WO2022059235A1 - Method for operating membrane distillation apparatus - Google Patents

Method for operating membrane distillation apparatus Download PDF

Info

Publication number
WO2022059235A1
WO2022059235A1 PCT/JP2021/011888 JP2021011888W WO2022059235A1 WO 2022059235 A1 WO2022059235 A1 WO 2022059235A1 JP 2021011888 W JP2021011888 W JP 2021011888W WO 2022059235 A1 WO2022059235 A1 WO 2022059235A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary side
membrane
distillation apparatus
water supply
membrane distillation
Prior art date
Application number
PCT/JP2021/011888
Other languages
French (fr)
Japanese (ja)
Inventor
晴樹 増田
淳一 高橋
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to CN202180062931.2A priority Critical patent/CN116113488A/en
Publication of WO2022059235A1 publication Critical patent/WO2022059235A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/36Pervaporation; Membrane distillation; Liquid permeation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis

Definitions

  • the present invention relates to an operating method of a membrane distillation apparatus, and more particularly to an operating method of a membrane distillation apparatus having a step of removing precipitates generated on the secondary side of the membrane.
  • the membrane distillation apparatus passes a heated liquid to be treated to the primary side of a hydrophobic flat membrane or a hydrophobic hollow fiber membrane, and makes the secondary side of the membrane lower than the vapor pressure of the primary side to be treated. It is configured to recover only vapor from the liquid and concentrate the liquid to be treated. Unlike a general distillation apparatus, the membrane distillation apparatus has an advantage that the evaporated surface area is increased and the apparatus is miniaturized by using the membrane.
  • FIG. 2 shows an example of a conventional example of a membrane distillation apparatus.
  • the liquid to be treated stored in the water supply tank 1 is sent to the heat exchanger (heater) 4 via the pipe 3 having the water supply pump 2, and after heat exchange with the high temperature fluid to be heated, the pipe is used. Water is sent to the membrane module 10 via 5.
  • the membrane module 10 is a hollow fiber membrane module.
  • a large number of hollow fibers 11 are aligned to form a hollow fiber bundle, which is arranged in the vertical direction.
  • the upper end side and the lower end side of the hollow fiber bundle are bound by the potting materials 12 and 13.
  • the hollow fiber bundle is arranged in the casing 14 of the membrane module 10, the inflow chamber 15 is formed on the upper side of the upper potting material 12, and the outflow chamber 16 is formed on the lower side of the lower potting material 13.
  • the inside of each hollow fiber 11 communicates with the inflow chamber 15 and the outflow chamber 16, respectively.
  • the liquid to be treated from the pipe 5 flows from the inflow chamber 15 into each hollow fiber 11 (primary side), passes through the hollow fiber 11, flows to the outflow chamber 16, and flows from the outflow chamber 16 to the water supply tank via the pipe 6. Return to 1.
  • the secondary side 17 is outside the hollow fiber 11 in the casing 14 and between the potting materials 12 and 13.
  • the secondary side 17 communicates with the decompression device 25 via a pipe (steam pipe) 20, a heat exchanger (cooler) 21, a pipe 22, a condensed water tank 23, and a pipe 24, and the decompression device 25 communicates with the decompression device 25.
  • the secondary side 17 is depressurized.
  • the water in the liquid to be treated permeates the hollow yarn 11 and becomes vapor, which is sucked and discharged from the secondary side 17 to the pipe 20 and discharged to the pipe 20 to be discharged from the secondary side 17 to the heat exchanger 21. Cooled with to produce condensed water.
  • the condensed water is stored in the condensed water tank 23.
  • the lower part of the secondary side 17 in the casing 14 and the upper part (gas phase part 1a) in the water supply tank 1 are communicated with each other by the pipe 7.
  • Pressure sensors P1 and P2 are installed so as to detect the pressure in the pipes 5 and 20.
  • precipitates made of salts or the like may precipitate on the secondary side of the membrane.
  • the surface area of the membrane is reduced and the distillation performance is deteriorated.
  • the membrane is removed from the membrane distillation apparatus and washed with pure water, but it is troublesome and waste liquid is generated.
  • An object of the present invention is to provide a method for operating a membrane distillation apparatus, which can remove precipitates without removing the membrane from the membrane distillation apparatus and can prevent the generation of cleaning waste liquid.
  • the method of operating the membrane distillation apparatus of the present invention is a membrane module in which the inside of the casing is separated into a primary side and a secondary side by a membrane, and a water supply tank for supplying a liquid to be treated to the primary side of the membrane module. And in the operation method of the membrane distillation apparatus for distilling the liquid to be treated using the membrane distillation apparatus having the water supply pump and the decompression device for depressurizing the secondary side of the membrane module, gas is applied to the secondary side of the membrane module. It is characterized by performing a precipitate removing step of introducing the mixture to generate condensed water on the secondary side and dissolving the precipitate on the secondary side in the condensed water to remove the condensed water.
  • the decompression device is stopped with the water supply pump operated, and the secondary side is set to positive pressure to perform the precipitate removal step.
  • a pipe is branched from a path connecting the secondary side and the decompression device, and a valve is provided in the branch pipe, and the secondary side is opened by opening the valve. Make the side positive pressure.
  • the precipitate removing step is performed periodically or when the distillation performance drops below a predetermined value.
  • the distillation performance is determined based on the pressure on the secondary side or the production rate of condensed water.
  • a communication portion for communicating the secondary side of the membrane module and the water supply tank is provided, and in the precipitate removing step, a solution in which the precipitate is dissolved connects the communication portion. It flows into the water supply tank through the water supply tank.
  • the precipitate on the secondary side of the membrane can be dissolved in condensed water and removed without removing the membrane from the membrane distillation apparatus.
  • cleaning waste liquid is not generated.
  • FIG. 1 shows the configuration of the membrane distillation apparatus according to the embodiment.
  • the intake pipe 30 is branched from the pipe 24 communicating the condensed water tank 23 and the decompression device 25, and the pipe 30 is provided with a valve 31.
  • the pipe 30 is open to the atmosphere or is connected to a gas source (not shown) such as nitrogen.
  • a valve 8 is provided in a pipe 7 that communicates the secondary side 17 of the membrane module 10 with the gas phase portion 1a of the water supply tank 1.
  • the valves 8 and 31 are closed and the decompression device 25 and the water supply pump 2 are operated. Similar to the case of FIG. 2, the liquid to be treated in the water supply tank 1 flows into each hollow fiber 11 (primary side) from the inflow chamber 15 via the pipe 3, the heat exchanger 4, and the pipe 5, and the hollow fiber is used. It flows through 11 to the outflow chamber 16, and returns from the outflow chamber 16 to the water supply tank 1 via the pipe 6.
  • the water in the liquid to be treated permeates the hollow yarn 11 while the liquid to be treated flows in the hollow yarn 11 (primary side), and becomes steam. It is sucked and discharged from the next side 17 to the pipe 20 and cooled by the heat exchanger 21 to generate condensed water.
  • the condensed water is stored in the condensed water tank 23.
  • a precipitate removing step of dissolving and removing the precipitate on the secondary side of the hollow fiber 11 is performed periodically or when the distillation performance drops below a predetermined value.
  • the pressure reducing device 25 is stopped, the valve 31 is opened, and the secondary side of the hollow fiber 11 is set to positive pressure while the water supply pump 2 is still operating. It is preferable to open the valve 8 when the valve 31 is opened.
  • valves 8 and 31 are closed, the depressurizing device 25 is operated, and the distillation step is restarted.
  • this precipitate removal step may be performed periodically as described above, or may be performed when the distillation performance deteriorates.
  • the deterioration of the distillation performance can be detected, for example, by the rate of increase of the condensed water level in the condensed water tank 23 decreasing to a predetermined rate or less, or the detection pressure of the pressure sensor P2 decreasing to a specified value or less. can.
  • the inner diameter (diameter) of the hollow fiber is preferably 0.1 to 3.0 mm, particularly 0.5 to 2.0 mm, and the thickness, that is, the difference between the outer diameter (radius) and the inner diameter (radius) of the hollow fiber is 0. 01 to 1.0 mm, particularly 0.1 to 0.5 mm is preferable.
  • the length of the hollow fiber is preferably 200 to 2000 mm, particularly preferably 300 to 1000 mm.
  • the filling rate of the hollow fibers (sum of the cross-sectional areas of the hollow fibers / the cross-sectional area of the casing) is preferably 5% to 50%, particularly preferably 15% to 35%.
  • the material of the hollow fiber include, but are not limited to, polysulfone, polyethersulfone, polyethylene, polypropylene, polyvinylidene fluoride, and polytetrafluoroethylene.
  • a hollow fiber is used, but a hydrophobic flat membrane may be used.
  • an acidic solution such as salt, phosphoric acid, hydrochloric acid, fluoroacid, sulfuric acid, an alkaline waste liquid such as ammonia water, and an aqueous solution such as plating waste water are suitable.
  • the water flow rate (linear velocity) of the liquid to be treated in the hollow fiber is preferably 400 to 2000 mm / sec, particularly about 700 to 1500 mm / sec.
  • the temperature of the liquid to be treated when flowing into the membrane module 10 is preferably 45 to 150 ° C., particularly preferably about 50 to 80 ° C.
  • Example 1 With the device shown in FIG. 1, the valves 8 and 31 were closed and operated under the following conditions.
  • the casing 14 was used as a transparent column, and the state of precipitation of precipitates on the outer surface of the hollow fiber 11 was visually observed.
  • Hollow fiber 11 Made of polytetrafluoroethylene, Inner diameter 1.0 mm, thickness 0.3 mm, length 600 mm, casing of single membrane module 10: inner diameter 10 mm, height 690 mm Water supply: 1% NaCl aqueous solution Water supply temperature: 60 ° C Membrane module inlet pressure P 1 : -80 kPa (gauge pressure) Water supply amount: 40 mL / min (Line speed in hollow fiber 850 mm / sec) Secondary pressure P 2 : -90 kPa (gauge pressure)

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

Fluid to be processed, which is in a feed water tank 1, is fed via a feed water pump 2, a line 3, a heat exchanger 4, and a line 5 into hollow fibers 11 of a membrane module 10 and is returned to the feed water tank 1. The pressure in a secondary side 17 is reduced by a pressure-reducing device 25. Water in the fluid to be processed vaporizes while flowing inside the hollow fibers 11 and is discharged by being drawn out from the secondary side 17 into a line 20. In the event of the occurrence of precipitates in the secondary side 17, a valve 31 is opened and the pressure-reducing device 25 is deactivated so that the pressure on the secondary side 17 becomes positive causing condensation on the secondary side which dissolves and removes the precipitates.

Description

膜蒸留装置の運転方法How to operate the membrane distillation equipment
 本発明は、膜蒸留装置の運転方法に係り、特に膜の二次側に生じた析出物を除去する工程を有する膜蒸留装置の運転方法に関する。 The present invention relates to an operating method of a membrane distillation apparatus, and more particularly to an operating method of a membrane distillation apparatus having a step of removing precipitates generated on the secondary side of the membrane.
 膜蒸留装置は、疎水性平膜または疎水性中空糸膜の一次側に加温された被処理液を通水し、膜の二次側を一次側の蒸気圧以下にすることで、被処理液から蒸気のみを回収し、被処理液を濃縮するよう構成されている。膜蒸留装置は、一般的な蒸留装置と異なり、膜を用いることによって蒸発表面積が増え、装置が小型化するというメリットを有する。 The membrane distillation apparatus passes a heated liquid to be treated to the primary side of a hydrophobic flat membrane or a hydrophobic hollow fiber membrane, and makes the secondary side of the membrane lower than the vapor pressure of the primary side to be treated. It is configured to recover only vapor from the liquid and concentrate the liquid to be treated. Unlike a general distillation apparatus, the membrane distillation apparatus has an advantage that the evaporated surface area is increased and the apparatus is miniaturized by using the membrane.
 膜蒸留装置の従来例の一例を図2に示す。給水タンク1内に貯留された被処理液が給水ポンプ2を有した配管3を介して熱交換器(加温器)4に送水され、高温流体と熱交換して加温された後、配管5を介して膜モジュール10に送水される。 FIG. 2 shows an example of a conventional example of a membrane distillation apparatus. The liquid to be treated stored in the water supply tank 1 is sent to the heat exchanger (heater) 4 via the pipe 3 having the water supply pump 2, and after heat exchange with the high temperature fluid to be heated, the pipe is used. Water is sent to the membrane module 10 via 5.
 この従来例では、膜モジュール10は中空糸膜モジュールである。膜モジュール10では、多数本の中空糸11が引き揃えられて中空糸束とされ、上下方向に配設されている。中空糸束の上端側及び下端側がポッティング材12,13で結束されている。 In this conventional example, the membrane module 10 is a hollow fiber membrane module. In the membrane module 10, a large number of hollow fibers 11 are aligned to form a hollow fiber bundle, which is arranged in the vertical direction. The upper end side and the lower end side of the hollow fiber bundle are bound by the potting materials 12 and 13.
 中空糸束は膜モジュール10のケーシング14内に配置されており、上側ポッティング材12の上側に流入室15が形成され、下側ポッティング材13の下側に流出室16が形成されている。各中空糸11内はそれぞれ流入室15及び流出室16内に連通している。 The hollow fiber bundle is arranged in the casing 14 of the membrane module 10, the inflow chamber 15 is formed on the upper side of the upper potting material 12, and the outflow chamber 16 is formed on the lower side of the lower potting material 13. The inside of each hollow fiber 11 communicates with the inflow chamber 15 and the outflow chamber 16, respectively.
 配管5からの被処理液は、流入室15から各中空糸11内(一次側)に流入し、中空糸11を通り、流出室16へ流れ、該流出室16から配管6を介して給水タンク1に戻る。 The liquid to be treated from the pipe 5 flows from the inflow chamber 15 into each hollow fiber 11 (primary side), passes through the hollow fiber 11, flows to the outflow chamber 16, and flows from the outflow chamber 16 to the water supply tank via the pipe 6. Return to 1.
 ケーシング14内における中空糸11外であって且つポッティング材12,13間が二次側17である。 The secondary side 17 is outside the hollow fiber 11 in the casing 14 and between the potting materials 12 and 13.
 該二次側17は、配管(蒸気配管)20、熱交換器(冷却器)21、配管22、凝縮水タンク23及び配管24を介して減圧装置25に連通しており、該減圧装置25によって該二次側17が減圧される。 The secondary side 17 communicates with the decompression device 25 via a pipe (steam pipe) 20, a heat exchanger (cooler) 21, a pipe 22, a condensed water tank 23, and a pipe 24, and the decompression device 25 communicates with the decompression device 25. The secondary side 17 is depressurized.
 被処理液が中空糸17内(一次側)を流れる間に被処理液中の水が中空糸11を透過し、蒸気となって二次側17から配管20へ吸引排出され、熱交換器21で冷却されて凝縮水が生成する。凝縮水は、凝縮水タンク23に貯留される。 While the liquid to be treated flows through the hollow yarn 17 (primary side), the water in the liquid to be treated permeates the hollow yarn 11 and becomes vapor, which is sucked and discharged from the secondary side 17 to the pipe 20 and discharged to the pipe 20 to be discharged from the secondary side 17 to the heat exchanger 21. Cooled with to produce condensed water. The condensed water is stored in the condensed water tank 23.
 この従来例では、ケーシング14内の二次側17の下部と給水タンク1内の上部(気相部1a)とが配管7で連通されている。配管5及び20内の圧力を検出するように圧力センサP1,P2が設置されている。 In this conventional example, the lower part of the secondary side 17 in the casing 14 and the upper part (gas phase part 1a) in the water supply tank 1 are communicated with each other by the pipe 7. Pressure sensors P1 and P2 are installed so as to detect the pressure in the pipes 5 and 20.
特開平3-52627Japanese Patent Application Laid-Open No. 3-52227
 上記膜蒸留装置にあっては、膜の二次側に塩類などよりなる析出物が析出することがある。析出物が生じると、膜表面積が減少し、蒸留性能が低下する。 In the above membrane distillation apparatus, precipitates made of salts or the like may precipitate on the secondary side of the membrane. When precipitates are formed, the surface area of the membrane is reduced and the distillation performance is deteriorated.
 この析出物を除去するために、従来は、膜蒸留装置から膜を取り外し、純水で洗浄することが行われているが、手間がかかり、また洗浄廃液が生じる。 Conventionally, in order to remove this precipitate, the membrane is removed from the membrane distillation apparatus and washed with pure water, but it is troublesome and waste liquid is generated.
 本発明は、膜蒸留装置から膜を取り外すことなく析出物を除去することができ、また洗浄廃液を生じさせないようにすることもできる膜蒸留装置の運転方法を提供することを目的とする。 An object of the present invention is to provide a method for operating a membrane distillation apparatus, which can remove precipitates without removing the membrane from the membrane distillation apparatus and can prevent the generation of cleaning waste liquid.
 本発明の膜蒸留装置の運転方法は、ケーシング内が膜によって一次側と二次側とに隔てられている膜モジュールと、該膜モジュールの一次側に被処理液を供給するための、給水タンク及び給水ポンプと、該膜モジュールの二次側を減圧する減圧装置とを有する膜蒸留装置を用いて被処理液を蒸留する膜蒸留装置の運転方法において、該膜モジュールの二次側に気体を導入して該二次側に凝縮水を生じさせ、二次側の析出物を凝縮水に溶解させて除去する析出物除去工程を行うことを特徴とする。 The method of operating the membrane distillation apparatus of the present invention is a membrane module in which the inside of the casing is separated into a primary side and a secondary side by a membrane, and a water supply tank for supplying a liquid to be treated to the primary side of the membrane module. And in the operation method of the membrane distillation apparatus for distilling the liquid to be treated using the membrane distillation apparatus having the water supply pump and the decompression device for depressurizing the secondary side of the membrane module, gas is applied to the secondary side of the membrane module. It is characterized by performing a precipitate removing step of introducing the mixture to generate condensed water on the secondary side and dissolving the precipitate on the secondary side in the condensed water to remove the condensed water.
 本発明の一態様では、前記給水ポンプを作動させた状態で前記減圧装置を停止し、前記二次側を正圧にして前記析出物除去工程を行う。 In one aspect of the present invention, the decompression device is stopped with the water supply pump operated, and the secondary side is set to positive pressure to perform the precipitate removal step.
 本発明の一態様では、前記二次側と前記減圧装置とを接続する経路から配管が分岐しており、この分岐配管に弁が設けられており、該弁を開とすることにより前記二次側を正圧にする。 In one aspect of the present invention, a pipe is branched from a path connecting the secondary side and the decompression device, and a valve is provided in the branch pipe, and the secondary side is opened by opening the valve. Make the side positive pressure.
 本発明の一態様では、前記析出物除去工程を定期的に、又は蒸留性能が所定値よりも低下したときに行う。 In one aspect of the present invention, the precipitate removing step is performed periodically or when the distillation performance drops below a predetermined value.
 本発明の一態様では、前記蒸留性能を、前記二次側の圧力又は凝縮水の生成速度に基づいて求める。 In one aspect of the present invention, the distillation performance is determined based on the pressure on the secondary side or the production rate of condensed water.
 本発明の一態様では、前記膜モジュールの二次側と前記給水タンクとを連通する連通部が設けられており、前記析出物除去工程では、前記析出物が溶解した溶解液が該連通部を通って該給水タンクに流入する。 In one aspect of the present invention, a communication portion for communicating the secondary side of the membrane module and the water supply tank is provided, and in the precipitate removing step, a solution in which the precipitate is dissolved connects the communication portion. It flows into the water supply tank through the water supply tank.
 本発明によると、析出物除去工程を行うことにより、膜蒸留装置から膜を取り外すことなく、膜の二次側の析出物を凝縮水に溶解させて除去することができる。本発明の一態様では、純水による膜洗浄を行わないようにすることにより、洗浄廃液が生じないようになる。 According to the present invention, by performing the precipitate removing step, the precipitate on the secondary side of the membrane can be dissolved in condensed water and removed without removing the membrane from the membrane distillation apparatus. In one aspect of the present invention, by not performing membrane cleaning with pure water, cleaning waste liquid is not generated.
実施の形態に係る膜蒸留装置の構成図である。It is a block diagram of the membrane distillation apparatus which concerns on embodiment. 従来例に係る膜蒸留装置の構成図である。It is a block diagram of the membrane distillation apparatus which concerns on a conventional example.
 図1は、実施の形態に係る膜蒸留装置の構成を示している。 FIG. 1 shows the configuration of the membrane distillation apparatus according to the embodiment.
 この実施の形態では、凝縮水タンク23と減圧装置25とを連通する配管24から吸気用の配管30が分岐しており、該配管30に弁31が設けられている。配管30は、大気に向って開放しているか、又は窒素などのガス源(図示略)に接続されている。また、膜モジュール10の二次側17と給水タンク1の気相部1aとを連通する配管7に、弁8が設けられている。 In this embodiment, the intake pipe 30 is branched from the pipe 24 communicating the condensed water tank 23 and the decompression device 25, and the pipe 30 is provided with a valve 31. The pipe 30 is open to the atmosphere or is connected to a gas source (not shown) such as nitrogen. Further, a valve 8 is provided in a pipe 7 that communicates the secondary side 17 of the membrane module 10 with the gas phase portion 1a of the water supply tank 1.
 この膜蒸留装置のその他の構成は図2の膜蒸留装置と同一であり、同一符号は同一部分を示している。 Other configurations of this membrane distillation apparatus are the same as those of the membrane distillation apparatus of FIG. 2, and the same reference numerals indicate the same parts.
 この膜蒸留装置によって蒸留工程を行う場合、弁8及び31を閉とし、減圧装置25及び給水ポンプ2を作動させる。図2の場合と同様に、給水タンク1内の被処理液は、配管3、熱交換器4及び配管5を介して流入室15から各中空糸11内(一次側)に流入し、中空糸11を通り、流出室16へ流れ、該流出室16から配管6を介して給水タンク1に戻る。 When the distillation process is performed by this membrane distillation apparatus, the valves 8 and 31 are closed and the decompression device 25 and the water supply pump 2 are operated. Similar to the case of FIG. 2, the liquid to be treated in the water supply tank 1 flows into each hollow fiber 11 (primary side) from the inflow chamber 15 via the pipe 3, the heat exchanger 4, and the pipe 5, and the hollow fiber is used. It flows through 11 to the outflow chamber 16, and returns from the outflow chamber 16 to the water supply tank 1 via the pipe 6.
 減圧装置25によって二次側17が減圧されているので、被処理液が中空糸11内(一次側)を流れる間に被処理液中の水が中空糸11を透過し、蒸気となって二次側17から配管20へ吸引排出され、熱交換器21で冷却されて凝縮水が生成する。凝縮水は、凝縮水タンク23に貯留される。 Since the secondary side 17 is decompressed by the depressurizing device 25, the water in the liquid to be treated permeates the hollow yarn 11 while the liquid to be treated flows in the hollow yarn 11 (primary side), and becomes steam. It is sucked and discharged from the next side 17 to the pipe 20 and cooled by the heat exchanger 21 to generate condensed water. The condensed water is stored in the condensed water tank 23.
 この蒸留運転を継続していると、中空糸11の二次側に塩類などの析出物が析出してくる。そこで、定期的に、又は蒸留性能が所定値より低下したときに、中空糸11の二次側の析出物を溶解除去する析出物除去工程を行う。 If this distillation operation is continued, precipitates such as salts will precipitate on the secondary side of the hollow fiber 11. Therefore, a precipitate removing step of dissolving and removing the precipitate on the secondary side of the hollow fiber 11 is performed periodically or when the distillation performance drops below a predetermined value.
 この析出物除去工程を行うには、給水ポンプ2を作動させたまま、減圧装置25を停止し、弁31を開とし、中空糸11の二次側を正圧にする。なお、弁31を開とするときに弁8を開とすることが好ましい。 To perform this deposit removal step, the pressure reducing device 25 is stopped, the valve 31 is opened, and the secondary side of the hollow fiber 11 is set to positive pressure while the water supply pump 2 is still operating. It is preferable to open the valve 8 when the valve 31 is opened.
 このように減圧装置25を停止し、弁31を開として中空糸11の二次側を減圧しないようにすると、中空糸11の二次側が飽和蒸気で満たされ、中空糸11の二次側に十分量の凝縮水が生じ、中空糸11の二次側の析出物がこの凝縮水に溶解し、取り除かれる。析出物が溶解した凝縮水は、配管7を介して給水タンク1に流入する。 When the depressurizing device 25 is stopped and the valve 31 is opened so that the secondary side of the hollow fiber 11 is not depressurized in this way, the secondary side of the hollow fiber 11 is filled with saturated steam, and the secondary side of the hollow fiber 11 is filled. A sufficient amount of condensed water is generated, and the precipitate on the secondary side of the hollow fiber 11 is dissolved in this condensed water and removed. The condensed water in which the precipitate is dissolved flows into the water supply tank 1 via the pipe 7.
 このようにして析出物除去工程を行った後、弁8,31を閉とし、減圧装置25を作動させ、蒸留工程を再開する。 After performing the precipitate removing step in this way, the valves 8 and 31 are closed, the depressurizing device 25 is operated, and the distillation step is restarted.
 なお、この析出物除去工程は、上記の通り定期的に行ってもよく、蒸留性能が低下したときに行ってもよい。蒸留性能の低下は、例えば凝縮水タンク23内の凝縮水水位の上昇速度が所定速度以下に低下することや、圧力センサP2の検出圧力が規定値以下にまで低下することなどによって検知することができる。 Note that this precipitate removal step may be performed periodically as described above, or may be performed when the distillation performance deteriorates. The deterioration of the distillation performance can be detected, for example, by the rate of increase of the condensed water level in the condensed water tank 23 decreasing to a predetermined rate or less, or the detection pressure of the pressure sensor P2 decreasing to a specified value or less. can.
 上記中空糸11としては、疎水性中空糸膜が好適である。中空糸の内径(直径)は0.1~3.0mm特に0.5~2.0mmであることが好ましく、厚みすなわち中空糸の外径(半径)と内径(半径)との差は0.01~1.0mm、特に0.1~0.5mmが好ましい。中空糸の長さは200~2000mm、特に300~1000mmが好ましい。中空糸の充填率(中空糸の断面積の和/ケーシングの断面積)は5%~50%、特に15%~35%が好ましい。中空糸の素材としては、ポリスルホン、ポリエーテルスルホン、ポリエチレン、ポリプロピレン、ポリフッ化ビニリデン及びポリテトラフルオロエチレンなどが例示されるが、これらに限定されない。 As the hollow fiber 11, a hydrophobic hollow fiber membrane is suitable. The inner diameter (diameter) of the hollow fiber is preferably 0.1 to 3.0 mm, particularly 0.5 to 2.0 mm, and the thickness, that is, the difference between the outer diameter (radius) and the inner diameter (radius) of the hollow fiber is 0. 01 to 1.0 mm, particularly 0.1 to 0.5 mm is preferable. The length of the hollow fiber is preferably 200 to 2000 mm, particularly preferably 300 to 1000 mm. The filling rate of the hollow fibers (sum of the cross-sectional areas of the hollow fibers / the cross-sectional area of the casing) is preferably 5% to 50%, particularly preferably 15% to 35%. Examples of the material of the hollow fiber include, but are not limited to, polysulfone, polyethersulfone, polyethylene, polypropylene, polyvinylidene fluoride, and polytetrafluoroethylene.
 上記説明では、中空糸が用いられているが、疎水性平膜が用いられてもよい。 In the above description, a hollow fiber is used, but a hydrophobic flat membrane may be used.
 被処理液としては、食塩、リン酸、塩酸、弗酸、硫酸等の酸性溶液、アンモニア水のようなアルカリ廃液、メッキ廃水などの水溶液が好適である。中空糸内における被処理液の通水速度(線速度)は400~2000mm/sec、特に700~1500mm/sec程度が好適である。膜モジュール10に流入する際の被処理液の温度は45~150℃、特に50~80℃程度が好適である。 As the liquid to be treated, an acidic solution such as salt, phosphoric acid, hydrochloric acid, fluoroacid, sulfuric acid, an alkaline waste liquid such as ammonia water, and an aqueous solution such as plating waste water are suitable. The water flow rate (linear velocity) of the liquid to be treated in the hollow fiber is preferably 400 to 2000 mm / sec, particularly about 700 to 1500 mm / sec. The temperature of the liquid to be treated when flowing into the membrane module 10 is preferably 45 to 150 ° C., particularly preferably about 50 to 80 ° C.
 なお、上記の好適な条件は、好適な一例を示すものであり、本発明は上記条件に限定されるものではない。 The above-mentioned suitable conditions show a suitable example, and the present invention is not limited to the above-mentioned conditions.
[実施例1]
 図1に示す装置で弁8,31を閉とし、下記条件で運転した。ケーシング14を透明カラムとし、中空糸11外面への析出物の析出状況を目視観察した。
[Example 1]
With the device shown in FIG. 1, the valves 8 and 31 were closed and operated under the following conditions. The casing 14 was used as a transparent column, and the state of precipitation of precipitates on the outer surface of the hollow fiber 11 was visually observed.
<試験条件>
  中空糸11:ポリテトラフルオロエチレン製、
  内径1.0mm、厚さ0.3mm、長さ600mm、1本
  膜モジュール10のケーシング14:内径10mm、高さ690mm
  給水:NaCl 1%水溶液
  給水温度:60℃
  膜モジュール入口圧力P:-80kPa(ゲージ圧)
  給水量:40mL/min(中空糸内の線速度850mm/sec)
  二次側圧力P:-90kPa(ゲージ圧)
<Test conditions>
Hollow fiber 11: Made of polytetrafluoroethylene,
Inner diameter 1.0 mm, thickness 0.3 mm, length 600 mm, casing of single membrane module 10: inner diameter 10 mm, height 690 mm
Water supply: 1% NaCl aqueous solution Water supply temperature: 60 ° C
Membrane module inlet pressure P 1 : -80 kPa (gauge pressure)
Water supply amount: 40 mL / min (Line speed in hollow fiber 850 mm / sec)
Secondary pressure P 2 : -90 kPa (gauge pressure)
 約50時間運転したところ、中空糸11の外面に白色の析出物が析出することが認められた。 After operating for about 50 hours, it was confirmed that white precipitates were deposited on the outer surface of the hollow fiber 11.
 そこで、給水ポンプ2は作動させたまま、減圧装置25を停止し、弁8,31を開とし、15分間この状態に維持した。その結果、中空糸11の二次側に十分量の凝縮水が生じ、析出物が凝縮水に溶解し、溶解液が配管7から給水タンク1に流れ、15分後には析出物がほぼ消失することが認められた。 Therefore, while the water supply pump 2 was still operating, the decompression device 25 was stopped, the valves 8 and 31 were opened, and this state was maintained for 15 minutes. As a result, a sufficient amount of condensed water is generated on the secondary side of the hollow yarn 11, the precipitate dissolves in the condensed water, the dissolved liquid flows from the pipe 7 to the water supply tank 1, and the precipitate almost disappears after 15 minutes. Was recognized.
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2020年9月18日付で出願された日本特許出願2020-157308に基づいており、その全体が引用により援用される。
Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the intent and scope of the invention.
This application is based on Japanese Patent Application No. 2020-157308 filed on September 18, 2020, which is incorporated by reference in its entirety.
 1 給水タンク
 2 給水ポンプ
 4,21 熱交換器
 8 弁
 10 膜モジュール
 11 中空糸
 12,13 ポッティング材
 14 ケーシング
 15 流入室
 16 流出室
 17 二次側
 25 減圧装置

 
1 Water supply tank 2 Water supply pump 4,21 Heat exchanger 8 Valve 10 Membrane module 11 Hollow fiber 12,13 Potting material 14 Casing 15 Inflow chamber 16 Outflow chamber 17 Secondary side 25 Decompression device

Claims (6)

  1.  ケーシング内が膜によって一次側と二次側とに隔てられている膜モジュールと、
     該膜モジュールの一次側に被処理液を供給するための、給水タンク及び給水ポンプと、
     該膜モジュールの二次側を減圧する減圧装置と
    を有する膜蒸留装置を用いて被処理液を蒸留する膜蒸留装置の運転方法において、
     該膜モジュールの二次側に気体を導入して該二次側に凝縮水を生じさせ、二次側の析出物を凝縮水に溶解させて除去する析出物除去工程を行うことを特徴とする膜蒸留装置の運転方法。
    A membrane module whose casing is separated into a primary side and a secondary side by a membrane,
    A water supply tank and a water supply pump for supplying the liquid to be treated to the primary side of the membrane module,
    In the method of operating a membrane distillation apparatus that distills a liquid to be treated using a membrane distillation apparatus having a decompression device for reducing the pressure on the secondary side of the membrane module.
    It is characterized in that a precipitate removing step is performed in which a gas is introduced into the secondary side of the film module to generate condensed water on the secondary side, and the precipitate on the secondary side is dissolved in the condensed water to be removed. How to operate the membrane distillation apparatus.
  2.  前記給水ポンプを作動させた状態で前記減圧装置を停止し、前記二次側を正圧とすることで、前記析出物除去工程を行う請求項1の膜蒸留装置の運転方法。 The method of operating the membrane distillation apparatus according to claim 1, wherein the deposit removing step is performed by stopping the decompression device with the water supply pump operated and setting the secondary side to a positive pressure.
  3.  前記二次側と前記減圧装置とを接続する経路から配管が分岐しており、この分岐配管に弁が設けられており、該弁を開とすることにより前記二次側を正圧にする請求項2の膜蒸留装置の運転方法。 A pipe is branched from a path connecting the secondary side and the decompression device, and a valve is provided in the branched pipe. By opening the valve, the secondary side is made to have a positive pressure. Item 2 The operation method of the membrane distillation apparatus.
  4.  前記析出物除去工程を定期的に、又は蒸留性能が所定値よりも低下したときに行う請求項1~3のいずれかの膜蒸留装置の運転方法。 The method for operating the membrane distillation apparatus according to any one of claims 1 to 3, wherein the precipitate removing step is performed periodically or when the distillation performance drops below a predetermined value.
  5.  前記蒸留性能を、前記二次側の圧力又は凝縮水の生成速度に基づいて求める請求項4の膜蒸留装置の運転方法。 The operating method of the membrane distillation apparatus according to claim 4, wherein the distillation performance is obtained based on the pressure on the secondary side or the generation rate of condensed water.
  6.  前記膜モジュールの二次側と前記給水タンクとを連通する連通部が設けられており、前記析出物除去工程では、前記析出物が溶解した溶解液が該連通部を通って該給水タンクに流入する請求項1~5のいずれかの膜蒸留装置の運転方法。

     
    A communication portion for communicating the secondary side of the membrane module and the water supply tank is provided, and in the precipitate removing step, the solution in which the precipitate is dissolved flows into the water supply tank through the communication portion. The method for operating the membrane distillation apparatus according to any one of claims 1 to 5.

PCT/JP2021/011888 2020-09-18 2021-03-23 Method for operating membrane distillation apparatus WO2022059235A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180062931.2A CN116113488A (en) 2020-09-18 2021-03-23 Method for operating a membrane distillation plant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-157308 2020-09-18
JP2020157308A JP6958700B1 (en) 2020-09-18 2020-09-18 How to operate the membrane distillation equipment

Publications (1)

Publication Number Publication Date
WO2022059235A1 true WO2022059235A1 (en) 2022-03-24

Family

ID=78282060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/011888 WO2022059235A1 (en) 2020-09-18 2021-03-23 Method for operating membrane distillation apparatus

Country Status (3)

Country Link
JP (1) JP6958700B1 (en)
CN (1) CN116113488A (en)
WO (1) WO2022059235A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0330662A (en) * 1989-06-28 1991-02-08 Toray Ind Inc Production of alcoholic drink
JPH10180046A (en) * 1996-10-22 1998-07-07 Sekiyu Sangyo Kasseika Center Separation of organic liquid mixture and device therefor
JP2002126462A (en) * 2000-10-31 2002-05-08 Dainippon Ink & Chem Inc Method of removing solvent
JP2010119963A (en) * 2008-11-20 2010-06-03 Mitsubishi Heavy Ind Ltd Waste water treatment apparatus for space station and method therefor
JP2018065101A (en) * 2016-10-20 2018-04-26 オルガノ株式会社 Method and apparatus for treating fluorine-containing water

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0352627A (en) * 1989-07-19 1991-03-06 Hitachi Ltd Membrane distillation apparatus
CN1254303C (en) * 2004-04-27 2006-05-03 内蒙古工业大学 Method for increasing flux of membrane distillation and membrane distillation device
US20100051549A1 (en) * 2008-08-29 2010-03-04 Milton Roy Company Heat recuperating membrane distillation apparatus and system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0330662A (en) * 1989-06-28 1991-02-08 Toray Ind Inc Production of alcoholic drink
JPH10180046A (en) * 1996-10-22 1998-07-07 Sekiyu Sangyo Kasseika Center Separation of organic liquid mixture and device therefor
JP2002126462A (en) * 2000-10-31 2002-05-08 Dainippon Ink & Chem Inc Method of removing solvent
JP2010119963A (en) * 2008-11-20 2010-06-03 Mitsubishi Heavy Ind Ltd Waste water treatment apparatus for space station and method therefor
JP2018065101A (en) * 2016-10-20 2018-04-26 オルガノ株式会社 Method and apparatus for treating fluorine-containing water

Also Published As

Publication number Publication date
CN116113488A (en) 2023-05-12
JP6958700B1 (en) 2021-11-02
JP2022051050A (en) 2022-03-31

Similar Documents

Publication Publication Date Title
WO2009099485A1 (en) Methods and systems for processing waste water
WO2016063578A1 (en) Ammonia-containing wastewater treatment apparatus and treatment method
US20120228219A1 (en) Spiral wound membrane element and treatment of sagd produced water or other high temperature alkaline fluids
JP6400726B2 (en) Water treatment method, water treatment system and water treatment apparatus
KR20120092132A (en) Thermal desalination
JP6395844B2 (en) Adhesion monitoring device for water treatment device, water treatment device and operation method thereof, and cleaning method for water treatment device
US20130277308A1 (en) Water Treatment System and Method for Continuous Forward Osmosis Process Using Osmotically Active Compound with Phase Transition
WO2022059235A1 (en) Method for operating membrane distillation apparatus
EP3788304B1 (en) Systems and methods for removing organic compounds from steam
JP2009192193A (en) Boiler system
JP5398695B2 (en) Desalination apparatus, method for monitoring membrane and operation method of desalination apparatus
CN101874984A (en) Device and method for distilling air-blowing vacuum membrane
JP2013213660A (en) Steam plant and method for operating the same
KR101603785B1 (en) Hydrogen peroxide refined system using reverse osmosis and hydrogen peroxide produced thereof
EP2310325B1 (en) Method and system for supercritical removal of an inorganic compound
WO2013046961A1 (en) Fresh water purification device
JP2013146642A (en) Fluid membrane-separation power generation system
TWM630641U (en) Metal surface treatment fluid recycling system
JP6958687B1 (en) Membrane distillation equipment and its operation method
US20200147556A1 (en) System and method for cleaning membrane filters in-line in a water purification system
Ghomshe Cleaning strategy of fouled reverse osmosis membrane: direct osmosis at high salinities (DO-HS) as on-line technique without interruption of RO operation
US20230191333A1 (en) Spiral wound membrane element for high temperature filtration
JP4688062B2 (en) Clean steam generation system
TW202212747A (en) Distillation apparatus
JPS6019003A (en) Operation of membrane module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21868923

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21868923

Country of ref document: EP

Kind code of ref document: A1