JP2018072119A - 微生物夾雑物検出装置および微生物夾雑物検出方法 - Google Patents

微生物夾雑物検出装置および微生物夾雑物検出方法 Download PDF

Info

Publication number
JP2018072119A
JP2018072119A JP2016211055A JP2016211055A JP2018072119A JP 2018072119 A JP2018072119 A JP 2018072119A JP 2016211055 A JP2016211055 A JP 2016211055A JP 2016211055 A JP2016211055 A JP 2016211055A JP 2018072119 A JP2018072119 A JP 2018072119A
Authority
JP
Japan
Prior art keywords
chip
flow path
analyte
way valve
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016211055A
Other languages
English (en)
Other versions
JP6807051B2 (ja
Inventor
辺 正 直 渡
Masanao Watanabe
辺 正 直 渡
田 修 島
Osamu Shimada
田 修 島
井 睦 石
Mutsumi Ishii
井 睦 石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2016211055A priority Critical patent/JP6807051B2/ja
Publication of JP2018072119A publication Critical patent/JP2018072119A/ja
Application granted granted Critical
Publication of JP6807051B2 publication Critical patent/JP6807051B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

【課題】被検体に含まれる微生物夾雑物の濃度を精度よく定量化する。【解決手段】微生物夾雑物検出装置1は、被検体に含まれる微生物夾雑物を検出する着脱自在のチップ2と、チップが着脱自在に装着される装置本体と、装置本体に装着されたチップに流れる電流を検出する検出回路と、複数の流路に接続された複数のポート同士を繋げるか遮断するかを切替可能な多方弁と、を備える。複数の流路は、被検体を含有する被検体溶液を流す第1流路と、被検体に含まれる微生物夾雑物を検出するのに必要な検出試薬を流す第2流路と、多方弁の切替により、第1流路内の被検体溶液の一部と、第2流路内の検出試薬の一部とを混合させた被検体混合液を流す第3流路と、を有し、チップには、被検体混合液が注入され、チップは、注入された被検体混合液に含まれる微生物夾雑物の濃度に応じた電流を出力する。【選択図】図1

Description

本発明は、被検体に含まれるエンドトキシンや(1→3)−β−D−グルカン等の微生物夾雑物を検出する微生物夾雑物検出装置および微生物夾雑物検出方法に関する。
エンドトキシンや(1→3)−β−D−グルカン等の微生物夾雑物は、血中に入るとショック症状を起こして死に至るおそれのある発熱性物質であり、透析液や注射液などの血液に投与する医薬品では微生物夾雑物が混入しないように厳重な管理が求められている。
ところが、エンドトキシンはグラム陰性菌の外膜成分のリボ多糖であり、(1→3)−β−D−グルカンは酵母やカビ等の真菌の細胞壁に存在する物質であることから、環境中に普遍的に存在する。また、エンドトキシンや(1→3)−β−D−グルカン等の微生物夾雑物は、耐熱性であるために加熱除去が困難であり、混入防止管理が非常に難しい。
エンドトキシン等の微生物夾雑物の検出法として、カブトガニの血球成分を用いる方法(Limulus Amebosyte Lysate; LAL法)が知られている。LAL法で用いる試薬は高額であるため、少量の試薬で極微量のエンドトキシンを検出する手法が提案されている(特許文献1参照)。
この他、被検体に含まれるエンドトキシン等の微生物夾雑物の濃度を簡易かつ精度よく検出するために、予め試薬が組み込まれたチップを作製しておき、このチップに被検体を注入して試薬と混合させ、チップに流れる微小な電流を検出して微生物夾雑物を定量する手法が提案されている(特許文献2参照)。
特開2012−127695号公報 国際公開2015/137356
チップに流れる微小な電流を検出して微生物夾雑物を定量化する手法を採用する場合、チップ内に注入する被検体の量はわずかで済む。しかしながら、微生物夾雑物は、大気中にも存在するため、被検体をチップに注入する際には、大気中や注入器具内に付着した微生物夾雑物を誤ってチップ内に注入しないように留意する必要がある。例えば、透析装置で循環している透析液を被検体とする場合、循環している透析液を何らかの手段で迂回させてチップ内に注入しなければならないが、周囲に存在する微生物夾雑物の影響を受けずに透析液をチップに注入する効率的な手法は今まで提案されていない。
本発明は、上述した課題を解決するためになされたものであり、その目的は、被検体に含まれる微生物夾雑物の濃度を精度よく定量化できる微生物夾雑物検出装置および微生物夾雑物検出方法を提供するものである。
上記の課題を解決するために、本発明の一実施形態では、被検体に含まれる微生物夾雑物を検出する着脱自在のチップと、
前記チップが着脱自在に装着される装置本体と、
前記装置本体に装着された前記チップに流れる電流を検出する検出回路と、
複数の流路に接続された複数のポート同士を繋げるか遮断するかを切替可能な多方弁と、を備え、
前記複数の流路は、
前記被検体を含有する被検体溶液を流す第1流路と、
前記被検体に含まれる前記微生物夾雑物を検出するのに必要な検出試薬を流す第2流路と、
前記多方弁の切替により、前記第1流路内の前記被検体溶液の一部と、前記第2流路内の前記検出試薬の一部とを混合させた被検体混合液を流す第3流路と、を有し、
前記チップは、
前記被検体混合液が注入される注入口と、
前記注入された被検体混合液に含まれる前記微生物夾雑物の濃度に応じた電流を出力する端子と、を有する、微生物夾雑物検出装置が提供される。
前記第1流路は、前記被検体溶液を循環させる循環流路であってもよく、
前記多方弁は、
前記被検体溶液を前記第1流路内で循環させる第1切替状態と、
前記第1流路内の前記被検体溶液の一部を抽出して前記第3流路に流す第2切替状態と、
前記検出試薬を前記第3流路に導入して前記被検体混合液を作製する第3切替状態と、を有していてもよい。
前記多方弁は、通常は前記第1切替状態に設定され、前記被検体に含まれる前記微生物夾雑物を検出する必要が生じたときに、前記第2切替状態への切替後に前記第3切替状態に切り替えられ、その後に前記第1切替状態に復帰されてもよい。
2つ以上の前記多方弁を用いて、前記第1流路、前記第2流路および前記第3流路の切替を行って、前記被検体混合液を作製してもよい。
前記多方弁は、前記第1流路、前記第2流路および前記第3流路の少なくとも一つを洗浄する純水または洗浄液を流す第4流路を有してもよい。
前記被検体は、透析液、注射薬液、移植組織片の培養液、および人工授精の受精卵の培養液の少なくとも一つであってもよい。
前記チップは、前記被検体混合液の酸化還元反応を生じさせる櫛形電極と、前記注入口から前記櫛形電極の上方を通過する方向に前記被検体混合液を流すチップ内流路と、を有し、
前記装置本体は、前記櫛形電極周辺の前記チップ内流路内に前記被検体混合液が存在するときに前記ヒータによる加熱を行ってもよい。
本発明の他の一態様では、被検体に含まれる微生物夾雑物を検出する着脱自在のチップと、
前記チップが着脱自在に装着される装置本体と、
前記装置本体に装着された前記チップに流れる電流を検出する検出回路と、
複数の流路に接続された複数のポート同士を繋げるか遮断するかを切替可能な多方弁と、を用いた微生物夾雑物検出方法であって、
前記複数の流路には、前記被検体を含有する被検体溶液を流す第1流路と、
前記被検体に含まれる前記微生物夾雑物を検出するのに必要な検出試薬を流す第2流路と、
前記多方弁の切替により、前記第1流路内の前記被検体溶液の一部と、前記第2流路内の前記検出試薬の一部とを混合させた被検体混合液を流す第3流路と、が設けられており、
前記多方弁は、通常は、前記第1流路にて前記被検体溶液を循環させる第1切替状態に設定され、前記被検体に含まれる前記微生物夾雑物を検出する際には、前記第1流路内の前記被検体溶液の一部を抽出して前記第3流路に流す第2切替状態に切り替えた後に、前記検出試薬を前記第3流路に導入して前記被検体混合液を作製する第3切替状態に切り替える、微生物夾雑物検出方法が提供される。
本発明によれば、被検体に含まれる微生物夾雑物の濃度を精度よく定量化できる。
本発明の一実施形態による微生物夾雑物検出装置の概略構成を示す分解斜視図。 チップの平面図。 第1位置でのチップ、ヒートシンクおよびクリーナ支持板の位置関係を示す断面図。 第2位置でのチップ、ヒートシンクおよびクリーナ支持板の位置関係を示す断面図。 チップが第2位置に到達する前の第3位置でのチップ、ヒートシンクおよびクリーナ支持板の位置関係を示す断面図。 透析装置の概略構成を説明する図。 透析監視装置の通常動作時の六方弁の切替状態を示す図。 被検体混合液を作製する第1サンプリング段階における六方弁の切替状態を示す図。 被検体混合液を作製する第2サンプリング段階における六方弁の切替状態を示す図。 本実施形態による微生物夾雑物検出装置の制御系のブロック図。 デュアルポテンショスタット回路の回路図。 本実施形態による微生物夾雑物検出装置の処理手順を示すフローチャート。
以下、本発明の実施の形態について、詳細に説明する。図1は本発明の一実施形態による微生物夾雑物検出装置1の概略構成を示す分解斜視図である。図1の微生物夾雑物検出装置1は、被検体に含まれるエンドトキシンや(1→3)−β−D−グルカン等の微生物夾雑物を検出するものである。被検体は、例えば、透析液、注射液、移植組織片、人工授精の受精卵の培養液などである。注射液は、治療薬でもよいし、PET(Positron Emission Tomography)画像検査等のための体内検査液でもよい。
図1の微生物夾雑物検出装置1は、予め被検体と試薬とを混合した被検体混合液をチップ2に注入して、酸化還元反応による電流を検出するものである。
図1の微生物夾雑物検出装置1は、上蓋3と下蓋4からなる筐体を備えている。下蓋4は、凹部4aが形成されたステージ4bを有する。下蓋4の凹部4a内には、ガイド部材5、ヒートシンク6、装置側端子7、検出回路基板8などが配置されている。
ガイド部材5は、チップ2をヒートシンク6上の所定位置に位置決めするとともに、ヒートシンク6上に位置決めされたチップ2をヒートシンク6とともにステージ4bの上面に沿って所定方向に移動させる。図1では、チップ2が移動する所定方向をX方向としている。所定方向Xはステージ4bの長手方向である。ガイド部材5は、ステージ4bの長手方向に延在されており、ヒートシンク6はガイド部材5に案内されて、所定方向Xに第1位置から第2位置まで移動自在とされている。
ヒートシンク6にはヒータ9が組み込まれている。ヒータ9は例えば電熱線と熱電対を有し、熱電対で計測された温度に基づいて、電熱線に電流を流すか否かが切り替えられる。ヒートシンク6は、ヒータ9の熱がチップ2以外に伝達されないように放熱を行う。また、ヒータ9がオフのときに、チップ2を迅速に冷却する目的にも利用可能である。チップ2は、ヒートシンク6上に着脱自在に位置決めされて、ヒータ9により加熱される。チップ2の内部構造は、後述する。ヒータ9は、電熱線に電流を流して加熱するため、その際に電磁放射ノイズが発生するおそれがある。そこで、ヒータ9と検出回路基板8との間に遮蔽板(電磁放射遮蔽部)10を配置して、検出回路基板8がチップ2が出力する微弱な電流を検出する際に、ヒータ9から発生した電磁放射ノイズの影響を受けないようにするのが望ましい。
後述するように、チップ2は被検体に含まれる微生物夾雑物の濃度に応じた電流を出力する。この電流は、装置側端子7により検出される。装置側端子7は、チップ2上のチップ側端子と接触される。装置側端子7とチップ側端子との接触形態についても後述する。
検出回路基板8は、チップ2から出力された電流を検出する検出回路が形成された基板である。検出回路の具体的な回路構成は後述する。検出回路基板8は、ヒートシンク6の下方に配置されている。
なお、検出回路基板8とは別個に、不図示の電源回路基板を設けてもよいし、検出回路基板8内に電源回路を形成してもよい。検出回路基板8とは別個に電源回路基板を設ける場合は、検出回路基板8が電源回路基板から発生される電磁放射ノイズの影響を受けないように、検出回路基板8と電源回路基板との間に、電磁放射ノイズを遮断する遮蔽板を配置するのが望ましい。一方、検出回路基板8内に電源回路を形成する場合は、電源回路の周囲を遮蔽して、電源回路からの電磁放射ノイズが検出回路に重畳されないようにするのが望ましい。
上蓋3は、開閉自在の扉部3aを有する。チップ2をヒートシンク6に位置決めする際には、上蓋3の扉部3aを開いて、チップ2を水平方向にスライドさせて、ヒートシンク6上に載置する。上蓋3の下面側には、クリーナ支持板(カバー体)11が配置され、クリーナ支持板11の下面にはクリーナシート(シート部材)12が取り付けられている。チップ2は、クリーナ支持板11の下面のクリーナシート12に接触しながら移動するため、チップ2の上面に付着した検体などの異物は、チップ2の移動に伴ってクリーナシート12で拭き取られる。クリーナシート12の具体的な材料としては、例えば不織布などを適用可能である。
図2はチップ2の平面図である。図2に示すように、チップ2は、支持層上に配置される4つの導電パターン層13と、これら導電パターン層13の上に配置されるマイクロ流路層14と、マイクロ流路層14の上に配置されるカバー層15とを含む積層構造体である。
4つの導電パターン層13の端部には、それぞれ対応するチップ側端子16が接続されている。これら4つのチップ側端子16は、2つの作用極端子W1,W2と、参照極端子Refと、対極端子Cとで構成されている。2つの作用極端子W1,W2に接続される2つの導電パターン層13の他端側には櫛形電極17が接続されている。櫛形電極17は、2つの導電パターン層13を微小な線幅の櫛形形状にして、狭小な間隔で交互に隣接配置したものである。参照極端子Refと対極端子Cは図2の配置とは逆にしてもよい。一般には、被検体が参照極端子Refに最初に接触した方が測定系が安定する。また、対極端子Cは、面積で電圧と電流が規定されるため、参照極端子Refよりも面積を大きくするのが望ましい。
注入口21から注入された被検体混合液は、マイクロ流路層14に滴下されて、毛細管現象により図2の所定方向Xに流れる。櫛形電極17の直上に到達した被検体混合液は、櫛形電極17上で酸化還元反応を繰り返して、電流を生じさせる。櫛形電極17は、作用極端子W1,W2に繋がる電位レベルの異なる2種類の電極を交互に配置したものであり、酸化反応と還元反応とが各電極間で交互に行われて、見かけ上の電流が増大する。この電流は、2つの作用極端子W1,W2に流れる。被検体に含まれるエンドトキシン等の微生物夾雑物の濃度に応じて電流値が変化する。濃度が高いほど電流値が大きくなる。検出回路基板8は、作用極端子W1,W2に接触される装置側端子7を介して、この電流を検出する。
本実施形態によるチップ2は、ヒートシンク6上に位置決めされた後、ヒートシンク6と一体に図1の所定方向Xに移動される。チップ2およびヒートシンク6は、まずは第1位置にてチップ2に被検体が注入される。その後、チップ2およびヒートシンク6は第2位置に移動して、チップ側端子16から出力される電流の検出が行われる。
チップ2は、被検体の注入口21と、第1空気孔22と、第2空気孔23とを有する。注入口21、第1空気孔22および第2空気孔23は、所定方向Xに沿って間隔を隔てて配置されている。より詳細には、第1空気孔22は、注入口21と櫛形電極17との間に配置されている。第2空気孔23は、櫛形電極17とチップ側端子16との間に配置されている。第1空気孔22と第2空気孔23は、チップ2の外側の空気をチップ2内に取り込む吸気口として機能するとともに、チップ2内の空気をチップ2外に排気する排気口としても機能する。これら第1空気孔22と第2空気孔23から空気を出し入れすることで、マイクロ流路層14内の被検体混合液を所定方向Xに移動させることができる。
上述したように、チップ2は、クリーナ支持板11に接触しながら所定方向Xに移動する。よって、チップ2の第1空気孔22と第2空気孔23がクリーナ支持板11によって塞がれていると、第1空気孔22と第2空気孔23から空気を流出入させることはできない。そこで、クリーナ支持板11には、第3空気孔24と第4空気孔25が設けられており、チップ2の移動位置によって、第1空気孔22と第3空気孔24を重ね合わせたり、第2空気孔23と第4空気孔25を重ね合わせたりする。これにより、マイクロ流路層14内の液体は、所定方向Xに滞りなく流れるようになる。
図3Aは第1位置でのチップ2、ヒートシンク6およびクリーナ支持板11の位置関係を示す断面図、図3Bは第2位置でのチップ2、ヒートシンク6およびクリーナ支持板11の位置関係を示す断面図、図3Cはチップ2が第2位置に到達する前の第3位置でのチップ2、ヒートシンク6およびクリーナ支持板11の位置関係を示す断面図である。
図3Aに示すように、第1位置では、チップ2の注入口21が露出されており、この注入口21から被検体が注入される。また、第1位置では、チップ2の第1空気孔22とクリーナ支持板11の第3空気孔24とが上下に重ね合わされる。これにより、第1空気孔22と第3空気孔24からチップ2内の空気を排気することができ、チップ2の注入口21から注入された被検体は、マイクロ流路層14を通って所定方向Xに流れ、櫛形電極17の近傍に到達する。櫛形電極17の下方には、ヒータ9が配置されており、被検体混合液はヒータ9で加熱されて、酸化還元反応に最適な温度に設定される。これにより、チップ2およびヒートシンク6が第1位置にあるときに、酸化還元反応が行われる。
また、第1位置では、チップ2の第2空気孔23とチップ側端子16はクリーナ支持板11で塞がれている。よって、チップ2の第2空気孔23やチップ側端子16から異物が混入するおそれを防止できる。
酸化還元反応が終了すると、チップ2およびヒートシンク6は、ガイド部材5に案内されて、所定方向Xに沿って、第2位置まで移動される。図3Bに示すように、第2位置では、チップ2の注入口21と第1空気孔22はクリーナ支持板11によって塞がれる。これにより、第1空気孔22や注入口21から新たな微生物夾雑物が混入するおそれを防止できる。また、チップ2が第1位置のときに注入口21から注入された被検体の一部が注入口21の周囲に飛散したとしても、第1位置から第2位置にチップ2を移動する間に、チップ2の上面に接触しているクリーナシート12にて拭き取ることができ、微生物夾雑物の残留物による計測誤差を防止できる。
第2位置では、チップ2の第2空気孔23とクリーナ支持板11の第4空気孔25とが上下に重ね合わされる。また、チップ側端子16は露出されている。これにより、櫛形電極17周辺のマイクロ流路層14内に存在していた被検体混合液は、所定方向Xに移動する。第2位置では、チップ2のチップ側端子16と、その周辺のマイクロ流路層14はクリーナ支持板11で塞がれていない。よって、クリーナ支持板11で塞がれていない箇所のマイクロ流路層14に所定波長の光を照射して、マイクロ流路層14内の混合液の分光感度特性などを測定することも可能となる。
また、チップ2とヒートシンク6を第2位置まで移動させると、図3Bに示すように、ヒートシンク6の端部が装置側端子移動機構26に接触する。装置側端子移動機構26は、ヒートシンク6の端部が接触すると、装置側端子7を下降させて、チップ側端子16に接触させる。装置側端子7は、上方からチップ側端子16に点接触するため、装置側端子7とチップ側端子16との間の機械的摩擦による摩耗を抑制でき、耐久性を向上できるとともに、摩耗による接触不良を防止できる。
なお、装置側端子移動機構26の具体的な構造は問わない。例えば、第2位置では、2枚重ね合わせたフレキシブルプリント基板(以下、FPC基板)の間にヒートシンク6を押し込んで、2枚のFPC基板をヒートシンク6の上下に開くように配置させ、FPC基板の端部に配置された装置側端子7が自重で下降してチップ側端子16に接触するようにしてもよい。
図3Cに示すように、チップ2が第2位置に到達する前に、注入口21と第3空気孔24とが重なり合う第3位置にチップ2を移動させるのが望ましい。これにより、マイクロ流路層14内の被検体混合液がチップ側端子16の方向に移動しやすくなる。
次に、チップ2に注入される被検体混合液の作製方法を説明する。後述するように、本実施形態では、多方弁を用いて被検体混合液を作製する。多方弁とは、複数の流路が接続された複数のポート同士を繋げるか遮断するかを任意に切替可能とした複数方向の切替弁である。多方弁は、機械的な切替弁でもよいし、コイルに流れる電流により生じる磁束を利用して切替を行う電磁弁でもよい。多方弁を用いることで、複数の流路を流れる液体の方向を任意に切り替えることができる。
最も基本的な構成の多方弁には、第1流路〜第3流路が接続されており、第1〜第3切替状態を有する。第1流路は、被検体を含有する被検体溶液を流す流路である。第2流路は、被検体に含まれる微生物夾雑物を検出するのに必要な検出試薬を流す流路である。第3流路は、第1流路内の被検体溶液の一部と、第2流路内の前記検出試薬の一部とを混合させた被検体混合液を流す流路である。
多方弁の第1切替状態は、例えば被検体溶液を第1流路内で循環させる。第2切替状態は、例えば第1流路内の被検体溶液の一部を抽出して第3流路に流す。第3切替状態は、例えば検出試薬を第3流路に導入して被検体混合液を作製する。
多方弁は、通常は第1切替状態に設定され、被検体に含まれる微生物夾雑物を検出する必要が生じたときに、第2切替状態への切替後に第3切替状態に切り替えられ、その後に第1切替状態に戻される。
このように、多方弁は、例えば被検体溶液が循環して流れる循環流路上に接続される。以下では、多方弁が接続される循環流路の一例として、透析装置の循環流路について説明する。
図4は透析装置50の概略構成を説明する図である。図4に示すように、透析装置50は、血液中の老廃物を除去するダイアライザ51と、透析監視装置52とを備えている。患者の血液は、血液ポンプ53で吸引されて、凝固防止のためのヘパリン54を加えた後、ドリップチャンバ55にて気泡の除去等が行われる。その後、血液中の老廃物がダイアライザ51にて除去される。ダイアライザ51内の透析液は、透析監視装置52に供給される。透析監視装置52は、ダイアライザ51から循環ポンプ56にて吸引された透析液の一部を除水ポンプ58で排出するとともに、循環ポンプ59で透析用水処理装置60に導いて浄化して、ETRFフィルタ61にて微生物夾雑物を除去した後、補液ポート62を介して、ダイアライザ51に供給する。ダイアライザ51から出力されたきれいな血液は、ドリップチャンバ57にて気泡が除去された後、人間63の体内に戻される。
本実施形態では、透析監視装置52内の透析液が流れる流路に多方弁を取り付けて、チップ2に注入するための被検体混合液を生成する。本実施形態の多方弁は、4つ以上の任意の数のポートを有し、各ポートを繋ぐか遮断するかの切替制御を行うことで、透析液が流れる流路を制御する。一つの多方弁だけで流路の制御を行ってもよいし、複数の多方弁を組み合わせて流路の制御を行ってもよい。以下では、2つの多方弁を組み合わせて使用する例を説明する。2つの多方弁のうち、一方の多方弁は、例えば図4の流路Aに取り付けられ、他方の多方弁は、例えば図4の流路Bに取り付けられる。なお、多方弁を流路Aの代わりに流路Cに取り付けることも可能であるが、以下では、流路Aと流路Bに多方弁を取り付ける例を説明する。
図5A、図5Bおよび図5Cは多方弁70a、70bの切替動作を説明する図である。これらの図で用いられる多方弁70a、70bはいずれも、6つの流路に接続された6つのポート同士を繋げるか遮断するかを切り替える六方弁70である。各ポートには、対応する流路の流路端が接続される。各六方弁70は、6つのポートのうち隣接する2つのポート同士を繋げるか遮断するかを任意に切替可能な切替機能を有する。例えば、隣接する2つのポート同士を繋げた場合には、これら2つのポートのうち一方のポートに接続された流路内の液体が、六方弁70の内部を通過して、他方のポートに接続された流路に流れる。一方、隣接する2つのポート同士を遮断する場合には、これら2つのポートのうち一方のポートに接続された流路内の液体は、他方のポートに接続された流路には流れなくなる。このように、六方弁70が有する6つのポートのうち、隣接する2つのポート同士を繋げるか遮断するかを任意に切り替えることで、六方弁70の6つのポートに接続された6つの流路同士を繋げるか遮断するかを任意に切り替えることができる。
六方弁70の6つのポートには、必ずしも流路が接続されるとは限らない。切り替えるべき流路の数が6個に満たない場合は、6つのポートの一部を未接続状態にすればよい。
図5A、図5Bおよび図5Cは、六方弁70a、70bの隣接する2つのポートが繋がっている状態を実線で、遮断されている状態を破線で示している。図5Aは、透析監視装置52の通常動作時の六方弁70a、70bの切替状態を示している。六方弁70aのポートc1とc2には図4の流路Aが接続されている。流路A内の液体(この場合は透析液)は、ポートc1から六方弁70aの内部を通過して、ポートc2から流路Aに流れる。これにより、流路Aには、液体が滞りなく流れる。また、六方弁70のポートc5、c6、c3、c4は、図4の流路B内の液体を流すように切替制御されている。より具体的には、流路B内の液体は、ポートc5から六方弁70aの内部を通過して、ポートc6から流路Dに流れる。流路D内の液体は、ポートc3から六方弁70aの内部を通過して、ポートc4から流路Eに流れる。流路E内の液体は、六方弁70bのポートc1から六方弁70bの内部を通過して、ポートc2から再び流路Bに流れて、除水ポンプ58に導かれる。
チップ2に注入される被検体混合液は、図5Bに示す第1サンプリング段階を経た後、図5Cに示す第2サンプリング段階にて作製される。第1サンプリング段階と第2サンプリング段階では、六方弁70a、70bの切替状態が異なっている。
図5Bは被検体混合液を作製する第1サンプリング段階における六方弁70の切替状態を示している。六方弁70aのポートc1とc2との接続が遮断される代わりに、ポートc1とc6が繋げられる。これにより、図4の流路A内の液体はポートc1から六方弁70aの内部を通過して、ポートc6から流路Dに流れる。流路D内の液体は、六方弁70aのポートc3から六方弁70aの内部を通過して、ポートc2から流路Aに流れる。これにより、流路D内に液体が溜まることになる。流路D内に溜まった液体は、流路Aに流れる液体である。
一方、流路B内の液体は、六方弁70aのポートc5から六方弁70aの内部を通過して、ポートc4から流路Eに流れる。その後は、図5Aと同様に、六方弁70bの接続端c1から六方弁70bの内部を通過して、接続端c2から流路Bに流れる。
このように、第1サンプリング段階では、流路Aを流れる液体を流路Dに溜める処理を行う。第1サンプリング段階が終わると、引き続き第2サンプリング段階に移行する。
図5Cは被検体混合液を作製する第2サンプリング段階における六方弁70の切替状態を示している。流路A内の液体は、図5Aと同様に、六方弁70aのポートc1から六方弁70aの内部を通過して、ポートc2から流路Aに流れる。流路B内の液体は、六方弁70aのポートc5から六方弁70aの内部を通過してポートc6から流路Dに流れる。このとき、図5Bに示す第1サンプリング段階で流路Dに溜めた流路Aからの液体が流路Dから押し出される。流路Dから押し出された液体は、六方弁70aのポートc3から六方弁70aの内部を通過して、ポートc4から流路Eに流れる。その後、流路E内の液体は、六方弁70bのポートc1から六方弁70bの内部を通過して、ポートc6から流路Fに流れる。流路Fに流れる液体は、図5Bで流路Aから抽出した液体である。
一方、透析液に混合される検出試薬71は、流路Gから六方弁70bのポートc4に流れ、六方弁70bの内部を通過して、ポートc5から流路Fに流れる。流路Fには、図5Bで流路流路Dに溜めたAからの液体が存在するため、流路Fの内部で、流路Aから抽出した液体と検出試薬71とが混合されて、被検体混合液が作製される。
本実施形態で用いられる検出試薬71の種類は特に問わないが、例えば、エンドトキシンの検出に有効な、カボトガニ血球抽出物を利用したライセート試薬(LAL:Limulus Amebocyte LysateまたはTAL:Tachypleus Tridentatus)が一例として挙げられる。
図5Cによって作製された被検体混合液は、スポイド等の所定の滴下器具を用いてチップ内に注入される。
図4に示す透析装置50は、通常は、流路AとBを介して透析液を連続的に循環させているが、この状態で、一時的に六方弁70の切替状態を図5Bおよび図5Cのように順次変更して、被検体混合液を作製し、その後は、六方弁70の切替状態を図5Aの通常の状態に戻すようにする。これにより、透析装置50を通常動作させて透析装置50で循環している透析液をそのまま用いて被検体混合液を作製して微生物夾雑物の濃度を測定できる。よって、本実施形態によれば、被検体に含まれる微生物夾雑物の濃度測定を精度よく行うことができる。
図5Aが上述した第1切替状態に相当し、図5Bが第2切替状態に相当し、図5Cが第3切替状態に相当する。また、例えば図5Cの流路Aが上述した第1流路に相当し、流路Gが第2流路に相当し、流路Fが第3流路に相当する。
被検体と検出試薬71との混合比や、被検体の量、検出試薬71の量は、多方弁(例えば六方弁)70の各ポートを切り替えるタイミングを調整したり、多方弁70の各ポートに繋がる流路の方向を変更することで、任意に調整できる。
また、多方弁70の切替により、一つの流路に、異なる複数種類の液体を流す場合には、異なる液体を流す前に、その流路を洗浄するのが望ましい。このため、純水や洗浄液を供給する流路(第4流路)を別途用意して多方弁70の空きポートに接続し、多方弁70の切替によって、複数種類の液体を流す流路を純水や洗浄液で洗浄してもよい。この場合、洗浄に利用した純水や洗浄液を排出する流路も用意しておく必要がある。
特に、エンドトキシンのような微生物夾雑物は、大気中にも存在するため、大気等を介して流路内や多方弁70の内部に混入するおそれがある。よって、被検体混合液を作製する前に、流路や多方弁70の内部を純水や洗浄液で洗浄するのが望ましい。このため、多方弁70には、純水や洗浄液を供給する流路と、洗浄後の廃水のための流路とを予め設けておくのが望ましい。なお、大気中に含まれないと考えられる特定の微生物夾雑物を測定するための被検体混合液を作製する場合には、純水や洗浄液を供給する流路と、洗浄後の廃水のための流路とを設ける必要はない。
上述した検出試薬71は、通常は保冷庫に保管しておき、被検体混合液を作製する必要が生じたときに、検出試薬71を収納した収納体を保冷庫から取り出して、できるだけ清浄な環境下で多方弁70に繋がる流路に接続してもよいし、保冷庫まで流路を伸ばして、保冷庫に保管したまま、検出試薬71を必要量だけ流路に流すようにしてもよい。
図6は本実施形態による微生物夾雑物検出装置1の制御系のブロック図である。図6に示すように、本実施形態による微生物夾雑物検出装置1の制御系は、制御部31と、記憶部32と、検出回路33と、表示部34と、電源回路35と、ヒータ9と、温度計測部36とを有する。
制御部31は、制御系の全体的な制御を行うものであり、例えばCPU(Central Processing Unit)とその周辺回路で構成されている。
記憶部32は、微生物夾雑物検出装置1の初期設定条件や自己点検状況、環境パラメータなどの各種データを記憶する。環境パラメータとは、例えば環境温度や湿度などである。また、記憶部32は、チップ2の検出電流を補正するための補正コードや、計測時刻、過去の計測データなどを記憶してもよい。また、記憶部32は、チップ2の各ロットごとに、計測時刻と、電流値と、被検体中の微生物夾雑物の濃度とを対応づけた保存検量線のデータを記憶していてもよい。
検出回路33は、チップ2から出力される電流を検出する回路であり、例えば図7に示すようなデュアルポテンショスタット回路40を含んでいる。図7の回路構成について後述する。
表示部34は、チップ2の移動手順に関する情報、チップ2の検出電流値、被検体内の微生物夾雑物の濃度に関する情報などを表示する。表示部34に表示する具体的な内容は任意である。温度計測部36は例えば熱電対を用いてヒータ9の温度を計測する。制御部31は、温度計測部36で計測された温度が設定温度以上になったら、ヒータ9の加熱を停止させる。
制御部31は、検出回路33で検出された電流を記憶部32に記憶された補正コードに従って補正する。また、制御部31は、チップ2のチップ側端子16への電圧供給やヒータ9の加熱などの指示を電源回路35に対して行う。
図7のデュアルポテンショスタット回路40は、第1〜第5差動増幅回路41〜45と、抵抗R1〜R8とを有する。第1差動増幅回路41の負側入力端子には電圧E1が入力され、正側入力端子は接地されている。第1差動増幅回路41は、電圧E1に抵抗R1と抵抗R2との抵抗比を乗じた電圧を出力する。第2差動増幅回路42の正側入力端子には、電圧E2を抵抗R3とR4で抵抗分圧した電圧が入力される。電圧E1と第2差動増幅回路42の出力端子との間には、抵抗R5とR6が直列接続されており、抵抗R5とR6の接続ノードの電圧が第2差動増幅回路42の負側入力端子に入力される。
第3差動増幅回路43の正側入力端子は第1差動増幅回路41の出力端子に接続されている。第3差動増幅回路43の負側入力端子は参照極端子Refに接続され、第3差動増幅回路43の出力端子は対極端子Cに接続されている。
第4差動増幅回路44の正側入力端子は接地され、負側入力端子は作用極端子W1に接続されている。第4差動増幅回路44の負側入力端子と第1出力端子W1_OUTとの間には抵抗R7が接続されている。
第5差動増幅回路45の正側入力端子は第2差動増幅回路42の出力端子に接続されている。第5差動増幅回路45の負側入力端子は作用極端子W2に接続されている。第5差動増幅回路45の負側入力端子と第2出力端子W2_OUTとの間には抵抗R8が接続されている。
抵抗R1〜R8の抵抗値がすべて等しい場合には、第2差動増幅回路42の出力電圧は、ΔE=E2−E1となる。また、作用電極端子W1には、出力端子W1_OUTから流れ込んだ電流i1が流れる。作用電極端子W2から出力端子W2_OUTには、電流i2が流れる。
図8は本実施形態による微生物夾雑物検出装置1の処理手順を示すフローチャートである。まず、ヒートシンク6にチップ2を位置決めしたか否かを判定する(ステップS1)。チップ2がヒートシンク6に位置決めされると、ヒータ9にてチップ2を予備加熱する(ステップS2)。次に、チップ2内に、図4および図5で説明した手法で生成した被検体混合液を注入し、チップ2への被検体混合液の注入が完了したか否かを判定する(ステップS3)。チップ2内に被検体混合液が注入されると、ヒータ9にてチップ2を加熱する(ステップS4)。これにより、櫛形電極17上で酸化還元反応が起こる。次に、作用極端子から出力される電流を検出回路33にて検出する(ステップS5)。
次に、ステップS5で検出された電流を補正コードにて補正し、補正された電流を保存検量線と比較する(ステップS6)。次に、ステップS6の比較結果に基づいて、被検体混合液に含まれる微生物夾雑物の濃度が規定の範囲内か否かを示す情報を表示部34に出力する(ステップS7)。
上述した実施形態では、ヒートシンク6上に位置決めされたチップ2を、ヒートシンク6と一体にガイド部材5に沿って所定方向Xに移動させる例を示したが、ヒートシンク6を固定にして、ヒートシンク6の上面に沿ってチップ2を所定方向Xに移動させてもよい。
このように、本実施形態では、透析装置50等の検査対象装置内を被検体溶液が循環している流路に多方弁70を取り付けて、一時的に多方弁70を切り替えて被検体溶液を抽出した後、多方弁70を切り替えて、抽出した被検体溶液を検出試薬71と混合した被検体混合液を作製する。作製した被検体混合液は、チップ2に注入されて、被検体混合液に含まれる微生物夾雑物の濃度が計測される。多方弁70を用いることで、透析装置等の検査対象装置の動作を妨げることなく、検査対象装置内を循環している被検体溶液を用いて被検体混合液を容易に作製できる。よって、大気中等の微生物夾雑物の混入を防止しつつ、被検体溶液に含まれる微生物夾雑物の濃度を精度よく計測できる。
本発明の態様は、上述した個々の実施形態に限定されるものではなく、当業者が想到しうる種々の変形も含むものであり、本発明の効果も上述した内容に限定されない。すなわち、特許請求の範囲に規定された内容およびその均等物から導き出される本発明の概念的な思想と趣旨を逸脱しない範囲で種々の追加、変更および部分的削除が可能である。
1 微生物夾雑物検出装置、2 チップ、3 上蓋、4 下蓋、5 ガイド部材、6 ヒートシンク、7 装置側端子、8 検出回路基板、9 ヒータ、11 クリーナ支持板、12 クリーナシート、13 導電パターン層、14 マイクロ流路層、15 カバー層、16 チップ側端子、17 櫛形電極、21 注入口、22 第1空気孔、23 第2空気孔、24 第3空気孔、25 第4空気孔、26 装置側端子移動機構、31 制御部、32 記憶部、33 検出回路、34 表示部、35 電源回路、36 温度計測部、40 デュアルポテンショスタット回路、41 第1差動増幅回路、42 第2差動増幅回路、43 第3差動増幅回路、44 第4差動増幅回路、45 第5差動増幅回路

Claims (8)

  1. 被検体に含まれる微生物夾雑物を検出する着脱自在のチップと、
    前記チップが着脱自在に装着される装置本体と、
    前記装置本体に装着された前記チップに流れる電流を検出する検出回路と、
    複数の流路に接続された複数のポート同士を繋げるか遮断するかを切替可能な多方弁と、を備え、
    前記複数の流路は、
    前記被検体を含有する被検体溶液を流す第1流路と、
    前記被検体に含まれる前記微生物夾雑物を検出するのに必要な検出試薬を流す第2流路と、
    前記多方弁の切替により、前記第1流路内の前記被検体溶液の一部と、前記第2流路内の前記検出試薬の一部とを混合させた被検体混合液を流す第3流路と、を有し、
    前記チップは、
    前記被検体混合液が注入される注入口と、
    前記注入された被検体混合液に含まれる前記微生物夾雑物の濃度に応じた電流を出力する端子と、を有する、微生物夾雑物検出装置。
  2. 前記第1流路は、前記被検体溶液を循環させる循環流路であり、
    前記多方弁は、
    前記被検体溶液を前記第1流路内で循環させる第1切替状態と、
    前記第1流路内の前記被検体溶液の一部を抽出して前記第3流路に流す第2切替状態と、
    前記検出試薬を前記第3流路に導入して前記被検体混合液を作製する第3切替状態と、を有する、請求項1に記載の微生物夾雑物検出装置。
  3. 前記多方弁は、通常は前記第1切替状態に設定され、前記被検体に含まれる前記微生物夾雑物を検出する必要が生じたときに、前記第2切替状態への切替後に前記第3切替状態に切り替えられ、その後に前記第1切替状態に復帰される、請求項2に記載の微生物夾雑物検出装置。
  4. 2つ以上の前記多方弁を用いて、前記第1流路、前記第2流路および前記第3流路の切替を行って、前記被検体混合液を作製する、請求項1乃至3のいずれか一項に記載の微生物夾雑物検出装置。
  5. 前記多方弁は、前記第1流路、前記第2流路および前記第3流路の少なくとも一つを洗浄する純水または洗浄液を流す第4流路を有する、請求項1乃至4のいずれか一項に記載の微生物夾雑物検出装置。
  6. 前記被検体は、透析液、注射薬液、移植組織片の培養液、および人工授精の受精卵の培養液の少なくとも一つである、請求項1乃至5のいずれか一項に記載の微生物夾雑物検出装置。
  7. 前記チップは、前記被検体混合液の酸化還元反応を生じさせる櫛形電極と、前記注入口から前記櫛形電極の上方を通過する方向に前記被検体混合液を流すチップ内流路と、を有し、
    前記装置本体は、前記櫛形電極周辺の前記チップ内流路内に前記被検体混合液が存在するときに前記ヒータによる加熱を行う、請求項1乃至6のいずれか一項に記載の微生物夾雑物検出装置。
  8. 被検体に含まれる微生物夾雑物を検出する着脱自在のチップと、
    前記チップが着脱自在に装着される装置本体と、
    前記装置本体に装着された前記チップに流れる電流を検出する検出回路と、
    複数の流路に接続された複数のポート同士を繋げるか遮断するかを切替可能な多方弁と、を用いた微生物夾雑物検出方法であって、
    前記複数の流路には、前記被検体を含有する被検体溶液を流す第1流路と、
    前記被検体に含まれる前記微生物夾雑物を検出するのに必要な検出試薬を流す第2流路と、
    前記多方弁の切替により、前記第1流路内の前記被検体溶液の一部と、前記第2流路内の前記検出試薬の一部とを混合させた被検体混合液を流す第3流路と、が設けられており、
    前記多方弁は、通常は、前記第1流路にて前記被検体溶液を循環させる第1切替状態に設定され、前記被検体に含まれる前記微生物夾雑物を検出する際には、前記第1流路内の前記被検体溶液の一部を抽出して前記第3流路に流す第2切替状態に切り替えた後に、前記検出試薬を前記第3流路に導入して前記被検体混合液を作製する第3切替状態に切り替える、微生物夾雑物検出方法。
JP2016211055A 2016-10-27 2016-10-27 微生物夾雑物検出装置および微生物夾雑物検出方法 Active JP6807051B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016211055A JP6807051B2 (ja) 2016-10-27 2016-10-27 微生物夾雑物検出装置および微生物夾雑物検出方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016211055A JP6807051B2 (ja) 2016-10-27 2016-10-27 微生物夾雑物検出装置および微生物夾雑物検出方法

Publications (2)

Publication Number Publication Date
JP2018072119A true JP2018072119A (ja) 2018-05-10
JP6807051B2 JP6807051B2 (ja) 2021-01-06

Family

ID=62112741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016211055A Active JP6807051B2 (ja) 2016-10-27 2016-10-27 微生物夾雑物検出装置および微生物夾雑物検出方法

Country Status (1)

Country Link
JP (1) JP6807051B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116532175A (zh) * 2023-07-06 2023-08-04 北京中医药大学 辊压式微流控芯片及控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003177112A (ja) * 1994-09-13 2003-06-27 Toto Ltd 物質濃度計測装置
US20050244299A1 (en) * 2002-04-30 2005-11-03 Biowittaker Technologies Inc Automated sequential injection analysis systems for the determination of trace endotoxin levels
US20060252067A1 (en) * 2005-03-18 2006-11-09 Kabushiki Kaisha Toshiba Method and an apparatus for determining nucleotide sequence, and a computer program product to be executed by the apparatus
JP2007003256A (ja) * 2005-06-22 2007-01-11 Techno Medica Co Ltd 腎臓機能コントロール状態測定方法及び測定システム
JP2008046140A (ja) * 2005-01-07 2008-02-28 Sekisui Chem Co Ltd カートリッジを使用する検出装置
WO2015137356A1 (ja) * 2014-03-11 2015-09-17 大日本印刷株式会社 微生物夾雑物の濃度検出方法、電極チップおよびオリゴペプチド
WO2016035197A1 (ja) * 2014-09-05 2016-03-10 株式会社日立製作所 電気化学免疫センサ用カートリッジ及びそれを用いた測定装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003177112A (ja) * 1994-09-13 2003-06-27 Toto Ltd 物質濃度計測装置
US20050244299A1 (en) * 2002-04-30 2005-11-03 Biowittaker Technologies Inc Automated sequential injection analysis systems for the determination of trace endotoxin levels
JP2008046140A (ja) * 2005-01-07 2008-02-28 Sekisui Chem Co Ltd カートリッジを使用する検出装置
US20060252067A1 (en) * 2005-03-18 2006-11-09 Kabushiki Kaisha Toshiba Method and an apparatus for determining nucleotide sequence, and a computer program product to be executed by the apparatus
JP2007003256A (ja) * 2005-06-22 2007-01-11 Techno Medica Co Ltd 腎臓機能コントロール状態測定方法及び測定システム
WO2015137356A1 (ja) * 2014-03-11 2015-09-17 大日本印刷株式会社 微生物夾雑物の濃度検出方法、電極チップおよびオリゴペプチド
WO2016035197A1 (ja) * 2014-09-05 2016-03-10 株式会社日立製作所 電気化学免疫センサ用カートリッジ及びそれを用いた測定装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116532175A (zh) * 2023-07-06 2023-08-04 北京中医药大学 辊压式微流控芯片及控制方法
CN116532175B (zh) * 2023-07-06 2023-10-13 北京中医药大学 辊压式微流控芯片及控制方法

Also Published As

Publication number Publication date
JP6807051B2 (ja) 2021-01-06

Similar Documents

Publication Publication Date Title
TW410162B (en) Apparatus for monitoring a cleaning process for a medical instrument, and method and apparatus for cleaning/sterilizing a soiled medical device
EP1707222B1 (en) Monitoring of a cleaning process
AU2008296521B2 (en) Automated endoscope reprocessor
EP1709979A1 (en) Monitoring of cleaning process
TWI611171B (zh) 生物樣品處理裝置
EP1769808A2 (en) Indicator for monitoring a cleaning process
EP4036573A1 (en) Method of detecting the presence or absence of a clot in a liquid sample analyzer
JP6807051B2 (ja) 微生物夾雑物検出装置および微生物夾雑物検出方法
TWI633305B (zh) 可洗式分析計、密封連接器、製造及使用可洗式分析計與密封連接器之方法
JP6990366B2 (ja) 微生物夾雑物検出装置
CN108136094A (zh) 血液净化装置
JP6759946B2 (ja) 微生物夾雑物検出装置
JP6834317B2 (ja) 微生物夾雑物検出装置および微生物夾雑物検出方法
JP2022174294A (ja) 内視鏡のチャネルの充填およびパージを非同期的に同時に行う器械および方法
JP6781951B2 (ja) 微生物夾雑物検出装置
CN109469362A (zh) 一种实验室
JP2021039137A (ja) 微生物夾雑物検出装置および微生物夾雑物検出方法
KR101218109B1 (ko) 탈취필터 관능시험장치
JP2016202831A (ja) 濃度測定装置、内視鏡リプロセッサおよび濃度測定用試験紙
JP2001174376A (ja) 生体組織スライス標本用実験装置および標本保持具
US20100202920A1 (en) Machine and method for washing and/or disinfecting medical instruments
JP7511473B2 (ja) 電気測定実施装置
CN217332407U (zh) 一种体外循环医疗器械的可沥滤物溶出测试系统
JP6916116B2 (ja) 検査ストリップポートを封止するためのシャッタを有する医療機器
Mohamed Ibrahim Electronic Sensing Systems for Next Generation SDS PAGE Technologies

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201119

R150 Certificate of patent or registration of utility model

Ref document number: 6807051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150