JP2018070682A - Epoxy resin composition and epoxy resin cured product using the same, and electronic component device - Google Patents

Epoxy resin composition and epoxy resin cured product using the same, and electronic component device Download PDF

Info

Publication number
JP2018070682A
JP2018070682A JP2016208615A JP2016208615A JP2018070682A JP 2018070682 A JP2018070682 A JP 2018070682A JP 2016208615 A JP2016208615 A JP 2016208615A JP 2016208615 A JP2016208615 A JP 2016208615A JP 2018070682 A JP2018070682 A JP 2018070682A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
structural formula
phenol
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016208615A
Other languages
Japanese (ja)
Inventor
陽介 藤安
Yosuke Fujiyasu
陽介 藤安
浩司 太田
Koji Ota
浩司 太田
格 山浦
Itaru Yamaura
格 山浦
中西 良一
Ryoichi Nakanishi
良一 中西
実佳 田中
Mika Tanaka
実佳 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2016208615A priority Critical patent/JP2018070682A/en
Publication of JP2018070682A publication Critical patent/JP2018070682A/en
Pending legal-status Critical Current

Links

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Epoxy Resins (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an epoxy resin composition which easily obtains a stacking effect by reaction of an epoxy resin as a main agent and a curing agent and has high thermal conductivity; an epoxy resin cured product using the same; and an electronic component device having an element sealed by the epoxy resin cured product.SOLUTION: There are provided an epoxy resin composition which contains (A) a phenol compound represented by structural formula (1), (B) an epoxy resin and (C) a hardening accelerator, preferably contains (D) a phenol resin excluding the phenol compound represented by the structural formula (1), preferably further contains (E) an inorganic filler; an epoxy resin cured product formed by curing the epoxy resin composition; and an electronic component device in which an element is sealed with the epoxy resin composition.SELECTED DRAWING: None

Description

本発明は、熱伝導性に優れた硬化物を与えるエポキシ樹脂組成物及びこれを用いたエポキシ樹脂硬化物と電子部品装置に関するものである。   The present invention relates to an epoxy resin composition that provides a cured product excellent in thermal conductivity, an epoxy resin cured product using the same, and an electronic component device.

従来から、成形材料、積層板用及び接着剤用材料、各種電子電気部品、塗料及びインキ材料等の分野において、エポキシ樹脂等の硬化性樹脂が広く使用されている。特に、トランジスタ、IC等の電子部品素子の封止技術に関する分野では、封止材料としてエポキシ樹脂組成物が広く使用されている。その理由としては、エポキシ樹脂は、成形性、電気特性、耐湿性、耐熱性、機械特性、インサート品との接着性等の諸特性においてバランスがとれているためである。
一方、近年、電子部品の分野では高速化及び高密度化が進んでおり、それに伴って、電子部品の発熱が顕著となってきている。また、高温下で作動する電子部品も増加している。そのため、電子部品に使用されるプラスチック、特にエポキシ樹脂硬化物には高い熱伝導性が要求されている。
エポキシ樹脂硬化物の熱伝導性を向上させるため、結晶性のエポキシ樹脂の使用が報告されている(例えば、特許文献1〜3参照)。
Conventionally, curable resins such as epoxy resins have been widely used in the fields of molding materials, laminates and adhesives, various electronic and electrical parts, paints and ink materials. In particular, epoxy resin compositions are widely used as sealing materials in the field related to sealing technology for electronic component elements such as transistors and ICs. This is because epoxy resins are balanced in various properties such as moldability, electrical properties, moisture resistance, heat resistance, mechanical properties, and adhesion to inserts.
On the other hand, in recent years, in the field of electronic components, speeding up and density increase have progressed, and accordingly, heat generation of electronic components has become remarkable. In addition, electronic components that operate at high temperatures are also increasing. For this reason, high thermal conductivity is required for plastics used for electronic parts, particularly epoxy resin cured products.
In order to improve the thermal conductivity of the cured epoxy resin, the use of a crystalline epoxy resin has been reported (for example, see Patent Documents 1 to 3).

特開平11−323162号公報JP-A-11-323162 特開2016−23227号公報Japanese Patent Laid-Open No. 2016-23227 特開2015−212367号公報JP2015-212367A

本発明の課題は、主剤のエポキシ樹脂と硬化剤が反応して、平面性が高く保て、スタッキング効果を得やすい熱伝導性の高いエポキシ樹脂組成物及びこれを用いたエポキシ樹脂硬化物、前記樹脂組成物によって封止された素子を備えてなる電子部品装置を提供することである。   The problem of the present invention is that the main epoxy resin and the curing agent react to maintain a high flatness and easily obtain a stacking effect, and an epoxy resin cured product using the same, An electronic component device including an element sealed with a resin composition is provided.

本発明者等は、上述の課題を解決するために鋭意検討を重ねた結果、ピロメリット酸二無水物と4−アミノフェノールから合成して得られるメソゲン基を有するフェノール化合物を硬化剤として含むエポキシ樹脂組成物を用いることで所期の目的の熱伝導性の高いエポキシ樹脂組成物を提供できることを見出し、本発明を完成するに至った。
本発明は以下のとおりである。
As a result of intensive studies in order to solve the above-mentioned problems, the present inventors have obtained an epoxy containing a phenol compound having a mesogenic group obtained by synthesis from pyromellitic dianhydride and 4-aminophenol as a curing agent. It has been found that an epoxy resin composition having a desired high thermal conductivity can be provided by using the resin composition, and the present invention has been completed.
The present invention is as follows.

[1] (A)下記構造式(1)で示されるフェノール化合物と、(B)エポキシ樹脂と、(C)硬化促進剤を含むエポキシ樹脂組成物。 [1] An epoxy resin composition comprising (A) a phenol compound represented by the following structural formula (1), (B) an epoxy resin, and (C) a curing accelerator.

Figure 2018070682
[2] 更に上記[1]に記載の構造式(1)で示すフェノール化合物を除く(D)フェノール樹脂を含有する上記[1]に記載のエポキシ樹脂組成物。
[3] 更に(E)無機充填剤を含有する上記[1]又は[2]に記載のエポキシ樹脂組成物。
[4] (E)無機充填剤の含有含有率が、エポキシ樹脂組成物の全量に対して55〜90体積%である上記[3]に記載のエポキシ樹脂組成物。
[5] 上記[1]〜[4]のいずれか一項に記載のエポキシ樹脂組成物を硬化してなるエポキシ樹脂硬化物。
[6] 上記[1]〜[4]のいずれか一項に記載のエポキシ樹脂組成物で、素子を封止した電子部品装置。
Figure 2018070682
[2] The epoxy resin composition according to the above [1], further comprising (D) a phenol resin excluding the phenol compound represented by the structural formula (1) according to the above [1].
[3] The epoxy resin composition according to the above [1] or [2], further comprising (E) an inorganic filler.
[4] The epoxy resin composition according to the above [3], wherein the content of the (E) inorganic filler is 55 to 90% by volume with respect to the total amount of the epoxy resin composition.
[5] A cured epoxy resin obtained by curing the epoxy resin composition according to any one of [1] to [4].
[6] An electronic component device in which an element is sealed with the epoxy resin composition according to any one of [1] to [4].

本発明のエポキシ樹脂組成物は、硬化剤に構造式(1)で示されるフェノール化合物を用いることでエポキシ樹脂のスタッキングが形成されやすくなり、その結果、熱伝導性に優れる。このようなエポキシ樹脂組成物を用いて熱伝導性に優れるIC、LSI等の電子部品装置を提供することが可能となった。   In the epoxy resin composition of the present invention, stacking of the epoxy resin is easily formed by using the phenol compound represented by the structural formula (1) as the curing agent, and as a result, the thermal conductivity is excellent. Using such an epoxy resin composition, it has become possible to provide electronic component devices such as ICs and LSIs having excellent thermal conductivity.

[(A)式(1)で示されるフェノール化合物]
本発明で用いる(A)構造式(1)で示されるフェノール化合物は、ピロメリット酸二無水物(構造式(2))と4−アミノフェノール(構造式(3))とを反応させて得られる構造式(4)で示されるアミック酸、構造式(5)で示されるアミック酸、またはその両方の混合物をイミド反応させて合成して得ることができる。
[(A) Phenol compound represented by formula (1)]
The phenol compound represented by the structural formula (1) used in the present invention is obtained by reacting pyromellitic dianhydride (structural formula (2)) with 4-aminophenol (structural formula (3)). The amic acid represented by Structural Formula (4), the amic acid represented by Structural Formula (5), or a mixture of both can be synthesized by an imide reaction.

Figure 2018070682
Figure 2018070682

Figure 2018070682
Figure 2018070682

Figure 2018070682
Figure 2018070682

Figure 2018070682
Figure 2018070682

[構造式(4)と(5)で示されるアミック酸の合成]
ピロメリット酸二無水物(構造式(2))と4−アミノフェノール(構造式(3))との反応時に使用される溶剤としては特に限定されないが、例えば、N,N−ジメチルアセトアミド、N,N−ジエチルアセトアミド、N,N−ジメチルホルムアミド、N−メチル−2−ピロリドン、3−メトキシ−N,N−ジメチルプロピルアミド、3−エトキシ−N,N−ジメチルプロピルアミド、3−プロポキシ−N,N−ジメチルプロピルアミド、3−イソプロポキシ−N,N−ジメチルプロピルアミド、3−ブトキシ−N,N−ジメチルプロピルアミド、3−sec−ブトキシ−N,N−ジメチルプロピルアミド、3−tert−ブトキシ−N,N−ジメチルプロピルアミド、ヘキサメチルホスホルアミド、ジメチルスルホキシド、γ−ブチロラクトン、1,3−ジメチル−2−イミダゾリジノン、1,2−ジメトキシエタン−ビス(2−メトキシエチル)エーテル、テトラヒドロフラン、1,4−ジオキサン、ピコリン、ピリジン、アセトン、クロロホルム、トルエン、キシレン等の非プロトン性溶剤、及びフェノール、o−クレゾール、m−クレゾール、p−クレゾール、o−クロロフェノール、m−クロロフェノール、p−クロロフェノール等のプロトン性溶剤等が挙げられる。これらの溶剤は単独で又は2種類以上を組み合わせて使用してもよい。
[Synthesis of Amic Acid represented by Structural Formulas (4) and (5)]
Although it does not specifically limit as a solvent used at the time of reaction with pyromellitic dianhydride (Structural formula (2)) and 4-aminophenol (Structural formula (3)), For example, N, N-dimethylacetamide, N , N-diethylacetamide, N, N-dimethylformamide, N-methyl-2-pyrrolidone, 3-methoxy-N, N-dimethylpropylamide, 3-ethoxy-N, N-dimethylpropylamide, 3-propoxy-N , N-dimethylpropylamide, 3-isopropoxy-N, N-dimethylpropylamide, 3-butoxy-N, N-dimethylpropylamide, 3-sec-butoxy-N, N-dimethylpropylamide, 3-tert- Butoxy-N, N-dimethylpropylamide, hexamethylphosphoramide, dimethyl sulfoxide, γ-butyro T, 1,3-dimethyl-2-imidazolidinone, 1,2-dimethoxyethane-bis (2-methoxyethyl) ether, tetrahydrofuran, 1,4-dioxane, picoline, pyridine, acetone, chloroform, toluene, xylene, etc. And aprotic solvents such as phenol, o-cresol, m-cresol, p-cresol, o-chlorophenol, m-chlorophenol, and p-chlorophenol. These solvents may be used alone or in combination of two or more.

ピロメリット酸二無水物(構造式(2))と4−アミノフェノール(構造式(3))の配合割合は物質量比(モル比)でピロメリット酸二無水物:4−アミノフェノール=1:3が好ましく、反応終了時の見極めと合成されるアミック酸(構造式(4)と(5))の精製のしやすさの観点から1:2であることがさらに好ましい。   The proportion of pyromellitic dianhydride (structural formula (2)) and 4-aminophenol (structural formula (3)) is a mass ratio (molar ratio) of pyromellitic dianhydride: 4-aminophenol = 1. : 3 is preferable, and 1: 2 is more preferable from the viewpoint of determination at the end of the reaction and ease of purification of the synthesized amic acid (Structural Formulas (4) and (5)).

反応温度は、−20〜100℃、好ましくは20〜60℃である。薄層クロマトグラフィー(TLC)、または核磁気共鳴測定(NMR測定)等で原料の4−アミノフェノールが検出されなくなったときを反応終了時間とした。   The reaction temperature is -20 to 100 ° C, preferably 20 to 60 ° C. The time when the starting 4-aminophenol was not detected by thin layer chromatography (TLC), nuclear magnetic resonance measurement (NMR measurement) or the like was defined as the reaction completion time.

反応終了後の生成された構造式(4)と(5)で示されるアミック酸の反応溶液は、そのまま、または希釈して、後述の構造式(1)のフェノール化合物を得るためのイミド化反応に使用することができる。あるいは反応溶液から沈殿回収した構造式(4)と(5)のポリアミック酸を適当な溶剤に再溶解させて、構造式(1)のフェノール化合物を得るためのイミド化反応に使用することができる。希釈及び再溶解に用いる溶剤は、得られたポリアミック酸を溶解させるものであれば特に限定されないが、例えば、m−クレゾール、2−ピロリドン、N−メチル−2−ピロリドン、N−エチル−2−ピロリドン、N−ビニル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、3−メトキシ−N,N−ジメチルプロピルアミド、3−エトキシ−N,N−ジメチルプロピルアミド、3−プロポキシ−N,N−ジメチルプロピルアミド、3−イソプロポキシ−N,N−ジメチルプロピルアミド、3−ブトキシ−N,N−ジメチルプロピルアミド、3−sec−ブトキシ−N,N−ジメチルプロピルアミド、3−tert−ブトキシ−N,N−ジメチルプロピルアミド、γ−ブチロラクトン等を挙げることができる。これらの溶剤は、単独で又は2種以上を組み合わせて使用してもよい。   The imidation reaction for obtaining the phenol compound of Structural formula (1) described later as it is or after diluting the reaction solution of the amic acid represented by Structural Formulas (4) and (5) generated after completion of the reaction Can be used for Alternatively, the polyamic acids of the structural formulas (4) and (5) collected by precipitation from the reaction solution can be redissolved in an appropriate solvent and used in an imidation reaction to obtain a phenol compound of the structural formula (1). . The solvent used for dilution and re-dissolution is not particularly limited as long as it can dissolve the obtained polyamic acid. For example, m-cresol, 2-pyrrolidone, N-methyl-2-pyrrolidone, N-ethyl-2- Pyrrolidone, N-vinyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, 3-methoxy-N, N-dimethylpropylamide, 3-ethoxy-N, N-dimethylpropylamide, 3- Propoxy-N, N-dimethylpropylamide, 3-isopropoxy-N, N-dimethylpropylamide, 3-butoxy-N, N-dimethylpropylamide, 3-sec-butoxy-N, N-dimethylpropylamide, 3 -Tert-butoxy-N, N-dimethylpropylamide, γ-butyrolactone, etc. . These solvents may be used alone or in combination of two or more.

[アミック酸を脱水閉環して構造式(1)で示されるフェノール化合物の合成]
上述のように合成したアミック酸(構造式(4)と(5))を、加熱により脱水閉環(熱イミド化)して構造式(1)で示されるフェノール化合物を得ることができる。なお、この際、アミック酸を溶剤中でイミドに転化させる。また、公知の脱水閉環触媒を使用して化学的に閉環する方法も採用することができる。加熱による方法は、100〜500℃、好ましくは120〜450℃の任意の温度で行うことができる。化学的に閉環する方法は、例えば、ピリジンやトリエチルアミン等と、無水酢酸等との存在下で行うことができ、この際の温度は、−20〜200℃の任意の温度を選択することができる。
[Synthesis of phenolic compound represented by structural formula (1) by dehydrating and ring-closing an amic acid]
The phenolic compound represented by the structural formula (1) can be obtained by dehydrating and ring-closing (thermal imidation) the amic acid (structural formulas (4) and (5)) synthesized as described above by heating. At this time, the amic acid is converted into an imide in a solvent. Moreover, the method of chemically ring-closing using a well-known dehydration ring-closing catalyst is also employable. The method by heating can be performed at an arbitrary temperature of 100 to 500 ° C, preferably 120 to 450 ° C. The method of chemically cyclizing can be performed, for example, in the presence of pyridine, triethylamine, and the like, and acetic anhydride, and the temperature at this time can be selected from -20 to 200 ° C. .

アミック酸の加熱により脱水閉環反応では、反応溶剤とは別に生成される水を効率よく除去できるように、共沸溶剤を用いてもよい。例えば、トルエン、キシレン、メシチレン、クメン等が挙げられる。   In the dehydration ring closure reaction by heating the amic acid, an azeotropic solvent may be used so that water generated separately from the reaction solvent can be efficiently removed. For example, toluene, xylene, mesitylene, cumene and the like can be mentioned.

薄層クロマトグラフィー(TLC)、または核磁気共鳴測定(NMR測定)等で原料のアミック酸(構造式(4)と(5))が検出されなくなったとき、または反応開始から24時間後を反応終了時間とした。   When the raw material amic acid (structural formulas (4) and (5)) is no longer detected by thin layer chromatography (TLC) or nuclear magnetic resonance measurement (NMR measurement) or after 24 hours from the start of the reaction End time.

本発明では、得られた構造式(1)のフェノール化合物を反応溶液ごとそのまま、又は、希釈して樹脂組成物として使用することができ、或いは反応溶液にメタノール、エタノール、イソプロピルアルコールなどの貧溶媒を加えて沈殿回収したフェノール化合物を適当な溶剤に再溶解させてから、樹脂組成物として使用することができる。希釈及び再溶解に用いる溶剤は、得られたフェノール化合物を溶解させるものであれば特に限定されないが、例えば、m−クレゾール、2−ピロリドン、N−メチル−2−ピロリドン、N−エチル−2−ピロリドン、N−ビニル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、3−メトキシ−N,N−ジメチルプロピルアミド、3−エトキシ−N,N−ジメチルプロピルアミド、3−プロポキシ−N,N−ジメチルプロピルアミド、3−イソプロポキシ−N,N−ジメチルプロピルアミド、3−ブトキシ−N,N−ジメチルプロピルアミド、3−sec−ブトキシ−N,N−ジメチルプロピルアミド、3−tert−ブトキシ−N,N−ジメチルプロピルアミド、γ−ブチロラクトン等が挙げられる。これらの溶剤は、単独で又は2種以上を組み合わせて使用してもよい。   In the present invention, the obtained phenol compound of the structural formula (1) can be used as a resin composition as it is or diluted with the reaction solution, or a poor solvent such as methanol, ethanol, isopropyl alcohol or the like in the reaction solution. The phenol compound precipitated and recovered by re-dissolving can be redissolved in an appropriate solvent and used as a resin composition. The solvent used for dilution and re-dissolution is not particularly limited as long as it dissolves the obtained phenol compound. For example, m-cresol, 2-pyrrolidone, N-methyl-2-pyrrolidone, N-ethyl-2- Pyrrolidone, N-vinyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, 3-methoxy-N, N-dimethylpropylamide, 3-ethoxy-N, N-dimethylpropylamide, 3- Propoxy-N, N-dimethylpropylamide, 3-isopropoxy-N, N-dimethylpropylamide, 3-butoxy-N, N-dimethylpropylamide, 3-sec-butoxy-N, N-dimethylpropylamide, 3 -Tert-butoxy-N, N-dimethylpropylamide, γ-butyrolactone and the like. These solvents may be used alone or in combination of two or more.

[エポキシ樹脂組成物]
本発明のエポキシ樹脂組成物は、(A)構造式(1)で示されるフェノール化合物と(B)エポキシ樹脂、(C)硬化促進剤を含有する。
[Epoxy resin composition]
The epoxy resin composition of the present invention contains (A) a phenol compound represented by the structural formula (1), (B) an epoxy resin, and (C) a curing accelerator.

Figure 2018070682
Figure 2018070682

[(B)エポキシ樹脂]
本発明で用いる(B)エポキシ樹脂は、1分子中に2個以上のエポキシ基を有するエポキシ樹脂を含む。1分子中に2個以上のエポキシ基を有するエポキシ樹脂としては、ビフェニレン型エポキシ樹脂、スチルベン型エポキシ樹脂、硫黄原子含有エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ナフタレン型エポキシ樹脂、サリチルアルデヒド型エポキシ樹脂、ナフトール類とフェノール類との共重合型エポキシ樹脂、アラルキル型エポキシ樹脂、ジフェニルメタン型エポキシ樹脂及びトリフェニルメタン型エポキシ樹脂からなる群より選択される少なくとも1種が挙げられる。ここで挙げたエポキシ樹脂を、特定エポキシ樹脂ともいう。特定エポキシ樹脂は、1種単独で用いても2種以上を組み合わせて用いてもよい。
[(B) Epoxy resin]
The (B) epoxy resin used in the present invention includes an epoxy resin having two or more epoxy groups in one molecule. Examples of epoxy resins having two or more epoxy groups in one molecule include biphenylene type epoxy resins, stilbene type epoxy resins, sulfur atom-containing epoxy resins, dicyclopentadiene type epoxy resins, naphthalene type epoxy resins, and salicylaldehyde type epoxy resins. And at least one selected from the group consisting of copolymerized epoxy resins of naphthols and phenols, aralkyl-type epoxy resins, diphenylmethane-type epoxy resins, and triphenylmethane-type epoxy resins. The epoxy resin mentioned here is also called a specific epoxy resin. A specific epoxy resin may be used individually by 1 type, or may be used in combination of 2 or more type.

(B)エポキシ樹脂は、特定エポキシ樹脂以外のその他のエポキシ樹脂を含有してもよい。その他のエポキシ樹脂としては、当該分野で通常用いられるエポキシ樹脂を挙げることができ、例えば、柔軟性や接着性を向上させるために官能基や骨格を変性したエポキシ−シリカハイブリット樹脂や柔軟強靭性液状エポキシ樹脂を挙げることができる。   (B) The epoxy resin may contain other epoxy resins other than the specific epoxy resin. Examples of other epoxy resins include epoxy resins that are commonly used in the field. For example, an epoxy-silica hybrid resin having a functional group or a skeleton modified to improve flexibility and adhesiveness, or a flexible tough liquid. An epoxy resin can be mentioned.

(B)エポキシ樹脂として特定エポキシ樹脂を用いる場合、エポキシ樹脂全量中の特定エポキシ樹脂の総含有率は、特定エポキシ樹脂のそれぞれの性能を発揮する観点から、60質量%以上であることが好ましく、75質量%以上であることがより好ましく、90質量%以上であることが更に好ましい。   (B) When using a specific epoxy resin as an epoxy resin, the total content of the specific epoxy resin in the total amount of the epoxy resin is preferably 60% by mass or more from the viewpoint of exhibiting the respective performances of the specific epoxy resin. It is more preferably 75% by mass or more, and further preferably 90% by mass or more.

前記エポキシ樹脂のエポキシ当量は特に制限されない。中でも成形性、耐リフロー性、電気的信頼等の各種特性バランスの観点から、エポキシ当量は、100g/eq〜1000g/eqであることが好ましく、150g/eq〜500g/eqであることがより好ましい。   The epoxy equivalent of the epoxy resin is not particularly limited. Among these, from the viewpoint of balance of various properties such as moldability, reflow resistance, and electrical reliability, the epoxy equivalent is preferably 100 g / eq to 1000 g / eq, and more preferably 150 g / eq to 500 g / eq. .

前記エポキシ樹脂の軟化点又は融点は特に制限されない。中でも成形性、耐リフロー性の観点から、軟化点又は融点は、40℃〜180℃であることが好ましく、硬化物作製における取扱い性の観点からは50℃〜150℃であることがより好ましい。   The softening point or melting point of the epoxy resin is not particularly limited. Among these, from the viewpoint of moldability and reflow resistance, the softening point or melting point is preferably 40 ° C. to 180 ° C., and more preferably 50 ° C. to 150 ° C. from the viewpoint of handleability in producing a cured product.

熱伝導性向上の観点から、メソゲン骨格を有するエポキシ樹脂が好ましい。メソゲン骨格として、例えばビフェニル骨格、ナフタレン骨格、アントラセン骨格、ベンゾフェノン、スチルベン骨格等が挙げられる。   From the viewpoint of improving thermal conductivity, an epoxy resin having a mesogen skeleton is preferable. Examples of the mesogenic skeleton include a biphenyl skeleton, a naphthalene skeleton, an anthracene skeleton, a benzophenone, and a stilbene skeleton.

[(A)構造式(1)で示されるフェノール化合物]
本発明のエポキシ樹脂組成物の硬化剤として、(A)構造式(1)で示されるフェノール化合物を用いる。
(A)構造式(1)で示されるフェノール化合物を特定フェノール硬化剤ともいう。特定フェノール硬化剤は1種を単独で用いても2種以上を組み合わせて用いてもよい。
[(A) Phenol compound represented by structural formula (1)]
As the curing agent for the epoxy resin composition of the present invention, (A) a phenol compound represented by the structural formula (1) is used.
(A) The phenol compound represented by the structural formula (1) is also referred to as a specific phenol curing agent. A specific phenol hardening | curing agent may be used individually by 1 type, or may be used in combination of 2 or more type.

[(D)フェノール樹脂((A)構造式(1)で示されるフェノール化合物を除く)]
特定フェノール硬化剤として用いる(A)構造式(1)で示されるフェノール化合物以外の(D)フェノール樹脂としては、1分子中に2個以上のフェノール性水酸基を有するフェノール樹脂であればよく、特に限定されるものではない。例えば、ビフェニル型フェノール樹脂、アラルキル型フェノール樹脂、ジシクロペンタジエン型フェノール樹脂、ベンズアルデヒド型フェノール樹脂とアラルキル型フェノール樹脂との共重合型樹脂、トリフェニルメタン型フェノール樹脂及びノボラック型フェノール樹脂等が挙げられる。
[(D) Phenol resin ((A) excluding phenol compound represented by structural formula (1))]
(A) The phenolic resin other than the phenolic compound represented by the structural formula (1) used as the specific phenol curing agent may be any phenolic resin having two or more phenolic hydroxyl groups in one molecule. It is not limited. For example, biphenyl type phenol resin, aralkyl type phenol resin, dicyclopentadiene type phenol resin, copolymer type resin of benzaldehyde type phenol resin and aralkyl type phenol resin, triphenylmethane type phenol resin, novolac type phenol resin and the like can be mentioned. .

(D)フェノール樹脂と構造式(1)で示されるフェノール化合物(特定フェノール樹脂)を用いる場合、特定フェノール樹脂の性能を発揮する観点から、フェノール樹脂全量中の特定フェノール樹脂の総含有率は、60質量%以上であることが好ましく、75質量%以上であることがより好ましく、90質量%以上であることが更に好ましい。   (D) When using the phenol resin and the phenol compound (specific phenol resin) represented by the structural formula (1), from the viewpoint of exhibiting the performance of the specific phenol resin, the total content of the specific phenol resin in the total amount of the phenol resin is: It is preferably 60% by mass or more, more preferably 75% by mass or more, and still more preferably 90% by mass or more.

(A)構造式(1)で示されるフェノール化合物と(B)エポキシ樹脂との含有比率は、エポキシ樹脂のエポキシ当量に対するフェノール樹脂の水酸基当量の比率(水酸基当量/エポキシ当量)が0.5〜2の範囲に設定されることが好ましく、より好ましくは0.7〜1.5、更に好ましくは0.8〜1.3である。前記比率が0.5以上であると、エポキシ樹脂の硬化が充分となり、硬化物の耐熱性、耐湿性、及び電気特性に優れる傾向がある。また、前記比率が2以下であると、硬化樹脂中に残存するフェノール性水酸基の量が抑えられ、電気特性及び耐湿性に優れる傾向がある。   (A) The content ratio of the phenol compound represented by Structural Formula (1) and (B) the epoxy resin is such that the ratio of the hydroxyl equivalent of the phenol resin to the epoxy equivalent of the epoxy resin (hydroxyl equivalent / epoxy equivalent) is 0.5 to 0.5. It is preferable to set in the range of 2, more preferably 0.7 to 1.5, and still more preferably 0.8 to 1.3. When the ratio is 0.5 or more, the epoxy resin is sufficiently cured and the cured product tends to have excellent heat resistance, moisture resistance, and electrical characteristics. Moreover, when the ratio is 2 or less, the amount of phenolic hydroxyl groups remaining in the cured resin is suppressed, and the electrical characteristics and moisture resistance tend to be excellent.

[(C)硬化促進剤]
硬化促進剤としては、特に制限はなく、例えば、1,8−ジアザ−ビシクロ(5,4,0)ウンデセン−7、1,5−ジアザ−ビシクロ(4,3,0)ノネン、5,6−ジブチルアミノ−1,8−ジアザ−ビシクロ(5,4,0)ウンデセン−7、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の3級アミン類及びこれらの誘導体、2−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール等のイミダゾール類及びこれらの誘導体、トリブチルホスフィン、メチルジフェニルホスフィン、トリフェニルホスフィン、ジフェニルホスフィン、フェニルホスフィン等の有機ホスフィン類及びこれらのホスフィン類に無水マレイン酸、ベンゾキノン、ジアゾフェニルメタン等のπ結合をもつ化合物を付加してなる分子内分極を有するリン化合物、テトラフェニルホスホニウムテトラフェニルボレート、トリフェニルホスフィンテトラフェニルボレート、2−エチル−4−メチルイミダゾールテトラフェニルボレート、N−メチルテトラフェニルホスホニウム−テトラフェニルボレート、トリフェニルホスフィンとベンゾキノンの付加物、トリパラトリルフォスフィンとベンゾキノンの付加物、トリフェニルホスホニウム−トリフェニルボラン等が挙げられる。
[(C) Curing accelerator]
The curing accelerator is not particularly limited, and examples thereof include 1,8-diaza-bicyclo (5,4,0) undecene-7, 1,5-diaza-bicyclo (4,3,0) nonene, and 5,6. -Tertiary amines such as dibutylamino-1,8-diaza-bicyclo (5,4,0) undecene-7, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol, and the like Derivatives, imidazoles such as 2-methylimidazole, 2-phenylimidazole and 2-phenyl-4-methylimidazole and derivatives thereof, organic phosphines such as tributylphosphine, methyldiphenylphosphine, triphenylphosphine, diphenylphosphine and phenylphosphine And these maleated phosphines , Benzoquinone, diazophenylmethane and the like, phosphorus compounds having intramolecular polarization, tetraphenylphosphonium tetraphenylborate, triphenylphosphinetetraphenylborate, 2-ethyl-4-methylimidazoletetraphenyl Examples thereof include borate, N-methyltetraphenylphosphonium-tetraphenylborate, an adduct of triphenylphosphine and benzoquinone, an adduct of tripalatolylphosphine and benzoquinone, and triphenylphosphonium-triphenylborane.

本発明のエポキシ樹脂組成物における、(C)硬化促進剤の配合量は、硬化促進効果が達成できれば特に制限はない。エポキシ樹脂組成物の吸湿時の硬化性及び流動性における改善の観点からは、(B)エポキシ樹脂の総量100質量部に対し、(C)硬化促進剤の総量が0.1質量部〜30質量部であることが好ましく、1質量部〜15質量部であることがより好ましい。硬化促進剤の含有量が0.1質量部以上であると、短時間で良好に硬化する傾向にあり、30質量部以下であると、硬化速度が速すぎず良好な成形品が得られる傾向にある。   The blending amount of the (C) curing accelerator in the epoxy resin composition of the present invention is not particularly limited as long as a curing acceleration effect can be achieved. From the viewpoint of improving the curability and fluidity at the time of moisture absorption of the epoxy resin composition, the total amount of (C) the curing accelerator is 0.1 to 30 parts by mass with respect to 100 parts by mass of the total (B) epoxy resin. Part is preferable, and 1 part by mass to 15 parts by mass is more preferable. When the content of the curing accelerator is 0.1 parts by mass or more, the composition tends to be cured well in a short time, and when it is 30 parts by mass or less, a curing rate is not too high and a good molded product tends to be obtained. It is in.

[(E)無機充填剤]
エポキシ樹脂組成物は、(E)無機充填剤を含有すると好ましい。無機充填剤を含有することで、硬化物の熱線膨張係数、熱伝導率、弾性率等の向上を図ることができる。
[(E) Inorganic filler]
The epoxy resin composition preferably contains (E) an inorganic filler. By containing the inorganic filler, it is possible to improve the thermal linear expansion coefficient, thermal conductivity, elastic modulus and the like of the cured product.

無機充填剤は、一般に封止用成形材料に用いられているものを適宜選択して使用することができ、特に限定されない。無機充填剤としては、溶融シリカ、結晶シリカ、ガラス、アルミナ、炭酸カルシウム、ケイ酸ジルコニウム、酸化マグネシウム、ケイ酸カルシウム、窒化珪素、窒化アルミニウム、窒化ホウ素、炭化ケイ素、工業用ダイヤモンド、ベリリア、ジルコニア、ジルコン、フォステライト、ステアタイト、スピネル、ムライト、チタニア、タルク、クレー、マイカ等の粒子;これらを球形化したビーズ等が挙げられる。   As the inorganic filler, those generally used for sealing molding materials can be appropriately selected and used, and are not particularly limited. Inorganic fillers include fused silica, crystalline silica, glass, alumina, calcium carbonate, zirconium silicate, magnesium oxide, calcium silicate, silicon nitride, aluminum nitride, boron nitride, silicon carbide, industrial diamond, beryllia, zirconia, Particles such as zircon, fosterite, steatite, spinel, mullite, titania, talc, clay, mica; beads formed by spheroidizing these may be mentioned.

また、難燃効果のある無機充填剤を用いてもよい。難燃効果のある無機充填剤としては、水酸化アルミニウム、水酸化マグネシウム、マグネシウムと亜鉛との複合水酸化物等の複合金属水酸化物、硼酸亜鉛等の粒子が挙げられる。なかでも、線膨張係数低減の観点からは溶融シリカ粒子が、高熱伝導性の観点からはアルミナ粒子や酸化マグネシウムが好ましい。これらの無機充填剤は1種を単独で用いても2種以上を組み合わせて用いてもよい。   Moreover, you may use the inorganic filler which has a flame-retardant effect. Examples of the inorganic filler having a flame retardant effect include aluminum hydroxide, magnesium hydroxide, composite metal hydroxide such as composite hydroxide of magnesium and zinc, and particles such as zinc borate. Among these, fused silica particles are preferable from the viewpoint of reducing the linear expansion coefficient, and alumina particles and magnesium oxide are preferable from the viewpoint of high thermal conductivity. These inorganic fillers may be used alone or in combination of two or more.

無機充填剤の含有率は、本発明の効果が得られれば特に制限はなく、樹脂組成物の全量に対して55体積%〜90体積%の範囲であることが好ましい。無機充填剤の含有率が55体積%以上であると、硬化物の熱線膨張係数、熱伝導率、弾性率等に優れる傾向があり、90体積%以下であると、樹脂組成物の粘度の上昇が抑えられて流動性に優れ、パッケージの成形が容易になる傾向がある。   The content of the inorganic filler is not particularly limited as long as the effect of the present invention is obtained, and is preferably in the range of 55% by volume to 90% by volume with respect to the total amount of the resin composition. If the content of the inorganic filler is 55% by volume or more, the cured product tends to have excellent thermal linear expansion coefficient, thermal conductivity, elastic modulus and the like, and if it is 90% by volume or less, the viscosity of the resin composition increases. Is suppressed, the fluidity is excellent, and the package tends to be easily molded.

無機充填剤の平均粒子径は、0.1μm〜80μmが好ましく、0.3μm〜50μmがより好ましい。無機充填剤の平均粒子径が0.1μm以上であると、樹脂組成物の粘度の上昇が抑えられやすく、80μm以下であると、樹脂組成物と無機充填剤との混合性が向上し、硬化によって得られるパッケージが均質化する傾向があり、特性のばらつきが抑えられ、狭い領域への充填性が向上する傾向がある。またその粒径は乾式の粒度分布系もしくは、水または有機溶媒中に無機充填剤を分散したスラリーを湿式の粒度分布測定装置を使用して測定できる。   The average particle size of the inorganic filler is preferably 0.1 μm to 80 μm, and more preferably 0.3 μm to 50 μm. When the average particle size of the inorganic filler is 0.1 μm or more, an increase in the viscosity of the resin composition is easily suppressed, and when the average particle size is 80 μm or less, the mixing property between the resin composition and the inorganic filler is improved and cured. The package obtained by the above tends to be uniform, variation in characteristics is suppressed, and the filling property to a narrow region tends to be improved. The particle size can be measured using a dry particle size distribution system or a slurry in which an inorganic filler is dispersed in water or an organic solvent using a wet particle size distribution measuring device.

流動性の観点からは、無機充填剤の粒子形状は角形より球形が好ましく、無機充填剤の粒度分布は広範囲に分布したものが好ましい。例えば、無機充填剤を75体積%以上含有する場合、その70質量%以上を球状粒子とし、この球状粒子の粒径は0.1μm〜80μmという広範囲に分布したものが好ましい。このような無機充填剤は最密充填構造を形成しやすいため、無機充填剤の含有率を増加させても樹脂組成物の粘度上昇が少なく、流動性に優れた樹脂組成物を得ることができる。   From the viewpoint of fluidity, the particle shape of the inorganic filler is preferably spherical rather than rectangular, and the particle size distribution of the inorganic filler is preferably distributed over a wide range. For example, when the inorganic filler is contained in an amount of 75% by volume or more, 70% by mass or more of the particles are spherical particles, and the particle size of the spherical particles is preferably distributed in a wide range of 0.1 μm to 80 μm. Since such an inorganic filler can easily form a close-packed structure, even if the content of the inorganic filler is increased, the viscosity of the resin composition is small and a resin composition excellent in fluidity can be obtained. .

[各種添加剤]
エポキシ樹脂組成物は、上述の成分に加えて、以下に例示するカップリング剤、イオン交換体、離型剤、応力緩和剤、難燃剤、着色剤等の各種添加剤を更に含有してもよい。なお、樹脂組成物は、以下に例示する添加剤以外にも、必要に応じて当技術分野で周知の各種添加剤を含有してもよい。
[Various additives]
In addition to the above-described components, the epoxy resin composition may further contain various additives such as coupling agents, ion exchangers, mold release agents, stress relaxation agents, flame retardants, and colorants exemplified below. . In addition to the additives exemplified below, the resin composition may contain various additives well known in the art as needed.

(カップリング剤)
本発明の樹脂組成物は、樹脂成分と無機充填剤との接着性を高めるために、必要に応じてカップリング剤を含有してもよい。カップリング剤としては、エポキシシラン、メルカプトシラン、アミノシラン、アルキルシラン、ウレイドシラン、ビニルシラン、酸無水物シラン等の各種シラン系化合物;チタン系化合物;アルミニウムキレート化合物;アルミニウム/ジルコニウム系化合物;などの公知のカップリング剤が挙げられる。
(Coupling agent)
The resin composition of the present invention may contain a coupling agent as necessary in order to enhance the adhesion between the resin component and the inorganic filler. As coupling agents, various known silane compounds such as epoxy silane, mercaptosilane, aminosilane, alkyl silane, ureido silane, vinyl silane, and acid silane; titanium compounds; aluminum chelate compounds; aluminum / zirconium compounds; Of coupling agents.

樹脂組成物がカップリング剤を含有する場合、樹脂組成物中のカップリング剤の含有率は、無機充填剤に対して0.05質量%〜5質量%であることが好ましく、0.1質量%〜2.5質量%がより好ましい。前記含有率が0.05質量%以上であると、樹脂成分と無機充填剤との接着性がより向上する傾向があり、5質量%以下であると、パッケージの成形性がより向上する傾向がある。   When the resin composition contains a coupling agent, the content of the coupling agent in the resin composition is preferably 0.05% by mass to 5% by mass with respect to the inorganic filler, and 0.1% by mass. % To 2.5% by mass is more preferable. When the content is 0.05% by mass or more, the adhesion between the resin component and the inorganic filler tends to be further improved, and when it is 5% by mass or less, the moldability of the package tends to be further improved. is there.

(イオン交換体)
本発明のエポキシ樹脂組成物は、必要に応じてイオン交換体を含有してもよい。特に、エポキシ樹脂組成物を封止用成形材料として用いる場合には、封止される素子を備える電子部品装置の耐湿性及び高温放置特性を向上させる観点から、イオン交換体を含有することが好ましい。イオン交換体としては特に制限はなく、従来公知のものを用いることができる。具体的には、ハイドロタルサイト化合物、並びにマグネシウム、アルミニウム、チタン、ジルコニウム及びビスマスからなる群より選ばれる少なくとも1種の元素の含水酸化物等が挙げられる。これらのイオン交換体は、1種を単独で、又は2種以上を組み合わせて用いることができる。中でも、下記一般式(A)で示されるハイドロタルサイトが好ましい。
(Ion exchanger)
The epoxy resin composition of the present invention may contain an ion exchanger as necessary. In particular, when the epoxy resin composition is used as a molding material for sealing, it is preferable to contain an ion exchanger from the viewpoint of improving the moisture resistance and high temperature storage characteristics of an electronic component device including an element to be sealed. . There is no restriction | limiting in particular as an ion exchanger, A conventionally well-known thing can be used. Specific examples include hydrotalcite compounds and hydrous oxides of at least one element selected from the group consisting of magnesium, aluminum, titanium, zirconium and bismuth. These ion exchangers can be used singly or in combination of two or more. Especially, the hydrotalcite shown by the following general formula (A) is preferable.

Mg1−XAl(OH)(COX/2・mHO … (A)
(0<X≦0.5、mは正の数)
Mg 1-X Al X (OH) 2 (CO 3 ) X / 2 · mH 2 O (A)
(0 <X ≦ 0.5, m is a positive number)

エポキシ樹脂組成物がイオン交換体を含有する場合、その含有率は、ハロゲンイオン等のイオンを捕捉するのに充分な量であれば特に制限はない。例えば、(B)エポキシ樹脂に対して0.1質量%〜30質量%であることが好ましく、1質量%〜5質量%であることがより好ましい。   When the epoxy resin composition contains an ion exchanger, the content is not particularly limited as long as it is an amount sufficient to capture ions such as halogen ions. For example, it is preferable that it is 0.1 mass%-30 mass% with respect to (B) epoxy resin, and it is more preferable that it is 1 mass%-5 mass%.

(離型剤)
本発明のエポキシ樹脂組成物は、成形時における金型との良好な離型性を得る観点から、離型剤を含有してもよい。離型剤としては特に制限はなく、従来公知のものを用いることができる。具体的には、カルナバワックス、モンタン酸、ステアリン酸等の高級脂肪酸、高級脂肪酸金属塩、モンタン酸エステル等のエステル系ワックス、酸化ポリエチレン、非酸化ポリエチレン等のポリオレフィン系ワックス等が挙げられる。これらの離型剤は1種を単独で用いても2種以上を組み合わせて用いてもよい。中でも、カルナバワックスが好ましい。ポリオレフィン系ワックスとしては、市販品ではヘキスト社製のH4、PE、PEDシリーズ等の数平均分子量が500〜10000程度の低分子量ポリエチレン等が挙げられる。
(Release agent)
The epoxy resin composition of the present invention may contain a release agent from the viewpoint of obtaining good releasability from the mold during molding. There is no restriction | limiting in particular as a mold release agent, A conventionally well-known thing can be used. Specific examples include higher fatty acids such as carnauba wax, montanic acid and stearic acid, higher fatty acid metal salts, ester waxes such as montanic acid esters, polyolefin waxes such as oxidized polyethylene and non-oxidized polyethylene. These release agents may be used alone or in combination of two or more. Of these, carnauba wax is preferred. Examples of the polyolefin wax include low molecular weight polyethylene having a number average molecular weight of about 500 to 10,000 such as H4, PE, and PED series manufactured by Hoechst.

エポキシ樹脂組成物が離型剤を含有する場合、その含有率は、(B)エポキシ樹脂の総量に対して0.01質量%〜10質量%が好ましく、0.1質量%〜5質量%がより好ましい。離型剤の含有率が0.01質量%以上であると、離型性が充分に得られる傾向があり、10質量%以下であると、より良好な接着性が得られる傾向がある。   When the epoxy resin composition contains a release agent, the content is preferably 0.01% by mass to 10% by mass, and 0.1% by mass to 5% by mass with respect to the total amount of (B) epoxy resin. More preferred. If the content of the release agent is 0.01% by mass or more, sufficient release property tends to be obtained, and if it is 10% by mass or less, better adhesiveness tends to be obtained.

(応力緩和剤)
本発明のエポキシ樹脂組成物は、シリコーンオイル、シリコーンゴム粉末等の応力緩和剤を必要に応じて含有してもよい。応力緩和剤を含有することにより、パッケージの反り変形及びパッケージクラックの発生をより低減させることができる。応力緩和剤としては、一般に使用されている公知の可とう剤(応力緩和剤)であれば特に限定されるものではない。具体的には、シリコーン系、スチレン系、オレフィン系、ウレタン系、ポリエステル系、ポリエーテル系、ポリアミド系、ポリブタジエン系等の熱可塑性エラストマー、NR(天然ゴム)、NBR(アクリロニトリル−ブタジエンゴム)、アクリルゴム、ウレタンゴム、シリコーンパウダー等のゴム粒子、メタクリル酸メチル−スチレン−ブタジエン共重合体(MBS)、メタクリル酸メチル−シリコーン共重合体、メタクリル酸メチル−アクリル酸ブチル共重合体等のコア−シェル構造を有するゴム粒子等が挙げられる。これらの可とう剤は、1種を単独で用いても2種以上組み合わせて用いてもよい。中でも、シリコーン系可とう剤が好ましい。シリコーン系可とう剤としては、エポキシ基を有するもの、アミノ基を有するもの、これらをポリエーテル変性したもの等が挙げられる。
(Stress relaxation agent)
The epoxy resin composition of the present invention may contain a stress relaxation agent such as silicone oil or silicone rubber powder as necessary. By containing the stress relaxation agent, warpage deformation of the package and generation of package cracks can be further reduced. As a stress relaxation agent, if it is a well-known flexible agent (stress relaxation agent) generally used, it will not specifically limit. Specifically, silicone-based, styrene-based, olefin-based, urethane-based, polyester-based, polyether-based, polyamide-based, polybutadiene-based thermoplastic elastomers, NR (natural rubber), NBR (acrylonitrile-butadiene rubber), acrylic Rubber particles such as rubber, urethane rubber and silicone powder, core-shell such as methyl methacrylate-styrene-butadiene copolymer (MBS), methyl methacrylate-silicone copolymer, methyl methacrylate-butyl acrylate copolymer Examples thereof include rubber particles having a structure. These flexible agents may be used alone or in combination of two or more. Of these, silicone-based flexible agents are preferred. Examples of the silicone-based flexible agent include those having an epoxy group, those having an amino group, and those obtained by modifying these with a polyether.

(難燃剤)
本発明のエポキシ樹脂組成物は、難燃性を付与する観点から、必要に応じて難燃剤を含有してもよい。難燃剤としては特に制限はなく、一般に使用されている公知の難燃剤から適宜選択できる。具体的には、ハロゲン原子、アンチモン原子、窒素原子又はリン原子を含む公知の有機若しくは無機の化合物、金属水酸化物等が挙げられる。これらの難燃剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。エポキシ樹脂組成物が難燃剤を含有する場合、その含有率は、難燃効果が達成されれば特に制限はない。例えば、(B)エポキシ樹脂の総量に対して1質量%〜30質量%が好ましく、2質量%〜15質量%がより好ましい。
(Flame retardants)
The epoxy resin composition of the present invention may contain a flame retardant as necessary from the viewpoint of imparting flame retardancy. There is no restriction | limiting in particular as a flame retardant, It can select suitably from the well-known flame retardant generally used. Specific examples include known organic or inorganic compounds containing a halogen atom, antimony atom, nitrogen atom or phosphorus atom, metal hydroxides, and the like. These flame retardants may be used alone or in combination of two or more. When the epoxy resin composition contains a flame retardant, the content is not particularly limited as long as the flame retardant effect is achieved. For example, 1 mass%-30 mass% are preferable with respect to the total amount of (B) epoxy resin, and 2 mass%-15 mass% are more preferable.

(着色剤)
本発明のエポキシ樹脂組成物は、必要に応じて着色剤を更に含有してもよい。着色剤としては、カーボンブラック、有機染料、有機顔料、酸化チタン、ピッチ、鉛丹、ベンガラ等の公知の着色剤を挙げることができる。着色剤の含有量は目的等に応じて適宜選択できる。
(Coloring agent)
The epoxy resin composition of the present invention may further contain a colorant as required. Examples of the colorant include known colorants such as carbon black, organic dyes, organic pigments, titanium oxide, pitch, red lead, and bengara. The content of the colorant can be appropriately selected according to the purpose and the like.

[エポキシ樹脂組成物の調製方法]
エポキシ樹脂組成物の調製方法は特に制限されず、各種成分を充分に分散混合できるのであれば、いかなる手法を用いても調製できる。一般的な手法としては、所定の配合量の成分をミキサー等によって充分混合した後、ミキシングロール、押出機等によって溶融混練し、冷却し、粉砕する方法を挙げることができる。より具体的には、例えば、上述した成分の所定量を均一に撹拌して混合し、予め70℃〜140℃に加熱してあるニーダー、ロール、エクストルーダー等で混練し、冷却し、粉砕することで得ることができる。エポキシ樹脂組成物は、パッケージの成形条件に合うような寸法及び質量でタブレット化すると取り扱いが容易である。
[Method for preparing epoxy resin composition]
The preparation method of the epoxy resin composition is not particularly limited, and any method can be used as long as various components can be sufficiently dispersed and mixed. As a general technique, there can be mentioned a method in which components of a predetermined blending amount are sufficiently mixed by a mixer or the like, then melt-kneaded by a mixing roll, an extruder or the like, cooled and pulverized. More specifically, for example, a predetermined amount of the above-mentioned components are uniformly stirred and mixed, kneaded with a kneader, roll, extruder, etc., heated to 70 ° C. to 140 ° C. in advance, cooled, and pulverized. Can be obtained. The epoxy resin composition is easy to handle if it is tableted with dimensions and mass that match the molding conditions of the package.

[電子部品装置]
本発明の電子部品装置は、素子と、前記素子を封止する前記エポキシ樹脂組成物の硬化物と、を有する。電子部品装置としては、例えば、支持部材に、能動素子、受動素子等の素子が搭載され、前記素子が本発明のエポキシ樹脂組成物によって封止されたものが挙げられる。前記支持部材としては、リードフレーム、配線済みのテープキャリア、配線板、ガラス、シリコンウエハ等が挙げられる。前記能動素子としては、半導体チップ、トランジスタ、ダイオード、サイリスタ等が挙げられる。前記受動素子としては、コンデンサ、抵抗体、コイル等が挙げられる。
[Electronic component equipment]
The electronic component device of the present invention includes an element and a cured product of the epoxy resin composition that seals the element. Examples of the electronic component device include a device in which an element such as an active element or a passive element is mounted on a support member, and the element is sealed with the epoxy resin composition of the present invention. Examples of the support member include a lead frame, a wired tape carrier, a wiring board, glass, and a silicon wafer. Examples of the active element include a semiconductor chip, a transistor, a diode, and a thyristor. Examples of the passive element include a capacitor, a resistor, and a coil.

より具体的には、例えば、リードフレーム上に半導体素子を固定し、ボンディングパッド等の素子の端子部とリード部とをワイヤボンディング又はバンプで接続した後、本発明の樹脂組成物を用いてトランスファー成形等によって封止した、DIP(Dual Inline Package)、PLCC(Plastic Leaded Chip Carrier)、QFP(Quad Flat Package)、SOP(Small Outline Package)、SOJ(Small Outline J-lead package)、TSOP(Thin Small Outline Package)、TQFP(Thin Quad Flat Pacakage)等の一般的な樹脂封止型IC;テープキャリアにバンプで接続した半導体チップを、本発明の樹脂組成物で封止したTCP(Tape Carrier Package);配線板又はガラス上に形成した配線に、ワイヤボンディング、フリップチップボンディング、はんだ等で接続した半導体チップ、トランジスタ、ダイオード、サイリスタ等の能動素子及び/又はコンデンサ、抵抗体、コイル等の受動素子を、本発明のエポキシ樹脂組成物で封止したCOB(Chip On Board)モジュール、ハイブリッドIC、マルチチップモジュール;裏面に配線板接続用の端子を形成した有機基板の表面に素子を搭載し、バンプ又はワイヤボンディングにより素子と有機基板に形成された配線を接続した後、本発明のエポキシ樹脂組成物で素子を封止したBGA(Ball Grid Array)、CSP(Chip Size Package)等が挙げられる。また、プリント回路板にも本発明のエポキシ樹脂組成物は有効に使用できる。   More specifically, for example, a semiconductor element is fixed on a lead frame, the terminal part of the element such as a bonding pad and the lead part are connected by wire bonding or bump, and then transferred using the resin composition of the present invention. DIP (Dual Inline Package), PLCC (Plastic Leaded Chip Carrier), QFP (Quad Flat Package), SOP (Small Outline Package), SOJ (Small Outline J-lead package), TSOP (Thin Small) Outline Package), general resin-encapsulated ICs such as TQFP (Thin Quad Flat Package); TCP (Tape Carrier Package) in which a semiconductor chip connected to a tape carrier with bumps is encapsulated with the resin composition of the present invention; Semiconductor chips and transistors connected to wiring formed on a wiring board or glass by wire bonding, flip chip bonding, solder, etc. COB (Chip On Board) module, hybrid IC, multi-chip module in which active elements such as capacitors, diodes, thyristors and / or passive elements such as capacitors, resistors, coils, etc. are sealed with the epoxy resin composition of the present invention; The element is mounted on the surface of the organic substrate on which the terminals for connecting the wiring board are formed on the back surface, and after connecting the element and the wiring formed on the organic substrate by bump or wire bonding, the element is formed with the epoxy resin composition of the present invention. Sealed BGA (Ball Grid Array), CSP (Chip Size Package), etc. are mentioned. The epoxy resin composition of the present invention can also be used effectively for printed circuit boards.

本発明のエポキシ樹脂組成物を用いて、電子部品装置を封止する方法としては、特に限定されるものではなく、当技術分野において公知の方法を適用することが可能である。例えば、低圧トランスファー成形法が一般的ではあるが、インジェクション成形法、圧縮成形法等を用いてもよい。   A method for sealing an electronic component device using the epoxy resin composition of the present invention is not particularly limited, and methods known in the art can be applied. For example, although a low pressure transfer molding method is common, an injection molding method, a compression molding method, or the like may be used.

本発明のエポキシ樹脂組成物は、成型時の流動性及び硬化物の熱伝導性に優れる。このようなエポキシ樹脂組成物を用いてIC、LSI等の電子部品装置を提供することが可能となり、その工業的価値は高い。   The epoxy resin composition of this invention is excellent in the fluidity | liquidity at the time of shaping | molding, and the heat conductivity of hardened | cured material. Using such an epoxy resin composition, it becomes possible to provide electronic component devices such as IC and LSI, and their industrial value is high.

以下、本発明を実施例によってより具体的に説明するが、本発明の範囲は以下に示す実施例によって制限されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the scope of the present invention is not limited to the examples shown below.

[構造式(4)と(5)で示されるアミック酸の合成]
構造式(4)と(5)で示されるアミック酸を合成するために、以下を用意した。
・ピロメリット酸二無水物(東京化成株式会社製)
・4−アミノフェノール(東京化成株式会社製)
・テトラヒドロフラン(和光純薬工業株式会社製、試薬特級)
[Synthesis of Amic Acid represented by Structural Formulas (4) and (5)]
In order to synthesize the amic acid represented by the structural formulas (4) and (5), the following were prepared.
・ Pyromellitic dianhydride (manufactured by Tokyo Chemical Industry Co., Ltd.)
・ 4-Aminophenol (manufactured by Tokyo Chemical Industry Co., Ltd.)
・ Tetrahydrofuran (Wako Pure Chemical Industries, Ltd., reagent grade)

500mLのセパラブルフラスコ内でピロメリット酸二無水物15.3g(0.0700mol)をテトラヒドロフラン350mLに溶解し、そこに東京化成株式会社製の4−アミノフェノール15.3(0.140mol)を添加した。その後、50℃で1時間反応させた。得られたアミック酸の沈殿物をろ過で取り出し、乾燥させて、アミック酸を29.3g(0.0671mol、収率96%)得た。   In a 500 mL separable flask, 15.3 g (0.0700 mol) of pyromellitic dianhydride is dissolved in 350 mL of tetrahydrofuran, and 4-aminophenol 15.3 (0.140 mol) manufactured by Tokyo Chemical Industry Co., Ltd. is added thereto. did. Then, it was made to react at 50 degreeC for 1 hour. The resulting precipitate of amic acid was removed by filtration and dried to obtain 29.3 g (0.0671 mol, yield 96%) of amic acid.

構造式(1)で示されるフェノール化合物を合成するために、以下を用意した。
・N−メチル−2−ピロリドン(BASFジャパン株式会社製)
・メシチレン(和光純薬工業株式会社製、和光特級)
・イソプロピルアルコール(東京化成株式会社製)
In order to synthesize the phenol compound represented by the structural formula (1), the following was prepared.
・ N-methyl-2-pyrrolidone (manufactured by BASF Japan Ltd.)
・ Mesitylene (Wako Pure Chemical Industries, Wako Special Grade)
・ Isopropyl alcohol (manufactured by Tokyo Chemical Industry Co., Ltd.)

[構造式(1)で示されるフェノール化合物の合成]
500mLのセパラブルフラスコ内に合上記で成したアミック酸27.1g(0.0621mol)をN−メチル−2−ピロリドン270mLに溶解し、そこにメシチレン30mLを添加した。その後、ディーンスターク管を接続して230℃で生成される水を除去しながら5時間反応させた。その後、0℃で1時間攪拌し、イソプロピルアルコールを添加した、得られたフェノール化合物の沈殿物をろ過で取り出し、乾燥させて、フェノール化合物を20.2g(0.0505mol、収率81%)得た。
[Synthesis of phenol compound represented by structural formula (1)]
In a 500 mL separable flask, 27.1 g (0.0621 mol) of the amic acid formed above was dissolved in 270 mL of N-methyl-2-pyrrolidone, and 30 mL of mesitylene was added thereto. Thereafter, a Dean-Stark tube was connected, and the reaction was carried out for 5 hours while removing water produced at 230 ° C. Thereafter, the mixture was stirred at 0 ° C. for 1 hour, and the resulting phenol compound precipitate added with isopropyl alcohol was filtered off and dried to obtain 20.2 g (0.0505 mol, yield 81%) of the phenol compound. It was.

(実施例1〜6及び比較例1〜2)
以下に示す各種成分をそれぞれ表1に示す質量部で配合し、混練温度150℃、混練時間2分の条件下で溶融混合を行うことによって、それぞれ実施例1〜6、比較例1〜2の樹脂組成物を得た。配合表を表1に示した。
(Examples 1-6 and Comparative Examples 1-2)
Each component shown below is blended in parts by mass shown in Table 1 and melt-mixed under the conditions of a kneading temperature of 150 ° C. and a kneading time of 2 minutes, whereby Examples 1 to 6 and Comparative Examples 1 and 2 respectively. A resin composition was obtained. The recipe is shown in Table 1.

Figure 2018070682
Figure 2018070682

(エポキシ樹脂組成物の調製)
エポキシ樹脂として、以下を用意した。
ビフェニル型エポキシ樹脂;エポキシ当量175g/eq、融点120℃(三菱化学株式会社製、商品名:jER YL−6121H)
ビスF型エポキシ樹脂;エポキシ当量195g/eq、融点79℃(テトラメチルビスフェノールF型エポキシ樹脂、新日鐵化学株式会社製、商品名:YSLV−80XY)
(Preparation of epoxy resin composition)
The following were prepared as epoxy resins.
Biphenyl type epoxy resin; epoxy equivalent 175 g / eq, melting point 120 ° C. (Mitsubishi Chemical Corporation, trade name: jER YL-6121H)
Bis F type epoxy resin; epoxy equivalent 195 g / eq, melting point 79 ° C. (tetramethylbisphenol F type epoxy resin, manufactured by Nippon Steel Chemical Co., Ltd., trade name: YSLV-80XY)

フェノール硬化剤として、以下を用意した。
トリフェニルメタン型フェノール樹脂;水酸基当量103g/eq、軟化点68℃のトリフェニルメタン型フェノール樹脂(エア・ウォーター株式会社製、商品名:HE−910−09)
The following was prepared as a phenol curing agent.
Triphenylmethane type phenol resin; Triphenylmethane type phenol resin having a hydroxyl group equivalent of 103 g / eq and a softening point of 68 ° C. (trade name: HE-910-09, manufactured by Air Water Co., Ltd.)

本発明に係る硬化促進剤として、以下を用意した。
トリフェニルホスフィン;(東京化成株式会社製)
The following were prepared as the curing accelerator according to the present invention.
Triphenylphosphine; (manufactured by Tokyo Chemical Industry Co., Ltd.)

[エポキシ樹脂組成物の熱伝導率評価]
実施例1〜6、及び比較例1〜2によって得られたエポキシ樹脂組成物を以下に示す試験法によって評価した。評価結果を表2に示した。尚、熱伝導率測定用の樹脂組成物の成形は、真空ハンドプレス成形機を用い、金型温度180℃、成形圧力6.9MPa、硬化時間10分の条件下で行った。また、後硬化は175℃で6時間行った。
[Evaluation of thermal conductivity of epoxy resin composition]
The epoxy resin composition obtained by Examples 1-6 and Comparative Examples 1-2 was evaluated by the test method shown below. The evaluation results are shown in Table 2. The resin composition for measuring thermal conductivity was molded using a vacuum hand press molding machine under conditions of a mold temperature of 180 ° C., a molding pressure of 6.9 MPa, and a curing time of 10 minutes. Further, post-curing was performed at 175 ° C. for 6 hours.

[熱伝導率の測定]
上記方法で縦1cm、横1cmに成型した硬化物の厚さ方向の熱拡散率を測定した。レーザーフラッシュ法(装置:LFA447/2、NETZSCH社製)にて熱拡散率、比熱を測定した。パルス光照射は、パルス幅0.1(ms)、印加電圧 247Vの条件で行った。測定は雰囲気温度25℃±1℃で行った。次いで、下記の式(1)を用いて比熱、密度を熱拡散率に乗算することによって、熱伝導率の値を得た。密度は電子天秤を用いた比重測定装置により測定した。
λ = α・Cp・ρ ・・・式(1)
式(1)中、λは熱伝導率(W/mK)、αは熱拡散率(m/s)、Cpは比熱(J /kg・K)、ρは密度(d:g/cm)をそれぞれ示す。
[Measurement of thermal conductivity]
The thermal diffusivity in the thickness direction of the cured product molded 1 cm in length and 1 cm in width by the above method was measured. The thermal diffusivity and specific heat were measured by a laser flash method (apparatus: LFA447 / 2, manufactured by NETZSCH). Pulse light irradiation was performed under the conditions of a pulse width of 0.1 (ms) and an applied voltage of 247V. The measurement was performed at an ambient temperature of 25 ° C. ± 1 ° C. Subsequently, the value of thermal conductivity was obtained by multiplying the thermal diffusivity by specific heat and density using the following formula (1). The density was measured by a specific gravity measuring device using an electronic balance.
λ = α · Cp · ρ Formula (1)
In formula (1), λ is thermal conductivity (W / mK), α is thermal diffusivity (m 2 / s), Cp is specific heat (J / kg · K), and ρ is density (d: g / cm 3 ) Respectively.

Figure 2018070682
Figure 2018070682

表2で示したように、本発明に係る構造式(1)で示されるフェノール化合物を含有する樹脂組成物(実施例1〜6)は、比較例1〜2に比べ高い熱伝導性を示す結果となった。   As shown in Table 2, the resin compositions (Examples 1 to 6) containing the phenol compound represented by the structural formula (1) according to the present invention exhibit higher thermal conductivity than Comparative Examples 1 and 2. As a result.

Claims (6)

(A)下記構造式(1)で示されるフェノール化合物と、(B)エポキシ樹脂と、(C)硬化促進剤を含むエポキシ樹脂組成物。
Figure 2018070682
(A) An epoxy resin composition comprising a phenol compound represented by the following structural formula (1), (B) an epoxy resin, and (C) a curing accelerator.
Figure 2018070682
更に請求項1に記載の構造式(1)で示すフェノール化合物を除く(D)フェノール樹脂を含有する請求項1に記載のエポキシ樹脂組成物。   Furthermore, the epoxy resin composition of Claim 1 containing the phenol resin except the phenolic compound shown by Structural formula (1) of Claim 1 (D). 更に(E)無機充填剤を含有する請求項1又は請求項2に記載のエポキシ樹脂組成物。   The epoxy resin composition according to claim 1 or 2, further comprising (E) an inorganic filler. (E)無機充填剤の含有率が、エポキシ樹脂組成物の全量に対して55〜90体積%である請求項3に記載のエポキシ樹脂組成物。   (E) The epoxy resin composition according to claim 3, wherein the content of the inorganic filler is 55 to 90% by volume with respect to the total amount of the epoxy resin composition. 請求項1〜4のいずれか一項に記載のエポキシ樹脂組成物を硬化してなるエポキシ樹脂硬化物。   The epoxy resin hardened | cured material formed by hardening | curing the epoxy resin composition as described in any one of Claims 1-4. 請求項1〜4のいずれか一項に記載のエポキシ樹脂組成物で、素子を封止した電子部品装置。   The electronic component apparatus which sealed the element with the epoxy resin composition as described in any one of Claims 1-4.
JP2016208615A 2016-10-25 2016-10-25 Epoxy resin composition and epoxy resin cured product using the same, and electronic component device Pending JP2018070682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016208615A JP2018070682A (en) 2016-10-25 2016-10-25 Epoxy resin composition and epoxy resin cured product using the same, and electronic component device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016208615A JP2018070682A (en) 2016-10-25 2016-10-25 Epoxy resin composition and epoxy resin cured product using the same, and electronic component device

Publications (1)

Publication Number Publication Date
JP2018070682A true JP2018070682A (en) 2018-05-10

Family

ID=62113929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016208615A Pending JP2018070682A (en) 2016-10-25 2016-10-25 Epoxy resin composition and epoxy resin cured product using the same, and electronic component device

Country Status (1)

Country Link
JP (1) JP2018070682A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220158865A (en) * 2021-04-09 2022-12-01 미츠비시 가스 가가쿠 가부시키가이샤 Bisimide phenol compounds

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220158865A (en) * 2021-04-09 2022-12-01 미츠비시 가스 가가쿠 가부시키가이샤 Bisimide phenol compounds
KR102582792B1 (en) 2021-04-09 2023-09-25 미츠비시 가스 가가쿠 가부시키가이샤 Bisimide phenol compound

Similar Documents

Publication Publication Date Title
JPH0617458B2 (en) Epoxy resin composition
JP7287281B2 (en) EPOXY RESIN COMPOSITION FOR BALL GRID ARRAY PACKAGE SEALING, EPOXY RESIN CURED MATERIAL, AND ELECTRONIC PARTS DEVICE
JPH06102714B2 (en) Epoxy resin composition and semiconductor device
KR100893022B1 (en) Curing accelerator, curable resin composition, and electronic part/device
JP7338661B2 (en) Epoxy resin composition, cured epoxy resin and electronic component device
TWI820067B (en) Epoxy resin composition for sealing ball grid array package, epoxy resin cured product and electronic component device
JP6102112B2 (en) Epoxy resin composition and electronic component device
TWI811279B (en) Epoxy resin composition for sealing ball grid array package, epoxy resin cured product and electronic component device
JP2018070682A (en) Epoxy resin composition and epoxy resin cured product using the same, and electronic component device
WO2018164042A1 (en) Curable resin composition, cured product thereof, and method for producing curable resin composition
WO2018181813A1 (en) Epoxy resin composition and electronic component device
JP4696359B2 (en) Liquid sealing epoxy resin composition and electronic component device
JP2018070680A (en) Epoxy resin composition and epoxy resin cured product using the same, and electronic component device
JP5776464B2 (en) Resin composition for sealing and electronic component device
JP3649540B2 (en) Epoxy resin composition
JP2018070681A (en) Epoxy resin composition and epoxy resin cured product using the same, and electronic component device
JP7320224B2 (en) Polymer, epoxy resin composition, cured epoxy resin and electronic device
TWI854956B (en) Epoxy resin composition and electronic component apparatus
JP2541015B2 (en) Epoxy resin composition for semiconductor device encapsulation and semiconductor device
JP2500548B2 (en) Epoxy resin composition and semiconductor device
JP4631165B2 (en) Liquid sealing epoxy resin composition and electronic component device
JPH0625384A (en) Epoxy resin composition and semiconductor device
CN113195585A (en) Curable resin composition and electronic component device
JP2004155841A (en) Sealing resin composition, and semiconductor sealing device
JP2024091762A (en) Resin composition for transfer molding sealing and semiconductor device