WO2013046961A1 - Fresh water purification device - Google Patents

Fresh water purification device Download PDF

Info

Publication number
WO2013046961A1
WO2013046961A1 PCT/JP2012/070530 JP2012070530W WO2013046961A1 WO 2013046961 A1 WO2013046961 A1 WO 2013046961A1 JP 2012070530 W JP2012070530 W JP 2012070530W WO 2013046961 A1 WO2013046961 A1 WO 2013046961A1
Authority
WO
WIPO (PCT)
Prior art keywords
fresh water
carrier gas
gas
separation means
solution
Prior art date
Application number
PCT/JP2012/070530
Other languages
French (fr)
Japanese (ja)
Inventor
浩人 横井
晃治 陰山
豊 三宮
田所 秀之
隆広 舘
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2013046961A1 publication Critical patent/WO2013046961A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • B01D61/0022Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/445Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by forward osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/05Conductivity or salinity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/14NH3-N
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/24CO2
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Abstract

[Problem] To provide a device for purifying fresh water after absorption of water in a more semi-hyperosmotic solution for hyperosmosis than sea water using a forward osmosis membrane with sea water as the raw water. Also to be able to inhibit deposition of solids (ammonium carbamate) arising from NH3 and CO2 generated in the fresh water purification process, to separate this gas from the semi-hyperosmotic solution by a separation means, and reduce the device scale by making re-dissolving of the gas by a re-dissolving means more efficient. [Solution] A separation means (3) for a solute in the fresh water purification process has a plurality of recovery openings (4, 5) that recover solute components in a semi-hyperosmotic solution as a mixed gas and a carrier gas supply opening (6) and pump (10) that supply a carrier gas to the separation means (3). The gas recovered by the separation means (3) is re-dissolved in a re-dissolving means (14). Deposition of solids arising from NH3 and CO2 can be suppressed by a constitution that supplies gas supplied by the recovery openings (4, 5) to the re-dissolving means (14) from infusion openings (12, 13) that differ, respectively, along with the carrier gas.

Description

淡水精製装置Fresh water purification equipment
 本発明は、正浸透膜を用いて海水から水を回収した溶液を原料として、淡水を得るため
の淡水精製装置に関する。
The present invention relates to a fresh water purification apparatus for obtaining fresh water from a solution obtained by collecting water from seawater using a forward osmosis membrane.
 近年、膜を用いた海水淡水化技術を、様々なシステム及びプラントに適用する例が増加している。例えば、逆浸透膜法では、セルロースやポリアミド等の素材で作られた逆浸透膜に、海水の浸透圧(約2.5MPa)の二倍以上の圧力を加え、塩分は膜を透過させないで水だけを透過させることにより淡水を得ることができる。 In recent years, examples of applying seawater desalination technology using membranes to various systems and plants are increasing. For example, in the reverse osmosis membrane method, a pressure more than twice the osmotic pressure of seawater (about 2.5 MPa) is applied to a reverse osmosis membrane made of a material such as cellulose or polyamide, and salt does not permeate the membrane without passing through the membrane. Fresh water can be obtained by permeating only water.
 一方、正浸透膜法では、セルロース等の素材で作られた正浸透膜を介して海水中の水を一旦、高溶質濃度を有する高浸透圧溶液に回収し、この溶液から塩を除去する方法である。ここで、準高浸透圧溶液とは、上記のように海水から得た水を一旦回収した高浸透圧溶液のことを言う。 On the other hand, in the forward osmosis membrane method, water in seawater is once recovered into a high osmotic pressure solution having a high solute concentration through a forward osmosis membrane made of a material such as cellulose, and the salt is removed from this solution. It is. Here, the quasi-high osmotic pressure solution refers to a high osmotic pressure solution obtained by once collecting water obtained from seawater as described above.
 この正浸透膜法では、正方向への浸透圧の駆動力を利用できるだけではなく、高浸透圧溶液からの分離が容易な溶質を選択することで、淡水製造に係るエネルギーを逆浸透膜法よりも低減できる可能性がある。 In this forward osmosis membrane method, not only can the driving force of osmotic pressure in the positive direction be utilized, but also the energy associated with freshwater production can be selected from the reverse osmosis membrane method by selecting a solute that can be easily separated from the hyperosmotic solution. Can also be reduced.
 準高浸透圧溶液から淡水を精製する方法としては、溶質とする物質によって、蒸留、ガス放散、電気透析、拡散透析、晶析、逆浸透膜、正浸透膜、および磁気分離を単独で用いたり、これらを組合せた工程を適用できる。一方、高い浸透圧を得る必要があることから、溶質には、水との親和性ひいては溶解度が高い物質を選定しなければならない。そのため、準高浸透圧溶液から淡水を精製する工程の確立、つまり、最適工程条件を確立することが、正浸透膜を用いた海水淡水化システムの開発における課題の一つとなっている。 As a method for purifying fresh water from a quasi-high osmotic pressure solution, distillation, gas emission, electrodialysis, diffusion dialysis, crystallization, reverse osmosis membrane, forward osmosis membrane, and magnetic separation can be used independently depending on the substance to be solute. A process combining these can be applied. On the other hand, since it is necessary to obtain a high osmotic pressure, a substance having an affinity for water and thus a high solubility must be selected as the solute. Therefore, the establishment of a process for purifying fresh water from a quasi-high osmotic pressure solution, that is, the establishment of optimum process conditions is one of the problems in the development of a seawater desalination system using a forward osmosis membrane.
 このような状況において、高浸透圧溶液のうちNH3/CO2系溶液は、炭酸水素アンモニウム(NH4HCO3)として水への溶解度が高く、また、約36℃で熱分解によりNH3ガスとCO2ガスとして分離・回収できるため、正浸透膜処理による海水淡水化への適用が検討されている溶質の有力候補のひとつである。例えば、以下述べるように、NH3/CO2系の準高浸透圧溶液からの淡水精製方法として蒸留が提案されている。 Under such circumstances, the NH 3 / CO 2 system solution of the high osmotic pressure solution has high solubility in water as ammonium hydrogen carbonate (NH 4 HCO 3 ), and NH 3 gas is obtained by thermal decomposition at about 36 ° C. Since it can be separated and recovered as CO 2 gas, it is one of the promising solute candidates that are being studied for application to seawater desalination by forward osmosis membrane treatment. For example, as described below, distillation has been proposed as a method for purifying fresh water from an NH 3 / CO 2 quasi-high osmotic pressure solution.
特開2011-83663号公報JP 2011-83663 A 米国特許出願公開2009/0297431号明細書US Patent Application Publication No. 2009/0297431
 〔特許文献1〕には、蒸留によって揮発性カチオン(NH4 +)と揮発性アニオン(CO3 2-)を個別に回収する方法が提示されている。このような、蒸留塔を用いて蒸留する方法では、通常、気相のNH3分圧に応じて溶液中のNH3濃度が決まる。しかし、準高浸透圧溶液を対象とする場合、通常の蒸留塔を適用すると、ガスの発生量と、最終的に到達するべき液中の溶質濃度の点で問題が生じる。 [Patent Document 1] proposes a method of individually recovering a volatile cation (NH 4 + ) and a volatile anion (CO 3 2− ) by distillation. In such a distillation method using a distillation column, the NH 3 concentration in the solution is usually determined according to the NH 3 partial pressure in the gas phase. However, when a quasi-high osmotic pressure solution is used, when a normal distillation tower is applied, problems occur in terms of the amount of gas generated and the solute concentration in the liquid to be finally reached.
 すなわち、最終的には濃度数mol/Lの溶液中の溶質の大部分を混合気体として分離するため、初期段階では、供給する準高浸透圧溶液の量に対して大量の混合気体が発生する。一方、蒸留塔の最下層においては、溶液中のNH3濃度を数mg/Lにまで低減する必要から、NH3分圧を十分低くする必要がある。この蒸留は比較的低い温度で運転されるため、水の蒸気圧も低く、したがって、下層における気相の全圧が低い。初期段階で発生する混合気体の回収を考慮しても、運転の揺らぎによる下段への圧力変化が生じるため、淡水の純度が悪化する。特に、充填塔の場合は、気相が棚段で分割されていないため、前記圧力変化による淡水純度への影響が大きくなる。このことは、所定のレベルの安全率を持たせた設計を要求され、結果として蒸留塔を大型化させる原因となる。 That is, since most of the solute in the solution having a concentration of several mol / L is finally separated as a mixed gas, in the initial stage, a large amount of mixed gas is generated with respect to the amount of the quasi-high osmotic pressure solution to be supplied. . On the other hand, in the lowermost layer of the distillation column, it is necessary to reduce the NH 3 partial pressure sufficiently to reduce the NH 3 concentration in the solution to several mg / L. Since this distillation is operated at a relatively low temperature, the vapor pressure of water is also low, and thus the total pressure of the gas phase in the lower layer is low. Even considering the recovery of the mixed gas generated in the initial stage, the pressure change to the lower stage due to the fluctuation of the operation occurs, so the purity of fresh water deteriorates. In particular, in the case of a packed tower, the gas phase is not divided on the shelf, so that the influence of the pressure change on the fresh water purity is increased. This requires a design with a predetermined level of safety factor, resulting in an increase in the size of the distillation column.
 また、〔特許文献1〕では、揮発性カチオンと揮発性アニオンを個別に回収するとしているが、完全に個別に回収することは困難である。そのため、高濃度のNH3,CO2が共存する状態がやはり生じることから、配管や溶解工程での固体(カルバミン酸アンモニウム)の析出による閉塞、さらには、正浸透膜処理工程への固体の混入による半透膜のファウリングが生じるという問題が起きる。 In [Patent Document 1], volatile cations and volatile anions are individually recovered, but it is difficult to recover them completely individually. For this reason, a state in which high concentrations of NH 3 and CO 2 coexist is also generated, so blockage due to precipitation of solid (ammonium carbamate) in the piping and dissolution process, and further mixing of the solid into the forward osmosis membrane treatment process This causes a problem that fouling of the semipermeable membrane occurs.
 〔特許文献2〕には、複数の蒸留塔を用いてNH3/CO2系ドロー溶液から淡水を精製する装置が記載されている。第1塔の蒸気を第2塔のリボイラーの熱源とすることで、使用エネルギーを低減することができるとしている。しかし、混合気体の分離に関しては、〔特許文献1〕と同様の問題点がある。また、NH3とCO2ガスを同時に回収するため固体析出のリスクが高いが、分離した混合気体の再溶解工程については記述がない。 [Patent Document 2] describes an apparatus for purifying fresh water from an NH 3 / CO 2 -based draw solution using a plurality of distillation columns. The use energy can be reduced by using the steam of the first tower as a heat source for the reboiler of the second tower. However, the separation of the mixed gas has the same problem as [Patent Document 1]. Further, since NH 3 and CO 2 gas are recovered at the same time, the risk of solid precipitation is high, but there is no description about the process of re-dissolving the separated mixed gas.
 上記課題に鑑み、本発明の目的は、準高浸透圧溶液からの気体成分の回収を効率よく行うことができ、且つ、運転継続の障害になる固体の析出を抑制できる、正浸透膜処理を用いた淡水精製装置を提供することにある。 In view of the above problems, an object of the present invention is to perform forward osmosis membrane treatment that can efficiently recover a gas component from a quasi-high osmotic pressure solution and that can suppress precipitation of solids that hinders continuation of operation. It is to provide a fresh water purifier used.
 上記目的を達成するため、本発明は、正浸透膜処理工程で得られた準高浸透圧溶液から溶質成分を分離して淡水を得る分離手段が、前記準高浸透圧溶液の溶質成分を気体として回収するための高さ位置の異なる複数の回収口と、ポンプにより供給されるキャリアガスを流入するキャリアガス供給口とを備える。また、前記分離手段で回収した混合気体を準高浸透圧溶液に再溶解するための再溶解手段が、前記分離手段の複数の回収口から回収した混合気体を分圧の高い順に再溶解するための複数の注入口を備える。 In order to achieve the above object, the present invention provides a separation means for separating solute components from the semi-hyperosmotic solution obtained in the forward osmosis membrane treatment step to obtain fresh water, wherein the solute components of the semi-hyperosmotic solution are gasified. And a plurality of recovery ports having different height positions for recovery, and a carrier gas supply port through which a carrier gas supplied by a pump flows. Further, the re-dissolution means for re-dissolving the mixed gas recovered by the separation means in the semi-high osmotic pressure solution re-dissolves the mixed gas recovered from the plurality of recovery ports of the separation means in descending order of partial pressure. A plurality of inlets.
 本発明によれば、分離手段から回収する淡水と平衡状態になる混合気体にキャリアガスを添加することでNH3分圧を低減し、より高純度な淡水が得られるとともに、配管中でのカルバミン酸アンモニウム等の固体の生成を抑制できる。 According to the present invention, NH 3 partial pressure is reduced by adding a carrier gas to a mixed gas that is in an equilibrium state with fresh water recovered from the separation means, so that higher-purity fresh water can be obtained, and carbamine in the piping can be obtained. Formation of solids such as ammonium acid can be suppressed.
本発明の第1実施形態に係る淡水精製装置のブロック図である。It is a block diagram of the fresh water refiner | purifier which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る淡水精製装置のブロック図である。It is a block diagram of the fresh water refiner | purifier which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る淡水精製装置のブロック図である。It is a block diagram of the fresh water refiner | purifier which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る淡水精製装置のブロック図である。It is a block diagram of the fresh water refiner | purifier which concerns on 4th Embodiment of this invention. 淡水精製装置の運転制御における処理工程を示すフロー図である。It is a flowchart which shows the process process in the operation control of a freshwater refiner | purifier. 淡水精製装置の洗浄操作の制御における処理工程を示すフロー図である。It is a flowchart which shows the process process in control of washing | cleaning operation of a freshwater refiner | purifier.
 以下、添付した図面を参照しながら本発明の各実施形態を説明する。しかし、本発明はこれら実施形態に限定されるものではなく、種々の変更が可能である。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. However, the present invention is not limited to these embodiments, and various modifications can be made.
[第1実施形態]
 図1は本発明の第1実施形態に係る海水の淡水精製装置のブロック図である。図1に示
すように、本実施形態の海水の淡水精製装置は、正浸透膜処理工程で得た準高浸透圧
溶液1から溶質成分を気体として分離して淡水7を得る分離手段3と、分離手段3に設置した回収口4、5及びキャリアガス供給口6と、正浸透膜処理工程で得た準高浸透圧溶液2が供給され、NH3とCO2を順次溶解して正浸透膜処理工程で用いる高浸透圧溶液15を得る再溶解手段14と、を備える。さらに、前記淡水精製装置は、分離手段3の上部に設置した回収口4と再溶解手段14の低部に設置した注入口13とを接続する配管と、再溶解手段14の上部と分離手段3の低部に設置したキャリアガス供給口6とを、キャリアガスフィルタ17を付設したバルブ16、キャリアガスポンプ10及びバルブ11を介して接続する配管と、分離手段3の中位置と上部の回収口4との間に設置した回収口5と再溶解手段14の中位置に設置した注入口12とを分離ガスポンプ8及びバルブ9を介して接続する配管と、で構成する。
[First Embodiment]
FIG. 1 is a block diagram of a freshwater purification apparatus for seawater according to a first embodiment of the present invention. As shown in FIG. 1, the seawater freshwater purification apparatus of the present embodiment includes a separation means 3 that separates a solute component as a gas from the quasi-high osmotic pressure solution 1 obtained in the forward osmosis membrane treatment step to obtain freshwater 7, The recovery ports 4 and 5 and the carrier gas supply port 6 installed in the separation means 3 and the quasi-high osmotic pressure solution 2 obtained in the forward osmosis membrane treatment step are supplied, and NH 3 and CO 2 are sequentially dissolved to forward the osmosis membrane. Re-dissolution means 14 for obtaining a hyperosmotic solution 15 used in the treatment step. Further, the fresh water purifier includes a pipe connecting the recovery port 4 installed at the upper part of the separation means 3 and the injection port 13 installed at the lower part of the remelting means 14, the upper part of the remelting means 14 and the separation means 3. The carrier gas supply port 6 installed in the lower part of the pipe is connected via a valve 16 provided with a carrier gas filter 17, the carrier gas pump 10 and the valve 11, and the middle and upper recovery ports 4 of the separating means 3. Between the recovery port 5 and the injection port 12 installed at the middle position of the remelting means 14, and a pipe connecting the separation gas pump 8 and the valve 9.
 分離手段3および再溶解手段14には、正浸透膜処理工程で得られた準高浸透圧溶液1および2が供給されるが、正浸透膜処理工程では、海水を原水とし、半透膜である正浸透膜を介して海水中の水を高浸透圧溶液に回収する。この正浸透膜処理によって、高浸透圧溶液の濃度は、正浸透膜処理工程に供給されるときの濃度よりも低下するが、海水よりも高い浸透圧を維持し、正方向への駆動力を維持できるだけの浸透圧を有する。 The separation means 3 and the re-dissolution means 14 are supplied with the semi-high osmotic pressure solutions 1 and 2 obtained in the forward osmosis membrane treatment step. In the forward osmosis membrane treatment step, seawater is used as raw water, and a semipermeable membrane is used. Water in seawater is recovered into a high osmotic pressure solution through a certain forward osmosis membrane. By this forward osmosis membrane treatment, the concentration of the high osmotic pressure solution is lower than the concentration when supplied to the forward osmosis membrane treatment step, but maintains a higher osmotic pressure than seawater and increases the driving force in the positive direction. Has enough osmotic pressure to maintain.
 高浸透圧溶液としては、NH3とCO2を溶解した溶液を用いる。例えば、NH3とCO2を当モルずつ溶解すると、化学組成的には炭酸水素アンモニウム(NH4HCO3)溶液を使用することとなる。溶液の浸透圧は下記の(式1)から算出することができる。
           
                     Π=iRTC    …(式1)
As the high osmotic pressure solution, a solution in which NH 3 and CO 2 are dissolved is used. For example, when NH 3 and CO 2 are dissolved in equimolar amounts, an ammonium hydrogen carbonate (NH 4 HCO 3 ) solution is used in terms of chemical composition. The osmotic pressure of the solution can be calculated from the following (Equation 1).

Π = iRTC (Formula 1)
 ここで、Πは浸透圧、Rは気体定数、Tは絶対温度、Cは溶質のモル濃度、iはファント・ホッフの係数である。ファント・ホッフの係数iは、溶質が電解質の場合、電離による影響を補正する係数である。海水の浸透圧(2.5MPa)より大きな浸透圧で高浸透圧溶液を駆動させるためには、NH4/CO2組成として1~5mol/L程度の濃度が必要となる。従って、1mol/LのNH4HCO3溶液1LからNH3とCO2を混合気体として全量放出させると、44.8L(0℃、0.1013MPa)となる。 Here, Π is the osmotic pressure, R is the gas constant, T is the absolute temperature, C is the molar concentration of the solute, and i is the Phanto-Hoff coefficient. The Phanto-Hoff coefficient i is a coefficient for correcting the influence of ionization when the solute is an electrolyte. In order to drive a high osmotic pressure solution with an osmotic pressure greater than the osmotic pressure of seawater (2.5 MPa), a concentration of about 1 to 5 mol / L is required as the NH 4 / CO 2 composition. Therefore, when NH 3 and CO 2 are all released as a mixed gas from 1 L of 1 mol / L NH 4 HCO 3 solution, 44.8 L (0 ° C., 0.1013 MPa) is obtained.
 上記のようにして、分離手段3により準高浸透圧溶液1の溶質成分を混合気体として分離し、淡水7を得る。分離手段3の構造には、棚段塔または充填塔のいずれを用いてもよい。塔高さや径、塔の形式や充填物の形状などにより分離性能が異なるが、準高浸透圧溶液1と淡水7中のNH3とCO2の溶解濃度を適宜設定すれば、それぞれ理論段数や移動単位数(NTU:Number of Transfer Units)の指標を用いることで同等の性能をもつ塔を設計できる。 As described above, the solute component of the semi-high osmotic pressure solution 1 is separated as a mixed gas by the separation means 3 to obtain fresh water 7. As the structure of the separating means 3, either a plate tower or a packed tower may be used. Separation performance varies depending on the tower height, diameter, tower type, packing shape, etc. If the dissolved concentrations of NH 3 and CO 2 in the semi-high osmotic pressure solution 1 and fresh water 7 are appropriately set, A tower having equivalent performance can be designed by using an index of the number of transfer units (NTU).
 操作温度は、溶質が混合気体として分離できる温度で、かつ水の沸点より低い温度である40~80℃が望ましい。この温度に設定するために、分離手段3に準高浸透圧溶液1を供給する入口部には図示しない加熱手段を設けている。加熱手段で加熱する温度は、高温であるほど分離速度は速いが、一方、準高浸透圧溶液1を加熱するためのエネルギーが必要となる。なお、加熱手段の代わりに、分離手段3を真空装置により減圧してもよい。 The operating temperature is preferably 40 to 80 ° C., which is a temperature at which the solute can be separated as a mixed gas and lower than the boiling point of water. In order to set this temperature, a heating means (not shown) is provided at the inlet for supplying the quasi-high osmotic pressure solution 1 to the separation means 3. The higher the temperature at which the heating means is heated, the faster the separation rate is. On the other hand, energy for heating the quasi-high osmotic pressure solution 1 is required. Instead of the heating means, the separation means 3 may be decompressed by a vacuum device.
 回収口4、5、キャリアガス供給口6は、それぞれ分離手段3の高さ方向で異なる高さに設置する。回収口4は、塔の上部に設け、CO2分圧がNH3分圧に比べて高い混合気体を回収する。回収口5は、回収口4とキャリアガス供給口6との間に設置する。回収口5からはNH3分圧がCO2分圧に比べて高い混合気体を回収する。キャリアガス供給口6は、塔の低部に設け、キャリアガスポンプ10により、バルブ11を介してキャリアガスを分離手段3に供給する。 The collection ports 4 and 5 and the carrier gas supply port 6 are installed at different heights in the height direction of the separation means 3. The collection port 4 is provided in the upper part of the tower, and collects a mixed gas whose CO 2 partial pressure is higher than the NH 3 partial pressure. The recovery port 5 is installed between the recovery port 4 and the carrier gas supply port 6. From the recovery port 5, a mixed gas whose NH 3 partial pressure is higher than the CO 2 partial pressure is recovered. The carrier gas supply port 6 is provided in the lower part of the tower, and the carrier gas pump 10 supplies the carrier gas to the separation means 3 through the valve 11.
 キャリアガスの供給により分離手段3内部の気液比が増大する、すなわち、キャリアガスと準高浸透圧溶液1との気液界面積が増大し、キャリアガスの溶液への吸収量が増大するため、混合気体の分離速度が増加する。キャリアガスとしては、CO2やNH3との反応性が低い気体であればよく、空気、N2、Ar、Heなどを使用することができる。本実施形態では空気を使用した場合を示しており、キャリアガスフィルタ17で空気中の粉塵をフィルタして追加供給できる構成としている。 By supplying the carrier gas, the gas-liquid ratio inside the separation means 3 increases, that is, the gas-liquid interface area between the carrier gas and the quasi-high osmotic pressure solution 1 increases, and the amount of absorption of the carrier gas into the solution increases. The separation rate of the mixed gas increases. As the carrier gas, any gas having low reactivity with CO 2 or NH 3 may be used, and air, N 2 , Ar, He, or the like can be used. In this embodiment, the case where air is used is shown, and the carrier gas filter 17 filters the dust in the air and can be additionally supplied.
 回収口5の位置は、回収口4と回収口5で得られる混合気体の組成によって決定する。回収口4と回収口5から排出する混合気体にはNH3とCO2が共に含まれるため、温度条件によってはカルバミン酸アンモニウムや炭酸水素アンモニウムなどのNH3,CO2及びH2Oを原料とする化合物が析出する。この析出を抑制するためには、NH3とCO2をそれぞれ分離することが効果的である。NH3とCO2の単独の系では、分圧が50kPaとなる場合の液相中のモル分率はそれぞれ2.66×102、3.4×10-4と非常に大きな差があるため、溶解度の低いCO2を容易に分離できるように見える。 The position of the recovery port 5 is determined by the composition of the mixed gas obtained at the recovery port 4 and the recovery port 5. Since the mixed gas discharged from the recovery port 4 and the recovery port 5 contains both NH 3 and CO 2 , depending on the temperature conditions, NH 3 , CO 2 and H 2 O such as ammonium carbamate and ammonium bicarbonate are used as raw materials. The compound to be precipitated. In order to suppress this precipitation, it is effective to separate NH 3 and CO 2 from each other. In a single system of NH 3 and CO 2 , the molar fraction in the liquid phase when the partial pressure is 50 kPa is very different from 2.66 × 10 2 and 3.4 × 10 −4 , respectively. It appears that CO 2 with low solubility can be easily separated.
 しかし、NH3とCO2が混合した系(NH3/CO2系)では、NH3とCO2単独系とは異なった溶解特性を示すため、単独系では溶解度が低いCO2だけを混合系では塔の上部から回収することは困難である。NH3/CO2系での分圧は、例えば、Mishimaらの報告書(K. Mishima et al., J. Chem. Eng. Japan, Vol.28(2), p144(1995))から、358.15K、0.1013MPaで、溶液中のNH3:CO2=1:1の場合の分圧は、共に約0.03MPaであることが分かる。このことは、混合系ではCO2はNH3と同程度の低い分圧でも高い溶解度を有しており、単独の系に比べて混合系ではCO2を単離することが困難であることを示唆している。 However, a system in which NH 3 and CO 2 are mixed (NH 3 / CO 2 system) exhibits different solubility characteristics from the NH 3 and CO 2 single system, so that only the CO 2 having a low solubility is mixed in the single system. It is difficult to recover from the top of the tower. The partial pressure in the NH 3 / CO 2 system is, for example, from the report of Misima et al. (K. Mishima et al., J. Chem. Eng. Japan, Vol. 28 (2), p144 (1995)). It can be seen that the partial pressures in the case of NH 3 : CO 2 = 1: 1 at 0.15 K and 0.1013 MPa are both about 0.03 MPa. This means that in the mixed system, CO 2 has a high solubility even at a partial pressure as low as NH 3, and it is difficult to isolate CO 2 in the mixed system compared to the single system. Suggests.
 そのため、回収口4、回収口5では、CO2とNH3が混合した気体が回収される。NH3/CO2系であっても、CO2はNH3に比べて分離されやすいため、回収口4におけるC
2:NH3の比は、回収口5でのCO2:NH3の比に比べて大きい。このとき、後段の再溶解手段14での溶解効率とマスバランスを考慮すると、回収口4におけるCO2:NH3の比が回収口5におけるNH3:CO2の比と同程度の値となり、かつ、前記比の値が略最大になる位置に回収口4を設けることが望ましい。
Therefore, at the collection port 4 and the collection port 5, a gas in which CO 2 and NH 3 are mixed is collected. Even in the NH 3 / CO 2 system, CO 2 is more easily separated than NH 3 , so
The ratio of O 2 : NH 3 is larger than the ratio of CO 2 : NH 3 at the recovery port 5. At this time, considering the dissolution efficiency and mass balance in the subsequent remelting means 14, the ratio of CO 2 : NH 3 in the recovery port 4 becomes the same value as the ratio of NH 3 : CO 2 in the recovery port 5, In addition, it is desirable to provide the recovery port 4 at a position where the ratio value becomes substantially maximum.
 この位置は、操作温度や準高浸透圧溶液1の組成によっても異なるが、上記文献に示したような混合系における分圧データを用いて決定することができる。実際の分離手段3の高さは、分離手段の種類(例えば棚段塔や充填塔)によって異なる。これは、単に段または単位高さあたりの分離性能が異なるためである。ここでは、段数(または単位高さ)で規格化して、上記混合気体の組成条件を満たす回収口4、5の位置を検討する。 This position varies depending on the operating temperature and the composition of the quasi-high osmotic pressure solution 1, but can be determined using partial pressure data in a mixed system as shown in the above document. The actual height of the separation means 3 varies depending on the type of separation means (for example, a tower column or a packed tower). This is simply because the separation performance per stage or unit height is different. Here, the position of the recovery ports 4 and 5 satisfying the composition condition of the mixed gas is examined by normalizing by the number of stages (or unit height).
 分離手段3を、回収口4から回収口5上端まで(分離手段3の上部)と、回収口5からキャリアガス供給口6まで(分離手段3の下部)の2つに分割して考える。そして、分離手段3の上段の上端で、平衡状態の混合気体(CO2とNH3の混合気体)を回収するものとする。分離手段3の上部では、上端で回収する混合気体の物質量だけ溶液から分離されるものとして、下端での溶液濃度を算出する。また、分離手段3の上部の下端と分離手段3の下部の上端では、溶液の濃度は同じで、分離手段3の下部から分離手段3の上部への混合気体の移行はないものとする。 The separating means 3 is considered to be divided into two parts, from the collecting port 4 to the upper end of the collecting port 5 (upper part of the separating means 3) and from the collecting port 5 to the carrier gas supply port 6 (lower part of the separating means 3). Then, an equilibrium mixed gas (a mixed gas of CO 2 and NH 3 ) is recovered at the upper upper end of the separation means 3. At the upper part of the separating means 3, the solution concentration at the lower end is calculated on the assumption that the substance is separated from the solution by the amount of the mixed gas recovered at the upper end. Further, it is assumed that the concentration of the solution is the same at the lower end of the upper part of the separating means 3 and the upper end of the lower part of the separating means 3, and there is no transfer of the mixed gas from the lower part of the separating means 3 to the upper part of the separating means 3.
 平衡状態でのNH3とCO2の分圧は、NH3-H2O系、CO2-H2O系、および、Mishimaらの報告データ(各気体の分圧と溶液中のモル分率との関係)に基づき、NH3とCO2の全溶解量で補正等を行って算出した。分離手段3の温度を358.15K、分離手段3の上部へ供給される溶液中のNH3とCO2の濃度をともに1.5mol/Lとした。また、淡水7中のNH3濃度が5.9×10-5mol/L(1mg/L)、CO2濃度が2.3×10-5mol/L(1mg/L)とした。 The partial pressures of NH 3 and CO 2 at equilibrium are the NH 3 —H 2 O system, CO 2 —H 2 O system, and data reported by Misima et al. (Partial pressure of each gas and mole fraction in solution). Based on the relationship, the total dissolution amount of NH 3 and CO 2 was corrected and calculated. The temperature of the separation means 3 was 358.15 K, and the concentrations of NH 3 and CO 2 in the solution supplied to the top of the separation means 3 were both 1.5 mol / L. The NH 3 concentration in fresh water 7 was 5.9 × 10 −5 mol / L (1 mg / L), and the CO 2 concentration was 2.3 × 10 −5 mol / L (1 mg / L).
 この計算条件の下で、回収口4におけるCO2:NH3の比が回収口5におけるNH3:CO2の比と同程度の値となり、かつ、前記比の値が略最大値になる位置を求めた結果、分離手段3の上部の高さ:分離手段3の下部の高さ=1:6となった。すなわち、分離手段3の上端に回収口4、下端にキャリアガス供給口6を設定したとき、回収口5は、この間で回収口4から1/7となる位置に設置すればよい。このとき、回収口4から得られる混合気体中のCO2:NH3比は17:1、一方、回収口5から得られるガス中のNH3:CO2比は25:1と計算で求めた。 Under these calculation conditions, the CO 2 : NH 3 ratio at the recovery port 4 is approximately the same as the NH 3 : CO 2 ratio at the recovery port 5, and the ratio value is approximately the maximum value. As a result, the height of the upper part of the separating means 3: the height of the lower part of the separating means 3 was 1: 6. That is, when the recovery port 4 is set at the upper end of the separating means 3 and the carrier gas supply port 6 is set at the lower end, the recovery port 5 may be installed at a position 1/7 from the recovery port 4 during this period. At this time, the CO 2 : NH 3 ratio in the gas mixture obtained from the recovery port 4 was 17: 1, while the NH 3 : CO 2 ratio in the gas obtained from the recovery port 5 was calculated as 25: 1. .
 操作温度や分離手段3へ供給する準高浸透圧溶液1の濃度が異なる場合も、同様なCO2、NH3、H2Oの分圧と溶液中の濃度のデータを用いて、回収口の開口位置を設定することができる。 Even when the operating temperature or the concentration of the quasi-high osmotic pressure solution 1 supplied to the separation means 3 is different, the data of the partial pressure of CO 2 , NH 3 , H 2 O and the concentration in the solution are used, The opening position can be set.
 回収口4から排出する混合気体は、配管を通って再溶解手段14の下部に設置した注入口13から供給する。また、回収口5から排出するキャリアガスを含む混合気体は、分離ガスポンプ8とバルブ9を介して、圧力が調整された後、再溶解手段14の中段に設置した注入口12から供給する。分離ガスポンプ8の風量は、キャリアガスポンプ10の供給量および分離手段3の回収口5より下部で分離されるNH3とCO2の混合気体の発生量の合計かまたはそれより小さい量とする。これは、特に充填塔を用いる場合に、上段で分離したガスが下段に流入し、分離性能が低下するのを防ぐためである。 The mixed gas discharged from the recovery port 4 is supplied from an injection port 13 installed at the lower part of the remelting means 14 through a pipe. Further, the mixed gas containing the carrier gas discharged from the recovery port 5 is supplied from the injection port 12 installed in the middle stage of the remelting means 14 after the pressure is adjusted via the separation gas pump 8 and the valve 9. The air volume of the separation gas pump 8 is the sum of the supply amount of the carrier gas pump 10 and the generation amount of the mixed gas of NH 3 and CO 2 separated below the recovery port 5 of the separation means 3 or smaller. This is to prevent the gas separated in the upper stage from flowing into the lower stage and lowering the separation performance, particularly when using a packed tower.
 再溶解手段14には、分離手段3と同様に棚段塔や充填塔を用いることができる。上部から準高浸透圧溶液2を噴霧し、分離手段3で得られた混合気体中のNH3とCO2を順次溶解する。低温での操作のほうが前記混合気体の溶解には有利であるが、少なくとも0℃からが分離手段3の操作温度の範囲であることが望ましい。再溶解手段14の仕様は、キャリアガスの流量、操作温度、注入口12、13におけるNH3とCO2の混合気体の分圧、準高浸透圧溶液2の溶質濃度および流量、および高浸透圧溶液15の溶質濃度によって決定する。 As the remelting means 14, a plate tower or a packed tower can be used as in the separation means 3. The quasi-high osmotic pressure solution 2 is sprayed from above, and NH 3 and CO 2 in the mixed gas obtained by the separating means 3 are dissolved successively. Although operation at a low temperature is more advantageous for dissolution of the mixed gas, it is desirable that the operating temperature range of the separating means 3 is at least from 0 ° C. The specifications of the re-dissolution means 14 are the carrier gas flow rate, the operating temperature, the partial pressure of the mixed gas of NH 3 and CO 2 at the inlets 12 and 13, the solute concentration and flow rate of the quasi-high osmotic pressure solution 2, and the high osmotic pressure. Determined by the solute concentration of the solution 15.
 再溶解手段14では、まず、溶解度の高いNH3の割合が多い混合気体を供給して、準高浸透圧溶液2のpHを上昇させる。すなわち、NH3の分圧がCO2の分圧より高い(つまり、NH3の割合がCO2の割合より大きい)回収口5からの混合気体を、他の混合気体よりも先に供給する。続いて、CO2の分圧がNH3の分圧より高い(つまり、CO2の割合がNH3の割合より大きい)回収口4からの混合気体を、塔底部の注入口13から供給する。 In the re-dissolution means 14, first, a gas mixture having a high solubility of NH 3 is supplied to raise the pH of the quasi-high osmotic pressure solution 2. That is, the partial pressure of NH 3 is higher than the partial pressure of CO 2 (that is, greater proportion proportion of CO 2 NH 3) supplying a gas mixture from the recovery port 5, before other gas mixture. Subsequently, the partial pressure of CO 2 is higher than the partial pressure of NH 3 (i.e., the ratio of CO 2 ratio greater than NH 3) the gas mixture from the recovery port 4 is supplied from the inlet 13 in the bottom.
 分離手段3において、いずれかの気体の分圧を増加させる効果として、再溶解の効率化が挙げられる。再溶解手段14への供給圧力を一定とした場合、NH3とCO2の組成比に従いそれぞれの気体の分圧が増減する。回収口5でNH3:CO2=2:1とした場合、キャリアガス:(NH3+CO2)の比を一定とすると、全量回収した場合(NH3:CO2=1:1)に比べて、再溶解の効率が1.33倍となる。これにより、塔の各段での溶解量が増加し、塔全体の溶解効率が向上する。 An effect of increasing the partial pressure of any gas in the separation means 3 is to improve the efficiency of re-dissolution. When the supply pressure to the remelting means 14 is constant, the partial pressure of each gas increases or decreases according to the composition ratio of NH 3 and CO 2 . When NH 3 : CO 2 = 2: 1 at the recovery port 5, if the ratio of carrier gas: (NH 3 + CO 2 ) is constant, compared with the case where the entire amount is recovered (NH 3 : CO 2 = 1: 1) Thus, the redissolving efficiency is 1.33 times. Thereby, the amount of dissolution at each stage of the tower increases, and the dissolution efficiency of the entire tower improves.
 NH3:CO2比の調整は、pHの点からも再溶解手段14における溶解効率向上につながる。CO2は中性の水に溶解させるよりも、pHの高い溶液に溶解させる方が、低いCO2分圧でより多くの量を溶解させることができる。これは、アルカリ性溶液中では、CO2+OH-→HCO3 -、HCO3 -+OH-→CO3 2-+H2O反応が進行し、炭酸水素イオンや炭酸イオンとして溶解しやすくなるためである。 Adjustment of the NH 3 : CO 2 ratio leads to an improvement in dissolution efficiency in the re-dissolution means 14 from the viewpoint of pH. CO 2 can than be dissolved in neutral water, is better to be dissolved in high pH solution are dissolved a greater amount at a lower partial pressure of CO 2. This is because in an alkaline solution, CO 2 + OH → HCO 3 and HCO 3 + OH → CO 3 2 + + H 2 O reactions proceed and are easily dissolved as bicarbonate ions or carbonate ions.
 そのため、本実施例では、注入口12の位置でのpHを高められるよう、すなわち、NH3分圧が高く、NH3:CO2比が大きい回収口5の混合気体を注入口12に供給している。注入口12の位置でのpHがアルカリ性、望ましくはpH≧9となるよう、混合気体の組成を調整することが望ましい。 Therefore, in this embodiment, the mixed gas in the recovery port 5 is supplied to the inlet 12 so that the pH at the position of the inlet 12 can be increased, that is, the NH 3 partial pressure is high and the NH 3 : CO 2 ratio is large. ing. It is desirable to adjust the composition of the mixed gas so that the pH at the inlet 12 is alkaline, preferably pH ≧ 9.
 NH3とCO2は準高浸透圧溶液に溶解するが、キャリアガスの大部分は溶解せずに再溶解手段14の上部に到達し、配管に排出される。バルブ16では、再溶解手段14からの混合気体の流入とキャリアガスフィルタ17からのキャリアガスの流入を調整し、キャリアガスポンプ10を介して分離手段3へ供給する。 NH 3 and CO 2 are dissolved in the quasi-high osmotic pressure solution, but most of the carrier gas reaches the upper part of the redissolving means 14 without being dissolved and is discharged to the pipe. In the valve 16, the inflow of the mixed gas from the remelting means 14 and the inflow of the carrier gas from the carrier gas filter 17 are adjusted and supplied to the separation means 3 via the carrier gas pump 10.
 このような構成とすると、より不純物の少ない淡水が得られるとともに、配管中でのカルバミン酸アンモニウム等の生成を抑制できる。また、再溶解手段においてNH3の分圧がCO2の分圧に比べて高い回収混合気体(NH3とCO2の混合気体)を、他の混合気体よりも先に溶解させることができ、準高浸透圧溶液のpHが上昇し、続いて供給する回収混合気体(NH3とCO2の混合気体)中のCO2の溶液中への溶解を促進できる。 With such a configuration, fresh water with less impurities can be obtained, and generation of ammonium carbamate and the like in the pipe can be suppressed. Also, the partial pressure is high recovery gas mixture compared to the partial pressure of CO 2 of the NH 3 in the re-dissolving means (mixed gas of NH 3 and CO 2), can be dissolved before other gas mixture, The pH of the quasi-hyperosmotic solution is increased, and the dissolution of CO 2 in the solution gas mixture (NH 3 and CO 2 gas mixture) to be subsequently supplied can be promoted.
[第2実施形態]
 図2は本発明の第2実施形態に係る淡水精製装置のブロック図である。本実施形態の淡水精製装置は、実施形態1の構成の他に、分離手段3の回収口5より上部の位置にキャリアガス供給口18を設け、キャリアガス供給口18にキャリアガスポンプ20、バルブ21を介してキャリアガスフィルタ19を接続している。又、準高浸透圧溶液1をバルブ22を介して分離手段3に供給するようにし、分離手段3からバルブ23を介して淡水7を回収する構成を有する。
[Second Embodiment]
FIG. 2 is a block diagram of a fresh water purification apparatus according to the second embodiment of the present invention. In addition to the configuration of the first embodiment, the fresh water purifying apparatus of the present embodiment is provided with a carrier gas supply port 18 at a position above the recovery port 5 of the separation means 3, and the carrier gas supply port 18 has a carrier gas pump 20 and a valve 21. A carrier gas filter 19 is connected via Further, the quasi-high osmotic pressure solution 1 is supplied to the separation means 3 via the valve 22, and the fresh water 7 is recovered from the separation means 3 via the valve 23.
 本実施例における淡水精製装置の処理においてはバルブ22、23を開とし、分離手段3の上部から準高浸透圧溶液1を供給し、淡水7を分離手段3の下部から回収する。 In the processing of the fresh water purification apparatus in the present embodiment, the valves 22 and 23 are opened, the quasi-high osmotic pressure solution 1 is supplied from the upper part of the separation means 3, and the fresh water 7 is recovered from the lower part of the separation means 3.
 キャリアガスポンプ20により供給口18から、キャリアガスポンプ10で供給するキャリアガスと同じキャリアガスを供給する。供給口18の設置位置は、回収口5よりも上段に設置する。分離手段3が棚段塔の場合は、異なる段に供給口18と回収口5を設ける。また、充填塔の場合は、供給口18から回収口4までの距離が、供給口18から回収口5までの距離より短くなるように設置するのが望ましい。これにより、キャリアガスの逆流(下向きの流れ)の発生を抑制できる。なお、キャリアガスはバルブ11から分岐して用いてもよい。 The same carrier gas as that supplied by the carrier gas pump 10 is supplied from the supply port 18 by the carrier gas pump 20. The supply port 18 is installed at a position higher than the collection port 5. When the separating means 3 is a tray tower, the supply port 18 and the recovery port 5 are provided in different stages. In the case of a packed tower, it is desirable that the distance from the supply port 18 to the recovery port 4 is shorter than the distance from the supply port 18 to the recovery port 5. Thereby, generation | occurrence | production of the backflow (downward flow) of carrier gas can be suppressed. The carrier gas may be branched from the valve 11 and used.
 各ポンプの流量は、回収口5における混合気体のNH3:CO2の比を低下させないように設定する。すなわち、分離ガスポンプ8の流量=ポンプ10の流量+(低部から回収口5までのNH3とCO2の単位時間回収量)とする。 The flow rate of each pump is set so as not to lower the NH 3 : CO 2 ratio of the mixed gas at the recovery port 5. That is, the flow rate of the separation gas pump 8 = the flow rate of the pump 10+ (unit time recovery amount of NH 3 and CO 2 from the low part to the recovery port 5).
 一方、キャリアガスポンプ20の流量は、供給口18から回収口4間の各段におけるガスの生成による圧力増加および、棚段または充填塔による圧損を考慮し、供給口18からのキャリアガスが回収口5には到達しないような条件とする。 On the other hand, the flow rate of the carrier gas pump 20 takes into account the pressure increase due to the generation of gas at each stage between the supply port 18 and the recovery port 4 and the pressure loss due to the shelf or packed tower. The condition is set so that 5 is not reached.
 本実施形態においては、淡水精製処理だけでなく、配管洗浄のための運転を定期的に実施することができる。これは、回収口4から注入口13の間の配管と、および、回収口5から注入口12の間の配管と、ポンプおよびバルブに析出した物質を分解するのが目的である。これらの配管や機器は、NH3とCO2がそれぞれ気体として存在するために、分離手段3と同様の温度に維持する。 In the present embodiment, not only the fresh water purification process but also the operation for pipe cleaning can be performed periodically. This is for the purpose of decomposing the substances deposited on the piping between the recovery port 4 and the injection port 13, the piping between the recovery port 5 and the injection port 12, the pump and the valve. These pipes and devices are maintained at the same temperature as that of the separation means 3 because NH 3 and CO 2 exist as gases.
 しかし、高濃度のNH3やCO2が長期間流通すると、カルバミン酸アンモニウム等の固体が析出しやすくなる。そのため、以下の洗浄操作を実施する。 However, when a high concentration of NH 3 or CO 2 circulates for a long period of time, a solid such as ammonium carbamate tends to precipitate. Therefore, the following cleaning operation is performed.
 バルブ23およびバルブ22を閉とする。一方、キャリアガスポンプ10、20および分離ガスポンプ8は継続運転する。この運転により、回収口4、5のNH3とCO2の濃度は共に徐々に低下し、気相中のキャリアガスの割合が増加する。そのため、気相中から配管や機器に析出した固体へのさらなる析出は生じなくなり、逆に、析出物の分解に必要な所定の温度を維持することで、析出物を分解、除去することができる。 The valve 23 and the valve 22 are closed. On the other hand, the carrier gas pumps 10 and 20 and the separation gas pump 8 are continuously operated. By this operation, the concentrations of NH 3 and CO 2 in the recovery ports 4 and 5 are both gradually lowered, and the ratio of the carrier gas in the gas phase is increased. As a result, no further precipitation from the gas phase to the solid deposited on the piping or equipment occurs, and conversely, the precipitate can be decomposed and removed by maintaining a predetermined temperature necessary for the decomposition of the precipitate. .
 配管等の洗浄のための上記の運転は、キャリアガス中のNH3とCO2の濃度が、分離操作における濃度の1/10以下に低減された後、所定の運転温度を維持しながら1-24時間程度実施することが望ましい。 The above operation for cleaning pipes and the like is performed while maintaining a predetermined operating temperature after the NH 3 and CO 2 concentrations in the carrier gas are reduced to 1/10 or less of the concentration in the separation operation. It is desirable to carry out for about 24 hours.
 このような構成とすると、分離手段3の上段(CO2を主に回収する部分)において、大気圧での運転を想定した場合、実施形態1よりも気相中のCO2分圧が低減されるため、より効率よくCO2を分離回収することができる。 With such a configuration, when the operation at atmospheric pressure is assumed in the upper stage of the separation means 3 (part where CO 2 is mainly recovered), the CO 2 partial pressure in the gas phase is reduced more than in the first embodiment. Therefore, CO 2 can be separated and recovered more efficiently.
 また、配管等におけるNH3とCO2の分圧が低下することと、配管等の洗浄運転を実施する構成にしていることから、カルバミン酸アンモニウム等のNH3とCO2を原料とする化合物の生成・成長抑制と除去が可能となる。 In addition, since the partial pressure of NH 3 and CO 2 in the piping and the like is reduced and the cleaning operation of the piping and the like is performed, the compound of NH 3 and CO 2 such as ammonium carbamate as a raw material is used. Generation / growth suppression and removal are possible.
 本実施例の分離手段3では、一つの塔に対して回収口とキャリアガス供給口をそれぞれ2か所に設定したが、塔を2つに分割し、それぞれの塔に回収口とキャリアガス供給口を設けた構造としてもよい。これにより、塔の高さおよび建屋規模の縮小が可能となる。 In the separation means 3 of this embodiment, the recovery port and the carrier gas supply port are set at two locations for one tower, but the tower is divided into two, and the recovery port and the carrier gas supply are supplied to each tower. It is good also as a structure which provided the opening | mouth. Thereby, the height of the tower and the scale of the building can be reduced.
[第3実施形態]
 図3は、本発明の第3実施形態に係る淡水精製装置のブロック図である。
[Third Embodiment]
FIG. 3 is a block diagram of a fresh water purification apparatus according to the third embodiment of the present invention.
 本実施形態の淡水精製装置は、実施形態1の構成の他に、回収口4にバルブ(三方バルブ)24を介してヒータ25、キャリアガスフィルタ26が接続され、バルブ(三方バルブ)24の残りの一方がキャリアガスポンプ27、バルブ28を介して注入口13に接続している。又、準高浸透圧溶液1をバルブ22を介して分離手段3に供給するようにし、分離手段3からバルブ23を介して淡水7を回収する構成にしている。 In the fresh water purifying apparatus of this embodiment, in addition to the configuration of the first embodiment, a heater 25 and a carrier gas filter 26 are connected to the recovery port 4 via a valve (three-way valve) 24, and the rest of the valve (three-way valve) 24 is connected. One of these is connected to the inlet 13 via the carrier gas pump 27 and the valve 28. Further, the semi-high osmotic pressure solution 1 is supplied to the separation means 3 through the valve 22, and the fresh water 7 is recovered from the separation means 3 through the valve 23.
 本実施形態における淡水精製装置の処理においては、実施形態1と同様、分離手段3に準高浸透圧溶液1を供給し、回収口4、5からそれぞれ混合気体を回収する。分離手段3へのキャリアガス供給はポンプ10のみで実施する。 In the processing of the fresh water purifying apparatus in the present embodiment, the semi-high osmotic pressure solution 1 is supplied to the separation means 3 and the mixed gas is recovered from the recovery ports 4 and 5, respectively, as in the first embodiment. The carrier gas is supplied to the separation means 3 only by the pump 10.
 回収口4から排出される混合気体とキャリアガスをバルブ(三方バルブ)24により混合し、キャリアガスポンプ27により、再溶解手段14に供給する。このとき供給するキリアガスは、キャリアガスフィルタ26で処理したのち、配管内で維持されている温度と同じ温度までヒータ25で加熱される。キャリアガスポンプ27の吐出側には圧力調整弁を設け、CO2とNH3の混合気体の各分圧がそれぞれ回収口5における分圧よりも低くなるように調整した後、注入口13に供給する。 The mixed gas discharged from the recovery port 4 and the carrier gas are mixed by a valve (three-way valve) 24 and supplied to the remelting means 14 by a carrier gas pump 27. The carrier gas supplied at this time is processed by the carrier gas filter 26 and then heated by the heater 25 to the same temperature as that maintained in the pipe. A pressure adjusting valve is provided on the discharge side of the carrier gas pump 27 so that the partial pressure of the mixed gas of CO 2 and NH 3 is adjusted to be lower than the partial pressure in the recovery port 5 and then supplied to the inlet 13. .
 実施形態2の場合と同様に、配管、機器等の洗浄を定期的に実施する。このとき、バルブ22、23を閉じ、かつ、バルブ(三方バルブ)24はキャリアガスのみをキャリアガスポンプ27に供給できるように操作する。配管等の洗浄時間は実施形態2と同様に、所定の運転温度を維持しながら1-24時間に設定するのが望ましい。なお、キャリアガスはバルブ11から分岐して用いてもよい。 As in the case of Embodiment 2, the pipes, equipment, etc. are periodically cleaned. At this time, the valves 22 and 23 are closed, and the valve (three-way valve) 24 is operated so that only the carrier gas can be supplied to the carrier gas pump 27. As in the second embodiment, it is desirable to set the cleaning time for piping and the like to 1-24 hours while maintaining a predetermined operating temperature. The carrier gas may be branched from the valve 11 and used.
 このような構成とすると、実施形態1の効果に加え、配管等をキャリアガスで洗浄運転でき、カルバミン酸アンモニウム等のNH3とCO2を原料とする化合物の除去性能を向上できる。キャリアガス中のNH3とCO2のそれぞれの分圧は実施形態2の場合よりも低いため、より高い除去性能が期待できる。 With such a configuration, in addition to the effects of the first embodiment, the piping and the like can be washed with a carrier gas, and the removal performance of a compound using NH 3 and CO 2 such as ammonium carbamate as raw materials can be improved. Since the partial pressures of NH 3 and CO 2 in the carrier gas are lower than those in the second embodiment, higher removal performance can be expected.
[第4実施形態]
 図4は本発明の第4実施形態に係る淡水精製装置のブロック図である。本実施形態では、センシングによるキャリアガス供給と逆洗実施の制御を行っている。
[Fourth Embodiment]
FIG. 4 is a block diagram of a fresh water purifying apparatus according to the fourth embodiment of the present invention. In this embodiment, control of carrier gas supply and backwashing by sensing is performed.
 本実施形態の淡水精製装置では実施形態3の構成の他に、制御手段51、センサー29~33、35、38、ポンプ34、36、バルブ37を備えた構成となっている。センサー29~33、35、38の情報に基づき、必要な淡水精製量とその水質を満足するために、各ポンプ、およびバルブを制御する。 In addition to the configuration of the third embodiment, the fresh water purification apparatus of the present embodiment has a configuration including a control means 51, sensors 29 to 33, 35, and 38, pumps 34 and 36, and a valve 37. Based on the information from the sensors 29 to 33, 35, and 38, each pump and valve are controlled in order to satisfy the required amount of fresh water purification and the water quality.
 膜を用いた海水淡水化では、海水や添加薬剤中の無機物質、有機物質、および、生物を原因とした膜の目詰まり(ファウリング)が生じる。逆浸透膜処理の場合、高圧ポンプによる供給量の調整ができるため、ファウリングによる膜間差圧の上昇にも比較的容易に対応できる。 In seawater desalination using membranes, clogging (fouling) of membranes due to inorganic substances, organic substances, and living organisms in seawater and additive drugs occurs. In the case of reverse osmosis membrane treatment, the supply amount can be adjusted by a high-pressure pump, so that it is possible to relatively easily cope with an increase in transmembrane pressure difference caused by fouling.
 一方、浸透圧差を駆動力とし、高圧ポンプを持たない正浸透膜処理においては、ファウリングの進展が処理量や正浸透膜処理で得られる水質に悪影響を及ぼす。膜間差圧が大きくなった場合、例えば、高浸透圧溶液の供給量を増加させ、浸透圧差を高い値で維持する運転が想定される。このとき、淡水精製工程では、より高濃度の準高浸透圧溶液が供給されることとなる。 On the other hand, in forward osmosis membrane treatment using the osmotic pressure difference as a driving force and not having a high-pressure pump, the progress of fouling adversely affects the treatment amount and the water quality obtained by forward osmosis membrane treatment. When the transmembrane pressure difference becomes large, for example, an operation of increasing the supply amount of the high osmotic pressure solution and maintaining the osmotic pressure difference at a high value is assumed. At this time, a quasi-high osmotic pressure solution having a higher concentration is supplied in the fresh water purification step.
 したがって、分離手段3および再溶解手段14における最適な運転条件が変化することになる。実施形態4ではこれに対応するため、各種のセンサーを設置し、センサー情報に基づいて準浸透圧溶液やキャリアガスの供給、洗浄操作の実施を制御する構成となっている。センサー35は導電率計と流量計を有する。センサー29は流量計、温度計、圧力計、CO2濃度計、およびNH3濃度計を有する。センサー30は圧力計を有する。センサー32は圧力計を有する。センサー31は流量計、温度計、圧力計、CO2濃度計、およびNH3濃度計を有する。センサー38は圧力計、流量計、温度計、CO2濃度計、およびNH3濃度計を有する。そして、センサー33は導電率計を有する。各センサーの計測値は、オンラインで制御手段51に伝送される。 Therefore, the optimum operating conditions in the separation means 3 and the remelting means 14 change. In order to cope with this in the fourth embodiment, various sensors are installed, and the supply of the semi-osmotic solution and the carrier gas and the execution of the cleaning operation are controlled based on the sensor information. The sensor 35 has a conductivity meter and a flow meter. The sensor 29 has a flow meter, a thermometer, a pressure gauge, a CO 2 concentration meter, and an NH 3 concentration meter. The sensor 30 has a pressure gauge. The sensor 32 has a pressure gauge. The sensor 31 has a flow meter, a thermometer, a pressure gauge, a CO 2 concentration meter, and an NH 3 concentration meter. The sensor 38 includes a pressure gauge, a flow meter, a thermometer, a CO 2 concentration meter, and an NH 3 concentration meter. The sensor 33 has a conductivity meter. The measured value of each sensor is transmitted to the control means 51 online.
 淡水精製装置の制御では、淡水精製処理制御(キャリアガスおよび準高浸透圧溶液の流量制御)、および洗浄操作制御を実施する。 In the control of the fresh water purification device, fresh water purification treatment control (carrier gas and quasi-high osmotic pressure solution flow rate control) and cleaning operation control are performed.
 図5に、制御手段51による淡水精製処理制御の処理フローを示す。処理は、分離手段3に係る部分と再溶解手段14に係る部分に分けられる。 FIG. 5 shows a processing flow of fresh water purification processing control by the control means 51. The treatment is divided into a part relating to the separating means 3 and a part relating to the remelting means 14.
 S501で、センサー35、33の計測値を取得する。S502で、センサー35の流量および導電率から、分離手段3へのNH3とCO2の濃度および準高浸透圧溶液1の負荷量を算出する。なお、NH3とCO2の濃度と導電率との相関は予め作成しておくか、または、イオンのモル伝導率から推定することができる。 In S501, the measurement values of the sensors 35 and 33 are acquired. In S502, the concentration of NH 3 and CO 2 and the load amount of the quasi-high osmotic pressure solution 1 to the separation means 3 are calculated from the flow rate and conductivity of the sensor 35. The correlation between the NH 3 and CO 2 concentrations and the conductivity can be prepared in advance or estimated from the molar conductivity of ions.
 S503で、分離手段3に関する処理モデル、S502で求めた負荷量、目標とする淡水の水質を用いて、キャリアガスの流量を算出する。キャリアガスの流量によって、分離手段3内の気液比を変化させ、分離性能を調整することができる。処理モデルは、気液平衡データ、NTUなどを用いたもので、化学工学の基礎的なモデルである。 In S503, the flow rate of the carrier gas is calculated using the processing model related to the separation means 3, the load obtained in S502, and the target fresh water quality. Depending on the flow rate of the carrier gas, the gas-liquid ratio in the separation means 3 can be changed to adjust the separation performance. The treatment model uses vapor-liquid equilibrium data, NTU, etc., and is a basic model of chemical engineering.
 S504で、S503の算出値に応じてキャリアガスポンプ10を調整する。次に、センサー33の導電率の計測値が目標値以内であるか否かを判断する。目標値よりも低い場合、キャリアガス流量を減量し、一方、目標値を超える場合は、キャリアガスの供給の上限であるか否かを判断した後、キャリアガス流量の増量またはポンプ34による準高浸透圧溶液1の供給量の低減を実施する。 In S504, the carrier gas pump 10 is adjusted according to the calculated value in S503. Next, it is determined whether or not the measured value of the conductivity of the sensor 33 is within a target value. If it is lower than the target value, the carrier gas flow rate is reduced. On the other hand, if it exceeds the target value, it is determined whether or not it is the upper limit of the supply of the carrier gas, and then the carrier gas flow rate is increased. The supply amount of the osmotic pressure solution 1 is reduced.
 再溶解手段14においては、同様にキャリアガス流量または準高浸透圧溶液2の供給量を制御する。S511で、センサー29、32、31、および38の計測値を収集する。S512で、流量、温度、圧力、NH3濃度、CO2濃度から、状態方程式とマスバランスとの関係を用いて、NH3とCO2の物質量、すなわち再溶解手段14への負荷量を算出する。 In the re-dissolution means 14, the carrier gas flow rate or the supply amount of the quasi-high osmotic pressure solution 2 is similarly controlled. In S511, the measurement values of the sensors 29, 32, 31, and 38 are collected. In S512, the amount of NH 3 and CO 2 substances, that is, the load on the remelting means 14 is calculated from the flow rate, temperature, pressure, NH 3 concentration, and CO 2 concentration using the relationship between the equation of state and mass balance. To do.
 S513で、再溶解手段14の溶解モデルとS512での負荷量をもとに、排気混合気体中のNH3とCO2濃度が、所定の目標値を満足するために必要なキャリアガスポンプ27の流量の最大値を算出する。S514で、キャリアガス流量を実際に調整する。S515で、センサー38の計測値から、NH3とCO2の実際の排出濃度を求め、目標値を実際に満足しているか否かを判断する。満足している場合はキャリアガスを減量する。そうでない場合は、キャリアガスの供給上限であるか否かを判断した後、キャリアガスを増量するか、または準高浸透圧溶液2の供給量を調整するポンプ36を調整する。 In S513, based on the dissolution model of the remelting means 14 and the load in S512, the flow rate of the carrier gas pump 27 necessary for the NH 3 and CO 2 concentrations in the exhaust gas mixture to satisfy a predetermined target value. The maximum value of is calculated. In S514, the carrier gas flow rate is actually adjusted. In S515, the actual exhaust concentrations of NH 3 and CO 2 are obtained from the measured values of the sensor 38, and it is determined whether or not the target values are actually satisfied. If satisfied, reduce carrier gas. Otherwise, after determining whether or not the carrier gas supply upper limit is reached, the carrier gas is increased or the pump 36 for adjusting the supply amount of the quasi-high osmotic pressure solution 2 is adjusted.
 図6に、制御手段51による洗浄操作制御の処理フローを示す。S601で、センサー30、32の計測値(圧力)を取得する。S602で、最新の計測値と、所定時間τだけ前の計測値とから差圧の変化量(ΔP)を算出する。τとしては、1日から6カ月の期間とする。S603で、ΔPの値を設定した値と比較し、ΔPの値が大きければ配管等の洗浄操作を実施する。そうでない場合は運転を継続する。 FIG. 6 shows a processing flow of cleaning operation control by the control means 51. In S601, the measurement values (pressures) of the sensors 30 and 32 are acquired. In step S602, the change amount (ΔP) of the differential pressure is calculated from the latest measured value and the measured value that is the previous time τ. τ is a period from 1 day to 6 months. In step S603, the value of ΔP is compared with the set value, and if the value of ΔP is large, a cleaning operation of the pipe or the like is performed. If not, continue driving.
 以上のような構成とすることで、実施形態3の効果に加え、準高浸透圧溶液の組成や流量が変化した場合でも良好な品質の淡水を供給することができる。 By adopting the configuration as described above, in addition to the effects of the third embodiment, fresh water with good quality can be supplied even when the composition and flow rate of the quasi-high osmotic pressure solution are changed.
 以上、説明したように、各実施形態によれば、分離手段3中の溶液と平衡状態になる混合気体にキャリアガスを添加することでNH3分圧を低減し、より不純物の少ない淡水が得られるとともに、配管中でのカルバミン酸アンモニウムの生成を抑制できる。 As described above, according to each embodiment, the NH 3 partial pressure is reduced by adding the carrier gas to the mixed gas that is in equilibrium with the solution in the separation means 3, and fresh water with fewer impurities is obtained. And the production of ammonium carbamate in the piping can be suppressed.
 また、NH3とCO2を同時に回収する場合に比べ、いずれかの比率が低い混合気体を取り扱うため、カルバミン酸アンモニウムの生成を抑制できる。 In addition, compared to the case where NH 3 and CO 2 are recovered at the same time, a mixed gas having a low ratio is handled, so that the production of ammonium carbamate can be suppressed.
 また、再溶解手段14においてNH3の分圧が高い回収混合気体を、他の混合気体よりも先に溶解させることから、再溶解手段14に供給した準高浸透圧溶液2のpHが上昇する。そのため、次に供給する回収混合気体中のCO2の溶解を促進できる。 Further, since the recovered mixed gas having a high NH 3 partial pressure is dissolved in the re-dissolving means 14 before the other mixed gases, the pH of the quasi-high osmotic pressure solution 2 supplied to the re-dissolving means 14 is increased. . Therefore, dissolution of CO 2 in the recovered mixed gas supplied next can be promoted.
 また、センシングに基づく配管等の閉塞状況に応じて、原因となる析出物をNH3とCO2の分圧が低いキャリアガスを流通して分解除去することにより、淡水精製装置の安全性および運転効率を維持することができる。 Also, the safety and operation of freshwater purification equipment can be achieved by circulating the carrier gas with a low partial pressure of NH 3 and CO 2 to remove the causative deposits according to the blocking situation of piping etc. based on sensing. Efficiency can be maintained.
1、2          準高浸透圧溶液
3           分離手段
4、5           回収口
6、18        キャリアガス供給口
7           淡水
8                 分離ガスポンプ
9、11、16、21、22、23、24、28、37 バルブ
10、20、27   キャリアガスポンプ
12、13         注入口
14               再溶解手段
15               高浸透圧溶液
17、19、26   キャリアガスフィルタ
25               ヒータ
29~33、35、38 センサー
34、36        ポンプ
51               制御手段
1, 2 Semi-high osmotic pressure solution 3 Separation means 4, 5 Recovery port 6, 18 Carrier gas supply port 7 Fresh water 8 Separation gas pumps 9, 11, 16, 21, 22, 23, 24, 28, 37 Valves 10, 20, 27 Carrier gas pumps 12 and 13 Inlet 14 Re-dissolution means 15 High osmotic pressure solutions 17, 19 and 26 Carrier gas filter 25 Heaters 29 to 33, 35 and 38 Sensors 34 and 36 Pump 51 Control means

Claims (8)

  1.  淡水精製装置において、
    準高浸透圧溶液の溶質成分を混合気体として回収するための高さ位置の異なる複数の回収口と、ポンプにより供給するキャリアガスを流入するためのキャリアガス供給口とを備え、原水から正浸透膜処理工程で得た前記準高浸透圧溶液から前記溶質成分を分離して淡水を得る分離手段と、
    前記分離手段の複数の回収口から回収した前記混合気体を分圧の高い順に前記準高圧溶液に溶解するための複数の注入口を備えた再溶解手段と、
    を有することを特徴とする淡水精製装置。
    In fresh water purification equipment,
    Equipped with multiple recovery ports with different height positions for recovering solute components of quasi-high osmotic pressure solutions as a mixed gas, and carrier gas supply ports for flowing in carrier gas supplied by a pump, and forward osmosis from raw water Separation means for separating the solute component from the quasi-high osmotic pressure solution obtained in the membrane treatment step to obtain fresh water;
    A re-dissolution means comprising a plurality of inlets for dissolving the mixed gas recovered from the plurality of recovery ports of the separation means in the semi-high pressure solution in order of high partial pressure;
    A fresh water purification apparatus comprising:
  2.  請求項1に記載の淡水精製装置において、前記準高浸透圧溶液がNH3およびCO2を溶解した水溶液であり、NH3分圧がCO2分圧よりも高い混合気体を回収する回収口を前記分離手段の中位置と上部の回収口との間に設置し、配管を介して再溶解手段の中位置に設置した注入口に接続することを特徴とする淡水精製装置。 2. The fresh water purification apparatus according to claim 1, wherein the quasi-high osmotic pressure solution is an aqueous solution in which NH 3 and CO 2 are dissolved, and a recovery port for recovering a mixed gas having a NH 3 partial pressure higher than the CO 2 partial pressure is provided. A fresh water purifying apparatus, which is installed between a middle position of the separation means and an upper recovery port, and is connected to an inlet port located at a middle position of the re-dissolution means via a pipe.
  3.  請求項1に記載の淡水精製装置において、前記キャリアガス供給口を前記分離手段に複数個設置し、少なくとも一つのキャリアガス供給口を、いずれの回収口よりも低位置に設置し、別のキャリアガス供給口を複数の回収口の間に設置することを特徴とする淡水精製装置。 2. The fresh water purifier according to claim 1, wherein a plurality of the carrier gas supply ports are installed in the separation means, and at least one carrier gas supply port is installed at a position lower than any of the recovery ports, and another carrier is provided. A fresh water purification apparatus, wherein a gas supply port is installed between a plurality of recovery ports.
  4.  請求項1に記載の淡水精製装置において、前記分離手段の各回収口から排出する混合気体のうちNH3の分圧がCO2の分圧よりも高い気体を前記再溶解手段に供給するための注入口が、前記再溶解手段に供給する準高浸透圧溶液に他の混合気体よりも先に溶解させる位置に設置することを特徴とする淡水精製装置。 2. The fresh water purifier according to claim 1, wherein a gas whose NH 3 partial pressure is higher than the partial pressure of CO 2 among the mixed gas discharged from each recovery port of the separation means is supplied to the re-dissolution means. The fresh water purifier according to claim 1, wherein the injection port is installed at a position where the quasi-high osmotic pressure solution supplied to the re-dissolution means is dissolved before the other mixed gas.
  5.  請求項1に記載の淡水精製装置において、前記分離手段と前記再溶解手段を接続する配管、前記配管に取付けたポンプまたはバルブに、淡水精製操作時に前記分離手段の回収口から排出した混合気体のNH3およびCO2の各分圧よりも低い分圧でこれらを含むキャリアガスを定期的に運転して供給するポンプを接続し、前記配管、ポンプまたはバルブに析出した固体を分解および除去することを特徴とする淡水精製装置。 The fresh water purifying apparatus according to claim 1, wherein the mixed gas discharged from the recovery port of the separation means during fresh water purification operation is connected to a pipe connecting the separation means and the re-dissolution means, a pump or a valve attached to the pipe. A pump that periodically supplies and supplies a carrier gas containing these at a partial pressure lower than the partial pressure of NH 3 and CO 2 is connected, and the solid deposited on the pipe, pump, or valve is decomposed and removed. A fresh water purifier characterized by.
  6.  請求項1に記載の淡水精製装置において、前記正浸透膜処理工程で得た準高浸透圧溶液、前記分離手段で回収する淡水、前記回収口から排出する混合気体、前記注入口に供給する混合気体、前記再溶解手段から排出する水または混合気体の、圧力、温度、流量、NH3濃度、CO2濃度、導電率を計測し、前記計測の結果を用いて前記分離手段から回収する淡水の水質、および前記分離手段と前記再溶解手段から排出する混合気体中の不純物濃度を推定または計測し、これらの推定値または計測値に基づいて、キャリアガスおよび前記準高浸透圧溶液の供給量を制御する制御手段を有することを特徴とする淡水精製装置。 The fresh water purification apparatus according to claim 1, wherein the semi-high osmotic pressure solution obtained in the forward osmosis membrane treatment step, fresh water collected by the separation means, a mixed gas discharged from the collection port, and a mixture supplied to the injection port Measure the pressure, temperature, flow rate, NH 3 concentration, CO 2 concentration, conductivity of the gas, water discharged from the re-dissolving means or mixed gas, and use the results of the measurement to collect fresh water recovered from the separating means Estimate or measure the water quality and the impurity concentration in the mixed gas discharged from the separation means and the re-dissolution means, and based on these estimated values or measured values, supply the carrier gas and the quasi-hyperosmotic solution supply amount A fresh water purifier having control means for controlling.
  7.  請求項1に記載の淡水精製装置において、淡水精製処理制御および洗浄操作制御を実施し、前記制御は、複数のセンサーによるセンシングで得た計測値または前記計測値に基づく推定値によって制御手段が実施することを特徴とする淡水精製装置。 2. The fresh water purification apparatus according to claim 1, wherein fresh water purification treatment control and cleaning operation control are performed, and the control is performed by a control means based on a measurement value obtained by sensing with a plurality of sensors or an estimated value based on the measurement value. A fresh water purifying apparatus characterized by:
  8.  請求項7に記載の淡水精製装置において、洗浄操作制御は逆洗制御を含み、ファウリングを防止することを特徴とする淡水精製装置。 8. The fresh water purifier according to claim 7, wherein the washing operation control includes backwash control to prevent fouling.
PCT/JP2012/070530 2011-09-28 2012-08-10 Fresh water purification device WO2013046961A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011211788A JP5537528B2 (en) 2011-09-28 2011-09-28 Fresh water purification equipment
JP2011-211788 2011-09-28

Publications (1)

Publication Number Publication Date
WO2013046961A1 true WO2013046961A1 (en) 2013-04-04

Family

ID=47995013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070530 WO2013046961A1 (en) 2011-09-28 2012-08-10 Fresh water purification device

Country Status (2)

Country Link
JP (1) JP5537528B2 (en)
WO (1) WO2013046961A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110838461A (en) * 2018-08-16 2020-02-25 细美事有限公司 Purification treatment device and purification treatment method
CN111320249A (en) * 2020-03-04 2020-06-23 辽宁莱特莱德环境工程有限公司 Seawater desalination mineralization steam-water mixing device
WO2021054406A1 (en) * 2019-09-17 2021-03-25 旭化成株式会社 Method for concentrating raw material solution, and system for concentrating raw material solution

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2916426A1 (en) * 2013-06-24 2014-12-31 Tpt Pacific Co., Ltd. Method for regenerating ammonium bicarbonate solution in forward osmotic pressure type water treatment apparatus and regeneration apparatus therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003290774A (en) * 2002-04-01 2003-10-14 Fuji Electric Co Ltd Method and apparatus for removing ammonia nitrogen in waste water
JP2011083663A (en) * 2009-10-13 2011-04-28 Fujifilm Corp Water purification apparatus and method
JP2011525147A (en) * 2008-06-20 2011-09-15 イェール ユニバーシティー Forward osmosis separation method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003290774A (en) * 2002-04-01 2003-10-14 Fuji Electric Co Ltd Method and apparatus for removing ammonia nitrogen in waste water
JP2011525147A (en) * 2008-06-20 2011-09-15 イェール ユニバーシティー Forward osmosis separation method
JP2011083663A (en) * 2009-10-13 2011-04-28 Fujifilm Corp Water purification apparatus and method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110838461A (en) * 2018-08-16 2020-02-25 细美事有限公司 Purification treatment device and purification treatment method
CN110838461B (en) * 2018-08-16 2023-09-08 细美事有限公司 Purifying device and purifying method
WO2021054406A1 (en) * 2019-09-17 2021-03-25 旭化成株式会社 Method for concentrating raw material solution, and system for concentrating raw material solution
JPWO2021054406A1 (en) * 2019-09-17 2021-03-25
CN114302766A (en) * 2019-09-17 2022-04-08 旭化成株式会社 Raw material liquid concentration method and raw material liquid concentration system
JP7249427B2 (en) 2019-09-17 2023-03-30 旭化成株式会社 Raw material liquid concentration method and raw material liquid concentration system
CN111320249A (en) * 2020-03-04 2020-06-23 辽宁莱特莱德环境工程有限公司 Seawater desalination mineralization steam-water mixing device

Also Published As

Publication number Publication date
JP2013071051A (en) 2013-04-22
JP5537528B2 (en) 2014-07-02

Similar Documents

Publication Publication Date Title
JP5433633B2 (en) Seawater desalination system using forward osmosis membrane
EP3209612B1 (en) Method for selective scaling in desalination water treatment systems
US8137539B2 (en) Method and system for increasing recovery and preventing precipitation fouling in pressure-driven membrane processes
CN102958848B (en) Forward osmotic desalination device using membrane distillation method
JP5575015B2 (en) Fresh water production system
JP6395844B2 (en) Adhesion monitoring device for water treatment device, water treatment device and operation method thereof, and cleaning method for water treatment device
WO2013046961A1 (en) Fresh water purification device
JP6189205B2 (en) Concentrator scale detection device and method, water regeneration treatment system
JP5757109B2 (en) Water treatment method and water treatment system
JP5961916B2 (en) Water treatment equipment
WO2016035175A1 (en) Water treatment device and operating method for water treatment device
US7771494B2 (en) Process for selective removal of water and impurities from N-(phosphonomethyl)glycine
US20220226782A1 (en) Systems and techniques for cleaning pressure membrane systems using a water-in-air cleaning stream
US10345058B1 (en) Scale removal in humidification-dehumidification systems
JP2006122908A (en) Pure water producing method
JP2006167533A (en) Method for condensing sea water
AU2004294839B2 (en) Method and system for increasing recovery and preventing precipitation fouling in pressure-driven membrane processes
Maycock et al. Commercialisation of Kvaerner Chemetics’ sulphate removal system
IL176044A (en) Method and system for increasing recovery and preventing precipitation fouling in pressure driven membrane processes
MXPA06006504A (en) Method and system for increasing recovery and preventing precipitation fouling in pressure-driven membrane processes
PL214673B1 (en) Membrane module with filter for differentiating diagnostics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12836758

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12836758

Country of ref document: EP

Kind code of ref document: A1