JP2018069783A - 空気入りタイヤ - Google Patents

空気入りタイヤ Download PDF

Info

Publication number
JP2018069783A
JP2018069783A JP2016208527A JP2016208527A JP2018069783A JP 2018069783 A JP2018069783 A JP 2018069783A JP 2016208527 A JP2016208527 A JP 2016208527A JP 2016208527 A JP2016208527 A JP 2016208527A JP 2018069783 A JP2018069783 A JP 2018069783A
Authority
JP
Japan
Prior art keywords
tire
tread
arc
line segment
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016208527A
Other languages
English (en)
Inventor
公治 松浦
Kimiharu Matsuura
公治 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2016208527A priority Critical patent/JP2018069783A/ja
Publication of JP2018069783A publication Critical patent/JP2018069783A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Tires In General (AREA)

Abstract

【課題】グリップ性能を損なうことなく、小さな転がり抵抗が達成された空気入りタイヤ2の提供。【解決手段】このタイヤ2では、トレッド4のうち、トレッド面24を含む半径方向外側部分の損失正接の、サイドウォール6の損失正接に対する比は、2.5以上である。第一の仮想平面と接地面54との交線を線分SQとし、第二の仮想平面とこの接地面54との交線を線分STとしたとき、線分SQから接地面54の外側端までの軸方向距離に対するこの線分SQから線分STまでの軸方向距離の比は0.8であり、線分STの長さL80に対する線分SQの長さL0の比は1.05以上1.35以下である。【選択図】図1

Description

本発明は、空気入りタイヤに関する。詳細には、本発明は、サーキットを走行する車輌のための空気入りタイヤに関する。
タイヤによる車輌の燃費への影響を抑え、環境に配慮しようとする動きがある。ラベリング制度が導入されたこともあり、タイヤの選定に際し、転がり抵抗を重視するユーザーは多い。タイヤが小さな転がり抵抗を有することが当たり前のように考えられる時代が、到来している。このような状況から、小さな転がり抵抗を有するタイヤの開発が進められている。
タイヤにおいて小さな転がり抵抗を達成するためには、タイヤを構成する各部材の剛性を上げて変形の程度を抑制する、タイヤの構成部材に低発熱性のゴムを採用する、構成部材のボリュームを小さくし発熱量を抑える等の手段が検討される。この検討の例が、特開2014−031093公報に開示されている。
特開2014−031093公報
レース用のタイヤには、高いグリップ性能が要求される。この観点から、このタイヤのトレッドには大きな損失正接を有するゴムが用いられている。このため、このタイヤの転がり抵抗は大きい。
近年の環境保護に関する意識の高まりから、レースのレギュレーションにおいても、ラベリング制度を導入しようとする動きがある。
レース用のタイヤの偏平率は小さい。このタイヤのボリュームに占めるトレッドのボリュームの割合は大きい。このタイヤでは、転がり抵抗にトレッドが与える影響はかなり大きい。有限要素法(Finite Element Method;FEM)による解析により、転がり抵抗の9割はトレッドの部分に含まれるゴムの作用によることが試算された例もある。
発熱しにくい、すなわち、小さな損失正接を有するゴムをトレッドに採用すれば、小さな転がり抵抗を達成できる見込みはある。しかし小さな損失正接を有するゴムで構成されたトレッドは、グリップ性能を低下させる恐れがある。グリップ性能を損なうことなく、小さな転がり抵抗を達成できる技術の確立が求められている。
本発明の目的は、グリップ性能を損なうことなく、小さな転がり抵抗が達成された空気入りタイヤの提供にある。
本発明に係る空気入りタイヤは、トレッド、一対のサイドウォール、一対のビード、カーカス及びベルトを備えている。上記トレッドの外面は、路面と接触するトレッド面を備えている。それぞれのサイドウォールは、上記トレッドの端から半径方向略内向きに延びている。それぞれのビードは、上記サイドウォールよりも半径方向内側に位置している。上記カーカスは、上記トレッド及び上記サイドウォールの内側に沿って一方のビードと他方のビードとの間に架け渡されている。上記ベルトは、上記トレッドの半径方向内側において上記カーカスと積層されている。上記トレッドのうち、上記トレッド面を含む半径方向外側部分の損失正接の、上記サイドウォールの損失正接に対する比は、2.5以上である。このタイヤの接地面の軸方向中心に位置しこのタイヤの赤道面と平行な平面を第一の仮想平面とし、この第一の仮想平面とこの接地面との交線を線分SQとし、この線分SQとこの接地面の外側端との間においてこの赤道面と平行な平面を第二の仮想平面とし、この第二の仮想平面とこの接地面との交線を線分STとしたとき、上記線分SQから上記接地面の外側端までの軸方向距離に対するこの線分SQから上記線分STまでの軸方向距離の比は0.8である。上記線分STの長さL80に対する上記線分SQの長さL0の比は1.05以上1.35以下である。
好ましくは、この空気入りタイヤでは、上記サイドウォールの損失正接に対する上記トレッド面を含む半径方向外側部分の損失正接の比は4.5以下である。
好ましくは、この空気入りタイヤでは、上記トレッド面の輪郭が軸方向に並列された複数の円弧を含んでおり、これらの円弧のうち、軸方向において中心に位置する円弧をセンター円弧としたとき、このセンター円弧の半径は1300mm以上である。
本発明に係る空気入りタイヤでは、トレッドのうち、トレッド面を含む半径方向外側部分は大きな損失正接を有している。このタイヤのトレッドは、良好なグリップ性能の発揮に寄与する。
このタイヤでは、接地面の形状指数としての、線分STの長さL80に対する線分SQの長さL0の比は1.35以下である。このタイヤでは、接地面の長さ、すなわち、接地長は、この接地面の幅方向において、ほぼ一様である。これは、トレッドの輪郭(プロファイル)が全体として略フラットな形状で構成されていることを表す。フラットな輪郭は、接地圧の低下を招来する。このタイヤでは、特に、トレッドの赤道面の部分、すなわち、クラウン部における歪みが低減される。
このタイヤでは、線分STの長さL80に対する線分SQの長さL0の比は1.05以上である。このタイヤでは、トレッドの輪郭が、全体として完全なフラットな形状で構成されているというわけではない。このトレッドの輪郭には、特に、トレッドの端の部分、すなわち、ショルダー部において、ラウンドな形状が含まれている。このタイヤでは、トレッドの輪郭をフラットな形状とすることでもたらされる、ショルダー部における接地圧の上昇が効果的に抑えられている。このタイヤでは、ショルダー部において歪みはそれほど増加しない。
このタイヤでは、トレッドに生じる歪みは従来のタイヤに比べて小さい。小さな歪みはエネルギーロスの低減を招来するので、このタイヤでは、小さな転がり抵抗が達成される。
このタイヤの接地面には、略均一な接地圧分布が構成される。このタイヤでは、接地圧の高低差によって生じるワイピング変形が防止される。このタイヤでは、トレッドに作用する力が効率良くグリップ性能に貢献する。しかもこのトレッドでは、トレッド面を含む半径方向外側部分に大きな損失正接を有する架橋ゴムが用いられている。このタイヤは、グリップ性能に寄与する。
このタイヤでは、グリップ性能を損なうことなく、小さな転がり抵抗が達成される。本発明によれば、グリップ性能を損なうことなく、小さな転がり抵抗が達成された空気入りタイヤが得られる。
図1は、本発明の一実施形態に係る空気入りタイヤの一部が示された断面図である。 図2は、図1のタイヤの外面の輪郭の一部が示された図である。 図3は、図1のタイヤの接地面が示された模式図である。
以下、適宜図面が参照されつつ、好ましい実施形態に基づいて本発明が詳細に説明される。
図1には、空気入りタイヤ2が示されている。詳細には、この図1には、このタイヤ2の回転の中心軸を含む平面に沿った、このタイヤ2の断面の一部が示されている。この図1において、上下方向がタイヤ2の半径方向であり、左右方向がタイヤ2の軸方向であり、紙面との垂直方向がタイヤ2の周方向である。図1において、一点鎖線CLはタイヤ2の赤道面を表わす。このタイヤ2の形状は、トレッドパターンを除き、赤道面に対して対称である。この赤道面は、軸方向における、このタイヤ2の中心線でもある。
このタイヤ2は、トレッド4、一対のサイドウォール6、一対のビード8、カーカス10、ベルト12、バンド14、インナーライナー16、一対のチェーファー18、一対の第一フィラー20及び一対の第二フィラー22を備えている。このタイヤ2は、チューブレスタイプである。このタイヤ2は、サーキットを走行する車輌(四輪自動車)に装着される。このタイヤ2は、レース用である。
トレッド4は、半径方向外向きに凸な形状を呈している。トレッド4は、路面と接触するトレッド面24を形成する。言い換えれば、トレッド4の外面は、路面と接触するトレッド面24を備えている。このトレッド4には、溝は刻まれていない。このタイヤ2は、スリックタイプである。このトレッド4に溝が刻まれて、トレッドパターンが形成されてもよい。
このタイヤ2では、トレッド4はベース層26とキャップ層28とを有している。詳細には、トレッド4は、ベース層26及びキャップ層28からなる二つの部材で構成されている。キャップ層28は、ベース層26の半径方向外側に位置している。キャップ層28は、ベース層26に積層されている。図1から明らかなように、ベース層26はトレッド4の半径方向内側部分を構成しており、キャップ層28はこのトレッド4の半径方向内側部分を構成している。前述のトレッド面24は、キャップ層28に形成されている。このキャップ層28は、トレッド4のうち、トレッド面24を含む半径方向外側部分である。
このタイヤ2では、ベース層26は接着性に優れた架橋ゴムからなる。ベース層26の典型的な基材ゴムは、天然ゴムである。キャップ層28は、耐摩耗性、耐熱性及びグリップ性に優れた架橋ゴムからなる。
それぞれのサイドウォール6は、トレッド4の端の部分から半径方向略内向きに延びている。このサイドウォール6の半径方向外側部分は、トレッド4と接合されている。このサイドウォール6は、耐カット性及び耐候性に優れた架橋ゴムからなる。このサイドウォール6は、カーカス10の損傷を防止する。
このタイヤ2では、サイドウォール6の損失正接(以下、損失正接LTsとも称される。)は0.20以下である。このサイドウォール6は低い損失正接を有している。低い損失正接を有するサイドウォール6では、エネルギーロスが小さい。このサイドウォール6は、小さな転がり抵抗に寄与する。損失正接は小さいほど好ましいので、この損失正接の下限は設定されない。
本発明において、タイヤ2の構成部材として用いられる架橋ゴムの損失正接(tanδ)は、「JIS K 6394」の規定に準拠して測定される。この測定のための条件は、以下の通りである。
粘弾性スペクトロメーター:岩本製作所の「VESF−3」
初期歪み:10%
動歪み:±2.5%
周波数:10Hz
変形モード:引張
測定温度:50℃
それぞれのビード8は、サイドウォール6よりも半径方向内側に位置している。このビード8は、サイドウォール6の軸方向内側に位置している。ビード8は、タイヤ2の半径方向内側部分に位置している。ビード8は、コア30と、このコア30から半径方向外向きに延びるエイペックス32とを備えている。コア30はリング状であり、巻回された非伸縮性ワイヤーを含む。ワイヤーの典型的な材質は、スチールである。エイペックス32は、半径方向外向きに先細りである。エイペックス32は、高硬度な架橋ゴムからなる。
カーカス10は、カーカスプライ34を備えている。このタイヤ2のカーカス10は、第一カーカスプライ36(以下、第一プライ)及び第二カーカスプライ38(以下、第二プライ)、すなわち2枚のカーカスプライ34から構成されている。このカーカス10が3枚以上のカーカスプライ34で構成されてもよい。
このタイヤ2では、第一プライ36及び第二プライ38は、両側のビード8の間に架け渡されており、トレッド4及びサイドウォール6に沿っている。第一プライ36は、それぞれのコア30の周りにて、軸方向内側から外側に向かって折り返されている。この折り返しにより、第一プライ36には、第一主部36aと一対の第一折り返し部36bとが形成されている。この第一プライ36は、第一主部36aと一対の第一折り返し部36bとを備えている。第二プライ38は、それぞれのコア30の周りにて、軸方向内側から外側に向かって折り返されている。この折り返しにより、第二プライ38には、第二主部38aと一対の第二折り返し部38bとが形成されている。この第二プライ38は、第二主部38aと一対の第二折り返し部38bとを備えている。
図1に示されているように、軸方向において、第一折り返し部36bの端40はベルト12の端42よりも内側に位置している。第一折り返し部36bの端40は、ベルト12と第二主部38aとの間に挟まれている。第二折り返し部38bの端44は、軸方向において、第一折り返し部36bの端40とベルト12の端42との間に位置している。第二折り返し部38bの端44は、第一折り返し部36bと第二主部38aとの間に挟まれている。
それぞれのカーカスプライ34は、並列された多数のコードとトッピングゴムとからなる。それぞれのコードが赤道面に対してなす角度の絶対値は、75°から90°である。換言すれば、このカーカス10はラジアル構造を有する。コードは、有機繊維からなる。好ましい有機繊維として、ポリエステル繊維、ナイロン繊維、レーヨン繊維、ポリエチレンナフタレート繊維及びアラミド繊維が例示される。
ベルト12は、トレッド4の半径方向内側に位置している。ベルト12は、カーカス10と積層されている。ベルト12は、カーカス10を補強する。ベルト12は、内側層46及び外側層48からなる。図1から明らかなように、軸方向において、内側層46の幅は外側層48の幅よりも若干大きい。図示されていないが、内側層46及び外側層48のそれぞれは、並列された多数のコードとトッピングゴムとからなる。それぞれのコードは、赤道面に対して傾斜している。傾斜角度の一般的な絶対値は、10°以上35°以下である。内側層46のコードの赤道面に対する傾斜方向は、外側層48のコードの赤道面に対する傾斜方向とは逆である。コードの好ましい材質は、スチールである。コードに、有機繊維が用いられてもよい。この場合、有機繊維としては、ポリエステル繊維、ナイロン繊維、レーヨン繊維、ポリエチレンナフタレート繊維及びアラミド繊維が例示される。
バンド14は、ベルト12の半径方向外側に位置している。軸方向において、バンド14の幅はベルト12の幅と略同等である。図示されていないが、このバンド14は、コードとトッピングゴムとからなる。コードは、螺旋状に巻かれている。このバンド14は、いわゆるジョイントレス構造を有する。コードは、実質的に周方向に延びている。周方向に対するコードの角度は、5°以下、さらには2°以下である。このコードによりベルト12が拘束されるので、ベルト12のリフティングが抑制される。コードは、有機繊維からなる。好ましい有機繊維として、ナイロン繊維、ポリエステル繊維、レーヨン繊維、ポリエチレンナフタレート繊維及びアラミド繊維が例示される。
インナーライナー16は、カーカス10の内側に位置している。インナーライナー16は、カーカス10の内面に接合されている。インナーライナー16は、空気遮蔽性に優れた架橋ゴムからなる。インナーライナー16の典型的な基材ゴムは、ブチルゴム又はハロゲン化ブチルゴムである。インナーライナー16は、タイヤ2の内圧を保持する。
それぞれのチェーファー18は、ビード8の近傍に位置している。タイヤ2がリムに組み込まれると、このチェーファー18がリムと当接する。この当接により、ビード8の近傍が保護される。このチェーファー18は、布とこの布に含浸したゴムとからなる。
それぞれの第一フィラー20は、ビード8の近傍に位置している。第一フィラー20は、ビード8とカーカス10との間に位置している。この第一フィラー20は、コア30の周りにて折り返されている。第一フィラー20は、タイヤ2のビード8の部分を補強する。この実施形態では、第一フィラー20は架橋ゴムからなる。この第一フィラー20が並列された多数のコードとトッピングゴムとからなる部材で構成されてもよい。
それぞれの第二フィラー22は、ビード8の近傍に位置している。第二フィラー22は、ビード8とカーカス10との間に位置している。第一フィラー20は、ビード8の軸方向外側においてカーカス10に沿って半径方向に延在している。第二フィラー22は、コア30の周りにて折り返されていない。第二フィラー22は、タイヤ2のビード8の部分を補強する。この実施形態では、第二フィラー22は架橋ゴムからなる。この第二フィラー22が並列された多数のコードとトッピングゴムとからなる部材で構成されてもよい。
このタイヤ2の製造では、複数のゴム部材がアッセンブリーされて、ローカバー(未加硫タイヤ2)が得られる。このローカバーが、モールドに投入される。ローカバーの外面は、モールドのキャビティ面と当接する。ローカバーの内面は、ブラダー又は中子に当接する。ローカバーは、モールド内で加圧及び加熱される。加圧及び加熱により、ローカバーのゴム組成物が流動する。加熱によりゴムが架橋反応を起こし、タイヤ2が得られる。そのキャビティ面に凸凹模様を有するモールドが用いられることにより、タイヤ2に凹凸模様が形成される。
図2には、図1に示されたタイヤ2の外面50の輪郭(プロファイル)が示されている。この図2において、上下方向がタイヤ2の半径方向であり、左右方向がタイヤ2の軸方向であり、紙面との垂直方向がタイヤ2の周方向である。この図2に示されたタイヤ2の外面50の輪郭は、モールドのキャビティ面の輪郭と概ね一致している。
本発明において、以下に説明するタイヤ2の外面50の輪郭は、モールドのキャビティ面に基づいて特定される。トレッド4に溝が刻まれている場合には、この溝がないと仮定して得られる仮想外面によりトレッド面24の輪郭は特定される。サイドウォール6に凹凸模様が付されている場合には、この凹凸模様がないと仮定して得られる仮想外面により、このサイドウォール6の外面の輪郭は特定される。
図2において、符号PWはこのタイヤ2の軸方向外側端である。この図2に示されたタイヤ2の外面50の輪郭は、この符号PWで示された位置において、最大の軸方向幅を有する。実線SLは、外側端PWを通る直線である。この直線SLは、軸方向に延びる。この直線SLは基準線と称される。
このタイヤ2では、その外面50のうちトレッド面24の輪郭は複数の円弧52を含んでいる。これらの円弧52は、軸方向に並列されている。このタイヤ2では、トレッド面24の輪郭は5つの円弧52を含んでいる。詳細には、このトレッド面24の輪郭は5つの円弧52で構成されている。このトレッド面24の輪郭を構成する円弧52の数に、特に、制限はない。このトレッド面24の輪郭が3つの円弧52で構成されてもよい。このトレッド面24の輪郭が7以上の円弧52で構成されてもよい。トレッド面24の輪郭を構成する円弧52の数は、タイヤ2の仕様が考慮され、適宜、決められる。
前述したように、このタイヤ2では、トレッド面24の輪郭は5つの円弧52で構成されており、これらの円弧52は軸方向に並列されている。これらは全て、外向きに凸な円弧である。これらの円弧52の中心は、トレッド面24の内側に位置している。これらの円弧52は、一の円弧52の半径がこの一の円弧52の軸方向内側に位置する他の円弧52の半径よりも小さくなるように構成されている。
このタイヤ2では、トレッド面24の輪郭を構成する5つの円弧52のうち、軸方向において中心に位置する円弧52cは、センター円弧と称される。このトレッド面24の輪郭は、センター円弧52cを含んでいる。図2において、符号PCは赤道面(図2の一点鎖線CL)とトレッド面24との交点である。この交点は、タイヤ2の赤道である。センター円弧52cは、この交点すなわち赤道PCを通る。図2において、矢印Rcは、センター円弧52cの半径である。この図2には示されてはいないが、このセンター円弧52cの中心は赤道面に位置している。
このタイヤ2では、センター円弧52cの隣に位置する円弧52mはミドル円弧と称される。このトレッド面24の輪郭は、一対のミドル円弧52mを含んでいる。
それぞれのミドル円弧52mは、センター円弧52cの軸方向外側に位置している。図2において、矢印Rmはこのミドル円弧52mの半径である。符号Pcmは、ミドル円弧52mとセンター円弧52cとの境界である。このミドル円弧52mは、この境界Pcmにおいてセンター円弧52cと接している。この図2には示されていないが、境界Pcmとセンター円弧52cの中心とを通る直線は、このミドル円弧52mの中心も通過する。
このタイヤ2では、ミドル円弧52mの隣に位置する円弧52sはサイド円弧と称される。このトレッド面24の輪郭は、一対のサイド円弧52sを含んでいる。
それぞれのサイド円弧52sは、ミドル円弧52mの軸方向外側に位置している。図2において、矢印Rsはこのサイド円弧52sの半径である。符号Pmsは、サイド円弧52sとミドル円弧52mとの境界である。このサイド円弧52sは、この境界Pmsにおいてミドル円弧52mと接している。この図2には示されていないが、境界Pmsとミドル円弧52mの中心とを通る直線は、このサイド円弧52sの中心も通過する。
このタイヤ2の外面50は、前述の、センター円弧52c、ミドル円弧52m及びサイド円弧52s以外に、第一上部円弧52u、第二上部円弧52p及びショルダー円弧52hを含んでいる。このタイヤ2では、第一上部円弧52u、第二上部円弧52p及びショルダー円弧52hは、タイヤ2の外面50のうち、トレッド面24の端の部分から外側端PWに至る部分の輪郭を構成する。このタイヤ2の外面50の輪郭は、一対の第一上部円弧52u、一対の第二上部円弧52p及び一対のショルダー円弧52hをさらに含んでいる。
このタイヤ2では、その外面50は複数の円弧52を含んでいる。これらの円弧52のうち、外側端PWを通り、半径方向略外向きに延びる円弧52uが、第一上部円弧である。符号C1Uは、この第一上部円弧52uの中心である。この中心C1Uは、軸方向において外側端PWよりも内側に位置している。この第一上部円弧52uは、外向きに凸な円弧である。図2に示されているように、基準線SLはこの中心C1Uを通る。矢印R1Uは、第一上部円弧52uの半径である。このタイヤ2では、この第一上部円弧52uの半径R1Uに、特に、制限はない。従来のタイヤにおいて採用されている第一上部円弧の半径の範囲と同様の範囲で、この半径R1Uは設定される。
このタイヤ2では、第二上部円弧52pは、第一上部円弧52uの半径方向外側に位置する円弧である。図2において、矢印R2Uはこの第二上部円弧52pの半径である。符号P21は、第一上部円弧52uと第二上部円弧52pとの境界である。この第二上部円弧52pは、この境界P21において第一上部円弧52uと接している。この図2には示されていないが、境界P21と第一上部円弧52uの中心C1Uとを通る直線は、この第二上部円弧52pの中心も通過する。この第二上部円弧52pの中心は、このタイヤ2の外面50の外側に位置している。この第二上部円弧52pは、内向きに凸な円弧である。このタイヤ2では、この第二上部円弧52pの半径R2Uに、特に、制限はない。従来のタイヤにおいて採用されている第二上部円弧の半径の範囲と同様の範囲で、この半径R2Uは設定される。
このタイヤ2では、ショルダー円弧52hは、第二上部円弧52pの半径方向外側に位置する円弧である。図2において、矢印Rshはこのショルダー円弧52hの半径である。符号Ps2は、第二上部円弧52pとショルダー円弧52hとの境界である。このショルダー円弧52hは、この境界Ps2において第二上部円弧52pと接している。この図2には示されていないが、境界Ps2と第二上部円弧52pの中心とを通る直線は、このショルダー円弧52hの中心も通過する。このショルダー円弧52hの中心は、このタイヤ2の外面50の内側に位置している。このショルダー円弧52hは、外向きに凸な円弧である。この図2において、符号Pssは、ショルダー円弧52hとサイド円弧52sとの境界である。このショルダー円弧52hは、この境界Pssにおいてサイド円弧52sとも接している。この図2には示されていないが、境界Pssとサイド円弧52sの中心とを通る直線は、このショルダー円弧52hの中心も通過する。このタイヤ2では、ショルダー円弧52hの半径Rshは、サイド円弧52s及び第二上部円弧52pのそれぞれと接するように適宜調整される。このため、この半径Rshの範囲は特に設定されないが、この半径Rshは、概ね、10mm以上20mmの範囲で設定される。。
このタイヤ2では、その外面50のうち、左右の外側端PWの間の輪郭は、センター円弧52c、一対のミドル円弧52m、一対のサイド円弧52s、一対のショルダー円弧52h、一対の第二上部円弧52p、及び、一対の第一上部円弧52uを含んでいる。詳細には、左右の外側端PWの間の輪郭は、センター円弧52c、一対のミドル円弧52m、一対のサイド円弧52s、一対のショルダー円弧52h、一対の第二上部円弧52p、及び、一対の第一上部円弧52uで構成されている。
このタイヤ2では、サイド円弧52sは、トレッド面24を構成する5つの円弧52のうち、軸方向において最も外側に位置している円弧である。そして軸方向において、このサイド円弧52sの内側に位置する円弧52mが、ミドル円弧である。このタイヤ2では、サイド円弧52sとショルダー円弧52hとの境界Pssは、トレッド面24の端でもある。
前述したように、このタイヤ2では、トレッド面24の輪郭を構成する複数の円弧52は、一の円弧52の半径がこの一の円弧52の軸方向内側に位置する他の円弧52の半径よりも小さくなるように構成される。このタイヤ2では、ミドル円弧52mの半径Rmはセンター円弧52cの半径Rcよりも小さい。具体的には、センター円弧52cの半径Rcに対するミドル円弧52mの半径Rmの比は、0.1以上0.3以下の範囲で設定される。
このタイヤ2では、サイド円弧52sの半径Rsはミドル円弧52mの半径Rmよりも小さい。具体的には、ミドル円弧52mの半径Rmに対するサイド円弧52sの半径Rsの比は、0.05以上0.3以下の範囲で設定される。
図3には、このタイヤ2の接地面54が示されている。図3において、上下方向はタイヤ2の周方向に相当し、左右方向はタイヤ2の軸方向に相当する。この接地面54は、タイヤ2が正規リムに組み込まれ、正規内圧となるようにこのタイヤ2に空気が充填された状態で、このタイヤ2を正規荷重で路面に押し当てることで得られる。なお、この接地面54を得るにあたって、このタイヤ2は、その軸方向が路面に対して平行となるように配置されている。そして、この路面に対して垂直な向きに荷重は掛けられている。
本明細書において正規リムとは、タイヤ2が依拠する規格において定められたリムを意味する。JATMA規格における「標準リム」、TRA規格における「Design Rim」、及びETRTO規格における「Measuring Rim」は、正規リムである。
本明細書において正規内圧とは、タイヤ2が依拠する規格において定められた内圧を意味する。JATMA規格における「最高空気圧」、TRA規格における「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」に掲載された「最大値」、及びETRTO規格における「INFLATION PRESSURE」は、正規内圧である。
本明細書において正規荷重とは、タイヤ2が依拠する規格において定められた荷重を意味する。JATMA規格における「最高負荷能力」、TRA規格における「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」に掲載された「最大値」、及びETRTO規格における「LOAD CAPACITY」は、正規荷重である。
図3において、一点鎖線QLは接地面54の軸方向中心線である。本発明においては、この中心線QLは、接地面54の軸方向中心に位置しこのタイヤ2の赤道面に平行な平面でもある。この平面QLは、第一の仮想平面とも称される。線分SQは、第一の仮想平面QLと接地面54との交線である。両矢印L0は、この線分SQの長さである。
この図3において、符号P100は、接地面54の軸方向外側端である。二点鎖線TLは、線分SQと、この外側端P100との間においてこのタイヤ2の赤道面に平行な平面である。この平面TLは、第二の仮想平面とも称される。線分STは、第二の仮想平面TLと接地面54との交線である。両矢印L80は、この線分STの長さである。
この図3において、両矢印W100は線分SQから外側端P100までの軸方向距離である。両矢印W80は、線分SQから線分STまでの軸方向距離である。このタイヤ2では、距離W100に対する距離W80の比は0.8である。
このタイヤ2では、トレッド4のうち、トレッド面24を含む半径方向外側部分、すなわち、キャップ層28の損失正接(以下、損失正接LTcとも称される。)は、サイドウォール6の損失正接LTsよりも大きい。具体的には、損失正接LTcの、損失正接LTsの比は2.5以上である。このタイヤ2では、キャップ層28は大きな損失正接を有している。このタイヤ2のトレッド4は、良好なグリップ性能の発揮に寄与する。この観点から、この比は2.6以上が好ましく、2.65以上がより好ましい。
このタイヤ2では、損失正接LTsに対する損失正接LTcの比は4.5以下が好ましい。この比が4.5以下に設定されることにより、トレッド4のうち、トレッド面24を含む半径方向外側部分、すなわち、キャップ層28による転がり抵抗への影響が抑えられる。これにより、転がり抵抗の増加を抑えつつ、良好なグリップ性能が維持される。この観点から、この比は4.4以下がより好ましく、4.34以下がさらに好ましい。
このタイヤ2では、接地面54の形状指数としての、線分STの長さL80に対する線分SQの長さL0の比は1.35以下である。このタイヤ2では、接地面54の長さ、すなわち、接地長は、この接地面54の幅方向において、ほぼ一様である。これは、トレッド4の輪郭が全体として略フラットな形状で構成されていることを表す。フラットな輪郭は、接地圧の低下を招来する。このタイヤ2では、特に、トレッド4の赤道面の部分、すなわち、クラウン部における歪みが低減される。しかもトレッド4が十分に路面と接触するので、良好なグリップが確保される。
このタイヤ2では、長さL80に対する長さL0の比は1.05以上である。このタイヤ2では、トレッド4の輪郭が、全体として完全なフラットな形状で構成されているというわけではない。このトレッド4の輪郭には、特に、トレッド4の端の部分、すなわち、ショルダー部において、ラウンドな形状が含まれている。このタイヤ2では、トレッド4の輪郭をフラットな形状とすることでもたらされる、ショルダー部における接地圧の上昇が効果的に抑えられている。このタイヤ2では、ショルダー部において歪みはそれほど増加しない。
このタイヤ2では、トレッド4に生じる歪みは従来のタイヤに比べて小さい。小さな歪みはエネルギーロスの低減を招来するので、このタイヤ2では、小さな転がり抵抗が達成される。
このタイヤ2の接地面54には、略均一な接地圧分布が構成される。このタイヤ2では、接地圧の高低差によって生じるワイピング変形が防止される。このタイヤ2では、トレッド4に作用する力が効率良くグリップ性能に貢献する。しかもこのトレッド4では、トレッド面24を含む半径方向外側部分に大きな損失正接を有する架橋ゴムが用いられている。このタイヤ2は、グリップ性能に優れる。
このタイヤ2では、グリップ性能を損なうことなく、小さな転がり抵抗が達成される。本発明によれば、グリップ性能を損なうことなく、小さな転がり抵抗が達成された空気入りタイヤ2が得られる。
前述したように、このタイヤ2では、トレッド面24の輪郭を構成する複数の円弧52は、一の円弧52の半径がこの一の円弧52の軸方向内側に位置する他の円弧52の半径よりも小さくなるように構成される。センター円弧52cは、軸方向において、トレッド面24の輪郭を構成する複数の円弧52の中心に位置している。このセンター円弧52cは、これらの円弧52の中で、最も大きな半径Rcを有している。このセンター円弧52cは、トレッド面24にフラットな輪郭を提供する。フラットな輪郭は、接地圧の低下を招来する。このタイヤ2では、特に、トレッド4の赤道面の部分、すなわち、クラウン部における歪みが効果的に低減される。歪みの低減は、転がり抵抗の増加を抑制する。しかもトレッド4が十分に路面と接触するので、このタイヤ2は良好なグリップ性能を発揮する。この観点から、このセンター円弧52cの半径Rcは1300mm以上が好ましく、1500mm以上がより好ましい。
このタイヤ2では、センター円弧52cの半径Rcは3000mm以下が好ましい。このタイヤ2では、センター円弧52cの大きさが適切に維持される。センター円弧52cが大きすぎないので、ショルダー部における接地圧の上昇が効果的に抑えられる。このタイヤ2では、ショルダー部において歪みはそれほど増加しない。この場合においても、このタイヤ2では、転がり抵抗の増加が抑えられる。この観点から、この半径Rcは2800mm以下がより好ましい。
図2において、符号PEはサイド円弧52sの延長線とショルダー円弧52hの延長線との交点である。本発明において、この交点PEは、トレッド4の幅を特定する基準点である。両矢印CAは、赤道PCから基準点PEまでの半径方向距離である。本発明においては、この距離CAはキャンバー量と称される。
このタイヤ2では、キャンバー量CAは5mm以上25mm以下が好ましい。このタイヤ2では、キャンバー量が25mm以下に設定されることにより、トレッド4が路面と十分に接触する。このタイヤ2は、良好なグリップ性能を発揮する。しかも低い接地圧が得られるので、このタイヤ2では、特に、トレッド4の赤道面の部分、すなわち、クラウン部における歪みが効果的に低減される。歪みの低減は、転がり抵抗の増加を抑制する。このタイヤ2では、グリップ性能を損なうことなく、小さな転がり抵抗が達成される。この観点から、このキャンバー量は20mm以下がより好ましい。このタイヤ2では、キャンバー量が5mm以上に設定されることにより、ショルダー部における接地圧の上昇が効果的に抑えられる。このタイヤ2では、ショルダー部において歪みはそれほど増加しないので、転がり抵抗の増加が効果的に抑えられる。しかもトレッド4が路面と十分に接触した状態が維持されているので、このタイヤ2はグリップ性能にも優れる。この観点から、このキャンバー量は10mm以上がより好ましい。
このタイヤ2では、キャンバー量CAに対するセンター円弧52cの半径Rcの比は、65以上が好ましく、600以下が好ましい。この比が65以上に設定されることにより、トレッド4が路面と十分に接触する。このタイヤ2は、良好なグリップ性能を発揮する。しかも低い接地圧が得られるので、このタイヤ2では、特に、トレッド4の赤道面の部分、すなわち、クラウン部における歪みが効果的に低減される。歪みの低減は、転がり抵抗の増加を抑制する。このタイヤ2では、グリップ性能を損なうことなく、小さな転がり抵抗が達成される。この観点から、この比は100以上がより好ましい。この比が600以下に設定されることにより、ショルダー部における接地圧の上昇が効果的に抑えられる。このタイヤ2では、ショルダー部において歪みはそれほど増加しないので、転がり抵抗の増加が効果的に抑えられる。しかもトレッド4が路面と十分に接触した状態が維持されているので、このタイヤ2はグリップ性能にも優れる。この観点から、この比は400以下がより好ましい。
図1において、両矢印WTはトレッド4の軸方向幅である。この幅WTは、トレッド4の一方の端PEからその他方の端PEまでの軸方向距離により表される。両矢印WBは、ベルト12の軸方向幅である。この幅WBは、ベルト12の一方の端42からその他方の端42までの軸方向距離により表される。
このタイヤ2では、トレッド4の幅WTに対するベルト12の幅WBの比は0.95以上が好ましく、0.98以下が好ましい。この比が0.95以上に設定されることにより、ベルト12がトレッド4の剛性に寄与する。このタイヤ2では、トレッド4の歪みが効果的に抑えられる。このベルト12は、良好なグリップ及び小さな転がり抵抗に寄与する。この比が0.98以下に設定されることにより、ベルト12の端42への歪みの集中が抑えられる。このタイヤ2では、このベルト12の端42を起点とする損傷が防止される。このタイヤ2は、耐久性に優れる。
このタイヤ2では、トレッド4のうち、トレッド面24を含む半径方向外側部分、すなわちキャップ層28の損失正接LTcは0.40以上が好ましく、0.65以下が好ましい。この損失正接LTcが0.40以上に設定されることにより、キャップ層28がグリップに効果的に寄与する。この観点から、この損失正接LTcは0.45以上がより好ましい。この損失正接LTcが0.65以下に設定されることにより、このキャップ層28による転がり抵抗への影響が抑えられる。この観点から、この損失正接LTcは0.60以下がより好ましい。
本発明では、特に言及がない限り、タイヤ2の各部材の寸法及び角度は、タイヤ2が正規リムに組み込まれ、正規内圧となるようにタイヤ2に空気が充填された状態で測定される。測定時には、タイヤ2には荷重がかけられない。乗用車用タイヤ2の場合は、内圧が180kPaの状態で、寸法及び角度が測定される。
以下、実施例によって本発明の効果が明らかにされるが、この実施例の記載に基づいて本発明が限定的に解釈されるべきではない。
[実施例1]
図1−2に示されたタイヤを製作した。このタイヤのサイズは、225/40R18である。この実施例1の諸元は、下記の表1に示された通りである。この実施例1では、サイドウォールの損失正接LTsは、0.15であった。この実施例1では、ベルトの幅WBは214mmであり、トレッドの幅WTに対するベルトの幅WBの比は0.95であった。
[比較例1]
トレッド面の輪郭を変えて、キャンバー量CA及び線分STの長さL80に対する線分SQの長さL0の比(L0/L80)を下記の表1に示される通りとした他は実施例1と同様にして、比較例1のタイヤを得た。この比較例1は、従来のタイヤである。この比較例1では、トレッド面の輪郭は、15の円弧で構成された。赤道面からトレッドの端までの間に8個の円弧が並列されており、軸方向中心に位置する円弧から順にその半径をR1、R2・・・・R8としたとき、R1は591mm、R2は565mm、R3は502mm、R4は412mm、R5は300mm、R6は191mm、R7は109mm、そして、R8は63mmであった。下記の表1には、「Rc」の欄に半径R1を、「Rs」の欄に半径R8を記載している。
[比較例2−3]
ゴム組成物を変えて、キャップ層の損失正接LTc及び損失正接LTsに対する損失正接LTcの比(LTc/LTs)を下記の表1に示される通りとした他は実施例1と同様にして、比較例2−3のタイヤを得た。
[実施例2−3及び比較例4]
センター円弧の半径Rc、ミドル円弧の半径Rm及びサイド円弧の半径Rsを変えてキャンバー量CA及び比(L0/L80)を下記の表1に示される通りとした他は実施例1と同様にして、実施例2−3及び比較例4のタイヤを得た。
[実施例4−5]
ゴム組成物を変えて、キャップ層の損失正接LTc及び比(LTc/LTs)を下記の表2に示される通りとした他は実施例3と同様にして、実施例4−5のタイヤを得た。
[実施例6−8及び比較例5]
ゴム組成物を変えて、キャップ層の損失正接LTc及び比(LTc/LTs)を下記の表2に示される通りとした他は実施例1と同様にして、実施例6−8及び比較例5のタイヤを得た。
[転がり抵抗係数]
転がり抵抗試験機を用い、下記の測定条件で転がり抵抗係数(RRC)を測定した。
使用リム:18×9.0J(アルミニウム合金製)
内圧:210kPa
荷重:5.42kN
速度:80km/h
この結果が、指数として、下記の表1−2に示されている。数値が小さいほど転がり抵抗が小さく好ましい。
[コーナリングパワー]
フラットベルト式タイヤ6分力測定装置を用い、下記の測定条件でコーナリングパワー(CP)を測定した。このコーナリングパワーが、サイドグリップの指標として用いられた。
使用リム:18×9.0J(アルミニウム合金製)
内圧:210kPa
荷重:6.00kN
速度:50km/h
キャンバー角:0°
スリップ角:1°
この結果が、指数として、下記の表1−2に示されている。数値が大きいほどコーナリングパワーが大きく良好なサイドグリップが得られ好ましい。
Figure 2018069783
Figure 2018069783
表1−2に示されるように、実施例のタイヤでは、比較例のタイヤに比べて評価が高い。この評価結果から、本発明の優位性は明らかである。
以上説明された、グリップ性能を損なうことなく、小さな転がり抵抗を達成するための技術は、種々のタイプのタイヤにも適用されうる。
2・・・タイヤ
4・・・トレッド
6・・・サイドウォール
8・・・ビード
10・・・カーカス
12・・・ベルト
24・・・トレッド面
26・・・ベース層
28・・・キャップ層
34・・・カーカスプライ
42・・・ベルト12の端
50・・・タイヤ2の外面
52、52c、52m、52s、52u、52p、52h・・・円弧
54・・・タイヤ2の接地面

Claims (3)

  1. トレッド、一対のサイドウォール、一対のビード、カーカス及びベルトを備えており、
    上記トレッドの外面が、路面と接触するトレッド面を備えており、
    それぞれのサイドウォールが、上記トレッドの端から半径方向略内向きに延びており、
    それぞれのビードが、上記サイドウォールよりも半径方向内側に位置しており、
    上記カーカスが、上記トレッド及び上記サイドウォールの内側に沿って一方のビードと他方のビードとの間に架け渡されており、
    上記ベルトが、上記トレッドの半径方向内側において上記カーカスと積層されており、
    上記トレッドのうち、上記トレッド面を含む半径方向外側部分の損失正接の、上記サイドウォールの損失正接に対する比が2.5以上であり、
    このタイヤの接地面の軸方向中心に位置しこのタイヤの赤道面と平行な平面を第一の仮想平面とし、この第一の仮想平面とこの接地面との交線を線分SQとし、この線分SQとこの接地面の外側端との間においてこの赤道面と平行な平面を第二の仮想平面とし、この第二の仮想平面とこの接地面との交線を線分STとしたとき、
    上記線分SQから上記接地面の外側端までの軸方向距離に対するこの線分SQから上記線分STまでの軸方向距離の比が0.8であり、
    上記線分STの長さL80に対する上記線分SQの長さL0の比が1.05以上1.35以下である、空気入りタイヤ。
  2. 上記サイドウォールの損失正接に対する上記トレッド面を含む半径方向外側部分の損失正接の比が4.5以下である、請求項1に記載の空気入りタイヤ。
  3. 上記トレッド面の輪郭が軸方向に並列された複数の円弧を含んでおり、
    これらの円弧のうち、軸方向において中心に位置する円弧をセンター円弧としたとき、
    このセンター円弧の半径が1300mm以上である、請求項1又は2に記載の空気入りタイヤ。
JP2016208527A 2016-10-25 2016-10-25 空気入りタイヤ Pending JP2018069783A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016208527A JP2018069783A (ja) 2016-10-25 2016-10-25 空気入りタイヤ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016208527A JP2018069783A (ja) 2016-10-25 2016-10-25 空気入りタイヤ

Publications (1)

Publication Number Publication Date
JP2018069783A true JP2018069783A (ja) 2018-05-10

Family

ID=62112394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016208527A Pending JP2018069783A (ja) 2016-10-25 2016-10-25 空気入りタイヤ

Country Status (1)

Country Link
JP (1) JP2018069783A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113905900A (zh) * 2019-06-20 2022-01-07 株式会社普利司通 轮胎
EP4299340A1 (en) * 2022-06-30 2024-01-03 Sumitomo Rubber Industries, Ltd. Tire

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113905900A (zh) * 2019-06-20 2022-01-07 株式会社普利司通 轮胎
CN113905900B (zh) * 2019-06-20 2024-03-01 株式会社普利司通 轮胎
EP4299340A1 (en) * 2022-06-30 2024-01-03 Sumitomo Rubber Industries, Ltd. Tire

Similar Documents

Publication Publication Date Title
JP6214490B2 (ja) 空気入りタイヤ
JP6665561B2 (ja) 空気入りタイヤ
US10857838B2 (en) Pneumatic tire
EP2206612A1 (en) Tire for motor-bicycle
US10882359B2 (en) Pneumatic tire
US11383560B2 (en) Tire for two-wheeled automotive vehicle
US10974548B2 (en) Pneumatic tire
JP2018069783A (ja) 空気入りタイヤ
JP2015113008A (ja) 空気入りタイヤ
JP6610147B2 (ja) 空気入りタイヤ
JP6040039B2 (ja) 二輪自動車用タイヤ
JP2017185984A (ja) 空気入りタイヤ
US20240051350A1 (en) Tire
JP2017213958A (ja) 空気入りタイヤ
JP6729107B2 (ja) 空気入りタイヤ
EP3290231B1 (en) Two-wheeled vehicle tire
JP2009012566A (ja) 空気入りタイヤ
JP2017121848A (ja) 空気入りタイヤ
JP6645179B2 (ja) 空気入りタイヤ
JP2014231267A (ja) 二輪自動車用タイヤ
JP6209037B2 (ja) 二輪自動車用タイヤ
JP2015160440A (ja) 空気入りタイヤ
JP2015089684A (ja) 空気入りタイヤ
JP2015067005A (ja) 二輪自動車用タイヤ
CN117124777A (zh) 轮胎