JP6797632B2 - Fluorine-containing water treatment method and treatment equipment - Google Patents

Fluorine-containing water treatment method and treatment equipment Download PDF

Info

Publication number
JP6797632B2
JP6797632B2 JP2016206017A JP2016206017A JP6797632B2 JP 6797632 B2 JP6797632 B2 JP 6797632B2 JP 2016206017 A JP2016206017 A JP 2016206017A JP 2016206017 A JP2016206017 A JP 2016206017A JP 6797632 B2 JP6797632 B2 JP 6797632B2
Authority
JP
Japan
Prior art keywords
fluorine
liquid
treated
hydrophobic porous
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016206017A
Other languages
Japanese (ja)
Other versions
JP2018065101A (en
Inventor
徹 中野
徹 中野
亮輔 寺師
亮輔 寺師
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2016206017A priority Critical patent/JP6797632B2/en
Publication of JP2018065101A publication Critical patent/JP2018065101A/en
Application granted granted Critical
Publication of JP6797632B2 publication Critical patent/JP6797632B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、フッ化物イオン(F-)及びケイフッ化物イオン(SiF6 2-;ヘキサフルオロケイ酸イオンとも呼ぶ)の少なくとも一方を含有する被処理液を濃縮して処理する方法及び装置に関する。 The present invention is a fluoride ion (F -) and silicofluoride ions; relates to a method and apparatus for processing and concentrating the treated liquid containing at least one of (SiF 6 2-also called hexafluorosilicate ions).

フッ酸廃液やケイフッ酸廃液などのフッ化物イオンやケイフッ化物イオンを含む水性廃液を回収して再利用しあるいは廃棄処理のために減容するために、その廃液に対する濃縮処理が行われる。特許文献1には、フッ化物イオンの形態でフッ酸含有廃液に含まれるフッ素成分を効率よく回収する方法として、加熱蒸発缶により水分をフラッシュ蒸発させてフッ素成分を濃縮し、水分に随伴して気相側に表われたフッ化水素(HF)ガスを後段で水やアルカリに吸収させて除去することが開示されている。 In order to recover and reuse the aqueous waste liquid containing fluoride ions such as hydrofluoric acid waste liquid and siliceous hydrofluoric acid waste liquid and siliceous fluoride ion, or to reduce the volume for disposal treatment, the waste liquid is concentrated. In Patent Document 1, as a method for efficiently recovering the fluorine component contained in the hydrofluoric acid-containing waste liquid in the form of fluoride ions, water is flash-evaporated by a heated evaporative can to concentrate the fluorine component, and the fluorine component is concentrated with the water. It is disclosed that the hydrogen fluoride (HF) gas appearing on the gas phase side is absorbed by water or an alkali in the subsequent stage and removed.

ところで、フッ素化合物を含む廃液を酸性で加熱濃縮すると、人体に有害なフッ化水素ガスや四フッ化ケイ素(SiF4)ガスを生成する。加熱蒸発缶は、構造上、気液分離のための空間が大きいため、加熱蒸発缶の蒸発缶部分内にこれらのガスで充満し、万が一漏洩した場合には非常に危険である。また、これらのガスは装置を腐食させるため、耐食性のある高価な金属製の設備、あるいはライニングを施した設備を使用する必要がある。腐食の問題を解決するために安価な樹脂により蒸発缶を製造すると、先に述べたように空間が大きい構造であるため、耐久性の点で問題が生じる。さらに、蒸発缶を減圧するためのブロアあるいは真空ポンプは酸性のガスを吸引すると腐食するため、蒸発缶から発生したフッ化水素ガスあるいは四フッ化ケイ素ガスの大部分を除去する必要がある。そのためには、特許文献1に記載されるように、発生したガスを単純に水と接触させるだけではなく、アルカリと接触させたり、あるいは多段階で水と接触させたりする必要があり、設備が大掛かりなものとなってしまう。 By the way, when a waste liquid containing a fluorine compound is heated and concentrated with acidity, hydrogen fluoride gas and silicon tetrafluoride (SiF 4 ) gas, which are harmful to the human body, are generated. Since the heated evaporative can has a large space for gas-liquid separation due to its structure, it is extremely dangerous if the evaporative can portion of the heated evaporative can is filled with these gases and leaks. In addition, since these gases corrode the equipment, it is necessary to use expensive metal equipment having corrosion resistance or equipment with lining. When an evaporator can be manufactured from an inexpensive resin in order to solve the problem of corrosion, a problem arises in terms of durability because the structure has a large space as described above. Furthermore, since the blower or vacuum pump for depressurizing the evaporator corrodes when sucking acidic gas, it is necessary to remove most of the hydrogen fluoride gas or silicon tetrafluoride gas generated from the evaporator. For that purpose, as described in Patent Document 1, it is necessary not only to bring the generated gas into contact with water, but also to bring it into contact with alkali or in contact with water in multiple stages. It will be a big one.

フッ化物イオンやケイフッ化物イオンを含む廃液からフッ素成分を濃縮する方法として、廃液をアルカリ性にする方法もあるが、廃液をアルカリ性にするためにコストがかかる上に、反応生成物としてフッ化ナトリウム(NaF)などの析出物が生成するという問題を生じる。 As a method of concentrating a fluorine component from a waste liquid containing fluoride ions or silica fluoride ions, there is a method of making the waste liquid alkaline, but it is costly to make the waste liquid alkaline, and sodium fluoride (sodium fluoride) as a reaction product ( It causes a problem that precipitates such as NaF) are formed.

特開2004−188411号公報Japanese Unexamined Patent Publication No. 2004-188411

上述したように、フッ化物イオンやケイフッ化物イオンを含む被処理液においてフッ素成分を濃縮する場合、加熱蒸発缶を用いる場合には安全面での十分な配慮が必要であり、また設備の小型化が難しいという課題がある。アルカリを用いてフッ素成分を濃縮する場合には、アルカリを利用することによるコストの問題や析出物の問題がある。 As described above, when concentrating the fluorine component in the liquid to be treated containing fluoride ions and silica fluoride ions, sufficient consideration must be given to safety when using a heated evaporation can, and the equipment must be downsized. There is a problem that it is difficult. When the fluorine component is concentrated using alkali, there are problems of cost and precipitation due to the use of alkali.

本発明の目的は、フッ化物イオンやケイフッ化物イオンを含む被処理液を小型で安価な設備で濃縮分離できるとともに、生成するフッ化水素ガスや四フッ化ケイ素ガスを速やかに無害化できる処理方法及び処理装置を提供することにある。 An object of the present invention is a treatment method capable of concentrating and separating a liquid to be treated containing fluoride ions and siliceous fluoride ions with a small and inexpensive facility, and quickly detoxifying the generated hydrogen fluoride gas and silicon tetrafluoride gas. And to provide processing equipment.

本発明のフッ化物イオン及びケイフッ化物イオンの少なくとも一方を含む被処理液を処理するフッ素含有水の処理方法は、被処理液のpHが1以上6以下の条件で、疎水性多孔膜の一方の側に被処理液を供給して疎水性多孔膜により膜蒸留を行って被処理液におけるフッ素成分濃度を高め、疎水性多孔膜の他方の側に透過しかつフッ素化合物を含む蒸発蒸気を冷却して凝縮水を得る。 The method for treating fluorine-containing water for treating a liquid to be treated containing at least one of fluoride ions and silica fluoride ions of the present invention is one of the hydrophobic porous membranes under the condition that the pH of the liquid to be treated is 1 or more and 6 or less. The liquid to be treated is supplied to the side, and film distillation is performed by the hydrophobic porous membrane to increase the concentration of fluorine components in the liquid to be treated, and the evaporated vapor that permeates the other side of the hydrophobic porous membrane and contains a fluorine compound is cooled. To obtain condensed water.

本発明のフッ化物イオン及びケイフッ化物イオンの少なくとも一方を含む被処理液を処理するフッ素含有水の処理装置は、疎水性多孔膜と、疎水性多孔膜の一方の表面に接して設けられた濃縮室と、疎水性多孔膜の他方の表面に接して設けられた減圧室と、を有する膜蒸留モジュールと、疎水性多孔膜を介して減圧室に透過した蒸発蒸気を冷却して凝縮水を生成する凝縮手段と、減圧室内を減圧する減圧手段と、を備え、pHが1以上6以下である被処理液を濃縮室に供給して疎水性多孔膜により膜蒸留を行い、濃縮室内の被処理液におけるフッ素成分濃度を高める。 The fluorine-containing water treatment apparatus for treating the liquid to be treated containing at least one of the fluoride ion and the siliceous fluoride ion of the present invention is a concentration provided in contact with one surface of the hydrophobic porous membrane and the hydrophobic porous membrane. A membrane distillation module having a chamber and a decompression chamber provided in contact with the other surface of the hydrophobic porous membrane, and the vaporized vapor permeated into the decompression chamber through the hydrophobic porous membrane are cooled to generate condensed water. A condensing means for depressurizing and a depressurizing means for depressurizing the decompression chamber are provided. Increases the concentration of fluorine components in the liquid.

本発明では、膜蒸留を用いることにより、被処理液の水分を水蒸気として疎水性多孔膜を透過させ、これにより被処理液におけるフッ素成分を濃縮させている。フッ化物イオン及びケイフッ化物イオンの少なくとも一方を含む被処理液に含まれるフッ素成分あるいはフッ素化合物は、イオンに解離している状態であれば膜蒸留によって疎水性多孔膜を通過することはなく、疎水性多孔膜の供給側に留まることになる。またフッ化水素酸は弱酸に分類されるので、液性によっては被処理液中にはフッ化水素分子が存在することになるが、フッ化水素分子は強い極性分子であり、水分子と比べても疎水性多孔膜を通過しにくい。したがって、疎水性多孔膜の使用により、被処理液中のフッ素成分を効率よく濃縮することができる。 In the present invention, by using membrane distillation, the water content of the liquid to be treated is used as water vapor to permeate the hydrophobic porous membrane, thereby concentrating the fluorine component in the liquid to be treated. The fluorine component or fluorine compound contained in the liquid to be treated containing at least one of fluoride ions and siliceous fluoride ions does not pass through the hydrophobic porous membrane by membrane distillation as long as it is dissociated into ions, and is hydrophobic. It will remain on the supply side of the porous membrane. In addition, since hydrofluoric acid is classified as a weak acid, hydrogen fluoride molecules may be present in the liquid to be treated depending on the liquid property, but hydrogen fluoride molecules are strong polar molecules and are compared with water molecules. However, it does not easily pass through the hydrophobic porous film. Therefore, by using the hydrophobic porous membrane, the fluorine component in the liquid to be treated can be efficiently concentrated.

もっとも、フッ化水素分子が疎水性多孔膜に対して完全に不透過であるわけではなく、そのいくばくかは水蒸気とともに疎水性多孔膜を透過する。透過したフッ化水素は、ブロアあるいは真空ポンプといった減圧手段における腐食の要因となり得るものであるから、本発明では、腐食のリスクの低減を図るために、疎水性多孔膜の他方の側に透過しかつフッ素化合物を含む蒸発蒸気を冷却して凝縮水を得るようにする。蒸発蒸気を冷却して凝縮水を得る際には、凝縮水を得たのちの気体部分におけるフッ化水素濃度が10体積ppm以下となるようにすることが好ましく、1体積ppm以下となるようにすることがより好ましい。 However, hydrogen fluoride molecules are not completely opaque to the hydrophobic porous membrane, and some of them permeate the hydrophobic porous membrane together with water vapor. Since the permeated hydrogen fluoride can cause corrosion in decompression means such as a blower or a vacuum pump, in the present invention, it permeates to the other side of the hydrophobic porous film in order to reduce the risk of corrosion. Moreover, the evaporated steam containing a fluorine compound is cooled to obtain condensed water. When the evaporated steam is cooled to obtain condensed water, it is preferable that the hydrogen fluoride concentration in the gas portion after obtaining the condensed water is 10% by volume ppm or less, and preferably 1 volume ppm or less. It is more preferable to do so.

蒸発蒸気を冷却による凝縮水の生成を十分に行うためには、冷却に用いる冷媒の温度を下げたり、伝熱面の厚さを薄くしたりすることによって、凝縮に必要な熱量が十分に伝熱するように冷却の条件を決定することが重要である。冷媒には一般的に冷水が使われるが、この温度が低いほどよく、25℃以下の温度であることが好ましい。冷却の方法としては、必要な熱量が伝わるものであればよく、熱交換器など一般的なものを使用できる。しかしながら、フッ化水素などによる腐食の懸念を低減するためには、非腐食性の材料(樹脂製の伝熱面や、薄いフィルム状のものなど)を使用して熱交換を行うことが好ましい。一般的に非腐食性の材料は金属に比べて熱伝達率が低いが、伝熱面を薄くする、伝熱面積を大きく取るなどの工夫をすることによって必要な熱量を移動させることができる。 In order to sufficiently generate condensed water by cooling the evaporated vapor, the amount of heat required for condensation is sufficiently transferred by lowering the temperature of the refrigerant used for cooling and reducing the thickness of the heat transfer surface. It is important to determine the cooling conditions to heat. Cold water is generally used as the refrigerant, but the lower the temperature, the better, and the temperature is preferably 25 ° C. or lower. As the cooling method, any method that can transfer the required amount of heat can be used, and a general method such as a heat exchanger can be used. However, in order to reduce the concern about corrosion due to hydrogen fluoride or the like, it is preferable to perform heat exchange using a non-corrosive material (such as a resin heat transfer surface or a thin film). Generally, non-corrosive materials have a lower heat transfer coefficient than metals, but the required amount of heat can be transferred by taking measures such as making the heat transfer surface thinner and increasing the heat transfer area.

本発明では、被処理液のpHを1以上6以下とし、好ましくは1以上4以下とする。被処理液のpHが6を超えると、アルカリを用いる従来の処理方法での処理条件に近づくこととなり、従来の処理方法と同様の課題が生ずることになる。特に、析出物は疎水性多孔膜の目詰まりの原因となり得る。一方、pHが1を下回って強酸性条件となると、フッ化水素分子が大量に疎水性多孔膜を透過することになって、疎水性多孔膜における供給側でのフッ素成分の濃縮が十分に行われないことになるとともに、疎水性多孔膜を透過したフッ化水素の処理に要する負担が過大なものとなる。従来の加熱濃縮による方法はpHが4以下のときの処理に大きな課題を有しているを考慮すると、本発明は、被処理液のpHが1以上4以下のときに著しい効果を達成する。 In the present invention, the pH of the liquid to be treated is 1 or more and 6 or less, preferably 1 or more and 4 or less. If the pH of the liquid to be treated exceeds 6, the treatment conditions of the conventional treatment method using alkali will be approached, and the same problems as those of the conventional treatment method will occur. In particular, the precipitates can cause clogging of the hydrophobic porous membrane. On the other hand, when the pH is lower than 1 and the condition is strongly acidic, a large amount of hydrogen fluoride molecules permeate the hydrophobic porous membrane, and the fluorine component on the supply side of the hydrophobic porous membrane is sufficiently concentrated. In addition to this, the burden required for the treatment of hydrogen fluoride that has permeated the hydrophobic porous membrane becomes excessive. Considering that the conventional method by heat concentration has a big problem in the treatment when the pH is 4 or less, the present invention achieves a remarkable effect when the pH of the liquid to be treated is 1 or more and 4 or less.

膜蒸留に用いる疎水性多孔膜としては、例えば、フッ素樹脂からなるものを用いることができ、ポリテトラフルオロエチレン(PTFE)膜あるいはポリフッ化ビニリデン(PVDF)膜を好ましく用いることができる。疎水性多孔膜は、例えば、膜蒸留モジュールに組み込まれて使用される。膜蒸留モジュールは、疎水性多孔膜と、疎水性多孔膜の一方の表面に接して設けられた濃縮室と、疎水性多孔膜の他方の表面に接して設けられた減圧室とから構成され、フッ化物イオン及びケイフッ化物イオンの少なくとも一方を含む被処理液は濃縮室に供給される。膜蒸留モジュールでは、腐食のおそれを低減するために、濃縮室における被処理液に接する壁面と、減圧室における蒸発蒸気に接する壁面とを樹脂で形成することが好ましい。さらに、減圧室の壁面自体を冷却することによって、蒸発蒸気を冷却させて凝縮水を生成するようにしてもよい。 As the hydrophobic porous membrane used for membrane distillation, for example, one made of a fluororesin can be used, and a polytetrafluoroethylene (PTFE) membrane or a polyvinylidene fluoride (PVDF) membrane can be preferably used. The hydrophobic porous membrane is used, for example, by being incorporated in a membrane distillation module. The membrane distillation module is composed of a hydrophobic porous membrane, a concentration chamber provided in contact with one surface of the hydrophobic porous membrane, and a decompression chamber provided in contact with the other surface of the hydrophobic porous membrane. The liquid to be treated containing at least one of fluoride ions and silica fluoride ions is supplied to the concentration chamber. In the membrane distillation module, in order to reduce the risk of corrosion, it is preferable to form the wall surface in contact with the liquid to be treated in the concentration chamber and the wall surface in contact with the evaporated vapor in the decompression chamber with a resin. Further, the wall surface of the decompression chamber itself may be cooled to cool the evaporated steam to generate condensed water.

本発明では、膜蒸留装置を用いて液体の濃縮を行っている。液体の濃縮に膜蒸留を用いることは例えば特開2016−68006号公報に記載されているが、フッ素化合物を含む被処理液の濃縮に膜蒸留を用いることは検討されておらず、また、疎水性多孔膜を透過した蒸気を冷却させる手段の条件についても何ら記載されていない。 In the present invention, the liquid is concentrated using a membrane distillation apparatus. The use of membrane distillation for concentrating a liquid is described in, for example, Japanese Patent Application Laid-Open No. 2016-68006, but the use of membrane distillation for concentrating a liquid to be treated containing a fluorine compound has not been studied, and is hydrophobic. No description is made of the conditions for the means for cooling the vapor that has passed through the porous membrane.

本発明によれば、フッ化物イオンやケイフッ化物イオンを含む被処理液中のフッ素成分を安価な設備で濃縮分離できるとともに、蒸発側の空間を小さくし、かつ発生したフッ化水素などのガスを速やかに凝縮水に溶け込ませて回収できるので、フッ化水素ガスの無害化を容易に行うことができる。したがって本発明のフッ素含有水び処理方法及び装置は、他のものと比べ、安全上及び設備コスト上で優位である。 According to the present invention, the fluorine component in the liquid to be treated containing fluoride ions and siliceous fluoride ions can be concentrated and separated by inexpensive equipment, the space on the evaporation side can be reduced, and the generated gas such as hydrogen fluoride can be eliminated. Since it can be quickly dissolved in condensed water and recovered, the hydrogen fluoride gas can be easily detoxified. Therefore, the fluorine-containing water treatment method and apparatus of the present invention are superior to other methods in terms of safety and equipment cost.

本発明の実施の一形態の処理装置の構成を示す図である。It is a figure which shows the structure of the processing apparatus of one Embodiment of this invention. 本発明の別の実施形態の処理装置の構成を示す図である。It is a figure which shows the structure of the processing apparatus of another embodiment of this invention. 実施例で用いた処理装置の構成を示す図である。It is a figure which shows the structure of the processing apparatus used in an Example.

次に、本発明の好ましい実施の形態について、図面を参照して説明する。図1は、本発明の実施の一形態の処理装置の構成を示している。 Next, a preferred embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows the configuration of a processing apparatus according to an embodiment of the present invention.

図1に示す処理装置は、フッ化物イオンやケイフッ化物イオンを含む水性の廃液を被処理液とし、被処理液中のフッ素成分を濃縮するものである。被処理液のpHは、1以上6以下とされる。処理装置は、膜蒸留を行うための膜蒸留モジュール10を備えており、膜蒸留モジュール10は、疎水性多孔膜11と、疎水性多孔膜11の一方の表面に接して設けられた濃縮室12と、疎水性多孔膜11の他方の表面に接して設けられた減圧室13と、を備えている。被処理液を一時的に貯える貯槽20が設けられており、貯槽20と膜蒸留モジュール10の濃縮室12とは配管21によって接続され、配管21には濃縮室12に被処理液を給送するための供給ポンプ22が設けられている。各種工程から排出された被処理液は、配管23を介して貯槽20に供給される。貯槽20には循環配管24が接続し、循環配管24にはポンプ25とヒータ26が設けられ、貯槽20内の被処理液を膜蒸留に適した温度まで加温できるようになっている。 The treatment apparatus shown in FIG. 1 uses an aqueous waste liquid containing fluoride ions and siliceous fluoride ions as a liquid to be treated, and concentrates a fluorine component in the liquid to be treated. The pH of the liquid to be treated is 1 or more and 6 or less. The processing apparatus includes a membrane distillation module 10 for performing membrane distillation, and the membrane distillation module 10 is provided in contact with one surface of the hydrophobic porous membrane 11 and the hydrophobic porous membrane 11. And a decompression chamber 13 provided in contact with the other surface of the hydrophobic porous membrane 11. A storage tank 20 for temporarily storing the liquid to be treated is provided. The storage tank 20 and the concentration chamber 12 of the membrane distillation module 10 are connected by a pipe 21, and the pipe 21 supplies the liquid to be treated to the concentration chamber 12. A supply pump 22 for this purpose is provided. The liquid to be treated discharged from various processes is supplied to the storage tank 20 via the pipe 23. A circulation pipe 24 is connected to the storage tank 20, and a pump 25 and a heater 26 are provided in the circulation pipe 24 so that the liquid to be treated in the storage tank 20 can be heated to a temperature suitable for membrane distillation.

減圧室13には配管31が接続し、配管31の途中には熱交換器32が設けられている。熱交換器32は、疎水性多孔膜11を介して減圧室13に透過した蒸発蒸気を冷却水によって冷却するものであり、蒸発蒸気は熱交換器32によって冷却されて凝縮水を生成する。熱交換器32は凝縮手段として機能する。凝縮水は、配管31を通って凝縮水タンク33に溜まることとなる。また、凝縮水タンク33には減圧ブロア34が接続しており、減圧ブロア34を作動させることによって、凝縮水タンク33及び配管31を介して減圧室13の内部が所定の圧力まで減圧されるようになっている。また、貯槽20も圧力調整弁51を備える配管50によって減圧ブロア34の入口側に接続している。貯槽20内を減圧とすることにより、膜蒸留モジュール10の濃縮室12も減圧されることとなり、被処理液の沸点を低下させてより低い温度で膜蒸留を行わせることができる。 A pipe 31 is connected to the decompression chamber 13, and a heat exchanger 32 is provided in the middle of the pipe 31. The heat exchanger 32 cools the evaporated steam that has permeated into the decompression chamber 13 through the hydrophobic porous film 11 with cooling water, and the evaporated steam is cooled by the heat exchanger 32 to generate condensed water. The heat exchanger 32 functions as a condensing means. The condensed water passes through the pipe 31 and collects in the condensed water tank 33. Further, a decompression blower 34 is connected to the condensed water tank 33, and by operating the decompression blower 34, the inside of the decompression chamber 13 is depressurized to a predetermined pressure via the condensing water tank 33 and the pipe 31. It has become. Further, the storage tank 20 is also connected to the inlet side of the pressure reducing blower 34 by a pipe 50 provided with a pressure adjusting valve 51. By reducing the pressure in the storage tank 20, the concentration chamber 12 of the membrane distillation module 10 is also reduced in pressure, so that the boiling point of the liquid to be treated can be lowered and the membrane distillation can be performed at a lower temperature.

膜蒸留モジュール10において、疎水性多孔膜11は例えばフッ素樹脂からなる多孔膜であり、好ましくはポリテトラフルオロエチレン(PTFE)膜あるいはポリフッ化ビニリデン(PVDF)膜が使用される。また、膜蒸留モジュール10の腐食を防ぐために、膜モジュール10は例えば樹脂あるいは耐食性合金で構成される。例えば、濃縮室12における被処理液に接する壁面と、減圧室13における蒸発蒸気に接する壁面とは、フッ化水素などに耐性を有する樹脂で形成される。 In the membrane distillation module 10, the hydrophobic porous membrane 11 is, for example, a porous membrane made of a fluororesin, and a polytetrafluoroethylene (PTFE) membrane or a polyvinylidene fluoride (PVDF) membrane is preferably used. Further, in order to prevent corrosion of the membrane distillation module 10, the membrane module 10 is made of, for example, a resin or a corrosion-resistant alloy. For example, the wall surface in contact with the liquid to be treated in the concentration chamber 12 and the wall surface in contact with the evaporated vapor in the decompression chamber 13 are formed of a resin having resistance to hydrogen fluoride or the like.

次に、図1に示した処理装置を用いた、フッ酸廃液などである被処理水の濃縮処理について説明する。減圧ブロア34を駆動して減圧室13内を所定に圧力にまで減圧し、この減圧状態を維持する。ポンプ25及びヒータ26を駆動して貯槽20内の被処理水を所定の温度(例えば60℃)まで加温した後、供給ポンプ22を駆動して被処理水を濃縮室12に供給する。その結果、膜蒸留モジュール10において疎水性多孔膜11を介した膜蒸留が起こり、被処理液中の水分は水蒸気の形態で図示波線の矢印で示すように減圧室13に透過する。被処理液中のフッ素成分はそのまま濃縮室12内に残留するから、濃縮室12内の被処理液におけるフッ素成分濃度が上昇し、フッ素成分の濃縮が行われたことになる。フッ素成分濃度が上昇した被処理液は、濃縮液として濃縮室12から排出される。なお、濃縮水を貯槽20に戻して循環させることにより、さらにフッ素成分濃度を上昇させることができる。 Next, a concentration treatment of water to be treated, such as a hydrofluoric acid waste liquid, using the treatment apparatus shown in FIG. 1 will be described. The pressure reducing blower 34 is driven to reduce the pressure inside the pressure reducing chamber 13 to a predetermined pressure, and this reduced pressure state is maintained. After driving the pump 25 and the heater 26 to heat the water to be treated in the storage tank 20 to a predetermined temperature (for example, 60 ° C.), the supply pump 22 is driven to supply the water to be treated to the concentration chamber 12. As a result, membrane distillation occurs in the membrane distillation module 10 via the hydrophobic porous membrane 11, and the water content in the liquid to be treated permeates into the decompression chamber 13 in the form of water vapor as shown by the wavy arrow in the figure. Since the fluorine component in the liquid to be treated remains in the concentration chamber 12 as it is, the concentration of the fluorine component in the liquid to be treated in the concentration chamber 12 increases, which means that the fluorine component is concentrated. The liquid to be treated having an increased fluorine component concentration is discharged from the concentration chamber 12 as a concentrated liquid. By returning the concentrated water to the storage tank 20 and circulating it, the fluorine component concentration can be further increased.

疎水性多孔膜11を透過して減圧室13に到達した蒸発蒸気は主として水蒸気からなるが、多少の分子性のフッ素化合物、例えばフッ化水素や四フッ化シランを含んでおり、これらは腐食の原因となるとともにそのままでは環境中に放出するのは好ましくない。そこで熱交換器32により蒸発蒸気を冷却させて凝縮水を生成し、フッ化水素や四フッ化シランを凝縮水中に溶け込ませるようにする。生成された凝縮水は凝縮水タンク33に溜まるから、これに対して適宜の排水処理を行えばよい。このとき、凝縮水を得たのちの気体部分、すなわち減圧ブロア34の排気におけるフッ化水素濃度が10体積ppm以下となるように、熱交換器32での冷却条件を設定することが好ましい。例えば、熱交換器32に供給する冷却水の温度を25℃以下とする。 The evaporated vapor that has passed through the hydrophobic porous film 11 and reached the decompression chamber 13 is mainly composed of water vapor, but contains some molecular fluorine compounds such as hydrogen fluoride and silane tetrafluoride, which are corrosive. It is not preferable to release it into the environment as it is as it causes it. Therefore, the heat exchanger 32 cools the evaporated steam to generate condensed water so that hydrogen fluoride and silane tetrafluoride are dissolved in the condensed water. Since the generated condensed water is collected in the condensed water tank 33, appropriate wastewater treatment may be performed on the condensed water. At this time, it is preferable to set the cooling conditions in the heat exchanger 32 so that the hydrogen fluoride concentration in the gas portion after obtaining the condensed water, that is, the exhaust of the decompression blower 34 is 10 volume ppm or less. For example, the temperature of the cooling water supplied to the heat exchanger 32 is set to 25 ° C. or lower.

図1に示した処理装置では、減圧ブロア34はフッ化水素などのフッ素含有ガスから保護されるものの熱交換器32はフッ化水素などに接触することになる。そこで、図2に示すように、減圧室13から延びる配管に熱交換器を設けるのではなく、減圧室13の壁面の一部を冷却面としてこの冷却面において凝縮水を生成するように構成することもできる。図2に示した処理装置は、図1の処理装置に比べ、配管31、熱交換器32及び凝縮水タンク33が設けられておらず、その代わり、減圧室13の壁面の一部を冷却する冷却モジュール40が備えられている。減圧ブロア34は、減圧室13に直接接続されている。冷却モジュール40は、熱伝導率の高い材料から構成され、その内部には冷却水が循環するようになっている。冷却モジュール40の表面には耐食性を有する樹脂フィルムが張られており、この樹脂フィルムは減圧室13の壁面の一部となっている。すなわち、樹脂フィルムの一方の側は、減圧室13の内部を向いて冷却面となっており、樹脂フィルムの他方の側の冷却モジュール40によって冷却されるようになっている。減圧室13内の蒸発蒸気は、冷却モジュール40によって冷却されている冷却面に触れて凝縮して凝縮水となる。凝縮水は、減圧室13の底部に溜まるから、溜まった凝縮水の量が一定値を超えたら膜蒸留モジュール10の運転を停止して減圧室13から凝縮水を排出すればよい。 In the processing apparatus shown in FIG. 1, the decompression blower 34 is protected from a fluorine-containing gas such as hydrogen fluoride, but the heat exchanger 32 comes into contact with hydrogen fluoride or the like. Therefore, as shown in FIG. 2, instead of providing a heat exchanger in the pipe extending from the decompression chamber 13, a part of the wall surface of the decompression chamber 13 is used as a cooling surface to generate condensed water on this cooling surface. You can also do it. Compared to the processing device of FIG. 1, the processing device shown in FIG. 2 is not provided with the pipe 31, the heat exchanger 32, and the condensed water tank 33, and instead cools a part of the wall surface of the decompression chamber 13. A cooling module 40 is provided. The decompression blower 34 is directly connected to the decompression chamber 13. The cooling module 40 is made of a material having high thermal conductivity, and cooling water circulates inside the cooling module 40. A resin film having corrosion resistance is stretched on the surface of the cooling module 40, and this resin film is a part of the wall surface of the decompression chamber 13. That is, one side of the resin film is a cooling surface facing the inside of the decompression chamber 13, and is cooled by the cooling module 40 on the other side of the resin film. The evaporated steam in the decompression chamber 13 touches the cooling surface cooled by the cooling module 40 and condenses into condensed water. Since the condensed water collects at the bottom of the decompression chamber 13, when the amount of the accumulated water exceeds a certain value, the operation of the membrane distillation module 10 may be stopped and the condensed water may be discharged from the decompression chamber 13.

次に、実施例により本発明をさらに詳しく説明する。実施例では図3に示す処理装置を使用した。図3に示す処理装置は、図1に示すものと同様のものであるが、濃縮室12から排出される濃縮液をそのまま貯槽20に循環させるようにしている点で、図1に示したものと異なっている。配管21において供給ポンプ22の濃縮室12との間に調整弁27が設けられ、調整弁27の手前から貯槽20に戻る戻り配管28が設けられている。調整弁27の開度を調整することによって、濃縮室12への被処理液の流量を制御できるようになっている。貯槽には、被処理液があらかじめ蓄えられている。また、凝縮させるまえの蒸発蒸気におけるフッ化水素濃度の測定のために、配管31において熱交換器32の手前からサンプリング用の配管36が分岐し、配管36にはサンプリング弁が設けられている。 Next, the present invention will be described in more detail by way of examples. In the embodiment, the processing apparatus shown in FIG. 3 was used. The processing apparatus shown in FIG. 3 is the same as that shown in FIG. 1, but is shown in FIG. 1 in that the concentrated liquid discharged from the concentration chamber 12 is circulated to the storage tank 20 as it is. Is different. In the pipe 21, a regulating valve 27 is provided between the supply pump 22 and the concentrating chamber 12, and a return pipe 28 that returns to the storage tank 20 from the front of the adjusting valve 27 is provided. By adjusting the opening degree of the adjusting valve 27, the flow rate of the liquid to be treated to the concentrating chamber 12 can be controlled. The liquid to be treated is stored in advance in the storage tank. Further, in order to measure the hydrogen fluoride concentration in the evaporated vapor before condensing, the sampling pipe 36 branches from the front of the heat exchanger 32 in the pipe 31, and the pipe 36 is provided with a sampling valve.

膜蒸留モジュール10において、疎水性多孔膜11として、直径75mm、膜面積44cm2のポリテトラフルオロエチレン膜を使用した。この膜は、公称孔径が0.2μmの多孔膜である。膜蒸留モジュール10のうち疎水性多孔膜11を除いた部分はポリエチレン(PE)製であった。熱交換器32として、耐食性合金SUS316Lからなる日阪製作所製BHE−005(伝熱面積:0.135m2)を使用した。熱交換器32には、冷却水として25℃の水が供給されるようにした。 In the membrane distillation module 10, a polytetrafluoroethylene membrane having a diameter of 75 mm and a membrane area of 44 cm 2 was used as the hydrophobic porous membrane 11. This membrane is a porous membrane having a nominal pore size of 0.2 μm. The portion of the membrane distillation module 10 excluding the hydrophobic porous membrane 11 was made of polyethylene (PE). As the heat exchanger 32, BHE-005 (heat transfer area: 0.135 m 2 ) manufactured by Hisaka Works, which is made of a corrosion-resistant alloy SUS316L, was used. Water at 25 ° C. was supplied to the heat exchanger 32 as cooling water.

被処理液として、表1に示す供給液1及び供給液2の2種類の排水を使用し、それぞれについて実験を行った。供給液1は、鉛の電解精錬工程からの排水であり、多量のヘキサフルオロケイ酸鉛(PbSiF6)を含んでいる。供給液2はフッ酸排水であり、フッ化水素を含んでいる。表1において、「フッ素化合物」とは、F-イオンとSiF6 2-イオンについてのフッ素原子のみについての質量に基づく濃度を示している。「イオン状シリカ」とは、SiF6 2-イオンについてのケイ素原子のみについての質量に基づく濃度を示している。 Two types of wastewater, supply liquid 1 and supply liquid 2 shown in Table 1, were used as the liquid to be treated, and experiments were conducted for each of them. The supply liquid 1 is waste water from the lead electrorefining step, and contains a large amount of lead hexafluorosilicate (PbSiF 6 ). The supply liquid 2 is hydrofluoric acid wastewater and contains hydrogen fluoride. In Table 1, "fluorine compound" indicates the mass-based concentration of only fluorine atoms for F - ion and SiF 6 2- ion. “Ionic silica” refers to the mass-based concentration of only silicon atoms for SiF 6 2- ions.

Figure 0006797632
Figure 0006797632

被処理液をヒータ26によって60℃に加温し、膜蒸留モジュール10に1L/分の流量で供給した。減圧ブロア34による吸引圧力を−95kPaとした。このとき、疎水性多孔膜10での透過フラックスは、60〜110kg/m2/時間程度であった。 The liquid to be treated was heated to 60 ° C. by the heater 26 and supplied to the membrane distillation module 10 at a flow rate of 1 L / min. The suction pressure by the decompression blower 34 was set to −95 kPa. At this time, the permeation flux in the hydrophobic porous membrane 10 was about 60 to 110 kg / m 2 / hour.

この条件で処理装置の運転を継続し、運転開始後1時間の時点において、サンプリング弁37を介して捕集された気体、すなわち減圧室13からの冷却前の気体におけるフッ化水素濃度と、減圧ブロア34の出口の気体、すなわち減圧室13を出てから冷却され凝縮水の生成を経たのちの気体(このとき、貯槽20からの気体の寄与は無視できる)におけるフッ化水素濃度とをガス検知管を用いて測定した。その結果を表2に示す。 The operation of the processing apparatus is continued under these conditions, and at 1 hour after the start of operation, the hydrogen fluoride concentration in the gas collected through the sampling valve 37, that is, the gas before cooling from the decompression chamber 13 and the decompression Gas detection of the hydrogen fluoride concentration in the gas at the outlet of the blower 34, that is, the gas after exiting the decompression chamber 13 and being cooled to generate condensed water (at this time, the contribution of the gas from the storage tank 20 can be ignored). It was measured using a tube. The results are shown in Table 2.

Figure 0006797632
Figure 0006797632

表2に示すように、減圧室13内の蒸発蒸気におけるフッ化水素濃度が10ppmを超える場合であっても、その蒸発蒸気を冷却して凝縮水を生成することにより、凝縮水生成後の残った気体でのフッ化水素濃度を1ppm未満とすることができ、十分な無害化を速やかに達成できることが分かった。 As shown in Table 2, even when the hydrogen fluoride concentration in the evaporated steam in the decompression chamber 13 exceeds 10 ppm, the remaining after the condensed water is generated by cooling the evaporated steam to generate condensed water. It was found that the hydrogen fluoride concentration in the vapor can be less than 1 ppm, and sufficient detoxification can be quickly achieved.

10 膜蒸留モジュール
11 疎水性多孔膜
12 濃縮室
13 減圧室
20 貯槽
22 供給ポンプ
32 熱交換器
33 凝縮水タンク
34 減圧ブロア
40 冷却モジュール
10 Membrane Distillation Module 11 Hydrophobic Porous Membrane 12 Concentration Room 13 Decompression Room 20 Storage Tank 22 Supply Pump 32 Heat Exchanger 33 Condensed Water Tank 34 Decompression Blower 40 Cooling Module

Claims (8)

フッ化物イオン及びケイフッ化物イオンの少なくとも一方を含む被処理液を処理するフッ素含有水の処理方法であって、
前記被処理液のpHが1以上6以下の条件で、疎水性多孔膜の一方の側に前記被処理液を供給して前記疎水性多孔膜により膜蒸留を行って前記被処理液におけるフッ素成分濃度を高め、
凝縮水を得たのちの気体部分におけるフッ化水素濃度が10体積ppm以下となるように、前記疎水性多孔膜の他方の側に透過しかつフッ素化合物を含む蒸発蒸気を冷却して前記凝縮水を得る、フッ素含有水の処理方法。
A method for treating fluorine-containing water for treating a liquid to be treated containing at least one of fluoride ions and siliceous fluoride ions.
Under the condition that the pH of the liquid to be treated is 1 or more and 6 or less, the liquid to be treated is supplied to one side of the hydrophobic porous membrane, membrane distillation is performed by the hydrophobic porous membrane, and a fluorine component in the liquid to be treated is performed. Increase the concentration,
As the hydrogen fluoride concentration in the gas portion of the after obtaining the condensed water becomes less than 10 vol ppm, the condensed water to cool the evaporated vapor containing transmitted on the other side of the hydrophobic porous membrane and a fluorine compound A method for treating fluorine-containing water.
前記凝縮水を得たのちの気体部分におけるフッ化水素濃度が体積ppm以下となるように前記蒸発蒸気を冷却する、請求項1に記載のフッ素含有水の処理方法。 The method for treating fluorine-containing water according to claim 1, wherein the evaporated steam is cooled so that the hydrogen fluoride concentration in the gas portion after obtaining the condensed water is 1 volume ppm or less. 前記疎水性多孔膜は、ポリテトラフルオロエチレン膜あるいはポリフッ化ビニリデン膜である、請求項1または2に記載のフッ素含有水の処理方法。 The method for treating fluorine-containing water according to claim 1 or 2, wherein the hydrophobic porous membrane is a polytetrafluoroethylene membrane or a polyvinylidene fluoride membrane. フッ化物イオン及びケイフッ化物イオンの少なくとも一方を含む被処理液を処理するフッ素含有水の処理装置であって、
疎水性多孔膜と、前記疎水性多孔膜の一方の表面に接して設けられた濃縮室と、前記疎水性多孔膜の他方の表面に接して設けられた減圧室と、を有する膜蒸留モジュールと、
前記疎水性多孔膜を介して前記減圧室に透過した蒸発蒸気を冷却して凝縮水を生成する凝縮手段と、
前記減圧室内を減圧する減圧手段と、
を備え、
pHが1以上6以下である前記被処理液を前記濃縮室に供給して前記疎水性多孔膜により膜蒸留を行い、前記濃縮室内の前記被処理液におけるフッ素成分濃度を高め
前記凝縮手段は、前記凝縮水を得たのちの気体部分におけるフッ化水素濃度が10体積ppm以下となるように、前記蒸発蒸気を冷却する、フッ素含有水の処理装置。
A fluorine-containing water treatment device that treats a liquid to be treated containing at least one of fluoride ions and silica fluoride ions.
A membrane distillation module having a hydrophobic porous membrane, a concentration chamber provided in contact with one surface of the hydrophobic porous membrane, and a decompression chamber provided in contact with the other surface of the hydrophobic porous membrane. ,
A condensing means that cools the evaporated vapor that has permeated into the decompression chamber through the hydrophobic porous membrane to generate condensed water.
A decompression means for decompressing the decompression chamber and
With
The liquid to be treated having a pH of 1 or more and 6 or less is supplied to the concentration chamber and membrane distillation is performed by the hydrophobic porous membrane to increase the concentration of fluorine components in the liquid to be treated in the concentration chamber .
The condensing means is such that said concentration of hydrogen fluoride in the gas portion of the after obtaining the condensed water is less than 10 volume ppm, you cool the evaporative vapor processing apparatus of the fluorine-containing water.
前記減圧手段は前記凝縮手段を介して前記減圧室内を減圧する、請求項4にフッ素含有水の処理装置。 The device for treating fluorine-containing water according to claim 4, wherein the decompression means decompresses the decompression chamber via the condensing means. 前記凝縮手段は、前記減圧室の壁面を冷却する冷却手段によって構成されている、請求項4に記載のフッ素含有水の処理装置。 The fluorine-containing water treatment apparatus according to claim 4, wherein the condensing means is composed of cooling means for cooling the wall surface of the decompression chamber. 前記濃縮室における前記被処理液に接する壁面と、前記減圧室における前記蒸発蒸気に接する壁面とが樹脂で形成されている、請求項4乃至6のいずれか1項に記載のフッ素含有水の処理装置。 The treatment of fluorine-containing water according to any one of claims 4 to 6, wherein the wall surface in contact with the liquid to be treated in the concentration chamber and the wall surface in contact with the vaporized vapor in the decompression chamber are formed of resin. apparatus. 前記疎水性多孔膜は、ポリテトラフルオロエチレン膜あるいはポリフッ化ビニリデン膜である、請求項4乃至7のいずれか1項に記載のフッ素含有水の処理装置。 The fluorine-containing water treatment apparatus according to any one of claims 4 to 7, wherein the hydrophobic porous membrane is a polytetrafluoroethylene membrane or a polyvinylidene fluoride membrane.
JP2016206017A 2016-10-20 2016-10-20 Fluorine-containing water treatment method and treatment equipment Active JP6797632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016206017A JP6797632B2 (en) 2016-10-20 2016-10-20 Fluorine-containing water treatment method and treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016206017A JP6797632B2 (en) 2016-10-20 2016-10-20 Fluorine-containing water treatment method and treatment equipment

Publications (2)

Publication Number Publication Date
JP2018065101A JP2018065101A (en) 2018-04-26
JP6797632B2 true JP6797632B2 (en) 2020-12-09

Family

ID=62085339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016206017A Active JP6797632B2 (en) 2016-10-20 2016-10-20 Fluorine-containing water treatment method and treatment equipment

Country Status (1)

Country Link
JP (1) JP6797632B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020210161A1 (en) * 2020-08-11 2022-02-17 Sgl Carbon Se Hydrogen Halide Permeation
JP6958700B1 (en) * 2020-09-18 2021-11-02 栗田工業株式会社 How to operate the membrane distillation equipment
CN116462200A (en) * 2023-04-24 2023-07-21 中国五环工程有限公司 Fluosilicic acid concentration method based on vacuum membrane distillation method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60147285A (en) * 1984-01-10 1985-08-03 Nitto Electric Ind Co Ltd Treatment of aqueous acid or alkali solution
JP4147408B2 (en) * 2002-11-28 2008-09-10 株式会社ササクラ Hydrofluoric acid wastewater treatment method and apparatus
JP2013119487A (en) * 2011-12-06 2013-06-17 Kurita Water Ind Ltd Method for treating hydrosilicofluoric acid-containing liquid
US9283523B2 (en) * 2012-05-25 2016-03-15 Pbi Performance Products, Inc. Acid resistant PBI membrane for pervaporation dehydration of acidic solvents
CN106659977A (en) * 2014-07-10 2017-05-10 旭化成株式会社 Membrane distillation apparatus and hydrophobic porous membrane

Also Published As

Publication number Publication date
JP2018065101A (en) 2018-04-26

Similar Documents

Publication Publication Date Title
JP4870165B2 (en) Membrane distillation process and membrane distillation apparatus
JP6797632B2 (en) Fluorine-containing water treatment method and treatment equipment
US5630913A (en) Water distillation system
US6436242B1 (en) Device and method for distilling water
JP6440156B2 (en) Organic solvent purification system and method
JP6386338B2 (en) Ammonia-containing wastewater treatment apparatus and treatment method
JP6620441B2 (en) Radioactive liquid processing equipment
CN105731704B (en) Fluorine removal, the processing method of chloride ion are gone in a kind of waste acid
JP6636111B2 (en) Organic solvent purification system and method
JPH0677728B2 (en) Waste liquid concentrator and waste liquid treatment device
TWM526569U (en) Recovery apparatus for sewage treatment
JP4264950B2 (en) Evaporative concentration apparatus for aqueous waste liquid and aqueous cleaning apparatus using the same
TW200413256A (en) Hydrofluoric acid wastewater treatment method and device
US20030132095A1 (en) Device and method for distilling water
JP2014028362A (en) Device and method for recycling emulsified waste oil
JP2008237943A (en) Vacuum distillation method and vacuum distillation device
JPS60147201A (en) Treatment of aqueous solution containing volatile substance
JP4147408B2 (en) Hydrofluoric acid wastewater treatment method and apparatus
JP4514705B2 (en) Waste liquid treatment equipment
JP2006341181A (en) Fluoric acid waste liquid treating device and its method
JP4052652B2 (en) Water treatment method and equipment
JP2005270902A (en) Aqueous waste liquid treatment apparatus and washing method therefor
TWM523717U (en) Recycling system for waste sulfuric acid solution
JP7213727B2 (en) Waste acid liquid treatment apparatus and waste acid liquid treatment method
JPH1110134A (en) Waste liquid treating apparatus and waste liquid treating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201118

R150 Certificate of patent or registration of utility model

Ref document number: 6797632

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250