性と第1の変動分とを補正するためのDPD補正係数が演算される(ステップS202)。LMS演算処理部1501は、DPD補正係数を、SW19、20を介してDPD LUT16に格納することにより、DPD LUT16を更新する(ステップS203)。DPD LUT16に格納されたDPD補正係数と送信信号とが適応フィルタ2によって乗算されることにより、PA4による歪特性と第1の変動分とが補正される(ステップS204)。
図10は、図8のBPF補正処理の一例を示すフローチャートである。まず、SW12によりACAL FB103の径路が選択される(ステップS301)。この場合、演算部15の帯域制限部1504は、所定時間Tc遅延した送信信号に対してBPF6と同じ周波数帯域の信号を通過させ、それ以外の周波数帯域の信号を減衰させる(ステップS302)。また、セレクタ18は送信信号SG12を誤差抽出処理部1502に出力し、セレクタ1503は、帯域制限部1504を通過した送信信号SG22を誤差抽出処理部1502に出力する。また、SW20はBPF LUT17を選択する。
誤差抽出処理部1502は、セレクタ18から送信信号SG12を受け取り、セレクタ1503から送信信号SG22を受け取る。誤差抽出処理部1502は、送信信号SG12と送信信号SG22との誤差を第2の誤差として抽出する。LMS演算処理部1501は、第2の誤差に対して、LMS演算を施す。このLMS演算により、第2の変動分を補正するためのBPF補正係数が演算される(ステップS303)。LMS演算処理部1501は、BPF補正係数を、SW19、20を介してBPF LUT17に格納することにより、BPF LUT17を更新する(ステップS304)。BPF LUT17に格納されたBPF補正係数と送信信号とが適応フィルタ1によって乗算されることにより、第2の変動分が補正される(ステップS305)。
[実施例の効果]
以上の説明により、本実施例の基地局装置100は、PA4と、PA4の後段のフィルタ(BPF6)と、演算回路である演算部15とを有している。演算部15は、DPDとACALとを実行する。DPDでは、演算部15は、PA4の出力からフィードバックされた第1のフィードバック信号と、PA4に入力される前の入力信号とに基づいて、PA4による歪を補正するための第1の補正係数(DPD補正係数)を演算する。ACALでは、演算部15は、BPF6の出力からフィードバックされた第2のフィードバック信号と、入力信号とに基づいて、BPF6から出力される信号の位相および振幅を補正するための第2の補正係数(BPF補正係数)を演算する。ここで、DPD補正係数による補正は、DPDとACALとで共通化することができるので、ACALが簡素化される。すなわち、ACALでは、BPF補正係数による補正を行なえばよい。ACALを簡素化した場合では、ACALを簡素化しない場合に比べて、BPF補正係数が最適な補正係数の範囲内に収束するまでに演算処理にかかる時間を短縮できる。その結果、本実施例によれば、演算処理によって消費する消費電力の増大を抑制することができる。また、本実施例の基地局装置100は、DPDとACALとを1つの演算回路(演算部15)により実行する。このため、本実施例によれば、回路規模の増大を抑制することができる。
以上の説明により、本実施例の基地局装置100は、PA4と、PA4の後段のフィルタ(BPF6)と、演算回路である演算部15とを有している。演算部15は、DPDとACALとを実行する。DPDでは、演算部15は、PA4の出力からフィードバックされた第1のフィードバック信号と、PA4に入力される前の入力信号とに基づいて、PA4による歪を補正するための第1の補正係数(DPD補正係数)を演算する。ACALでは、演算部15は、BPF6の出力からフィードバックされた第2のフィードバック信号と、入力信号とに基づいて、BPF6から出力される信号の位相および振幅を補正するための第2の補正係数(BPF補正係数)を演算する。ここで、DPD補正係数による補正は、DPDとACALとで共通化することができるので、ACALが簡素化される。すなわち、ACALでは、BPF補正係数による補正を行なえばよい。ACALを簡素化した場合では、ACALを簡素化しない場合に比べて、BPF補正係数が最適な補正係数の範囲内に収束するまでに演算処理にかかる時間を短縮できる。その結果、本実施例によれば、演算処理によって消費する消費電力の増大を抑制することができる。また、本実施例の基地局装置100は、DPDとACALとを1つの演算回路(演算部15)により実行する。このため、本実施例によれば、回路規模の増大を抑制することができる。
また、本実施例の基地局装置100は、スイッチ部(SW9、10、12)を更に有している。SW9、10、12は、PA4の出力をフィードバックするための第1のフィードバックパス(DPD FB102)と、BPF6の出力をフィードバックするための第2のフィードバックパス(ACAL FB103)と、を時分割に切り替える。これにより、第1の変動分をDPD補正係数により補正してから、第2の変動分をBPF補正係数により補正することができる。
また、本実施例の基地局装置100は、遅延回路11を更に有している。遅延回路11は、DPD FB102とACAL FB103とを時分割に切り替える際に、処理時間Taと処理時間Tbとに基づいて、BPF6の出力からACAL FB103を介してフィードバックされた第2のフィードバック信号を所定時間Tc遅延させる。処理時間Taは、演算部15がDPDを実行するときの処理時間を表し、処理時間Tbは、PA4から出力された信号がBPF6を通過するときの処理時間を表す。所定時間Tcは、処理時間Taから処理時間Tbを減算した時間を表す。これにより、所定時間Tc遅延させた第2のフィードバック信号を、PA4の出力からDPD FB102を介してフィードバックされた第1のフィードバック信号と同じタイミングの信号で演算を行なうことができる。
[基地局装置の構成]
図11は、実施例2に係る基地局装置の一例を示すブロック図である。実施例2では、実施例1と同様の構成及び動作については説明を省略する。
図11は、実施例2に係る基地局装置の一例を示すブロック図である。実施例2では、実施例1と同様の構成及び動作については説明を省略する。
実施例2に係る基地局装置100は、更に、環境温度を計測する温度計121を有している。基地局装置100のデジタル処理部101は、更に、判定部122を有している。
判定部122は、ACALとしてBPF補正処理が実行されたときに、BPF補正係数が最適な補正係数の範囲内に収束しているか否かを判定する。BPF補正係数が最適な補正係数の範囲内に収束している場合、判定部122は、温度変動値を算出する。温度変動値は、BPF補正係数が最適な補正係数の範囲内に収束したときに温度計121により計測された環境温度と、温度計121により現在計測された環境温度との間の値である。判定部122は、温度変動値の絶対値が設定値以下であるか否かを判定し、その判定結果を演算部15に出力する。
演算部15は、判定部122から判定結果を受け取る。判定部122からの判定結果が、温度変動値が設定値以下であることを表している場合、演算部15は、ACALを停止する。ACALの停止中に、判定部122からの判定結果が、温度変動値が設定値を超えることを表している場合、演算部15は、ACALを再開する。
実施例1で説明したように、BPF6は主にパッシブ部品で形成されるため、BPF6から出力される送信信号の位相および振幅の変動分は、環境温度の変動などに伴って発生する。そこで、ACALの実行によりBPF補正係数が最適な補正係数の範囲内に収束したときに、環境温度の変動値が設定値以下である場合に、ACALを停止する。これにより、ACALを間欠的に実行することができる。
[ACALの間欠処理]
図12は、ACALの間欠処理を説明するための図である。図12に示すように、複数のブランチが4ブランチであり、無線フレームとして1サブフレームにおいて、4ブランチ分のACALが実行される場合を例にする。
図12は、ACALの間欠処理を説明するための図である。図12に示すように、複数のブランチが4ブランチであり、無線フレームとして1サブフレームにおいて、4ブランチ分のACALが実行される場合を例にする。
まず、1番目のサブフレームからN番目のサブフレーム(Nは、4よりも大きい整数)において、ACAL(BPF補正処理)が実行される。その結果、BPF補正係数が最適な補正係数の範囲内に収束する。次に、(N+1)番目のサブフレームから、(M+1)番目のサブフレーム(Mは、N+3よりも大きい整数)において、温度変動値が設定値以下であるため、ACAL(BPF補正処理)が停止される。次に、(M+2)番目のサブフレーム以降においては、温度変動値が設定値を超えるため、ACAL(BPF補正処理)が実行される。ACALの間欠処理を実行した場合では、ACALの間欠処理を実行しない場合に比べて、(N+1)番目のサブフレームから(M+1)番目のサブフレームまでの時間においては、ACALの実行によって消費する消費電力を低減できる。
[基地局装置の動作例]
次に、実施例2に係る基地局装置の処理動作について説明する。図13は、実施例2に係る基地局装置の処理の一例を示すフローチャートである。
次に、実施例2に係る基地局装置の処理動作について説明する。図13は、実施例2に係る基地局装置の処理の一例を示すフローチャートである。
まず、DPD、および、遅延回路11による遅延処理が実行される(ステップS101)。次に、BPF補正係数が最適な補正係数の範囲内に収束していない場合(ステップS401:No)、ACALとしてBPF補正処理が実行される(ステップS102)。次に、SW9、10、19によりブランチの切り替えが行なわれ(ステップS103)、基地局装置100の処理はステップS101に戻る。
一方、BPF補正係数が最適な補正係数の範囲内に収束している場合(ステップS401:Yes)、判定部122は、BPF補正係数が最適な補正係数の範囲内に収束したときの環境温度と、現在計測された環境温度との間の温度変動値を算出する。判定部122は、温度変動値の絶対値が設定値以下であるか否かを判定する(ステップS402)。
温度変動値の絶対値が設定値以下である場合(ステップS402:Yes)、BPF補正処理が実行されない。次に、SW9、10、19によりブランチの切り替えが行なわれ(ステップS103)、基地局装置100の処理はステップS101に戻る。
一方、温度変動値の絶対値が設定値を超える場合(ステップS402:No)、BPF補正処理が実行される(ステップS102)。次に、SW9、10、19によりブランチの切り替えが行なわれ(ステップS103)、基地局装置100の処理はステップS101に戻る。
以上の説明により、本実施例の基地局装置100は、環境温度を計測する温度計121と、判定部122とを更に有している。判定部122は、BPF補正係数を演算する処理が実行されたときにBPF補正係数が最適な補正係数の範囲内に収束しているか否かを判定する。判定部122は、BPF補正係数が最適な補正係数の範囲内に収束したときの環境温度と、現在計測された環境温度との間の温度変動値が、設定値以下であるか否かを判定する。演算部15は、温度変動値が設定値以下である場合、BPF補正係数を演算する処理を停止する。演算部15は、BPF補正係数を演算する処理の停止中に温度変動値が設定値を超える場合、BPF補正係数を演算する処理を再開する。このように、BPF補正係数が最適な補正係数の範囲内に収束がしたときに温度変動値が設定値以下である場合に、ACALを停止することにより、ACALを間欠的に実行することができる。これにより、ACALの間欠処理を実行した場合では、ACALの間欠処理を実行しない場合に比べて、ACALの実行によって消費する消費電力を低減することができる。
[他の実施例]
実施例1、2で図示した各部の各構成要素は、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各部の分散・統合の具体的形態は図示のものに限られず、その全部又は一部を、各種の負荷や使用状況等に応じて、任意の単位で機能的又は物理的に分散・統合して構成することができる。
実施例1、2で図示した各部の各構成要素は、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各部の分散・統合の具体的形態は図示のものに限られず、その全部又は一部を、各種の負荷や使用状況等に応じて、任意の単位で機能的又は物理的に分散・統合して構成することができる。
さらに、各装置で行われる各種処理は、CPU(Central Processing Unit)(又はMPU(Micro Processing Unit)、MCU(Micro Controller Unit)等のマイクロ・コンピュータ)上で、その全部又は任意の一部を実行するようにしてもよい。また、各種処理は、CPU(又はMPU、MCU等のマイクロ・コンピュータ)で解析実行するプログラム上、又はワイヤードロジックによるハードウェア上で、その全部又は任意の一部を実行するようにしてもよい。
実施例1、2の基地局装置は、例えば、次のようなハードウェア構成により実現することができる。
図14は、基地局装置のハードウェア構成の一例を示す図である。図14に示すように、基地局装置200は、プロセッサ201と、メモリ202と、アナログ回路203とを有している。プロセッサ201の一例としては、CPU、DSP(Digital Signal Processor)、FPGA(Field Programmable Gate Array)等が挙げられる。また、メモリ202の一例としては、SDRAM(Synchronous Dynamic Random Access Memory)等のRAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ等が挙げられる。
そして、実施例1、2の基地局装置100で行われる各種処理は、不揮発性記憶媒体などの各種メモリに格納されたプログラムをプロセッサで実行することによって実現されてもよい。すなわち、デジタル処理部101によって実行される各処理に対応するプログラムがメモリ202に記録され、各プログラムがプロセッサ201で実行されてもよい。また、アナログ回路104は、アナログ回路203によって実現される。
なお、ここでは、実施例1、2の基地局装置100で行われる各種処理がプロセッサ201によって実行されるものとしたが、これに限定されるものではなく、複数のプロセッサによって実行されてもよい。
1 適応フィルタ
2 適応フィルタ
3 デジタルアナログ変換器(DAC)
4 パワーアンプ(PA)
5 サーキュレータ
6 バンドパスフィルタ(BPF)
7 サーキュレータ
8 アンテナ
9 スイッチ(SW)
10 スイッチ(SW)
11 遅延回路
12 スイッチ(SW)
13 アナログデジタル変換器(ADC)
14 復調部
15 演算部(演算回路)
16 DPDルックアップテーブル(DPD LUT)
17 BPFルックアップテーブル(BPF LUT)
18 セレクタ
19 スイッチ(SW)
20 スイッチ(SW)
100 基地局装置
101 デジタル処理部
102 DPDフィードバックパス(DPD FB)
103 ACALフィードバックパス(ACAL FB)
104 アナログ回路
105 補正部
121 温度計
122 判定部
200 基地局装置
201 プロセッサ
202 メモリ
203 アナログ回路
1501 LMS演算処理部
1502 誤差抽出処理部
1503 セレクタ
1504 帯域制限部
2 適応フィルタ
3 デジタルアナログ変換器(DAC)
4 パワーアンプ(PA)
5 サーキュレータ
6 バンドパスフィルタ(BPF)
7 サーキュレータ
8 アンテナ
9 スイッチ(SW)
10 スイッチ(SW)
11 遅延回路
12 スイッチ(SW)
13 アナログデジタル変換器(ADC)
14 復調部
15 演算部(演算回路)
16 DPDルックアップテーブル(DPD LUT)
17 BPFルックアップテーブル(BPF LUT)
18 セレクタ
19 スイッチ(SW)
20 スイッチ(SW)
100 基地局装置
101 デジタル処理部
102 DPDフィードバックパス(DPD FB)
103 ACALフィードバックパス(ACAL FB)
104 アナログ回路
105 補正部
121 温度計
122 判定部
200 基地局装置
201 プロセッサ
202 メモリ
203 アナログ回路
1501 LMS演算処理部
1502 誤差抽出処理部
1503 セレクタ
1504 帯域制限部
Claims (6)
- 基地局装置が、
パワーアンプの出力からフィードバックされた第1のフィードバック信号と前記パワーアンプに入力される前の入力信号とに基づいて、前記パワーアンプによる歪を補正するための第1の補正係数を演算し、
前記パワーアンプの後段のフィルタの出力からフィードバックされた第2のフィードバック信号と前記入力信号とに基づいて、前記フィルタから出力される信号の位相および振幅を補正するための第2の補正係数を演算する、
処理を実行することを特徴とする演算方法。 - 前記パワーアンプの出力をフィードバックするための第1のフィードバックパスと、前記フィルタの出力をフィードバックするための第2のフィードバックパスと、を時分割に切り替える、
処理を更に実行し、
フィードバックパスが前記第1のフィードバックパスに切り替えられた場合、前記第1の補正係数を演算する処理を実行し、
前記フィードバックパスが前記第2のフィードバックパスに切り替えられた場合、前記第2の補正係数を演算する処理を実行する、
ことを特徴とする請求項1に記載の演算方法。 - 前記第1のフィードバックパスと前記第2のフィードバックパスとを時分割に切り替える際に、前記第1の補正係数を演算する処理を実行するときの処理時間と、前記パワーアンプから出力された信号が前記フィルタを通過するときの処理時間とに基づいて、前記フィルタの出力から前記第2のフィードバックパスを介してフィードバックされた前記第2のフィードバック信号を所定時間遅延させる、
処理を更に実行することを特徴とする請求項2に記載の演算方法。 - 環境温度を計測し、
前記第2の補正係数を演算する処理が実行されたときに前記第2の補正係数が最適な補正係数の範囲内に収束しているか否かを判定し、
前記第2の補正係数が最適な補正係数の範囲内に収束したときの前記環境温度と、現在計測された前記環境温度との間の温度変動値が、設定値以下であるか否かを判定し、
前記温度変動値が設定値以下である場合、前記第2の補正係数を演算する処理を停止し、
前記第2の補正係数を演算する処理の停止中に前記温度変動値が前記設定値を超える場合、前記第2の補正係数を演算する処理を再開する、
処理を更に実行することを特徴とする請求項1から3のいずれか一項に記載の演算方法。 - パワーアンプと、
前記パワーアンプの後段のフィルタと、
前記パワーアンプの出力からフィードバックされた第1のフィードバック信号と前記パワーアンプに入力される前の入力信号とに基づいて、前記パワーアンプによる歪を補正するための第1の補正係数を演算し、前記フィルタの出力からフィードバックされた第2のフィードバック信号と前記入力信号とに基づいて、前記フィルタから出力される信号の位相および振幅を補正するための第2の補正係数を演算する演算部と、
を具備することを特徴とする基地局装置。 - パワーアンプの出力からフィードバックされた第1のフィードバック信号と前記パワーアンプに入力される前の入力信号との誤差である第1の誤差を抽出し、前記パワーアンプの後段のフィルタの出力からフィードバックされた第2のフィードバック信号と前記入力信号との誤差である第2の誤差を抽出する抽出処理部と、
前記第1の誤差に基づいて、前記パワーアンプによる歪を補正するための第1の補正係数を演算し、前記第2の誤差に基づいて、前記フィルタから出力される信号の位相および振幅を補正するための第2の補正係数を演算する演算処理部と、
を具備することを特徴とする演算回路。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016208023A JP2018074198A (ja) | 2016-10-24 | 2016-10-24 | 演算方法、基地局装置および演算回路 |
US15/713,210 US20180115288A1 (en) | 2016-10-24 | 2017-09-22 | Arithmetic method, base station device, and arithmetic circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016208023A JP2018074198A (ja) | 2016-10-24 | 2016-10-24 | 演算方法、基地局装置および演算回路 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2018074198A true JP2018074198A (ja) | 2018-05-10 |
Family
ID=61969909
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016208023A Pending JP2018074198A (ja) | 2016-10-24 | 2016-10-24 | 演算方法、基地局装置および演算回路 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20180115288A1 (ja) |
JP (1) | JP2018074198A (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102372526B1 (ko) * | 2017-12-22 | 2022-03-10 | 삼성전자주식회사 | 무선 신호를 송수신하기 위한 전자 장치 및 그 전자 장치를 제어하는 방법 |
TWI700888B (zh) * | 2019-08-30 | 2020-08-01 | 中磊電子股份有限公司 | 數位預失真電路及數位預失真方法 |
CN112511112A (zh) * | 2019-09-16 | 2021-03-16 | 中磊电子股份有限公司 | 数字预失真电路及数字预失真方法 |
WO2024084629A1 (en) * | 2022-10-19 | 2024-04-25 | Tokyo Institute Of Technology | System for compensating the non-linear distortion introduced by a radio power amplifier based on harmonic analysis |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5617058A (en) * | 1995-11-13 | 1997-04-01 | Apogee Technology, Inc. | Digital signal processing for linearization of small input signals to a tri-state power switch |
EP1199814B1 (en) * | 1999-07-28 | 2006-09-13 | Fujitsu Limited | Radio device with distortion compensation |
US6246286B1 (en) * | 1999-10-26 | 2001-06-12 | Telefonaktiebolaget Lm Ericsson | Adaptive linearization of power amplifiers |
US7576606B2 (en) * | 2007-07-25 | 2009-08-18 | D2Audio Corporation | Digital PWM amplifier having a low delay corrector |
US9048865B2 (en) * | 2009-12-16 | 2015-06-02 | Syntropy Systems, Llc | Conversion of a discrete time quantized signal into a continuous time, continuously variable signal |
EP2537249A1 (en) * | 2010-02-16 | 2012-12-26 | Sky Holdings Company, LLC | Spectral filtering systems |
US8982995B1 (en) * | 2013-11-05 | 2015-03-17 | Microelectronics Technology Inc. | Communication device and method of multipath compensation for digital predistortion linearization |
JP2016032127A (ja) * | 2014-07-25 | 2016-03-07 | 富士通株式会社 | 無線通信システム、歪補償装置、及び歪補償方法 |
-
2016
- 2016-10-24 JP JP2016208023A patent/JP2018074198A/ja active Pending
-
2017
- 2017-09-22 US US15/713,210 patent/US20180115288A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
US20180115288A1 (en) | 2018-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2018074198A (ja) | 演算方法、基地局装置および演算回路 | |
US20170141850A1 (en) | Wireless communication system, baseband processing device, and wireless device | |
US9100263B2 (en) | Distortion compensation apparatus and distortion compensation method | |
US9584167B2 (en) | Wireless communication system, distortion compensation device, and distortion compensation method | |
US20160353394A1 (en) | Radio communication device | |
US12028188B2 (en) | Digital predistortion with hybrid basis-function-based actuator and neural network | |
JP2004064733A (ja) | 歪補償装置 | |
JP2005348235A (ja) | アレーアンテナ受信装置及び送信装置 | |
US9735815B1 (en) | Radio apparatus | |
JP2018195955A (ja) | 無線通信装置及び歪み補償方法 | |
JP2016213603A (ja) | 無線通信装置 | |
US20190182019A1 (en) | Radio communication apparatus and method of controlling phase of reflected wave | |
JP6446911B2 (ja) | 歪補償方法、歪補償装置、及び歪補償プログラム | |
JP6255917B2 (ja) | 無線装置及び無線アクセスシステム | |
US9813028B2 (en) | Wireless device | |
WO2016058375A1 (zh) | 一种调整增益的方法和装置 | |
US9444499B2 (en) | Wireless device and wireless access system | |
US20170149459A1 (en) | Distortion compensation device and distortion compensation method | |
JP6413795B2 (ja) | 歪補償装置 | |
JP2007251427A (ja) | 無線装置 | |
JP2016178376A (ja) | 無線通信装置 | |
US20170188246A1 (en) | Wireless apparatus and failure decision method | |
JP6311497B2 (ja) | 無線装置 | |
KR20180076780A (ko) | 중계기 및 중계기의 동작 방법 | |
JP5925729B2 (ja) | 無線通信装置および干渉軽減制御方法 |