JP2018065101A - Method and apparatus for treating fluorine-containing water - Google Patents

Method and apparatus for treating fluorine-containing water Download PDF

Info

Publication number
JP2018065101A
JP2018065101A JP2016206017A JP2016206017A JP2018065101A JP 2018065101 A JP2018065101 A JP 2018065101A JP 2016206017 A JP2016206017 A JP 2016206017A JP 2016206017 A JP2016206017 A JP 2016206017A JP 2018065101 A JP2018065101 A JP 2018065101A
Authority
JP
Japan
Prior art keywords
liquid
treated
hydrophobic porous
fluorine
porous membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016206017A
Other languages
Japanese (ja)
Other versions
JP6797632B2 (en
Inventor
徹 中野
Toru Nakano
徹 中野
亮輔 寺師
Ryosuke Terashi
亮輔 寺師
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2016206017A priority Critical patent/JP6797632B2/en
Publication of JP2018065101A publication Critical patent/JP2018065101A/en
Application granted granted Critical
Publication of JP6797632B2 publication Critical patent/JP6797632B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for concentrated and separated liquid to be treated containing at least one of fluoride ions and silicofluoride ions with a compact and inexpensive facility and to treat fluorine-containing water which promptly enables the generated hydrogen fluoride gas or silicon tetrafluoride gas to render harmless.SOLUTION: A liquid to be treated is supplied to one side of the hydrophobic porous membrane under conditions where the pH of the liquid to be treated is 1 or more and 6 or less to perform membrane distillation with the hydrophobic porous membrane to increase the fluorine component concentration in the liquid to be treated. The evaporated vapor which permeates the other side of the hydrophobic porous membrane and contains the fluorine compound is cooled to obtain condensed water.SELECTED DRAWING: Figure 1

Description

本発明は、フッ化物イオン(F-)及びケイフッ化物イオン(SiF6 2-;ヘキサフルオロケイ酸イオンとも呼ぶ)の少なくとも一方を含有する被処理液を濃縮して処理する方法及び装置に関する。 The present invention relates to a method and an apparatus for concentrating and treating a liquid to be treated containing at least one of fluoride ions (F ) and silicofluoride ions (SiF 6 2− ; also called hexafluorosilicate ions).

フッ酸廃液やケイフッ酸廃液などのフッ化物イオンやケイフッ化物イオンを含む水性廃液を回収して再利用しあるいは廃棄処理のために減容するために、その廃液に対する濃縮処理が行われる。特許文献1には、フッ化物イオンの形態でフッ酸含有廃液に含まれるフッ素成分を効率よく回収する方法として、加熱蒸発缶により水分をフラッシュ蒸発させてフッ素成分を濃縮し、水分に随伴して気相側に表われたフッ化水素(HF)ガスを後段で水やアルカリに吸収させて除去することが開示されている。   In order to collect and reuse aqueous waste liquids containing fluoride ions and silicofluoride ions such as hydrofluoric acid waste liquid and silicic acid waste liquid, or reducing the volume for waste treatment, the waste liquid is concentrated. In Patent Document 1, as a method of efficiently recovering the fluorine component contained in the hydrofluoric acid-containing waste liquid in the form of fluoride ions, the moisture is flash evaporated by a heating evaporator, and the fluorine component is concentrated. It is disclosed that hydrogen fluoride (HF) gas appearing on the gas phase side is absorbed and removed by water or alkali at a later stage.

ところで、フッ素化合物を含む廃液を酸性で加熱濃縮すると、人体に有害なフッ化水素ガスや四フッ化ケイ素(SiF4)ガスを生成する。加熱蒸発缶は、構造上、気液分離のための空間が大きいため、加熱蒸発缶の蒸発缶部分内にこれらのガスで充満し、万が一漏洩した場合には非常に危険である。また、これらのガスは装置を腐食させるため、耐食性のある高価な金属製の設備、あるいはライニングを施した設備を使用する必要がある。腐食の問題を解決するために安価な樹脂により蒸発缶を製造すると、先に述べたように空間が大きい構造であるため、耐久性の点で問題が生じる。さらに、蒸発缶を減圧するためのブロアあるいは真空ポンプは酸性のガスを吸引すると腐食するため、蒸発缶から発生したフッ化水素ガスあるいは四フッ化ケイ素ガスの大部分を除去する必要がある。そのためには、特許文献1に記載されるように、発生したガスを単純に水と接触させるだけではなく、アルカリと接触させたり、あるいは多段階で水と接触させたりする必要があり、設備が大掛かりなものとなってしまう。 By the way, when waste liquid containing a fluorine compound is heated and concentrated acidic, hydrogen fluoride gas and silicon tetrafluoride (SiF 4 ) gas harmful to human bodies are generated. Since the heating evaporator has a large space for gas-liquid separation, it is very dangerous if the evaporator portion of the heating evaporator is filled with these gases and leaks. In addition, since these gases corrode the apparatus, it is necessary to use expensive metal equipment having a corrosion resistance or lining equipment. When an evaporator is manufactured from an inexpensive resin in order to solve the corrosion problem, there is a problem in terms of durability because the structure has a large space as described above. Furthermore, since the blower or vacuum pump for reducing the pressure of the evaporator corrodes when an acidic gas is sucked, it is necessary to remove most of the hydrogen fluoride gas or silicon tetrafluoride gas generated from the evaporator. For this purpose, as described in Patent Document 1, it is necessary not only to simply contact the generated gas with water, but also to contact alkali, or to contact water in multiple stages. It will be a big one.

フッ化物イオンやケイフッ化物イオンを含む廃液からフッ素成分を濃縮する方法として、廃液をアルカリ性にする方法もあるが、廃液をアルカリ性にするためにコストがかかる上に、反応生成物としてフッ化ナトリウム(NaF)などの析出物が生成するという問題を生じる。   As a method of concentrating the fluorine component from the waste liquid containing fluoride ions and silicofluoride ions, there is a method of making the waste liquid alkaline, but it is costly to make the waste liquid alkaline, and sodium fluoride ( This causes a problem that precipitates such as NaF) are generated.

特開2004−188411号公報JP 2004-188411 A

上述したように、フッ化物イオンやケイフッ化物イオンを含む被処理液においてフッ素成分を濃縮する場合、加熱蒸発缶を用いる場合には安全面での十分な配慮が必要であり、また設備の小型化が難しいという課題がある。アルカリを用いてフッ素成分を濃縮する場合には、アルカリを利用することによるコストの問題や析出物の問題がある。   As mentioned above, when concentrating fluorine components in the liquid to be treated containing fluoride ions and silicofluoride ions, when using a heating evaporator, sufficient safety considerations are necessary, and downsizing of equipment is required. There is a problem that is difficult. When the fluorine component is concentrated using an alkali, there are a problem of cost and a precipitate due to the use of the alkali.

本発明の目的は、フッ化物イオンやケイフッ化物イオンを含む被処理液を小型で安価な設備で濃縮分離できるとともに、生成するフッ化水素ガスや四フッ化ケイ素ガスを速やかに無害化できる処理方法及び処理装置を提供することにある。   An object of the present invention is to provide a treatment method capable of concentrating and separating a liquid to be treated containing fluoride ions and silicofluoride ions with a small and inexpensive facility and quickly detoxifying the generated hydrogen fluoride gas or silicon tetrafluoride gas. And providing a processing apparatus.

本発明のフッ化物イオン及びケイフッ化物イオンの少なくとも一方を含む被処理液を処理するフッ素含有水の処理方法は、被処理液のpHが1以上6以下の条件で、疎水性多孔膜の一方の側に被処理液を供給して疎水性多孔膜により膜蒸留を行って被処理液におけるフッ素成分濃度を高め、疎水性多孔膜の他方の側に透過しかつフッ素化合物を含む蒸発蒸気を冷却して凝縮水を得る。   In the method for treating fluorine-containing water for treating a treatment liquid containing at least one of fluoride ions and silicofluoride ions according to the present invention, the pH of the treatment liquid is 1 or more and 6 or less. The liquid to be treated is supplied to the side and membrane distillation is performed by the hydrophobic porous membrane to increase the concentration of fluorine components in the liquid to be treated, and the vapor vapor that permeates the other side of the hydrophobic porous membrane and contains the fluorine compound is cooled. To obtain condensed water.

本発明のフッ化物イオン及びケイフッ化物イオンの少なくとも一方を含む被処理液を処理するフッ素含有水の処理装置は、疎水性多孔膜と、疎水性多孔膜の一方の表面に接して設けられた濃縮室と、疎水性多孔膜の他方の表面に接して設けられた減圧室と、を有する膜蒸留モジュールと、疎水性多孔膜を介して減圧室に透過した蒸発蒸気を冷却して凝縮水を生成する凝縮手段と、減圧室内を減圧する減圧手段と、を備え、pHが1以上6以下である被処理液を濃縮室に供給して疎水性多孔膜により膜蒸留を行い、濃縮室内の被処理液におけるフッ素成分濃度を高める。   The apparatus for treating fluorine-containing water for treating a liquid to be treated containing at least one of fluoride ions and silicofluoride ions according to the present invention includes a hydrophobic porous membrane and a concentration provided in contact with one surface of the hydrophobic porous membrane. A membrane distillation module having a chamber and a decompression chamber provided in contact with the other surface of the hydrophobic porous membrane, and condensate water is generated by cooling the vapor evaporated through the hydrophobic porous membrane into the decompression chamber A condensing means for depressurizing and a depressurizing means for depressurizing the interior of the decompression chamber, supplying a liquid to be treated having a pH of 1 or more and 6 or less to the concentrating chamber, performing membrane distillation with a hydrophobic porous membrane, and treating the concentrating chamber Increase the concentration of fluorine components in the liquid.

本発明では、膜蒸留を用いることにより、被処理液の水分を水蒸気として疎水性多孔膜を透過させ、これにより被処理液におけるフッ素成分を濃縮させている。フッ化物イオン及びケイフッ化物イオンの少なくとも一方を含む被処理液に含まれるフッ素成分あるいはフッ素化合物は、イオンに解離している状態であれば膜蒸留によって疎水性多孔膜を通過することはなく、疎水性多孔膜の供給側に留まることになる。またフッ化水素酸は弱酸に分類されるので、液性によっては被処理液中にはフッ化水素分子が存在することになるが、フッ化水素分子は強い極性分子であり、水分子と比べても疎水性多孔膜を通過しにくい。したがって、疎水性多孔膜の使用により、被処理液中のフッ素成分を効率よく濃縮することができる。   In the present invention, by using membrane distillation, water in the liquid to be treated is permeated through the hydrophobic porous membrane using water vapor, thereby concentrating the fluorine component in the liquid to be treated. The fluorine component or fluorine compound contained in the liquid to be treated containing at least one of fluoride ion and silicofluoride ion does not pass through the hydrophobic porous membrane by membrane distillation as long as it is dissociated into ions. It remains on the supply side of the porous porous membrane. In addition, hydrofluoric acid is classified as a weak acid, so depending on the liquidity, hydrogen fluoride molecules exist in the liquid to be treated. However, hydrogen fluoride molecules are strongly polar molecules, and compared with water molecules. However, it is difficult to pass through the hydrophobic porous membrane. Therefore, the use of the hydrophobic porous membrane can efficiently concentrate the fluorine component in the liquid to be treated.

もっとも、フッ化水素分子が疎水性多孔膜に対して完全に不透過であるわけではなく、そのいくばくかは水蒸気とともに疎水性多孔膜を透過する。透過したフッ化水素は、ブロアあるいは真空ポンプといった減圧手段における腐食の要因となり得るものであるから、本発明では、腐食のリスクの低減を図るために、疎水性多孔膜の他方の側に透過しかつフッ素化合物を含む蒸発蒸気を冷却して凝縮水を得るようにする。蒸発蒸気を冷却して凝縮水を得る際には、凝縮水を得たのちの気体部分におけるフッ化水素濃度が10体積ppm以下となるようにすることが好ましく、1体積ppm以下となるようにすることがより好ましい。   However, hydrogen fluoride molecules are not completely impermeable to the hydrophobic porous membrane, and some of it penetrates the hydrophobic porous membrane together with water vapor. Since the permeated hydrogen fluoride can cause corrosion in a decompression means such as a blower or a vacuum pump, the present invention permeates the other side of the hydrophobic porous membrane in order to reduce the risk of corrosion. The vaporized vapor containing the fluorine compound is cooled to obtain condensed water. When condensate is obtained by cooling the evaporated vapor, it is preferable that the hydrogen fluoride concentration in the gas part after obtaining the condensate is 10 ppm by volume or less, so that 1 ppm by volume or less. More preferably.

蒸発蒸気を冷却による凝縮水の生成を十分に行うためには、冷却に用いる冷媒の温度を下げたり、伝熱面の厚さを薄くしたりすることによって、凝縮に必要な熱量が十分に伝熱するように冷却の条件を決定することが重要である。冷媒には一般的に冷水が使われるが、この温度が低いほどよく、25℃以下の温度であることが好ましい。冷却の方法としては、必要な熱量が伝わるものであればよく、熱交換器など一般的なものを使用できる。しかしながら、フッ化水素などによる腐食の懸念を低減するためには、非腐食性の材料(樹脂製の伝熱面や、薄いフィルム状のものなど)を使用して熱交換を行うことが好ましい。一般的に非腐食性の材料は金属に比べて熱伝達率が低いが、伝熱面を薄くする、伝熱面積を大きく取るなどの工夫をすることによって必要な熱量を移動させることができる。   In order to sufficiently generate condensed water by cooling the evaporating vapor, the amount of heat necessary for condensation is sufficiently transferred by lowering the temperature of the refrigerant used for cooling or reducing the thickness of the heat transfer surface. It is important to determine the cooling conditions so as to heat. Although cold water is generally used as the refrigerant, the lower the temperature, the better. The temperature is preferably 25 ° C. or lower. Any cooling method may be used as long as a necessary amount of heat can be transmitted, and a general method such as a heat exchanger can be used. However, in order to reduce the concern about corrosion due to hydrogen fluoride or the like, it is preferable to perform heat exchange using a non-corrosive material (such as a resin heat transfer surface or a thin film). In general, non-corrosive materials have a lower heat transfer coefficient than metals, but the necessary amount of heat can be transferred by devising measures such as thinning the heat transfer surface and increasing the heat transfer area.

本発明では、被処理液のpHを1以上6以下とし、好ましくは1以上4以下とする。被処理液のpHが6を超えると、アルカリを用いる従来の処理方法での処理条件に近づくこととなり、従来の処理方法と同様の課題が生ずることになる。特に、析出物は疎水性多孔膜の目詰まりの原因となり得る。一方、pHが1を下回って強酸性条件となると、フッ化水素分子が大量に疎水性多孔膜を透過することになって、疎水性多孔膜における供給側でのフッ素成分の濃縮が十分に行われないことになるとともに、疎水性多孔膜を透過したフッ化水素の処理に要する負担が過大なものとなる。従来の加熱濃縮による方法はpHが4以下のときの処理に大きな課題を有しているを考慮すると、本発明は、被処理液のpHが1以上4以下のときに著しい効果を達成する。   In the present invention, the pH of the liquid to be treated is 1 or more and 6 or less, preferably 1 or more and 4 or less. If the pH of the liquid to be treated exceeds 6, the processing conditions in the conventional processing method using alkali will be approached, and the same problem as in the conventional processing method will occur. In particular, the deposits can cause clogging of the hydrophobic porous membrane. On the other hand, when the pH is lower than 1 and a strong acidic condition is reached, a large amount of hydrogen fluoride molecules permeate the hydrophobic porous membrane, so that the fluorine component on the supply side of the hydrophobic porous membrane is sufficiently concentrated. In addition to this, the burden required for the treatment of hydrogen fluoride that has permeated through the hydrophobic porous membrane becomes excessive. Considering that the conventional heat concentration method has a big problem in the treatment when the pH is 4 or less, the present invention achieves a remarkable effect when the pH of the liquid to be treated is 1 or more and 4 or less.

膜蒸留に用いる疎水性多孔膜としては、例えば、フッ素樹脂からなるものを用いることができ、ポリテトラフルオロエチレン(PTFE)膜あるいはポリフッ化ビニリデン(PVDF)膜を好ましく用いることができる。疎水性多孔膜は、例えば、膜蒸留モジュールに組み込まれて使用される。膜蒸留モジュールは、疎水性多孔膜と、疎水性多孔膜の一方の表面に接して設けられた濃縮室と、疎水性多孔膜の他方の表面に接して設けられた減圧室とから構成され、フッ化物イオン及びケイフッ化物イオンの少なくとも一方を含む被処理液は濃縮室に供給される。膜蒸留モジュールでは、腐食のおそれを低減するために、濃縮室における被処理液に接する壁面と、減圧室における蒸発蒸気に接する壁面とを樹脂で形成することが好ましい。さらに、減圧室の壁面自体を冷却することによって、蒸発蒸気を冷却させて凝縮水を生成するようにしてもよい。   As the hydrophobic porous membrane used for membrane distillation, for example, a fluororesin film can be used, and a polytetrafluoroethylene (PTFE) membrane or a polyvinylidene fluoride (PVDF) membrane can be preferably used. The hydrophobic porous membrane is used by being incorporated into a membrane distillation module, for example. The membrane distillation module is composed of a hydrophobic porous membrane, a concentration chamber provided in contact with one surface of the hydrophobic porous membrane, and a decompression chamber provided in contact with the other surface of the hydrophobic porous membrane, A liquid to be treated containing at least one of fluoride ions and silicofluoride ions is supplied to the concentration chamber. In the membrane distillation module, in order to reduce the risk of corrosion, it is preferable that the wall surface in contact with the liquid to be treated in the concentration chamber and the wall surface in contact with the vaporized vapor in the decompression chamber are formed of resin. Further, the evaporated vapor may be cooled to generate condensed water by cooling the wall surface of the decompression chamber itself.

本発明では、膜蒸留装置を用いて液体の濃縮を行っている。液体の濃縮に膜蒸留を用いることは例えば特開2016−68006号公報に記載されているが、フッ素化合物を含む被処理液の濃縮に膜蒸留を用いることは検討されておらず、また、疎水性多孔膜を透過した蒸気を冷却させる手段の条件についても何ら記載されていない。   In the present invention, the liquid is concentrated using a membrane distillation apparatus. The use of membrane distillation for concentration of liquid is described in, for example, JP-A-2006-68006, but the use of membrane distillation for concentration of a liquid to be treated containing a fluorine compound has not been studied, and hydrophobic There is no description of the conditions of the means for cooling the vapor that has passed through the porous porous membrane.

本発明によれば、フッ化物イオンやケイフッ化物イオンを含む被処理液中のフッ素成分を安価な設備で濃縮分離できるとともに、蒸発側の空間を小さくし、かつ発生したフッ化水素などのガスを速やかに凝縮水に溶け込ませて回収できるので、フッ化水素ガスの無害化を容易に行うことができる。したがって本発明のフッ素含有水び処理方法及び装置は、他のものと比べ、安全上及び設備コスト上で優位である。   According to the present invention, the fluorine component in the liquid to be treated containing fluoride ions and silicofluoride ions can be concentrated and separated by an inexpensive facility, the space on the evaporation side is reduced, and the generated gas such as hydrogen fluoride is reduced. Since it can be quickly dissolved in condensed water and recovered, hydrogen fluoride gas can be easily rendered harmless. Therefore, the fluorine-containing water treatment method and apparatus of the present invention are superior in safety and equipment cost compared to other methods.

本発明の実施の一形態の処理装置の構成を示す図である。It is a figure which shows the structure of the processing apparatus of one Embodiment of this invention. 本発明の別の実施形態の処理装置の構成を示す図である。It is a figure which shows the structure of the processing apparatus of another embodiment of this invention. 実施例で用いた処理装置の構成を示す図である。It is a figure which shows the structure of the processing apparatus used in the Example.

次に、本発明の好ましい実施の形態について、図面を参照して説明する。図1は、本発明の実施の一形態の処理装置の構成を示している。   Next, a preferred embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows the configuration of a processing apparatus according to an embodiment of the present invention.

図1に示す処理装置は、フッ化物イオンやケイフッ化物イオンを含む水性の廃液を被処理液とし、被処理液中のフッ素成分を濃縮するものである。被処理液のpHは、1以上6以下とされる。処理装置は、膜蒸留を行うための膜蒸留モジュール10を備えており、膜蒸留モジュール10は、疎水性多孔膜11と、疎水性多孔膜11の一方の表面に接して設けられた濃縮室12と、疎水性多孔膜11の他方の表面に接して設けられた減圧室13と、を備えている。被処理液を一時的に貯える貯槽20が設けられており、貯槽20と膜蒸留モジュール10の濃縮室12とは配管21によって接続され、配管21には濃縮室12に被処理液を給送するための供給ポンプ22が設けられている。各種工程から排出された被処理液は、配管23を介して貯槽20に供給される。貯槽20には循環配管24が接続し、循環配管24にはポンプ25とヒータ26が設けられ、貯槽20内の被処理液を膜蒸留に適した温度まで加温できるようになっている。   The processing apparatus shown in FIG. 1 uses an aqueous waste liquid containing fluoride ions and silicofluoride ions as a liquid to be processed, and concentrates a fluorine component in the liquid to be processed. The pH of the liquid to be treated is 1 or more and 6 or less. The processing apparatus includes a membrane distillation module 10 for performing membrane distillation. The membrane distillation module 10 includes a hydrophobic porous membrane 11 and a concentration chamber 12 provided in contact with one surface of the hydrophobic porous membrane 11. And a decompression chamber 13 provided in contact with the other surface of the hydrophobic porous membrane 11. A storage tank 20 for temporarily storing the liquid to be processed is provided, the storage tank 20 and the concentration chamber 12 of the membrane distillation module 10 are connected by a pipe 21, and the liquid to be processed is fed to the pipe 21 to the concentration chamber 12. A supply pump 22 is provided. The liquid to be treated discharged from various processes is supplied to the storage tank 20 through the pipe 23. A circulation pipe 24 is connected to the storage tank 20, and a pump 25 and a heater 26 are provided in the circulation pipe 24 so that the liquid to be treated in the storage tank 20 can be heated to a temperature suitable for membrane distillation.

減圧室13には配管31が接続し、配管31の途中には熱交換器32が設けられている。熱交換器32は、疎水性多孔膜11を介して減圧室13に透過した蒸発蒸気を冷却水によって冷却するものであり、蒸発蒸気は熱交換器32によって冷却されて凝縮水を生成する。熱交換器32は凝縮手段として機能する。凝縮水は、配管31を通って凝縮水タンク33に溜まることとなる。また、凝縮水タンク33には減圧ブロア34が接続しており、減圧ブロア34を作動させることによって、凝縮水タンク33及び配管31を介して減圧室13の内部が所定の圧力まで減圧されるようになっている。また、貯槽20も圧力調整弁51を備える配管50によって減圧ブロア34の入口側に接続している。貯槽20内を減圧とすることにより、膜蒸留モジュール10の濃縮室12も減圧されることとなり、被処理液の沸点を低下させてより低い温度で膜蒸留を行わせることができる。   A pipe 31 is connected to the decompression chamber 13, and a heat exchanger 32 is provided in the middle of the pipe 31. The heat exchanger 32 cools the evaporated vapor that has permeated into the decompression chamber 13 through the hydrophobic porous membrane 11 with cooling water, and the evaporated vapor is cooled by the heat exchanger 32 to generate condensed water. The heat exchanger 32 functions as a condensing means. Condensed water is accumulated in the condensed water tank 33 through the pipe 31. Further, a decompression blower 34 is connected to the condensed water tank 33, and by operating the decompression blower 34, the interior of the decompression chamber 13 is decompressed to a predetermined pressure via the condensed water tank 33 and the piping 31. It has become. The storage tank 20 is also connected to the inlet side of the decompression blower 34 by a pipe 50 having a pressure regulating valve 51. By depressurizing the inside of the storage tank 20, the concentration chamber 12 of the membrane distillation module 10 is also depressurized, so that the boiling point of the liquid to be treated can be lowered and membrane distillation can be performed at a lower temperature.

膜蒸留モジュール10において、疎水性多孔膜11は例えばフッ素樹脂からなる多孔膜であり、好ましくはポリテトラフルオロエチレン(PTFE)膜あるいはポリフッ化ビニリデン(PVDF)膜が使用される。また、膜蒸留モジュール10の腐食を防ぐために、膜モジュール10は例えば樹脂あるいは耐食性合金で構成される。例えば、濃縮室12における被処理液に接する壁面と、減圧室13における蒸発蒸気に接する壁面とは、フッ化水素などに耐性を有する樹脂で形成される。   In the membrane distillation module 10, the hydrophobic porous membrane 11 is a porous membrane made of, for example, a fluororesin, and a polytetrafluoroethylene (PTFE) membrane or a polyvinylidene fluoride (PVDF) membrane is preferably used. In order to prevent corrosion of the membrane distillation module 10, the membrane module 10 is made of, for example, a resin or a corrosion resistant alloy. For example, the wall surface in contact with the liquid to be treated in the concentration chamber 12 and the wall surface in contact with the evaporated vapor in the decompression chamber 13 are formed of a resin having resistance to hydrogen fluoride or the like.

次に、図1に示した処理装置を用いた、フッ酸廃液などである被処理水の濃縮処理について説明する。減圧ブロア34を駆動して減圧室13内を所定に圧力にまで減圧し、この減圧状態を維持する。ポンプ25及びヒータ26を駆動して貯槽10内の被処理水を所定の温度(例えば60℃)まで加温した後、供給ポンプ22を駆動して被処理水を濃縮室12に供給する。その結果、膜蒸留モジュール10において疎水性多孔膜11を介した膜蒸留が起こり、被処理液中の水分は水蒸気の形態で図示波線の矢印で示すように減圧室13に透過する。被処理液中のフッ素成分はそのまま濃縮室12内に残留するから、濃縮室12内の被処理液におけるフッ素成分濃度が上昇し、フッ素成分の濃縮が行われたことになる。フッ素成分濃度が上昇した被処理液は、濃縮液として濃縮室12から排出される。なお、濃縮水を貯槽20に戻して循環させることにより、さらにフッ素成分濃度を上昇させることができる。   Next, the concentration process of the to-be-processed water which is a hydrofluoric acid waste liquid etc. using the processing apparatus shown in FIG. 1 is demonstrated. The decompression blower 34 is driven to decompress the interior of the decompression chamber 13 to a predetermined pressure, and this decompressed state is maintained. After the pump 25 and the heater 26 are driven to heat the water to be treated in the storage tank 10 to a predetermined temperature (for example, 60 ° C.), the supply pump 22 is driven to supply the water to be treated to the concentration chamber 12. As a result, membrane distillation through the hydrophobic porous membrane 11 occurs in the membrane distillation module 10, and moisture in the liquid to be treated permeates into the decompression chamber 13 in the form of water vapor as shown by an arrow in the wavy line in the figure. Since the fluorine component in the liquid to be treated remains in the concentration chamber 12 as it is, the concentration of the fluorine component in the liquid to be treated in the concentration chamber 12 increases and the fluorine component is concentrated. The liquid to be treated with the increased fluorine component concentration is discharged from the concentration chamber 12 as a concentrated liquid. Note that the concentration of the fluorine component can be further increased by returning the concentrated water to the storage tank 20 and circulating it.

疎水性多孔膜11を透過して減圧室13に到達した蒸発蒸気は主として水蒸気からなるが、多少の分子性のフッ素化合物、例えばフッ化水素や四フッ化シランを含んでおり、これらは腐食の原因となるとともにそのままでは環境中に放出するのは好ましくない。そこで熱交換器32により蒸発蒸気を冷却させて凝縮水を生成し、フッ化水素や四フッ化シランを凝縮水中に溶け込ませるようにする。生成された凝縮水は凝縮水タンク33に溜まるから、これに対して適宜の排水処理を行えばよい。このとき、凝縮水を得たのちの気体部分、すなわち減圧ブロア34の排気におけるフッ化水素濃度が10体積ppm以下となるように、熱交換器32での冷却条件を設定することが好ましい。例えば、熱交換器32に供給する冷却水の温度を25℃以下とする。   The evaporated vapor that has passed through the hydrophobic porous membrane 11 and reached the decompression chamber 13 is mainly composed of water vapor, but contains some molecular fluorine compounds such as hydrogen fluoride and tetrafluorosilane, which are corrosive. In addition to being a cause, it is not preferable to release it into the environment as it is. Therefore, the vaporized vapor is cooled by the heat exchanger 32 to generate condensed water, and hydrogen fluoride or tetrafluorosilane is dissolved in the condensed water. Since the generated condensed water accumulates in the condensed water tank 33, an appropriate drainage treatment may be performed on the condensed water. At this time, it is preferable to set the cooling conditions in the heat exchanger 32 so that the hydrogen fluoride concentration in the gas portion after obtaining the condensed water, that is, the exhaust of the decompression blower 34 is 10 ppm by volume or less. For example, the temperature of the cooling water supplied to the heat exchanger 32 is set to 25 ° C. or lower.

図1に示した処理装置では、減圧ブロア34はフッ化水素などのフッ素含有ガスから保護されるものの熱交換器32はフッ化水素などに接触することになる。そこで、図2に示すように、減圧室13から延びる配管に熱交換器を設けるのではなく、減圧室13の壁面の一部を冷却面としてこの冷却面において凝縮水を生成するように構成することもできる。図2に示した処理装置は、図1の処理装置に比べ、配管31、熱交換器32及び凝縮水タンク33が設けられておらず、その代わり、減圧室13の壁面の一部を冷却する冷却モジュール40が備えられている。減圧ブロア34は、減圧室13に直接接続されている。冷却モジュール40は、熱伝導率の高い材料から構成され、その内部には冷却水が循環するようになっている。冷却モジュール40の表面には耐食性を有する樹脂フィルムが張られており、この樹脂フィルムは減圧室13の壁面の一部となっている。すなわち、樹脂フィルムの一方の側は、減圧室13の内部を向いて冷却面となっており、樹脂フィルムの他方の側の冷却モジュール40によって冷却されるようになっている。減圧室13内の蒸発蒸気は、冷却モジュール40によって冷却されている冷却面に触れて凝縮して凝縮水となる。凝縮水は、減圧室13の底部に溜まるから、溜まった凝縮水の量が一定値を超えたら膜蒸留モジュール10の運転を停止して減圧室13から凝縮水を排出すればよい。   In the processing apparatus shown in FIG. 1, although the vacuum blower 34 is protected from a fluorine-containing gas such as hydrogen fluoride, the heat exchanger 32 comes into contact with hydrogen fluoride or the like. Therefore, as shown in FIG. 2, instead of providing a heat exchanger in the pipe extending from the decompression chamber 13, a part of the wall surface of the decompression chamber 13 is used as a cooling surface so that condensed water is generated on this cooling surface. You can also The processing apparatus shown in FIG. 2 is not provided with the piping 31, the heat exchanger 32, and the condensed water tank 33 as compared with the processing apparatus of FIG. 1, and instead cools a part of the wall surface of the decompression chamber 13. A cooling module 40 is provided. The decompression blower 34 is directly connected to the decompression chamber 13. The cooling module 40 is made of a material having a high thermal conductivity, and cooling water is circulated therein. A resin film having corrosion resistance is stretched on the surface of the cooling module 40, and this resin film is a part of the wall surface of the decompression chamber 13. That is, one side of the resin film faces the inside of the decompression chamber 13 and becomes a cooling surface, and is cooled by the cooling module 40 on the other side of the resin film. The evaporated vapor in the decompression chamber 13 is condensed by touching the cooling surface cooled by the cooling module 40 to become condensed water. Since the condensed water accumulates at the bottom of the decompression chamber 13, when the amount of the accumulated condensed water exceeds a certain value, the operation of the membrane distillation module 10 is stopped and the condensed water is discharged from the decompression chamber 13.

次に、実施例により本発明をさらに詳しく説明する。実施例では図3に示す処理装置を使用した。図3に示す処理装置は、図1に示すものと同様のものであるが、濃縮室12から排出される濃縮液をそのまま貯槽20に循環させるようにしている点で、図1に示したものと異なっている。配管21において供給ポンプ22の濃縮室12との間に調整弁27が設けられ、調整弁27の手前から貯槽20に戻る戻り配管28が設けられている。調整弁27の開度を調整することによって、濃縮室12への被処理液の流量を制御できるようになっている。貯槽には、被処理液があらかじめ蓄えられている。また、凝縮させるまえの蒸発蒸気におけるフッ化水素濃度の測定のために、配管31において熱交換器32の手前からサンプリング用の配管36が分岐し、配管36にはサンプリング弁が設けられている。   Next, the present invention will be described in more detail with reference to examples. In the example, the processing apparatus shown in FIG. 3 was used. The processing apparatus shown in FIG. 3 is the same as that shown in FIG. 1, except that the concentrated liquid discharged from the concentration chamber 12 is circulated as it is to the storage tank 20 as shown in FIG. Is different. A regulating valve 27 is provided between the piping 21 and the concentration chamber 12 of the supply pump 22, and a return piping 28 is provided from the front of the regulating valve 27 to the storage tank 20. The flow rate of the liquid to be processed into the concentration chamber 12 can be controlled by adjusting the opening of the adjustment valve 27. The liquid to be processed is stored in advance in the storage tank. In order to measure the concentration of hydrogen fluoride in the evaporated vapor before condensation, a sampling pipe 36 is branched from the front of the heat exchanger 32 in the pipe 31, and the pipe 36 is provided with a sampling valve.

膜蒸留モジュール10において、疎水性多孔膜11として、直径75mm、膜面積44cm2のポリテトラフルオロエチレン膜を使用した。この膜は、公称孔径が0.2μmの多孔膜である。膜蒸留モジュール10のうち疎水性多孔膜11を除いた部分はポリエチレン(PE)製であった。熱交換器32として、耐食性合金SUS316Lからなる日阪製作所製BHE−005(伝熱面積:0.135m2)を使用した。熱交換器32には、冷却水として25℃の水が供給されるようにした。 In the membrane distillation module 10, a polytetrafluoroethylene membrane having a diameter of 75 mm and a membrane area of 44 cm 2 was used as the hydrophobic porous membrane 11. This membrane is a porous membrane having a nominal pore diameter of 0.2 μm. The portion of the membrane distillation module 10 excluding the hydrophobic porous membrane 11 was made of polyethylene (PE). As the heat exchanger 32, BHE-005 (heat transfer area: 0.135 m < 2 >) made from a corrosion resistant alloy SUS316L manufactured by Nisaka Manufacturing Co., Ltd. was used. The heat exchanger 32 was supplied with 25 ° C. water as cooling water.

被処理液として、表1に示す供給液1及び供給液2の2種類の排水を使用し、それぞれについて実験を行った。供給液1は、鉛の電解精錬工程からの排水であり、多量のヘキサフルオロケイ酸鉛(PbSiF6)を含んでいる。供給液2はフッ酸排水であり、フッ化水素を含んでいる。表1において、「フッ素化合物」とは、F-イオンとSiF6 2-イオンについてのフッ素原子のみについての質量に基づく濃度を示している。「イオン状シリカ」とは、SiF6 2-イオンについてのケイ素原子のみについての質量に基づく濃度を示している。 As the liquid to be treated, two types of wastewaters of the supply liquid 1 and the supply liquid 2 shown in Table 1 were used, and an experiment was conducted for each. The supply liquid 1 is the waste water from the electrolytic refining process of lead, and contains a large amount of lead hexafluorosilicate (PbSiF 6 ). The supply liquid 2 is hydrofluoric acid waste water and contains hydrogen fluoride. In Table 1, “fluorine compound” indicates the concentration based on the mass of only fluorine atoms for F ions and SiF 6 2− ions. “Ionic silica” refers to the concentration based on the mass of only the silicon atoms for the SiF 6 2− ions.

Figure 2018065101
Figure 2018065101

被処理液をヒータ26によって60℃に加温し、膜蒸留モジュール10に1L/分の流量で供給した。減圧ブロア34による吸引圧力を−95kPaとした。このとき、疎水性多孔膜10での透過フラックスは、60〜110kg/m2/時間程度であった。 The liquid to be treated was heated to 60 ° C. by the heater 26 and supplied to the membrane distillation module 10 at a flow rate of 1 L / min. The suction pressure by the decompression blower 34 was -95 kPa. At this time, the permeation flux in the hydrophobic porous membrane 10 was about 60 to 110 kg / m 2 / hour.

この条件で処理装置の運転を継続し、運転開始後1時間の時点において、サンプリング弁37を介して捕集された気体、すなわち減圧室13からの冷却前の気体におけるフッ化水素濃度と、減圧ブロア34の出口の気体、すなわち減圧室13を出てから冷却され凝縮水の生成を経たのちの気体(このとき、貯槽20からの気体の寄与は無視できる)におけるフッ化水素濃度とをガス検知管を用いて測定した。その結果を表2に示す。   Under this condition, the operation of the treatment apparatus is continued, and at one hour after the start of operation, the concentration of hydrogen fluoride in the gas collected through the sampling valve 37, that is, the gas before cooling from the decompression chamber 13, and the decompression The gas at the outlet of the blower 34, that is, the hydrogen fluoride concentration in the gas that has been cooled after exiting the decompression chamber 13 and produced condensed water (at this time, the contribution of the gas from the storage tank 20 can be ignored) is detected. Measurement was performed using a tube. The results are shown in Table 2.

Figure 2018065101
Figure 2018065101

表2に示すように、減圧室13内の蒸発蒸気におけるフッ化水素濃度が10ppmを超える場合であっても、その蒸発蒸気を冷却して凝縮水を生成することにより、凝縮水生成後の残った気体でのフッ化水素濃度を1ppm未満とすることができ、十分な無害化を速やかに達成できることが分かった。   As shown in Table 2, even when the concentration of hydrogen fluoride in the vaporized vapor in the decompression chamber 13 exceeds 10 ppm, the vaporized vapor is cooled to generate condensed water, thereby remaining after the condensed water is generated. It was found that the hydrogen fluoride concentration in the gas was less than 1 ppm, and sufficient detoxification could be achieved quickly.

10 膜蒸留モジュール
11 疎水性多孔膜
12 濃縮室
13 減圧室
20 貯槽
22 供給ポンプ
32 熱交換器
33 凝縮水タンク
34 減圧ブロア
40 冷却モジュール
DESCRIPTION OF SYMBOLS 10 Membrane distillation module 11 Hydrophobic porous membrane 12 Concentration chamber 13 Decompression chamber 20 Storage tank 22 Supply pump 32 Heat exchanger 33 Condensed water tank 34 Decompression blower 40 Cooling module

Claims (8)

フッ化物イオン及びケイフッ化物イオンの少なくとも一方を含む被処理液を処理するフッ素含有水の処理方法であって、
前記被処理液のpHが1以上6以下の条件で、疎水性多孔膜の一方の側に前記被処理液を供給して前記疎水性多孔膜により膜蒸留を行って前記被処理液におけるフッ素成分濃度を高め、
前記疎水性多孔膜の他方の側に透過しかつフッ素化合物を含む蒸発蒸気を冷却して凝縮水を得る、フッ素含有水の処理方法。
A method for treating fluorine-containing water for treating a liquid to be treated containing at least one of fluoride ions and silicofluoride ions,
Fluorine component in the liquid to be treated by supplying the liquid to be treated to one side of the hydrophobic porous membrane and performing film distillation with the hydrophobic porous membrane under the condition that the pH of the liquid to be treated is 1 or more and 6 or less Increase the concentration,
A method for treating fluorine-containing water, wherein condensed water is obtained by cooling evaporating vapor that permeates the other side of the hydrophobic porous membrane and contains a fluorine compound.
前記凝縮水を得たのちの気体部分におけるフッ化水素濃度が10体積ppm以下となるように前記蒸発蒸気を冷却する、請求項1に記載のフッ素含有水の処理方法。   The method for treating fluorine-containing water according to claim 1, wherein the vaporized vapor is cooled so that the hydrogen fluoride concentration in the gas portion after obtaining the condensed water is 10 ppm by volume or less. 前記疎水性多孔膜は、ポリテトラフルオロエチレン膜あるいはポリフッ化ビニリデン膜である、請求項1または2に記載のフッ素含有水の処理方法。   The method for treating fluorine-containing water according to claim 1 or 2, wherein the hydrophobic porous film is a polytetrafluoroethylene film or a polyvinylidene fluoride film. フッ化物イオン及びケイフッ化物イオンの少なくとも一方を含む被処理液を処理するフッ素含有水の処理装置であって、
疎水性多孔膜と、前記疎水性多孔膜の一方の表面に接して設けられた濃縮室と、前記疎水性多孔膜の他方の表面に接して設けられた減圧室と、を有する膜蒸留モジュールと、
前記疎水性多孔膜を介して前記減圧室に透過した蒸発蒸気を冷却して凝縮水を生成する凝縮手段と、
前記減圧室内を減圧する減圧手段と、
を備え、
pHが1以上6以下である前記被処理液を前記濃縮室に供給して前記疎水性多孔膜により膜蒸留を行い、前記濃縮室内の前記被処理液におけるフッ素成分濃度を高める、フッ素含有水の処理装置。
A treatment apparatus for fluorine-containing water that treats a liquid to be treated containing at least one of fluoride ions and silicofluoride ions,
A membrane distillation module having a hydrophobic porous membrane, a concentration chamber provided in contact with one surface of the hydrophobic porous membrane, and a decompression chamber provided in contact with the other surface of the hydrophobic porous membrane; ,
A condensing means for cooling the evaporated vapor that has permeated through the hydrophobic porous membrane into the decompression chamber to generate condensed water;
Decompression means for decompressing the decompression chamber;
With
supplying the liquid to be treated having a pH of 1 to 6 to the concentration chamber, performing membrane distillation with the hydrophobic porous membrane, and increasing a fluorine component concentration in the liquid to be treated in the concentration chamber; Processing equipment.
前記減圧手段は前記凝縮手段を介して前記減圧室内を減圧する、請求項4にフッ素含有水の処理装置。   The apparatus for treating fluorine-containing water according to claim 4, wherein the decompression means decompresses the decompression chamber via the condensation means. 前記凝縮手段は、前記減圧室の壁面を冷却する冷却手段によって構成されている、請求項4に記載のフッ素含有水の処理装置。   The apparatus for treating fluorine-containing water according to claim 4, wherein the condensing unit is configured by a cooling unit that cools a wall surface of the decompression chamber. 前記濃縮室における前記被処理液に接する壁面と、前記減圧室における前記蒸発蒸気に接する壁面とが樹脂で形成されている、請求項4乃至6のいずれか1項に記載のフッ素含有水の処理装置。   The treatment of fluorine-containing water according to any one of claims 4 to 6, wherein a wall surface in contact with the liquid to be treated in the concentration chamber and a wall surface in contact with the vaporized vapor in the decompression chamber are formed of resin. apparatus. 前記疎水性多孔膜は、ポリテトラフルオロエチレン膜あるいはポリフッ化ビニリデン膜である、請求項4乃至7のいずれか1項に記載のフッ素含有水の処理装置。   The treatment apparatus for fluorine-containing water according to any one of claims 4 to 7, wherein the hydrophobic porous film is a polytetrafluoroethylene film or a polyvinylidene fluoride film.
JP2016206017A 2016-10-20 2016-10-20 Fluorine-containing water treatment method and treatment equipment Active JP6797632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016206017A JP6797632B2 (en) 2016-10-20 2016-10-20 Fluorine-containing water treatment method and treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016206017A JP6797632B2 (en) 2016-10-20 2016-10-20 Fluorine-containing water treatment method and treatment equipment

Publications (2)

Publication Number Publication Date
JP2018065101A true JP2018065101A (en) 2018-04-26
JP6797632B2 JP6797632B2 (en) 2020-12-09

Family

ID=62085339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016206017A Active JP6797632B2 (en) 2016-10-20 2016-10-20 Fluorine-containing water treatment method and treatment equipment

Country Status (1)

Country Link
JP (1) JP6797632B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022034134A1 (en) * 2020-08-11 2022-02-17 Sgl Carbon Se Hydrogen halide permeation
WO2022059235A1 (en) * 2020-09-18 2022-03-24 栗田工業株式会社 Method for operating membrane distillation apparatus
CN116462200A (en) * 2023-04-24 2023-07-21 中国五环工程有限公司 Fluosilicic acid concentration method based on vacuum membrane distillation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60147285A (en) * 1984-01-10 1985-08-03 Nitto Electric Ind Co Ltd Treatment of aqueous acid or alkali solution
JP2004188411A (en) * 2002-11-28 2004-07-08 Sasakura Engineering Co Ltd Method and apparatus for treating hydrofluoric acid waste water
JP2013119487A (en) * 2011-12-06 2013-06-17 Kurita Water Ind Ltd Method for treating hydrosilicofluoric acid-containing liquid
JP2015518781A (en) * 2012-05-25 2015-07-06 ピービーアイ・パフォーマンス・プロダクツ・インコーポレーテッド Acid resistant PBI membrane for osmotic evaporation dehydration of acidic solvents
WO2016006670A1 (en) * 2014-07-10 2016-01-14 旭化成株式会社 Membrane distillation apparatus and hydrophobic porous membrane

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60147285A (en) * 1984-01-10 1985-08-03 Nitto Electric Ind Co Ltd Treatment of aqueous acid or alkali solution
JP2004188411A (en) * 2002-11-28 2004-07-08 Sasakura Engineering Co Ltd Method and apparatus for treating hydrofluoric acid waste water
JP2013119487A (en) * 2011-12-06 2013-06-17 Kurita Water Ind Ltd Method for treating hydrosilicofluoric acid-containing liquid
JP2015518781A (en) * 2012-05-25 2015-07-06 ピービーアイ・パフォーマンス・プロダクツ・インコーポレーテッド Acid resistant PBI membrane for osmotic evaporation dehydration of acidic solvents
WO2016006670A1 (en) * 2014-07-10 2016-01-14 旭化成株式会社 Membrane distillation apparatus and hydrophobic porous membrane

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022034134A1 (en) * 2020-08-11 2022-02-17 Sgl Carbon Se Hydrogen halide permeation
WO2022059235A1 (en) * 2020-09-18 2022-03-24 栗田工業株式会社 Method for operating membrane distillation apparatus
CN116462200A (en) * 2023-04-24 2023-07-21 中国五环工程有限公司 Fluosilicic acid concentration method based on vacuum membrane distillation method

Also Published As

Publication number Publication date
JP6797632B2 (en) 2020-12-09

Similar Documents

Publication Publication Date Title
JP4870165B2 (en) Membrane distillation process and membrane distillation apparatus
JP6440156B2 (en) Organic solvent purification system and method
US6436242B1 (en) Device and method for distilling water
JP6386338B2 (en) Ammonia-containing wastewater treatment apparatus and treatment method
JP6797632B2 (en) Fluorine-containing water treatment method and treatment equipment
JP6636111B2 (en) Organic solvent purification system and method
JPS60179103A (en) Process and apparatus for concentrating aqueous solution and process and apparatus for recovering heat
WO1988006914A1 (en) Apparatus for concentrating waste liquid, apparatus for processing waste liquid and method of concentrating waste liquid
JP6415159B2 (en) Organic solvent purification system and method
JP4264950B2 (en) Evaporative concentration apparatus for aqueous waste liquid and aqueous cleaning apparatus using the same
TW200413256A (en) Hydrofluoric acid wastewater treatment method and device
JP2014028362A (en) Device and method for recycling emulsified waste oil
JP2008237943A (en) Vacuum distillation method and vacuum distillation device
WO2016063581A1 (en) Treatment method and treatment apparatus for ammonia-containing wastewater
JP4147408B2 (en) Hydrofluoric acid wastewater treatment method and apparatus
JP4052652B2 (en) Water treatment method and equipment
KR20130069326A (en) Method for treating hydrofluoric acid wastewater
JPH1110134A (en) Waste liquid treating apparatus and waste liquid treating method
TWM523717U (en) Recycling system for waste sulfuric acid solution
JP2007175564A (en) Waste liquid treatment apparatus
JP7213727B2 (en) Waste acid liquid treatment apparatus and waste acid liquid treatment method
CN103420533A (en) Treatment method for high-concentration organic wastewater
JP2898080B2 (en) Operation method of degassing membrane device
JP7473171B2 (en) Liquid composition adjustment system
JPH11244843A (en) Steam compression type pure water producing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201118

R150 Certificate of patent or registration of utility model

Ref document number: 6797632

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250