JP5537528B2 - Fresh water purification equipment - Google Patents

Fresh water purification equipment Download PDF

Info

Publication number
JP5537528B2
JP5537528B2 JP2011211788A JP2011211788A JP5537528B2 JP 5537528 B2 JP5537528 B2 JP 5537528B2 JP 2011211788 A JP2011211788 A JP 2011211788A JP 2011211788 A JP2011211788 A JP 2011211788A JP 5537528 B2 JP5537528 B2 JP 5537528B2
Authority
JP
Japan
Prior art keywords
fresh water
gas
carrier gas
solution
separation means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011211788A
Other languages
Japanese (ja)
Other versions
JP2013071051A (en
Inventor
浩人 横井
晃治 陰山
豊 三宮
秀之 田所
隆広 舘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2011211788A priority Critical patent/JP5537528B2/en
Priority to PCT/JP2012/070530 priority patent/WO2013046961A1/en
Publication of JP2013071051A publication Critical patent/JP2013071051A/en
Application granted granted Critical
Publication of JP5537528B2 publication Critical patent/JP5537528B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/445Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by forward osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • B01D61/0022Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/05Conductivity or salinity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/14NH3-N
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/24CO2
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Physical Water Treatments (AREA)

Description

本発明は、正浸透膜を用いて海水から水を回収した溶液を原料として、淡水を得るための淡水精製装置に関する。   The present invention relates to a fresh water purification apparatus for obtaining fresh water from a solution obtained by collecting water from seawater using a forward osmosis membrane.

近年、膜を用いた海水淡水化技術の適用が増加している。逆浸透膜法は、セルロースやポリアミド等の素材で作られた逆浸透膜に、海水の浸透圧(約2.5MPa)の二倍以上の圧力を加え、塩分は膜を透過させないで水を透過させることにより淡水を得ることができる。   In recent years, the application of seawater desalination technology using membranes has increased. In the reverse osmosis membrane method, a pressure more than twice the osmotic pressure of seawater (about 2.5 MPa) is applied to a reverse osmosis membrane made of materials such as cellulose and polyamide, so that salt does not permeate the membrane and pass water. Fresh water can be obtained.

一方、正浸透膜法は、セルロース等の素材で作られた浸透膜を介して海水中の水を一旦高濃度(高浸透圧)の溶液に回収した準高浸透圧溶液から塩を除去する方法である。ここで、準高浸透圧溶液とは、水を回収した高浸透圧溶液のことを言う。   On the other hand, the forward osmosis membrane method is a method of removing salt from a semi-high osmotic pressure solution in which water in seawater is once recovered into a high concentration (high osmotic pressure) solution through an osmosis membrane made of a material such as cellulose. It is. Here, the quasi-high osmotic pressure solution refers to a high osmotic pressure solution obtained by collecting water.

この正浸透膜法では、正方向への駆動力を利用するだけでなく、高浸透圧溶液に添加する塩として、溶液からの分離が容易なものを選択することで、淡水製造に係るエネルギーを逆浸透膜法よりも低減できる可能性がある。   In this forward osmosis membrane method, not only utilizing the driving force in the positive direction, but also selecting the salt that can be easily separated from the solution as the salt to be added to the high osmotic pressure solution, the energy related to fresh water production can be reduced. There is a possibility that it can be reduced compared with the reverse osmosis membrane method.

準高浸透圧溶液から淡水を得る手段として、溶質とする物質によって、蒸留、ガス放散、電気透析、拡散透析、晶析、逆浸透膜、磁気分離を単独で用いたり、これらを組合せたプロセスを適用できる。溶質は高い浸透圧を得る必要があることから、水との親和性(溶解度)が高い物質が選定されている。そのため、準高浸透圧溶液から淡水を精製する工程を確立することが、正浸透膜を用いた海水淡水化システムにおける課題の一つとなっている。   As a means of obtaining fresh water from a quasi-high osmotic pressure solution, depending on the substance to be solute, distillation, gas diffusion, electrodialysis, diffusion dialysis, crystallization, reverse osmosis membrane, magnetic separation can be used alone, or a combination of these processes. Applicable. Since the solute needs to obtain a high osmotic pressure, a substance having a high affinity (solubility) with water is selected. Therefore, establishing a process for purifying fresh water from a quasi-high osmotic pressure solution is one of the problems in a seawater desalination system using a forward osmosis membrane.

高浸透圧溶液のうちNH3/CO2系溶液は、重炭酸アンモニウム(NH4HCO3)としての溶解度が高く、また、約56℃で熱分解によりNH3ガスとCO2ガスとして分離・回収できるため、正浸透膜処理による海水淡水化に適用が検討されている有力候補のひとつである。NH3/CO2系の準高浸透圧溶液からの淡水精製方法として蒸留が提案されている。 Among high osmotic pressure solutions, NH 3 / CO 2 solution has high solubility as ammonium bicarbonate (NH 4 HCO 3 ), and is separated and recovered as NH 3 gas and CO 2 gas by thermal decomposition at about 56 ° C. Therefore, it is one of the promising candidates for application to seawater desalination by forward osmosis membrane treatment. Distillation has been proposed as a method for purifying fresh water from a quasi-high osmotic pressure solution of the NH 3 / CO 2 system.

特開2011−83663号公報JP 2011-83663 A 米国特許出願公開2009/0297431号明細書US Patent Application Publication No. 2009/0297431

〔特許文献1〕には、蒸留によって揮発性カチオン(NH4 +)と揮発性アニオン(CO3 2-)を個別に回収する方法が提示されている。このうち蒸留塔を用いて蒸留する方法では、通常、気相の分圧に応じて溶液中のNH3濃度が決まる。しかし、準高浸透圧溶液を対象とする場合、通常の蒸留塔を適用すると、ガスの発生量と、最終的に到達するべき液中の溶質濃度の点で問題がある。 [Patent Document 1] proposes a method of individually recovering a volatile cation (NH 4 + ) and a volatile anion (CO 3 2− ) by distillation. Of these, in the method of distillation using a distillation column, the NH 3 concentration in the solution is usually determined according to the partial pressure of the gas phase. However, when a quasi-high osmotic pressure solution is used, there is a problem in terms of the amount of gas generated and the solute concentration in the liquid to be finally reached when a normal distillation tower is applied.

すなわち、最終的には数mol/Lの溶液中の溶質の大部分をガスとして分離するため、初期段階では、供給する準高浸透圧溶液の量に対して大量のガスが発生する。一方、最下層においては、液中のNH3濃度を数mg/Lに低減する必要から、NH3分圧を十分低くする必要がある。この蒸留は比較的低い温度で運転されるため、水の蒸気圧も低く、したがって、下層における気相の全圧が低い。初期段階での発生ガスの回収を考慮しても、運転の揺らぎによる下段への圧力の影響が生じ、淡水の純度が悪化する。特に、充填塔の場合は、気相が棚段で分割されていないため、影響が大きくなる。このことは、安全率を持たせた設計を要求され、結果として蒸留塔を大型化させる原因となる。 That is, since most of the solute in the solution of several mol / L is finally separated as a gas, a large amount of gas is generated in the initial stage with respect to the amount of the quasi-high osmotic pressure solution to be supplied. On the other hand, in the lowermost layer, it is necessary to reduce the NH 3 partial pressure sufficiently to reduce the NH 3 concentration in the liquid to several mg / L. Since this distillation is operated at a relatively low temperature, the vapor pressure of water is also low, and thus the total pressure of the gas phase in the lower layer is low. Even considering the recovery of the generated gas at the initial stage, the influence of the pressure on the lower stage due to the fluctuation of operation occurs, and the purity of fresh water deteriorates. In particular, in the case of a packed tower, the influence is increased because the gas phase is not divided by the shelves. This requires a design with a safety factor, resulting in an increase in the size of the distillation column.

また、〔特許文献1〕では、揮発性カチオンと揮発性アニオンを個別に回収するとしているが、完全に個別に回収することは困難である。そのため、高濃度のNH3,CO2が共存する状態がやはり生じることから、配管や溶解工程での固体(カルバミン酸アンモニウム)の析出による閉塞、さらには、正浸透膜処理工程への混入によるファウリングが生じるという問題がある。 In [Patent Document 1], volatile cations and volatile anions are individually recovered, but it is difficult to recover them completely individually. For this reason, a state in which high concentrations of NH 3 and CO 2 coexist is also generated. Therefore, clogging due to precipitation of solid (ammonium carbamate) in the piping and dissolution process, and fouling due to contamination in the forward osmosis membrane treatment process. There is a problem that a ring occurs.

〔特許文献2〕には、複数の蒸留塔を用いてNH3/CO2系Draw溶液から淡水を精製する装置が記載されている。第1塔の蒸気を第2塔のリボイラーの熱源とすることで、使用エネルギーを低減することができるとしている。ガスの分離に関しては、〔特許文献1〕と同様の問題点がある。また、NH3とCO2ガスを同時に回収するため固体析出のリスクが高いが、分離ガスの溶解については記述がない。 [Patent Document 2] describes an apparatus for purifying fresh water from an NH 3 / CO 2 -based Draw solution using a plurality of distillation columns. The use energy can be reduced by using the steam of the first tower as a heat source for the reboiler of the second tower. Regarding gas separation, there is a problem similar to [Patent Document 1]. Further, since NH 3 and CO 2 gas are recovered at the same time, there is a high risk of solid precipitation, but there is no description about the dissolution of the separation gas.

本発明の目的は、準高浸透圧溶液からのガス成分の回収を効率よく行い、運転継続の障害になる固体の析出を抑制できる、正浸透膜処理における淡水精製装置を提供することにある。   An object of the present invention is to provide a fresh water purifying apparatus in forward osmosis membrane treatment that can efficiently recover a gas component from a quasi-high osmotic pressure solution and suppress the precipitation of solids that hinders continuation of operation.

上記の目的を達成するため、本発明は、正浸透膜処理工程で得られた準高浸透圧溶液から溶質成分を分離して淡水を得る分離手段が、前記準高浸透圧溶液の溶質成分を気体として回収するための高さ位置の異なる複数の回収口と、ポンプにより供給されるキャリアガスを流入するキャリアガス供給口を備え、前記分離手段で回収した気体を準高浸透圧溶液に溶解してするための再溶解手段が、前記分離手段の複数の回収口から回収された気体を分圧の高い順に溶解するための複数の注入口を備えたものである。   In order to achieve the above object, the present invention provides a separation means for separating solute components from the quasi-high osmotic pressure solution obtained in the forward osmosis membrane treatment step to obtain fresh water. A plurality of recovery ports with different height positions for recovery as a gas and a carrier gas supply port into which a carrier gas supplied by a pump flows are provided, and the gas recovered by the separation means is dissolved in a quasi-high osmotic pressure solution. The re-dissolving means for performing the process includes a plurality of inlets for dissolving the gases recovered from the plurality of recovery ports of the separating means in descending order of partial pressure.

本発明によれば、分離手段から排出される淡水と平衡となる気体にキャリアガスを添加することでNH3分圧を低減し、より不純物の少ない淡水が得られるとともに、配管中でのカルバミン酸アンモニウムの生成を抑制できる。 According to the present invention, NH 3 partial pressure is reduced by adding a carrier gas to a gas that is in equilibrium with fresh water discharged from the separation means, and fresh water with fewer impurities can be obtained, and carbamic acid in the pipe Generation of ammonium can be suppressed.

本発明の第1実施形態に係る淡水精製装置のブロック図である。It is a block diagram of the fresh water refiner | purifier which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る淡水精製装置のブロック図である。It is a block diagram of the fresh water refiner | purifier which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る淡水精製装置のブロック図である。It is a block diagram of the fresh water refiner | purifier which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る淡水精製装置のブロック図である。It is a block diagram of the fresh water refiner | purifier which concerns on 4th Embodiment of this invention. 淡水精製装置の運転制御における処理を示すフロー図である。It is a flowchart which shows the process in the operation control of a freshwater refiner | purifier. 淡水精製装置の洗浄操作の制御における処理を示すフロー図である。It is a flowchart which shows the process in control of washing | cleaning operation of a freshwater refiner | purifier.

図面を用いて本発明の各実施形態を説明する。   Embodiments of the present invention will be described with reference to the drawings.

[第1実施形態]
図1は本発明の第1実施形態に係る海水淡水化システムのブロック図である。図1に示すように、本実施形態の海水淡水化システムは、正浸透膜処理工程で得られた準高浸透圧溶液1から溶質成分を分離して淡水7を得る分離手段3と、分離手段3に設けられた回収口4、5及びキャリアガス供給口6と、正浸透膜処理工程で得られた準高浸透圧溶液2が供給され、NH3とCO2を順次溶解して正浸透膜処理工程で用いられる高浸透圧溶液15を得る再溶解手段14と、分離手段3の上部に設けられた回収口4と再溶解手段14の低部に設けられた注入口13とを分離ガスポンプ8及び分離ガスポンプ8を介して接続する配管と、再溶解手段14の上部と分離手段3の低部に設けられたキャリアガス供給口6とをキャリアガスフィルタ17が付設されたバルブ16、キャリアガスポンプ10及びバルブ11を介して接続する配管と、分離手段3の中位置に設けられた回収口5と再溶解手段14の中位置に設けられた注入口12とを接続する配管と、で構成されている。
[First Embodiment]
FIG. 1 is a block diagram of a seawater desalination system according to a first embodiment of the present invention. As shown in FIG. 1, the seawater desalination system of the present embodiment includes a separation means 3 that separates a solute component from the quasi-high osmotic pressure solution 1 obtained in the forward osmosis membrane treatment step to obtain fresh water 7, and a separation means. 3, the recovery ports 4 and 5 and the carrier gas supply port 6 provided in 3 and the quasi-high osmotic pressure solution 2 obtained in the forward osmosis membrane treatment step are supplied, and NH 3 and CO 2 are sequentially dissolved to forward the osmosis membrane. A re-dissolving means 14 for obtaining a high osmotic pressure solution 15 used in the processing step, a recovery port 4 provided at the upper part of the separating means 3 and an inlet 13 provided at the lower part of the re-dissolving means 14 are separated by a separation gas pump 8. And a pipe 16 connected via a separation gas pump 8, a carrier gas supply port 6 provided at an upper portion of the remelting means 14 and a lower portion of the separation means 3, a valve 16 provided with a carrier gas filter 17, and a carrier gas pump 10. And connection via valve 11 And a pipe connecting the recovery port 5 provided at the middle position of the separating means 3 and the inlet 12 provided at the middle position of the remelting means 14.

分離手段3および再溶解手段14には、正浸透膜処理工程で得られた準高浸透圧溶液1、2が供給されるが、正浸透膜処理工程では、海水を原水とし、半透膜である正浸透膜を介して海水中の水を高浸透圧溶液に回収する。この正浸透膜処理によって、高浸透圧溶液の濃度は、正浸透膜処理工程に供給されるときの濃度よりも低下するが、海水よりは高い浸透圧であり、準方向への駆動力を維持できるだけの浸透圧を有している。   The separation means 3 and the re-dissolution means 14 are supplied with the quasi-high osmotic pressure solutions 1 and 2 obtained in the forward osmosis membrane treatment step. In the forward osmosis membrane treatment step, seawater is used as raw water, and a semipermeable membrane is used. Water in seawater is recovered into a high osmotic pressure solution through a certain forward osmosis membrane. By this forward osmosis membrane treatment, the concentration of the high osmotic pressure solution is lower than the concentration when it is supplied to the forward osmosis membrane treatment step, but the osmotic pressure is higher than seawater and maintains the driving force in the quasi-direction. It has as much osmotic pressure as possible.

高浸透圧溶液としてNH3とCO2を溶解した溶液を用いる。例えば、NH3とCO2を当モルずつ溶解させる、組成的には重炭酸アンモニウム(NH4HCO3)溶液を使用することとなる。溶液の浸透圧は数1から算出することができる。
〔数1〕
Π=iRTC …(1)
A solution in which NH 3 and CO 2 are dissolved is used as the high osmotic pressure solution. For example, an ammonium bicarbonate (NH 4 HCO 3 ) solution that dissolves NH 3 and CO 2 in equimolar amounts is used in terms of composition. The osmotic pressure of the solution can be calculated from Equation 1.
[Equation 1]
Π = iRTC (1)

ここで、Πは浸透圧、Rは気体定数、Tは絶対温度、Cは溶液のモル濃度、iはファント・ホッフの係数である。ファント・ホッフの係数iは、溶質が電解質の場合で電離が生じる影響を表す係数である。海水の浸透圧(2.5MPa)より大きな浸透圧で駆動させるためには、NH4/CO2で1〜5mol/L程度が必要となる。1mol/LのNH4HCO3溶液1LからNH3とCO2を気体として全量放出させると、44.8L(0℃、0.1013MPa)となる。 Here, Π is the osmotic pressure, R is the gas constant, T is the absolute temperature, C is the molar concentration of the solution, and i is the Fant-Hoff coefficient. The Phanto-Hoff coefficient i is a coefficient representing the effect of ionization when the solute is an electrolyte. In order to drive with an osmotic pressure greater than the osmotic pressure of seawater (2.5 MPa), NH 4 / CO 2 requires about 1 to 5 mol / L. When NH 3 and CO 2 are all released as gas from 1 L of 1 mol / L NH 4 HCO 3 solution, 44.8 L (0 ° C., 0.1013 MPa) is obtained.

分離手段3により準高浸透圧溶液1の溶質成分を分離し、淡水7得る。分離手段3の構造は、棚段塔または充填塔のいずれを用いてもよい。塔高さや径、塔の形式や充填物の形状などにより分離性能が異なるが、準高浸透圧溶液1と淡水7中のNH3とCO2の溶解濃度を設定すれば、それぞれ理論段数や移動単位数(NTU:Number of Transfer Units)の指標を用いることで同等の性能の塔を設計できる。 The solute component of the semi-high osmotic pressure solution 1 is separated by the separation means 3 to obtain fresh water 7. The structure of the separation means 3 may be either a plate tower or a packed tower. Separation performance varies depending on column height, diameter, column type, and packing shape, etc. However, if the solubility concentration of NH 3 and CO 2 in the quasi-high osmotic pressure solution 1 and fresh water 7 is set, the number of theoretical plates and the movement can be changed respectively. By using an index of the number of units (NTU), a tower with equivalent performance can be designed.

操作温度は、溶質がガスとして分離できる温度で、かつ水の沸点より低い温度である40〜80℃が望ましい。この温度を得るため、分離手段3の入口部には図示しない加熱手段を設けている。加熱手段で得る温度は、高温であるほど分離速度は速いが、準高浸透圧溶液1を加熱するためのエネルギーが必要となる。なお、加熱手段の代わりに、分離手段3を真空装置により減圧することも考えられる。   The operation temperature is preferably 40 to 80 ° C., which is a temperature at which the solute can be separated as a gas and is lower than the boiling point of water. In order to obtain this temperature, a heating means (not shown) is provided at the inlet of the separating means 3. The higher the temperature obtained by the heating means, the faster the separation rate, but energy for heating the quasi-high osmotic pressure solution 1 is required. It is also conceivable to depressurize the separating means 3 with a vacuum device instead of the heating means.

回収口4、5、キャリアガス供給口6は、それぞれ分離手段3の高さ方向で異なる高さに設置される。回収口4は、塔の上部に設け、CO2分圧がNH3分圧に比べて高い気体を回収する。回収口5は、回収口4とキャリアガス供給口6の間に設置する。回収口5からはNH3分圧がCO2分圧に比べて高い気体を回収する。キャリアガス供給口6は、塔の低部に設け、キャリアガスポンプ10により、バルブ11を介してキャリアガスが分離手段3に供給される。 The collection ports 4 and 5 and the carrier gas supply port 6 are installed at different heights in the height direction of the separation means 3. The collection port 4 is provided in the upper part of the tower and collects a gas whose CO 2 partial pressure is higher than the NH 3 partial pressure. The recovery port 5 is installed between the recovery port 4 and the carrier gas supply port 6. A gas having a higher NH 3 partial pressure than the CO 2 partial pressure is recovered from the recovery port 5. The carrier gas supply port 6 is provided in the lower part of the tower, and the carrier gas is supplied to the separation means 3 through the valve 11 by the carrier gas pump 10.

キャリアガスの供給により気液比が増大する、すなわち、キャリアガスと準高浸透圧溶液1との接触面積が増大すると、ガスの分離速度が増加する。キャリアガスとしては、CO2やNH3との反応性が低い気体であればよく、空気、N2、Ar、Heなどを使用することができる。本実施形態では空気を使用した場合を示しており、キャリアガスフィルタ17で気中の粉塵をフィルタして追加供給できる構成としている。 When the gas-liquid ratio is increased by supplying the carrier gas, that is, when the contact area between the carrier gas and the quasi-high osmotic pressure solution 1 is increased, the gas separation rate is increased. As the carrier gas, any gas having low reactivity with CO 2 or NH 3 may be used, and air, N 2 , Ar, He, or the like can be used. In this embodiment, the case where air is used is shown, and the carrier gas filter 17 filters the dust in the air so that it can be additionally supplied.

回収口5の位置は、回収口4と回収口5で得られるガスの組成によって決定する。回収口4と回収口5から排出されるガスにはNH3とCO2が共に含まれるため、温度条件によってはカルバミン酸アンモニウムや重炭酸アンモニウムなどのNH3,CO2またはH2Oを原料とする化合物が析出する。この析出を抑制するためには、NH3とCO2をそれぞれ分離することが効果的である。NH3とCO2の単独の系では、分圧が50kPaとなる場合の液相中のモル分率はそれぞれ2.66×102、3.4×10-4と非常に大きな差があり、溶解度の低いCO2を容易に分離できるように見える。 The position of the recovery port 5 is determined by the gas composition obtained at the recovery port 4 and the recovery port 5. Since the gas discharged from the recovery port 4 and the recovery port 5 contains both NH 3 and CO 2 , depending on the temperature conditions, NH 3 , CO 2 or H 2 O such as ammonium carbamate or ammonium bicarbonate is used as a raw material. The compound to be precipitated. In order to suppress this precipitation, it is effective to separate NH 3 and CO 2 from each other. In a single system of NH 3 and CO 2 , the molar fraction in the liquid phase when the partial pressure is 50 kPa is very different from 2.66 × 10 2 and 3.4 × 10 −4 , respectively. It appears that CO 2 with low solubility can be easily separated.

しかし、NH3とCO2が混合した系(NH3/CO2系)では、NH3とCO2単独系とは異なった溶解特性を示すため、溶解度の低いCO2だけを塔の上部から回収することは困難である。NH3/CO2系での分圧は、例えば、Mishimaらの報告書(K. Mishima et al., J. Chem. Eng. Japan, Vol.28(2), p144(1995))では、358.15K、0.1013MPaで、溶液中のNH3:CO2=1:1の場合の分圧は、共に約0.03MPaであることが分かる。このことは、CO2はNH3と同程度の低い分圧でも高い溶解度を有しており、単独の系に比べて混合系ではCO2を単離することが困難であることを意味している。 However, the mixed system of NH 3 and CO 2 (NH 3 / CO 2 system) shows different solubility characteristics from the NH 3 and CO 2 single system, so only CO 2 with low solubility is recovered from the top of the column. It is difficult to do. The partial pressure in the NH 3 / CO 2 system is, for example, 358 in the report of Misima et al. (K. Mishima et al., J. Chem. Eng. Japan, Vol. 28 (2), p144 (1995)). It can be seen that the partial pressures in the case of NH 3 : CO 2 = 1: 1 at 0.15 K and 0.1013 MPa are both about 0.03 MPa. This means that CO 2 has high solubility even at a partial pressure as low as NH 3, and it is difficult to isolate CO 2 in a mixed system compared to a single system. Yes.

そのため、回収口4、回収口5では、CO2とNH3が混合したガスが回収される。NH3/CO2系であっても、CO2はNH3に比べて分離されやすいため、回収口4におけるCO2:NH3の比は、回収口5でのCO2:NH3の比に比べて大きい。このとき、後段の再溶解手段14での溶解効率とマスバランスを考慮すると、回収口4におけるCO2:NH3の比が回収口5におけるNH3:CO2の比が同程度の値となり、かつ、比の値が大きく取れる位置に回収口4bを設けることが望ましい。 Therefore, at the collection port 4 and the collection port 5, a gas in which CO 2 and NH 3 are mixed is collected. Even NH 3 / CO 2 system, since CO 2 is easily separated as compared with NH 3, CO 2 in the recovery port 4: The ratio of NH 3 is, CO 2 in the recovery port 5: the ratio of NH 3 Bigger than that. At this time, considering the dissolution efficiency and mass balance in the subsequent re-dissolution means 14, the ratio of CO 2 : NH 3 in the recovery port 4 becomes approximately the same as the ratio of NH 3 : CO 2 in the recovery port 5, In addition, it is desirable to provide the recovery port 4b at a position where a large ratio value can be obtained.

この位置は、操作温度や準高浸透圧溶液1の組成によっても異なるが、上記文献に示したような混合系における分圧データを用いて決定することができる。実際の分離手段3の高さは、分離手段の種類(例えば棚段塔や充填塔)によって異なる。これは、単に段または単位高さあたりの分離性能が異なるためである。ここでは、段数(または単位高さ)で規格化して、上記のガス組成の条件を満たす回収口4、5の位置を検討する。   This position varies depending on the operating temperature and the composition of the quasi-hyperosmotic pressure solution 1, but can be determined using partial pressure data in a mixed system as shown in the above-mentioned document. The actual height of the separation means 3 varies depending on the type of separation means (for example, a tower column or a packed tower). This is simply because the separation performance per stage or unit height is different. Here, the positions of the recovery ports 4 and 5 satisfying the above gas composition conditions are examined by standardizing the number of stages (or unit height).

分離手段3を、回収口4から回収口5上端まで(分離手段3の上部)と、回収口5からキャリアガス供給口6まで(分離手段3の下部)の2つに分割して考える。そして、分離手段3の上段の上端で、平衡状態のガス(CO2とNH3の混合ガス)を得るものとする。分離手段3の上部では、上端で回収するガスの物質量分が溶液から分離されるものとして、下端での溶液濃度を算出する。また、分離手段3の上部の下端と分離手段3の下部の上端では、溶液の濃度は同じで、分離手段3の下部から分離手段3の上部へのガスの移行はないものとする。 The separating means 3 is considered to be divided into two parts, from the collecting port 4 to the upper end of the collecting port 5 (upper part of the separating means 3) and from the collecting port 5 to the carrier gas supply port 6 (lower part of the separating means 3). Then, an equilibrium gas (a mixed gas of CO 2 and NH 3 ) is obtained at the upper end of the upper stage of the separation means 3. In the upper part of the separation means 3, the solution concentration at the lower end is calculated on the assumption that the amount of the gas recovered at the upper end is separated from the solution. Further, it is assumed that the concentration of the solution is the same at the lower end of the upper part of the separation means 3 and the upper end of the lower part of the separation means 3, and there is no gas transfer from the lower part of the separation means 3 to the upper part of the separation means 3.

平衡状態でのNH3とCO2の分圧は、NH3−H2O系、CO2−H2O系、および、Mishimaらの報告のデータ(溶液のモル分率と各ガスの分圧との関係)を元に、NH3とCO2の全溶解量で補正等を行って算出した。分離手段3の温度を358.15K、分離手段3の上部へ供給される溶液中のNH3とCO2の濃度をともに1.5mol/Lとした。また、淡水7中のNH3濃度が5.9×10-5mol/L(1mg/L)、CO2濃度が2.3×10-5mol/L(1mg/L)となるようにした。 The partial pressures of NH 3 and CO 2 at equilibrium are the data reported in the NH 3 —H 2 O system, CO 2 —H 2 O system, and Misima et al. (Mol fraction of solution and partial pressure of each gas). Based on the relationship, the total dissolution amount of NH 3 and CO 2 was corrected and calculated. The temperature of the separation means 3 was 358.15 K, and the concentrations of NH 3 and CO 2 in the solution supplied to the top of the separation means 3 were both 1.5 mol / L. Further, the NH 3 concentration in the fresh water 7 was set to 5.9 × 10 −5 mol / L (1 mg / L), and the CO 2 concentration was set to 2.3 × 10 −5 mol / L (1 mg / L). .

この計算条件の下で、回収口4におけるCO2:NH3の比が回収口5におけるNH3:CO2の比が同程度の値となり、かつ、比の値が大きく取れる位置を求めた結果、分離手段3の上部の高さ:分離手段3の下部の高さ=1:6が得られた。すなわち、分離手段3の上端に回収口4、下端にキャリアガス供給口6を設定したとき、回収口5は、この間で回収口4から1/7となる位置に設置すればよい。このとき、回収口4から得られるガス中のCO2:NH3比は17:1、回収口5から得られるガス中のNH3:CO2比は25:1と計算される。 Under this calculation condition, the ratio of CO 2 : NH 3 in the recovery port 4 is the same as the ratio of NH 3 : CO 2 in the recovery port 5, and the position where the ratio value can be greatly obtained is obtained. The height of the upper part of the separating means 3: The height of the lower part of the separating means 3 was 1: 6. That is, when the recovery port 4 is set at the upper end of the separating means 3 and the carrier gas supply port 6 is set at the lower end, the recovery port 5 may be installed at a position 1/7 from the recovery port 4 during this period. At this time, the CO 2 : NH 3 ratio in the gas obtained from the recovery port 4 is calculated as 17: 1, and the NH 3 : CO 2 ratio in the gas obtained from the recovery port 5 is calculated as 25: 1.

温度や分離手段3へ供給される準高浸透圧溶液1の濃度が異なる場合も、同様なCO2、NH3、H2Oの溶液と分圧のデータを用いて、回収口の開口位置を設定することができる。 Even when the temperature and the concentration of the quasi-high osmotic pressure solution 1 supplied to the separation means 3 are different, the opening position of the recovery port is determined by using the same CO 2 , NH 3 , H 2 O solution and partial pressure data. Can be set.

回収口4から排出されるガスは、配管を通って再溶解手段14の下部に設置された注入口13から供給される。また、回収口5から排出されるキャリアガスを含むガスは、分離ガスポンプ8とバルブ9を介して、圧力が調整された後、再溶解手段14の中段に設けられた注入口12から供給される。分離ガスポンプ8の風量は、キャリアガスポンプ10の供給量および分離手段3の回収口5より下部で分離されるNH3とCO2の混合ガスの発生量の合計かまたはそれより小さい量とする。これは、特に充填塔を用いる場合に、上段で分離したガスが下段に流入し、分離性能を低下させるのを防ぐためである。 The gas discharged from the recovery port 4 is supplied from an injection port 13 installed under the remelting means 14 through a pipe. Further, the gas containing the carrier gas discharged from the recovery port 5 is supplied from the inlet 12 provided in the middle stage of the remelting means 14 after the pressure is adjusted via the separation gas pump 8 and the valve 9. . The air volume of the separation gas pump 8 is the sum of the supply quantity of the carrier gas pump 10 and the generation quantity of the mixed gas of NH 3 and CO 2 separated below the recovery port 5 of the separation means 3 or smaller. This is to prevent the gas separated in the upper stage from flowing into the lower stage and lowering the separation performance, particularly when a packed tower is used.

再溶解手段14には、分離手段3と同様に棚段塔や充填塔を用いることができる。上部から準高浸透圧溶液2を噴霧し、分離手段3で得られた混合ガス中のNH3とCO2を順次溶解する。低温での操作がガスの溶解には有利であるが、少なくとも0℃から分離手段3の操作温度の範囲であることが望ましい。再溶解手段14の仕様は、キャリアガスの流量、操作温度、注入口12、13におけるNH3とCO2の混合ガスの分圧、準高浸透圧溶液2の濃度および流量、高浸透圧溶液15の濃度によって決定される。 As the remelting means 14, a plate tower or a packed tower can be used as in the separation means 3. The quasi-high osmotic pressure solution 2 is sprayed from above, and NH 3 and CO 2 in the mixed gas obtained by the separation means 3 are dissolved sequentially. Although operation at a low temperature is advantageous for gas dissolution, it is desirable that the operation temperature is in the range of at least 0 ° C. to the operation temperature of the separation means 3. The specifications of the re-dissolution means 14 are the carrier gas flow rate, the operating temperature, the partial pressure of the mixed gas of NH 3 and CO 2 at the inlets 12 and 13, the concentration and flow rate of the quasi-high osmotic pressure solution 2, and the high osmotic pressure solution 15. Determined by the concentration of

再溶解手段14では、まず、溶解度の高いNH3の割合が多い混合ガスを供給して、準高浸透圧溶液2のpHを上昇させる。すなわち、NH3の分圧がCO2の分圧より高い(NH3の割合がCO2の割合より大きい)回収口5のガスをまず供給する。続いて、CO2の分圧がNH3の分圧より高い(CO2の割合がNH3の割合より大きい)回収口4のガスを、塔底部の注入口13から供給する。 In the re-dissolution means 14, first, a mixed gas having a high NH 3 ratio with high solubility is supplied to raise the pH of the quasi-high osmotic pressure solution 2. That is, the partial pressure of NH 3 is higher than the partial pressure of CO 2 (greater percentage of the percentage of NH 3 is CO 2) First supplies a gas recovery port 5. Subsequently, the partial higher pressure (the ratio of CO 2 is greater than the ratio of NH 3) recovery port 4 of the gas partial pressure of NH 3 CO 2, is supplied from the inlet 13 in the bottom.

分離手段3において、いずれかのガスの分圧を増加させた効果として、再溶解の効率化が挙げられる。再溶解手段14への供給圧力を一定とした場合、NH3とCO2の組成によってそれぞれのガスの分圧が増減する。回収口5でNH3:CO2=2:1とした場合、キャリアガス:(NH3+CO2)の比を一定とすると、全量回収した場合(NH3:CO2=1:1)に比べて、1.33倍となる。これにより、塔の各段での溶解量が増加し、塔全体の効率が向上する。 As an effect of increasing the partial pressure of any gas in the separation means 3, there is an increase in efficiency of re-dissolution. When the supply pressure to the remelting means 14 is constant, the partial pressure of each gas increases or decreases depending on the composition of NH 3 and CO 2 . When NH 3 : CO 2 = 2: 1 at the recovery port 5, if the ratio of carrier gas: (NH 3 + CO 2 ) is constant, compared with the case where the entire amount is recovered (NH 3 : CO 2 = 1: 1) And 1.33 times. This increases the amount of dissolution at each stage of the tower, improving the efficiency of the entire tower.

NH3:CO2比の調整は、pHの点からも再溶解手段における溶解効率向上につながる。CO2は中性の水に溶解させるよりも、pHの高い溶液に溶解させる方が、低いCO2分圧でより多くを溶解させることができる。これは、溶液中でCO2+OH-→HCO3 -+、HCO3 -+OH-→CO3 2-+H2Oが進行し、重炭酸イオンや炭酸イオンとして溶解しやすくなるためである。 Adjustment of the NH 3 : CO 2 ratio leads to an improvement in dissolution efficiency in the redissolving means from the viewpoint of pH. More CO 2 can be dissolved at a lower CO 2 partial pressure by dissolving it in a solution having a higher pH than in neutral water. This is because CO 2 + OH → HCO 3 + and HCO 3 + OH → CO 3 2 + + H 2 O proceed in the solution and are easily dissolved as bicarbonate ions or carbonate ions.

そのため、本実施例では、注入口12の位置でのpHを高められるよう、すなわち、NH3分圧が高く、NH3:CO2比が大きい回収口5の混合ガスを注入口12に供給している。注入口12のレベルでのpHがアルカリ性、望ましくはpH≧9となるよう、ガスの組成を調整することが望ましい。 Therefore, in this embodiment, the mixed gas in the recovery port 5 is supplied to the injection port 12 so that the pH at the position of the injection port 12 can be increased, that is, the NH 3 partial pressure is high and the NH 3 : CO 2 ratio is large. ing. It is desirable to adjust the gas composition so that the pH at the inlet 12 level is alkaline, preferably pH ≧ 9.

NH3とCO2は準高浸透圧溶液に溶解するが、キャリアガスの大部分は溶解せずに再溶解手段14の上部に到達し、排出される。バルブ16では、再溶解手段14からの流入とキャリアガスフィルタ17からの流入を調整し、キャリアガスポンプ10を介して分離手段3へ供給する。 NH 3 and CO 2 are dissolved in the quasi-high osmotic pressure solution, but most of the carrier gas reaches the upper part of the redissolving means 14 without being dissolved, and is discharged. In the valve 16, the inflow from the remelting means 14 and the inflow from the carrier gas filter 17 are adjusted and supplied to the separation means 3 via the carrier gas pump 10.

このような構成とすると、より不純物の少ない淡水が得られるとともに、配管中でのカルバミン酸アンモニウム等の生成を抑制できる。また、再溶解手段においてNH3の分圧がCO2の分圧に比べて高い回収ガス(NH3とCO2の混合ガス)を先に溶解させることができ、準高浸透圧溶液のpHが上昇し、続いて供給する回収ガス(NH3とCO2の混合ガス)中のCO2の溶解を促進できる。 With such a configuration, fresh water with less impurities can be obtained, and generation of ammonium carbamate and the like in the pipe can be suppressed. Further, in re-dissolving means can dissolve the partial pressure is higher stripping gas than the partial pressure of CO 2 NH 3 (gas mixture of NH 3 and CO 2) above, pH of the quasi-hyperosmotic solution It is possible to promote the dissolution of CO 2 in the recovery gas (mixed gas of NH 3 and CO 2 ) that is raised and subsequently supplied.

[第2実施形態]
図2は本発明の第2実施形態に係る淡水精製装置のブロック図である。本実施形態の淡水精製装置は、実施形態1の構成の他に、分離手段3の回収口5より上部の位置にキャリアガス供給口18を設け、キャリアガス供給口18にキャリアガスポンプ20、バルブ21を介してキャリアガスフィルタ19を接続している。又、準高浸透圧溶液1をバルブ22を介して分離手段3に供給するようにし、分離手段3からバルブ23を介して淡水7を得るようにしている。
[Second Embodiment]
FIG. 2 is a block diagram of a fresh water purification apparatus according to the second embodiment of the present invention. In addition to the configuration of the first embodiment, the fresh water purifying apparatus of the present embodiment is provided with a carrier gas supply port 18 at a position above the recovery port 5 of the separation means 3, and the carrier gas supply port 18 has a carrier gas pump 20 and a valve 21. A carrier gas filter 19 is connected via Further, the semi-high osmotic pressure solution 1 is supplied to the separation means 3 through the valve 22, and the fresh water 7 is obtained from the separation means 3 through the valve 23.

本実施例における淡水精製装置の処理においてはバルブ22、23を開とし、分離手段3の上部から準高浸透圧溶液1を供給し、淡水7を分離手段3の下部から回収する。   In the processing of the fresh water purifying apparatus in this embodiment, the valves 22 and 23 are opened, the quasi-high osmotic pressure solution 1 is supplied from the upper part of the separating means 3, and the fresh water 7 is recovered from the lower part of the separating means 3.

キャリアガスポンプ20により供給口18から、キャリアガスポンプ10で供給するガスと同じガスを供給する。供給口18の設置位置は、回収口5よりも上段に設置される。分離手段3が棚段塔の場合は、異なる段に供給口18と回収口5を設ける。また、充填塔の場合は、供給口18から回収口4までの距離が、供給口18から回収口5までの距離より短くなるように設置するのが望ましい。これにより、キャリアガスの逆流(下向きの流れ)の発生を抑制できる。なお、キャリアガスはバルブ11から分岐して用いてもよい。   The same gas as that supplied by the carrier gas pump 10 is supplied from the supply port 18 by the carrier gas pump 20. The installation position of the supply port 18 is installed above the collection port 5. When the separating means 3 is a tray tower, the supply port 18 and the recovery port 5 are provided in different stages. In the case of a packed tower, it is desirable that the distance from the supply port 18 to the recovery port 4 is shorter than the distance from the supply port 18 to the recovery port 5. Thereby, generation | occurrence | production of the backflow (downward flow) of carrier gas can be suppressed. The carrier gas may be branched from the valve 11 and used.

各ポンプの流量は、回収口5におけるガスのNH3:CO2の比を低下させないように設定する。すなわち、分離ガスポンプ8の流量=ポンプ10の流量+(低部から回収口5の間でのNH3とCO2の回収量)とする。 The flow rate of each pump is set so as not to lower the ratio of NH 3 : CO 2 of the gas at the recovery port 5. That is, the flow rate of the separation gas pump 8 = the flow rate of the pump 10+ (the amount of NH 3 and CO 2 recovered between the low part and the recovery port 5).

一方、キャリアガスポンプ20の流量は、供給口18から回収口4間の各段におけるガスの生成による圧力増加および、棚段または充填塔による圧損を考慮し、供給口18からのキャリアガスが回収口5に到達しないような条件とする。   On the other hand, the flow rate of the carrier gas pump 20 takes into account the pressure increase due to the generation of gas at each stage between the supply port 18 and the recovery port 4 and the pressure loss due to the shelf or packed tower. The condition is set so that 5 is not reached.

本実施形態においては、淡水精製処理だけでなく、配管洗浄のための運転を定期的に実施することができる。これは、回収口4から注入口13の間の配管、および、回収口5から注入口12の間の配管、ポンプおよびバルブに析出した物質を分解するのが目的である。これらの配管や機器は、NH3とCO2がそれぞれ気体として存在するために、分離手段3と同様の温度に維持する。 In the present embodiment, not only the fresh water purification process but also the operation for pipe cleaning can be performed periodically. The purpose of this is to decompose the substances deposited on the piping between the recovery port 4 and the injection port 13 and the piping between the recovery port 5 and the injection port 12, the pump and the valve. These pipes and devices are maintained at the same temperature as that of the separation means 3 because NH 3 and CO 2 exist as gases.

しかし、高濃度のNH3やCO2が長期間流通すると、カルバミン酸アンモニウム等の固体が析出しやすくなる。そのため、以下の操作を実施する。 However, when a high concentration of NH 3 or CO 2 circulates for a long period of time, a solid such as ammonium carbamate tends to precipitate. Therefore, the following operations are performed.

バルブ23およびバルブ22を閉とする。一方、キャリアガスポンプ10、20および分離ガスポンプ8は継続運転する。この運転により、回収口4、5のNH3とCO2の濃度は共に徐々に低下し、キャリアガスの割合が増加する。そのため、気相中から配管や機器に析出した固体へのさらなる析出は生じなくなり、逆に、析出物の分解に必要な所定の温度を維持することで、析出物を分解、除去することができる。 The valve 23 and the valve 22 are closed. On the other hand, the carrier gas pumps 10 and 20 and the separation gas pump 8 are continuously operated. By this operation, the concentrations of NH 3 and CO 2 in the recovery ports 4 and 5 are both gradually lowered, and the ratio of the carrier gas is increased. As a result, no further precipitation from the gas phase to the solid deposited on the piping or equipment occurs, and conversely, the precipitate can be decomposed and removed by maintaining a predetermined temperature necessary for the decomposition of the precipitate. .

配管等の洗浄のための上記の運転は、キャリアガス中のNH3とCO2の濃度が、分離操作における濃度の1/10以下に低減された後、1−24h程度実施することが望ましい。 It is desirable that the above operation for cleaning pipes and the like is performed for about 1-24 h after the concentration of NH 3 and CO 2 in the carrier gas is reduced to 1/10 or less of the concentration in the separation operation.

このような構成とすると、分離手段3の上段(CO2を主に回収する部分)において、大気圧での運転を想定した場合、実施形態1よりも気相中のCO2分圧が低減されるため、より効率よくCO2を分離回収することができる。 With such a configuration, when the operation at atmospheric pressure is assumed in the upper stage of the separation means 3 (part where CO 2 is mainly recovered), the CO 2 partial pressure in the gas phase is reduced more than in the first embodiment. Therefore, CO 2 can be separated and recovered more efficiently.

また、配管等におけるNH3とCO2の分圧が低下することと、配管等の洗浄運転を実施する構成にしていることから、カルバミン酸アンモニウム等のNH3とCO2を原料とする化合物の生成・成長抑制と除去が可能となる。 In addition, since the partial pressure of NH 3 and CO 2 in the piping and the like is reduced and the cleaning operation of the piping and the like is performed, the compound of NH 3 and CO 2 such as ammonium carbamate as a raw material is used. Generation / growth suppression and removal are possible.

本実施例の分離手段3では、一つの塔に対して回収口とキャリアガス供給口をそれぞれ2か所に設定したが、塔を2つに分割し、それぞれの塔に回収口とキャリアガス供給口を設けた構造としてもよい。これにより、塔の高さおよび建屋規模の低減が可能となる。   In the separation means 3 of this embodiment, the recovery port and the carrier gas supply port are set at two locations for one tower, but the tower is divided into two, and the recovery port and the carrier gas supply are supplied to each tower. It is good also as a structure which provided the opening | mouth. As a result, the height of the tower and the scale of the building can be reduced.

[第3実施形態]
図3は、本発明の第3実施形態に係る淡水精製装置のブロック図である。
[Third Embodiment]
FIG. 3 is a block diagram of a fresh water purification apparatus according to the third embodiment of the present invention.

本実施形態の淡水精製装置は、実施形態1の構成の他に、回収口4にバルブ(三方バルブ)24を介してヒータ25、キャリアガスフィルタ26が接続され、バルブ(三方バルブ)24の残りの一方がキャリアガスポンプ27、バルブ28を介して注入口13に接続されている。又、準高浸透圧溶液1をバルブ22を介して分離手段3に供給するようにし、分離手段3からバルブ23を介して淡水7を得るようにしている。   In the fresh water purifying apparatus of this embodiment, in addition to the configuration of the first embodiment, a heater 25 and a carrier gas filter 26 are connected to the recovery port 4 via a valve (three-way valve) 24, and the rest of the valve (three-way valve) 24 is connected. One of these is connected to the inlet 13 via a carrier gas pump 27 and a valve 28. Further, the semi-high osmotic pressure solution 1 is supplied to the separation means 3 through the valve 22, and the fresh water 7 is obtained from the separation means 3 through the valve 23.

本実施形態における淡水精製装置の処理においては、実施形態1と同様、分離手段3に準高浸透圧溶液1を供給し、回収口4、5からそれぞれガスを回収する。分離手段3へのキャリアガス供給はポンプ10のみで実施する。   In the processing of the fresh water purification apparatus in the present embodiment, the semi-high osmotic pressure solution 1 is supplied to the separation means 3 and the gas is recovered from the recovery ports 4 and 5, respectively, as in the first embodiment. The carrier gas is supplied to the separation means 3 only by the pump 10.

回収口4から排出される気体とキャリアガスをバルブ(三方バルブ)24により混合し、キャリアガスポンプ27により、再溶解手段14に供給する。このとき供給されるキャリアガスは、キャリアガスフィルタ26で処理したのち、配管内で維持されている温度と同じ温度までヒータ25で加熱される。キャリアガスポンプ27の吐出側には圧力調整弁を設け、CO2とNH3の混合ガスの各分圧がそれぞれ回収口5における分圧よりも低くなるように調整した後、注入口13に送られる。 The gas discharged from the recovery port 4 and the carrier gas are mixed by a valve (three-way valve) 24 and supplied to the remelting means 14 by a carrier gas pump 27. The carrier gas supplied at this time is processed by the carrier gas filter 26 and then heated by the heater 25 to the same temperature as that maintained in the pipe. A pressure adjusting valve is provided on the discharge side of the carrier gas pump 27, and each partial pressure of the mixed gas of CO 2 and NH 3 is adjusted to be lower than the partial pressure in the recovery port 5, and then sent to the inlet 13. .

実施形態2の場合と同様に、配管、機器等の洗浄を定期的に実施する。このとき、バルブ22、23を閉じ、かつ、バルブ(三方バルブ)24はキャリアガスのみをキャリアガスポンプ27に供給できるように操作する。配管等の洗浄時間は実施形態2と同様に1−24hが望ましい。なお、キャリアガスはバルブ11から分岐して用いてもよい。   As in the case of the second embodiment, the piping, equipment, and the like are periodically cleaned. At this time, the valves 22 and 23 are closed, and the valve (three-way valve) 24 is operated so that only the carrier gas can be supplied to the carrier gas pump 27. The cleaning time for piping and the like is desirably 1 to 24 h as in the second embodiment. The carrier gas may be branched from the valve 11 and used.

このような構成とすると、実施形態1の効果に加え、配管等をキャリアガスで洗浄運転でき、カルバミン酸アンモニウム等のNH3とCO2を原料とする化合物の除去性能を向上できる。キャリアガス中のNH3とCO2のそれぞれの分圧は実施形態2の場合よりも低いため、より高い除去性能が期待できる。 With such a configuration, in addition to the effects of the first embodiment, the piping and the like can be washed with a carrier gas, and the removal performance of a compound using NH 3 and CO 2 such as ammonium carbamate as raw materials can be improved. Since the partial pressures of NH 3 and CO 2 in the carrier gas are lower than those in the second embodiment, higher removal performance can be expected.

[第4実施形態]
図4は本発明の第4実施形態に係る淡水精製装置のブロック図である。本実施形態では、センシングによるキャリアガス供給と逆洗実施の制御を行っている。
[Fourth Embodiment]
FIG. 4 is a block diagram of a fresh water purifying apparatus according to the fourth embodiment of the present invention. In this embodiment, control of carrier gas supply and backwashing by sensing is performed.

本実施形態の淡水精製装置では実施形態3の構成の他に、制御手段51、センサー29〜33、35、38、ポンプ34、36、バルブ37を備えた構成となっている。センサー29〜33、35、38の情報に基づき、必要な淡水精製量とその水質を満足するために、各ポンプ、バルブを制御する。   In addition to the configuration of the third embodiment, the fresh water refining device of the present embodiment includes a control means 51, sensors 29 to 33, 35, 38, pumps 34, 36, and a valve 37. Based on the information of the sensors 29 to 33, 35, and 38, each pump and valve are controlled in order to satisfy the necessary amount of fresh water purification and the water quality.

膜を用いた海水淡水化では、海水や添加薬剤中の無機物質、有機物質、および、生物を原因とした膜の目詰まり(ファウリング)が生じる。逆浸透膜処理の場合、高圧ポンプによる供給量の調整ができるため、ファウリングによる膜間差圧の上昇にも比較的容易に対応できる。   In seawater desalination using a membrane, clogging (fouling) of the membrane due to inorganic substances, organic substances, and living organisms in seawater and additive chemicals occurs. In the case of reverse osmosis membrane treatment, the supply amount can be adjusted by a high-pressure pump, so that it is possible to relatively easily cope with an increase in transmembrane pressure difference caused by fouling.

一方、浸透圧差を駆動力とし、高圧ポンプを持たない正浸透膜処理においては、ファウリングの進展が処理量や正浸透膜処理で得られる水質に影響を与える。膜間差圧が大きくなった場合、例えば、高浸透圧溶液の供給量を増加させ、浸透圧差を高い値で維持する運転が想定される。このとき、淡水精製工程では、より高濃度の準高浸透圧溶液が供給されることとなる。   On the other hand, in forward osmosis membrane treatment using the osmotic pressure difference as a driving force and not having a high-pressure pump, the progress of fouling affects the treatment amount and the water quality obtained by forward osmosis membrane treatment. When the transmembrane pressure difference becomes large, for example, an operation of increasing the supply amount of the high osmotic pressure solution and maintaining the osmotic pressure difference at a high value is assumed. At this time, a quasi-high osmotic pressure solution having a higher concentration is supplied in the fresh water purification step.

したがって、分離手段3および再溶解手段14における最適な操作条件が変化することになる。実施形態4ではこれに対応するため、各種のセンサーを設置し、センサー情報に基づいて準浸透圧溶液やキャリアガスの供給、洗浄操作の実施を制御するものである。センサー35は導電率計と流量計を有する。センサー29は流量計、温度計、圧力計、CO2濃度計、およびNH3濃度計を有する。センサー30は圧力計を有する。センサー32は圧力計を有する。センサー31は流量計、温度計、圧力計、CO2濃度計、およびNH3濃度計を有する。センサー38は圧力、流量、温度、CO2濃度計、およびNH3濃度計を有する。そして、センサー33は導電率計を有する。各センサーの計測値は、オンラインで制御手段51に伝送される。 Therefore, the optimum operating conditions in the separating means 3 and the remelting means 14 change. In the fourth embodiment, in order to cope with this, various sensors are installed, and the supply of the semi-osmotic solution and the carrier gas and the execution of the cleaning operation are controlled based on the sensor information. The sensor 35 has a conductivity meter and a flow meter. The sensor 29 has a flow meter, a thermometer, a pressure gauge, a CO 2 concentration meter, and an NH 3 concentration meter. The sensor 30 has a pressure gauge. The sensor 32 has a pressure gauge. The sensor 31 has a flow meter, a thermometer, a pressure gauge, a CO 2 concentration meter, and an NH 3 concentration meter. The sensor 38 has a pressure, flow rate, temperature, CO 2 concentration meter, and NH 3 concentration meter. The sensor 33 has a conductivity meter. The measured value of each sensor is transmitted to the control means 51 online.

淡水精製装置の制御として、淡水精製処理制御(キャリアガスおよび準高浸透圧溶液の流量制御)、および洗浄操作制御を実施する。   As control of the fresh water purification apparatus, fresh water purification processing control (carrier gas and quasi-high osmotic pressure solution flow rate control) and cleaning operation control are performed.

図5に、制御手段51による淡水精製処理制御の処理フローを示す。処理は、分離手段3に係る部分と再溶解手段14に係る部分に分けられる。   In FIG. 5, the processing flow of the fresh water refinement | purification process control by the control means 51 is shown. The treatment is divided into a part relating to the separating means 3 and a part relating to the remelting means 14.

S501で、センサー35、33の計測値を取得する。S502で、センサー35の流量および導電率から、分離手段3へのNH3とCO2および準高浸透圧溶液1の負荷量を算出する。NH3とCO2と導電率の相関は予め作成しておくか、または、イオンのモル伝導率から推定することができる。 In S501, the measurement values of the sensors 35 and 33 are acquired. In S502, the load amounts of NH 3 and CO 2 and the quasi-high osmotic pressure solution 1 to the separation means 3 are calculated from the flow rate and conductivity of the sensor 35. The correlation between NH 3 , CO 2, and conductivity can be created in advance or estimated from the molar conductivity of ions.

S503で、分離手段3に関する処理モデル、S502で求めた負荷量、目標とする淡水水質を用いて、キャリアガスの流量を算出する。キャリアガスの流量は、分離手段3内の気液比を変化させ、分離性能を調整することができる。処理モデルは、気液平衡データ、NTUなどを用いたもので、化学工学の基礎的なモデルである。   In step S503, the flow rate of the carrier gas is calculated using the processing model related to the separation unit 3, the load obtained in step S502, and the target fresh water quality. The flow rate of the carrier gas can change the gas-liquid ratio in the separation means 3 and adjust the separation performance. The treatment model uses vapor-liquid equilibrium data, NTU, etc., and is a basic model of chemical engineering.

S504で、S503の算出値に応じてキャリアガスポンプ10を調整する。次に、センサー33の導電率の計測値が目標値以内であるかを判断する。目標値より低い場合、キャリアガスを減量し、一方、目標値を超える場合は、キャリアガスの供給の上限であるかを判断した後、キャリアガスの増量またはポンプ34による準高浸透圧溶液1の供給量の低減を実施する。   In S504, the carrier gas pump 10 is adjusted according to the calculated value of S503. Next, it is determined whether the measured value of the conductivity of the sensor 33 is within a target value. When lower than the target value, the carrier gas is reduced. On the other hand, when the target value is exceeded, after determining whether the upper limit of the supply of the carrier gas, the carrier gas is increased or the quasi-high osmotic pressure solution 1 of the pump 34 is increased. Reduce supply.

再溶解手段14においては、同様にキャリアガス流量または準高浸透圧溶液2の量を制御する。S511で、センサー29、32、31、38の計測値を取得する。S512で、流量、温度、圧力、NH3濃度、CO2濃度から、状態方程式と物質収支の関係を用いて、NH3とCO2の物質量、すなわち再溶解手段14への負荷量を算出する。 In the re-dissolution means 14, the carrier gas flow rate or the amount of the quasi-high osmotic pressure solution 2 is similarly controlled. In S511, the measurement values of the sensors 29, 32, 31, and 38 are acquired. In step S512, the NH 3 and CO 2 substance amounts, that is, the load on the remelting means 14 are calculated from the flow rate, temperature, pressure, NH 3 concentration, and CO 2 concentration using the relationship between the state equation and the material balance. .

S513で、再溶解手段14の溶解モデルとS512での負荷量をもとに、排気ガス中のNH3とCO2濃度が、所定の目標値を満足するために必要なキャリアガスポンプ27の流量の最大値を算出する。S514で、キャリアガス流量を実際に調整する。S515で、センサー38の値から、NH3とCO2の実際の排出濃度を求め、目標値を実際に満足しているか判断する。満足している場合はキャリアガスを減少させる。そうでない場合は、キャリアガスの供給上限であるかを判断し、ガスの増量または準高浸透圧溶液2の供給量を調整するポンプ36を調整する。 In S513, based on the dissolution model of the remelting means 14 and the load in S512, the flow rate of the carrier gas pump 27 necessary for the NH 3 and CO 2 concentrations in the exhaust gas to satisfy a predetermined target value is determined. Calculate the maximum value. In S514, the carrier gas flow rate is actually adjusted. In S515, the actual exhaust concentrations of NH 3 and CO 2 are obtained from the value of the sensor 38, and it is determined whether or not the target values are actually satisfied. If satisfied, reduce carrier gas. If not, it is determined whether the supply upper limit of the carrier gas is reached, and the pump 36 that adjusts the gas increase amount or the supply amount of the quasi-high osmotic pressure solution 2 is adjusted.

図6に、制御手段51による洗浄操作制御の処理フローを示す。S601で、センサー30、32の計測値(圧力)を取得する。S602で、最新の計測値と、設定時間τだけ前の計測値とから差圧の変化量(ΔP)を算出する。τとしては、1日から6カ月の期間とする。S603で、ΔPの値を設定した値と比較し、ΔPの値が大きければ配管等の洗浄操作を実施する。そうでない場合は運転を継続する。   FIG. 6 shows a processing flow of cleaning operation control by the control means 51. In S601, the measurement values (pressures) of the sensors 30 and 32 are acquired. In step S602, the change amount (ΔP) of the differential pressure is calculated from the latest measured value and the measured value that is the previous set time τ. τ is a period from 1 day to 6 months. In step S603, the value of ΔP is compared with the set value, and if the value of ΔP is large, a cleaning operation of the pipe or the like is performed. If not, continue driving.

以上のような構成とすることで、実施形態3の効果に加え、準高浸透圧溶液の組成や流量が変化した場合でも良好な品質の淡水を供給することができる。   With the configuration as described above, in addition to the effects of the third embodiment, fresh water with good quality can be supplied even when the composition and flow rate of the quasi-high osmotic pressure solution are changed.

以上、説明したように、各実施形態によれば、分離手段から排出される淡水と平衡となる気体にキャリアガスを添加することでNH3分圧を低減し、より不純物の少ない淡水が得られるとともに、配管中でのカルバミン酸アンモニウムの生成を抑制できる。 As described above, according to each embodiment, the NH 3 partial pressure is reduced by adding a carrier gas to a gas that is in equilibrium with the fresh water discharged from the separation means, and fresh water with fewer impurities can be obtained. At the same time, production of ammonium carbamate in the pipe can be suppressed.

また、NH3とCO2を同時に回収する場合に比べ、いずれかの比率が低い気体を取り扱うため、カルバミン酸アンモニウム生成を抑制できる。 In addition, compared to the case where NH 3 and CO 2 are recovered at the same time, since a gas having a low ratio is handled, the production of ammonium carbamate can be suppressed.

また、再溶解手段においてNH3の分圧が高い回収ガスを先に溶解させることから、準高浸透圧溶液のpHが上昇する。そのため、次に供給する回収ガス中のCO2の溶解を促進できる。 Further, since the recovery gas having a high NH 3 partial pressure is first dissolved in the re-dissolution means, the pH of the quasi-high osmotic pressure solution rises. Therefore, dissolution of CO 2 in the recovered gas to be supplied next can be promoted.

また、モニタリングによる配管等の閉塞状況に応じて、原因となる析出物をNH3とCO2の分圧が低いキャリアガスにより分解させることにより、プラントの健全性を維持することができる。 Furthermore, by decomposing in accordance with the closed condition of the pipe due monitoring, precipitates causing the partial pressure of NH 3 and CO 2 by a low carrier gas, it is possible to maintain the health of the plant.

1、2 準高浸透圧溶液
3 分離手段
4、5 回収口
6 キャリアガス供給口
7 淡水
8 分離ガスポンプ
9、11、21、22、23、24、28 バルブ
10、20、27 キャリアガスポンプ
12、13 注入口
14 再溶解手段
15 浸透圧溶液
17、26 キャリアガスフィルタ
25 ヒータ
29〜33、35、38 センサー
51 制御手段
1, 2 Semi-high osmotic pressure solution 3 Separation means 4, 5 Recovery port 6 Carrier gas supply port 7 Fresh water 8 Separation gas pumps 9, 11, 21, 22, 23, 24, 28 Valves 10, 20, 27 Carrier gas pumps 12, 13 Inlet 14 Remelting means 15 Osmotic pressure solution 17, 26 Carrier gas filter 25 Heaters 29-33, 35, 38 Sensor 51 Control means

Claims (6)

正浸透膜処理工程で得られた準高浸透圧溶液から溶質成分を分離して淡水を得る分離手段が、前記準高浸透圧溶液の溶質成分をNH 3 とCO 2 の混合気体として回収するための高さ位置の異なる複数の回収口と、ポンプにより供給されるキャリアガスを流入するキャリアガス供給口を備え、前記分離手段で回収した気体を準高浸透圧溶液に溶解するための再溶解手段が、前記分離手段の複数の回収口から回収された混合気体をNH 3 の分圧がCO 2 の分圧より高い混合気体の順に溶解するための複数の注入口を備えたことを特徴とする淡水精製装置。 Separation means for separating the solute component from the quasi-high osmotic pressure solution obtained in the forward osmosis membrane treatment step to obtain fresh water collects the solute component of the quasi-high osmotic pressure solution as a mixed gas of NH 3 and CO 2 Re-dissolution means for dissolving the gas recovered by the separation means in a quasi-high osmotic pressure solution, comprising a plurality of recovery ports at different height positions, and a carrier gas supply port through which carrier gas supplied by a pump flows Is provided with a plurality of inlets for dissolving the mixed gas recovered from the plurality of recovery ports of the separation means in the order of the mixed gas in which the partial pressure of NH 3 is higher than the partial pressure of CO 2. Fresh water purification equipment. 請求項1に記載の淡水精製装置において、前記準高浸透圧溶液がNH3およびCO2を溶解した水溶液であり、NH3分圧がCO2分圧よりも高い気体を回収する回収口を低位置に設けたことを特徴とする淡水精製装置。 2. The fresh water purification apparatus according to claim 1, wherein the quasi-high osmotic pressure solution is an aqueous solution in which NH 3 and CO 2 are dissolved, and a recovery port for recovering a gas having a NH 3 partial pressure higher than the CO 2 partial pressure is set low. A fresh water purifier characterized by being provided at a position. 請求項1に記載の淡水精製装置において、前記キャリアガス供給口が複数個設けられ、少なくとも一つのキャリアガス供給口が、いずれの回収口よりも下部に設置され、別のキャリアガス供給口が複数の回収口の間に設置されることを特徴とする淡水精製装置。   2. The fresh water purifier according to claim 1, wherein a plurality of the carrier gas supply ports are provided, at least one carrier gas supply port is provided below any of the recovery ports, and a plurality of other carrier gas supply ports are provided. It is installed between the collection ports of the fresh water. 請求項1に記載の淡水精製装置において、前記分離手段の各回収口から排出される気体のうちNH3の分圧がCO2の分圧よりも高い気体を前記再溶解手段に供給するための注入口が、複数の注入口の中で、前記再溶解手段に供給される準高浸透圧溶液に最初に接触するような位置に設けられていることを特徴とする淡水精製装置。 2. The fresh water purifier according to claim 1, wherein a gas having a partial pressure of NH 3 higher than a partial pressure of CO 2 is supplied to the re-dissolution means out of the gas discharged from each recovery port of the separation means. The fresh water purifier according to claim 1, wherein the inlet is provided at a position where the inlet first comes into contact with the quasi-hyperosmotic solution supplied to the re-dissolution means among the plurality of inlets . 請求項1に記載の淡水精製装置において、前記分離手段と前記再溶解手段を接続する配管、該配管に取付けられたポンプまたはバルブに、淡水精製操作時に前記分離手段の回収口から排出された気体のNH3およびCO2の各分圧よりも低い分圧でこれらを含むキャリアガスを定期的に供給するポンプを接続し、前記配管、ポンプまたはバルブに析出した固体を分解させることを特徴とする淡水精製装置。 2. The fresh water purification apparatus according to claim 1, wherein a gas discharged from a recovery port of the separation means during fresh water purification operation to a pipe connecting the separation means and the re-dissolution means, a pump or a valve attached to the pipe. A pump that periodically supplies a carrier gas containing these at a partial pressure lower than the partial pressures of NH 3 and CO 2 is connected, and solids deposited on the pipe, pump, or valve are decomposed. Fresh water purification equipment. 請求項1に記載の淡水精製装置において、前記正浸透膜処理工程で得られた準高浸透圧溶液、前記分離手段で得られた淡水の導電率、前記回収口から排出される気体、前記注入口に注入される気体、前記再溶解手段から排出される気体の圧力、温度、流量、NH3濃度、CO 2 濃度を計測し、計測結果を用いて前記分離手段および前記再溶解手段から排出される水またはガス中のNH 3 濃度、およびCO 2 濃度を推定し、これらの推定値または計測値に基づいて、キャリアガスおよび前記溶液の供給量を制御する手段を有することを特徴とする淡水精製装置。 The fresh water purification apparatus according to claim 1, wherein the semi-high osmotic pressure solution obtained in the forward osmosis membrane treatment step, the fresh water conductivity obtained by the separation means, the gas discharged from the recovery port, the injection The pressure , temperature, flow rate, NH 3 concentration, and CO 2 concentration of the gas injected into the inlet and the gas discharged from the remelting means are measured and discharged from the separation means and the remelting means using the measurement results. that water or NH 3 concentration in the gas, and CO 2 to estimate the concentration, based on these estimates or measurements, fresh water purification, characterized in that it comprises means for controlling the supply amount of the carrier gas and the solution apparatus.
JP2011211788A 2011-09-28 2011-09-28 Fresh water purification equipment Expired - Fee Related JP5537528B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011211788A JP5537528B2 (en) 2011-09-28 2011-09-28 Fresh water purification equipment
PCT/JP2012/070530 WO2013046961A1 (en) 2011-09-28 2012-08-10 Fresh water purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011211788A JP5537528B2 (en) 2011-09-28 2011-09-28 Fresh water purification equipment

Publications (2)

Publication Number Publication Date
JP2013071051A JP2013071051A (en) 2013-04-22
JP5537528B2 true JP5537528B2 (en) 2014-07-02

Family

ID=47995013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011211788A Expired - Fee Related JP5537528B2 (en) 2011-09-28 2011-09-28 Fresh water purification equipment

Country Status (2)

Country Link
JP (1) JP5537528B2 (en)
WO (1) WO2013046961A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160051932A1 (en) * 2013-06-24 2016-02-25 Ki Joon Kang Method for regenerating ammonium bicarbonate solution in forward osmotic pressure type water treatment apparatus and regeneration apparatus therefor
CN110838461B (en) * 2018-08-16 2023-09-08 细美事有限公司 Purifying device and purifying method
WO2021054406A1 (en) * 2019-09-17 2021-03-25 旭化成株式会社 Method for concentrating raw material solution, and system for concentrating raw material solution
CN111320249A (en) * 2020-03-04 2020-06-23 辽宁莱特莱德环境工程有限公司 Seawater desalination mineralization steam-water mixing device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3700846B2 (en) * 2002-04-01 2005-09-28 富士電機システムズ株式会社 Method and apparatus for removing ammoniacal nitrogen from wastewater
KR101577769B1 (en) * 2008-06-20 2015-12-15 예일 유니버시티 Forward osmosis separation processes
JP2011083663A (en) * 2009-10-13 2011-04-28 Fujifilm Corp Water purification apparatus and method

Also Published As

Publication number Publication date
JP2013071051A (en) 2013-04-22
WO2013046961A1 (en) 2013-04-04

Similar Documents

Publication Publication Date Title
JP5433633B2 (en) Seawater desalination system using forward osmosis membrane
EP3209612B1 (en) Method for selective scaling in desalination water treatment systems
CN102958848B (en) Forward osmotic desalination device using membrane distillation method
JP5537528B2 (en) Fresh water purification equipment
WO2018150980A1 (en) Reverse osmosis treatment device and reverse osmosis treatment method
JP6395844B2 (en) Adhesion monitoring device for water treatment device, water treatment device and operation method thereof, and cleaning method for water treatment device
WO2005053824A2 (en) Method and system for increasing recovery and preventing precipitation fouling in pressure-driven membrane processes
US9688548B2 (en) Apparatus and process for desalination of water
JP5768959B2 (en) Water treatment equipment
AU2004261474A1 (en) Solvent removal process
JP6189205B2 (en) Concentrator scale detection device and method, water regeneration treatment system
JP2010082610A (en) Method and system for producing pure water
CN103080023B (en) A water treatment method
JP5961916B2 (en) Water treatment equipment
US20110315612A1 (en) Desalination apparatus and method of cleaning the same
JP5757109B2 (en) Water treatment method and water treatment system
US20150210562A1 (en) Apparatus, Use of Appratus and Process for Desalination of Water
JP5563854B2 (en) Scale suppression method and power generation system
WO2016035175A1 (en) Water treatment device and operating method for water treatment device
US10345058B1 (en) Scale removal in humidification-dehumidification systems
JP6907745B2 (en) Membrane separation device
US20140144840A1 (en) Sequencing batch type or batch type water-filtering apparatus and method of operating the same
JP2005246239A (en) Membrane filter apparatus and its operation method
JP2008132400A (en) Operation method of water treatment system
Ghomshe Cleaning strategy of fouled reverse osmosis membrane: direct osmosis at high salinities (DO-HS) as on-line technique without interruption of RO operation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140425

LAPS Cancellation because of no payment of annual fees