JPS6019003A - Operation of membrane module - Google Patents

Operation of membrane module

Info

Publication number
JPS6019003A
JPS6019003A JP12886883A JP12886883A JPS6019003A JP S6019003 A JPS6019003 A JP S6019003A JP 12886883 A JP12886883 A JP 12886883A JP 12886883 A JP12886883 A JP 12886883A JP S6019003 A JPS6019003 A JP S6019003A
Authority
JP
Japan
Prior art keywords
membrane module
membrane
steam
valves
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12886883A
Other languages
Japanese (ja)
Inventor
Kenichi Inoue
賢一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Electric Industrial Co Ltd filed Critical Nitto Electric Industrial Co Ltd
Priority to JP12886883A priority Critical patent/JPS6019003A/en
Publication of JPS6019003A publication Critical patent/JPS6019003A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To make it possible to effectively restore the permeation capacity of a membrane module, by flowing saturated or overheated steam through the membrane module by temporarily interrupting the operation of the membrane module. CONSTITUTION:The reduction in the amount of a permeation liquid can be detected by a flow meter 52 and, when this reduction in the amount of the permeation liquid is detected, valves 22, 31, 51 are closed while valves 41, 61, 71, 82 are opened to allow the steam of a boiler source B to flow through a membrane module 1. Steam passes through the membrane module 1 according to a route shown by arows a1, a2 and accompanies the contamination substance removed from the membrane surface to reach a heat exchanger 8 where condensed and cooled by inderect heat exchange due to cooling water to be discharged along with the contamination substance. This flow of steam is succeeded for a definite time to sufficiently remove the contamination substance and, thereafter, the valves 41, 61, 71, 82 are closed while the valves 22, 31, 51 are opened to return the membrane module 1 to steady operation.

Description

【発明の詳細な説明】 本発明は膜モジュールの運転方法に関するものである。[Detailed description of the invention] The present invention relates to a method of operating a membrane module.

限外p過性、逆浸透法等の膜分離法においては、膜モジ
ュールの使用期間が長くなると膜モジュールの膜面が汚
染されて膜モジュールの性能(透過水量又は脱塩率)が
低下するといった問題がある。このため、膜モジュール
を所定時間運転したのち、膜モジュールの運転を中断し
、膜モジュールを洗浄液の流通により洗浄することが公
知である。しかしながら、従来の洗浄法では、処理原液
中の汚染物質の性状変化により洗浄液を選択する必要が
あり、やっかいである。
In membrane separation methods such as ultrapolar permeability and reverse osmosis methods, it is said that when a membrane module is used for a long time, the membrane surface of the membrane module becomes contaminated and the performance (permeated water amount or desalination rate) of the membrane module decreases. There's a problem. For this reason, it is known that after operating the membrane module for a predetermined period of time, the operation of the membrane module is interrupted and the membrane module is cleaned by flowing a cleaning liquid. However, in the conventional cleaning method, it is necessary to select a cleaning liquid depending on the change in the properties of contaminants in the processing stock solution, which is troublesome.

更に、洗浄液が膜や配管等に化学的に与える影響等も考
慮すれば、最適洗浄液の選定は至難である。
Furthermore, when considering the chemical influence of the cleaning liquid on membranes, pipes, etc., it is extremely difficult to select the optimum cleaning liquid.

従来、膜モジュールの殺菌の目的で水蒸気を用いること
が知られているが、本発明者は、この水蒸気が膜モジュ
ールの汚染物質の脱離除去に広範囲の汚染物質に有効で
あり、更に、配管に影響を与えず、膜に対しても水蒸気
の流通時間の制限によって実質上影響を与えないことを
知った。
Conventionally, it has been known to use water vapor for the purpose of sterilizing membrane modules, but the present inventor discovered that this water vapor is effective for desorption and removal of a wide range of pollutants from membrane modules, and furthermore, It has been found that there is no effect on the membrane, and that there is virtually no effect on the membrane by limiting the flow time of water vapor.

本発明に係る膜モジュールの運転方法は、上記した知見
に基づき発明された方法であり、膜モジュールの運転中
、膜モジュールの運転を一時的に中断して膜モジュール
を飽和又は過熱水蒸気の流通により洗浄することを特徴
とする方法である。
The method for operating a membrane module according to the present invention is a method invented based on the above-mentioned knowledge, and during operation of the membrane module, the operation of the membrane module is temporarily interrupted and the membrane module is saturated or superheated by flowing steam. This method is characterized by washing.

本発明において使用する水蒸気の温度は100〜120
°Cが適当である。水蒸気は膜モジュールの原液人口側
(又は出口側)から原液出口側(又は人口側)に向けて
はソ常圧で流すこともできるし、水蒸気を膜に通過させ
るように膜モジュールの原液人口側(又は出口側)から
透過室側に向けて流すこともてきる。この場合の水蒸気
の膜通過流速は0.001〜0.1 m/secの範囲
が適当である。この場合、水蒸気は膜の通過抵抗に応じ
て圧力上昇するので、膜モジュール並びに配管を保護す
るために安全弁等を設けることが必要である。水蒸気の
流通継続時間は汚染物質の性状、量に応じて定めるが、
膜の保護上0.5〜5時間とすることが望ましい。
The temperature of the steam used in the present invention is 100 to 120
°C is appropriate. Water vapor can be flowed from the raw solution side (or outlet side) of the membrane module to the raw solution outlet side (or side) at normal pressure, or the water vapor can be flowed from the raw solution side of the membrane module so that it passes through the membrane. It is also possible to flow from the (or outlet side) toward the permeation chamber side. In this case, the flow rate of water vapor through the membrane is suitably in the range of 0.001 to 0.1 m/sec. In this case, since the pressure of water vapor increases depending on the resistance to passage through the membrane, it is necessary to provide a safety valve or the like to protect the membrane module and piping. The duration of water vapor flow is determined depending on the nature and amount of the pollutant.
In order to protect the membrane, it is desirable to set the time to 0.5 to 5 hours.

以下、図面により本発明を説明する。The present invention will be explained below with reference to the drawings.

図面は本発明において使用する液体分離システムを示し
ている。
The drawing shows a liquid separation system for use in the present invention.

図において、1は逆浸透膜モジュール又は限外膜モジュ
ールであり、ホローファイバー型、スパイラル型、チュ
ーブラ−型の何れをも使用でき、膜材質はポリスルボン
等の耐熱性膜である。2は原液供給配管、21は原液加
圧ポンプ、22はバルブである。3は濃縮液取出配管、
31はバルブである。4は水蒸気供給配管であり、ボイ
ラーBをバルブ41並びに流量計42を介して濃縮液出
口に連通している。5は透過液取出配管、51はバルブ
、52は流量計である。
In the figure, reference numeral 1 indicates a reverse osmosis membrane module or an ultra membrane module, and any of the hollow fiber type, spiral type, and tubular type can be used, and the membrane material is a heat-resistant membrane such as polysulfone. 2 is a stock solution supply pipe, 21 is a stock solution pressure pump, and 22 is a valve. 3 is the concentrate extraction pipe;
31 is a valve. A steam supply pipe 4 communicates the boiler B with the concentrate outlet via a valve 41 and a flow meter 42. 5 is a permeate extraction pipe, 51 is a valve, and 52 is a flow meter.

6は原液配管2に対する分路、61はバルブ、7は透過
液配管に対する分路、71はバルブ、8は熱交換器、8
1は熱交換器の冷却水通路、82はバルブである。
6 is a shunt for the raw solution pipe 2, 61 is a valve, 7 is a shunt for the permeate pipe, 71 is a valve, 8 is a heat exchanger, 8
1 is a cooling water passage of the heat exchanger, and 82 is a valve.

上記システムにおいて、通常の運転時には、バルブ41
,61,71.82を閉にしバルブ22゜31.51を
開にして、ポンプ21により原液を膜モジュール1に圧
送し、溶媒の分離により濃縮した原液、すなわち、濃縮
液を濃縮液配管3から取出し、分離溶媒、すなわち、透
過液は透過液取出配管5から取出す。この運転の進行に
伴い、膜モジュール1の性能が膜面の汚染により低下し
、透過液量が低減することは前述した通りである。
In the above system, during normal operation, the valve 41
, 61, 71.82 are closed and the valve 22° 31.51 is opened, the stock solution is pumped to the membrane module 1 by the pump 21, and the stock solution concentrated by solvent separation, that is, the concentrate, is sent from the concentrate pipe 3. The separation solvent, ie, the permeate, is taken out from the permeate take-out pipe 5. As described above, as this operation progresses, the performance of the membrane module 1 decreases due to contamination of the membrane surface, and the amount of permeate decreases.

この透過液量の低減は流量計52で検出てき、この透過
液量の低減を検知すれば、バルブ22゜31.51を閉
にし、バルブ41,61,71.82を開にして膜モジ
ユール1内にボイラー源Bの水蒸気を流通させる。水蒸
気は矢印a1.a2の経路で膜モジユール1内を通過し
、膜面より除去した汚染物質を同伴して熱交換器8に達
し、こXで冷却水による間接熱交換によって凝縮冷却し
、汚染物質と共に排水する。
This reduction in the amount of permeated liquid is detected by the flowmeter 52, and when this reduction in the amount of permeated liquid is detected, the valve 22° 31.51 is closed and the valves 41, 61, 71.82 are opened and the membrane module 1 is Steam from boiler source B is made to flow within the boiler. Water vapor is indicated by arrow a1. It passes through the membrane module 1 along route a2, reaches the heat exchanger 8 along with the contaminants removed from the membrane surface, is condensed and cooled by indirect heat exchange with cooling water, and is drained together with the contaminants.

この水蒸気の流通を一定時間継続し、汚染物質を充分に
除去したのちは、弁41,61.71 。
After continuing the flow of this steam for a certain period of time and sufficiently removing contaminants, the valves 41, 61.71.

82を閉にし、弁22,31.51を開にして膜モジュ
ール1を定常運転に戻す。
82 is closed and the valves 22, 31.51 are opened to return the membrane module 1 to normal operation.

本発明は膜汚染物質の種類に関係なく有効であり、炭化
水素、エステル、ケトン、アルコール、アミン、脂肪酸
類などの有機物質や窒素、イオウ、ハロゲン類の無機元
素及び化合物、さらにタンパク質などの有機物を主成分
とする汚染物質に広範囲に適用できる。
The present invention is effective regardless of the type of membrane contaminants, including organic substances such as hydrocarbons, esters, ketones, alcohols, amines, and fatty acids, inorganic elements and compounds such as nitrogen, sulfur, and halogens, and organic substances such as proteins. It can be widely applied to pollutants whose main components are

以下、本発明の実施例を比較例との対比のもとて説明す
る。
Examples of the present invention will be described below in comparison with comparative examples.

実施例 ホローファイバ一式逆浸透分離膜モジュールを用いた超
純水ラインにおいて、透過水量が初期値(約40017
m 、Hr )の約35%に低下したとき、飽和水蒸気
(100″C11気圧)を膜通過速度0 、 Ol m
/ S e Qで1時間流通させた。
Example In an ultrapure water line using a hollow fiber complete reverse osmosis separation membrane module, the amount of permeated water was at the initial value (approximately 40017
m, Hr), saturated water vapor (100″C11 atm) was passed through the membrane at a rate of 0, Ol m
/ S e Q for 1 hour.

比較例1 実施例の飽和水蒸気の流通に代え、メタノールと塩酸と
の混合液(メタノール60%)を膜モジユール内に3時
間充填放置した。
Comparative Example 1 Instead of flowing saturated steam as in the example, a mixed solution of methanol and hydrochloric acid (60% methanol) was filled into a membrane module and allowed to stand for 3 hours.

比較例2 比較例1の混合液の充填放置に代え、混合液を3時間循
環させた(モジュールの濃縮液出口側の液を原液人口側
に戻すことを繰り返えす)。
Comparative Example 2 Instead of filling and leaving the mixed liquid in Comparative Example 1, the mixed liquid was circulated for 3 hours (repeatedly returning the liquid on the concentrate outlet side of the module to the stock solution side).

比較例3 比較例1に対し、混合液として過酸化水素とアンモニア
との混合液(過酸化水素1.5%)を使用した以外、比
較例1に同じとした。
Comparative Example 3 The same procedure as Comparative Example 1 was carried out except that a mixed solution of hydrogen peroxide and ammonia (hydrogen peroxide 1.5%) was used as the mixed solution.

比較例4 比較例2に対し、混合液として過酸化水素とアンモニア
との混合液(過酸化水素1.5%)を使用した以外、比
較例2に同じとした。
Comparative Example 4 The same procedure as Comparative Example 2 was carried out except that a mixed solution of hydrogen peroxide and ammonia (hydrogen peroxide 1.5%) was used as the mixed solution.

上記実施例並びに比較例により洗浄を行った後、膜モジ
ュール(超純水ライン)の透過水量を測定したところ次
の通りであった。
After cleaning according to the above Examples and Comparative Examples, the amount of water permeated through the membrane module (ultrapure water line) was measured and found to be as follows.

この測定結果からも明らかなように本発明によれば、膜
モジュールの透過性能を効果的に回復できる。又、洗浄
剤が飽和又は加熱水蒸気であり、広範囲の汚染物質に適
応するから、従来のように、洗浄液の選択といったやっ
かいな問題がない。
As is clear from this measurement result, according to the present invention, the permeation performance of the membrane module can be effectively restored. Also, since the cleaning agent is saturated or heated steam and is compatible with a wide range of contaminants, there is no need for the traditional problems of selecting a cleaning solution.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明において使用する液体分離システムを示す
説明図である。
The drawing is an explanatory diagram showing a liquid separation system used in the present invention.

Claims (1)

【特許請求の範囲】[Claims] (1) 膜モジュールの運転中、膜モジュールの運転を
一時的に中断して膜モジュールを飽和又は過熱水蒸気の
流通により洗浄することを特徴とする膜モジュールの運
転方法。
(1) A method for operating a membrane module, which comprises temporarily interrupting operation of the membrane module during operation of the membrane module, and cleaning the membrane module by flowing saturated or superheated steam.
JP12886883A 1983-07-14 1983-07-14 Operation of membrane module Pending JPS6019003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12886883A JPS6019003A (en) 1983-07-14 1983-07-14 Operation of membrane module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12886883A JPS6019003A (en) 1983-07-14 1983-07-14 Operation of membrane module

Publications (1)

Publication Number Publication Date
JPS6019003A true JPS6019003A (en) 1985-01-31

Family

ID=14995343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12886883A Pending JPS6019003A (en) 1983-07-14 1983-07-14 Operation of membrane module

Country Status (1)

Country Link
JP (1) JPS6019003A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61242604A (en) * 1985-04-18 1986-10-28 Asahi Chem Ind Co Ltd Steam sterilization method for filtration device
JPS62273013A (en) * 1986-05-22 1987-11-27 Kubota Ltd Method for regenerating ceramic ultrafiltration membrane module
WO1998035749A1 (en) * 1997-02-14 1998-08-20 Nihon Millipore Kabushiki Kaisha Cross-filter apparatus
WO2008003663A1 (en) * 2006-07-03 2008-01-10 Imes Management Ag Humidification exchanger with a cleaning system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5149181A (en) * 1974-10-25 1976-04-28 Daicel Ltd MAKUBUNRITOKUSEINOKAIFUKUHO
JPS5561905A (en) * 1978-11-06 1980-05-10 Hitachi Ltd Regeneration of porous filter body
JPS56100606A (en) * 1979-09-07 1981-08-12 Union Carbide Corp Ultrafiltration and reverse osmosis device
JPS57159587A (en) * 1981-03-27 1982-10-01 Asahi Chem Ind Co Ltd Sterilization and purification of water

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5149181A (en) * 1974-10-25 1976-04-28 Daicel Ltd MAKUBUNRITOKUSEINOKAIFUKUHO
JPS5561905A (en) * 1978-11-06 1980-05-10 Hitachi Ltd Regeneration of porous filter body
JPS56100606A (en) * 1979-09-07 1981-08-12 Union Carbide Corp Ultrafiltration and reverse osmosis device
JPS57159587A (en) * 1981-03-27 1982-10-01 Asahi Chem Ind Co Ltd Sterilization and purification of water

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61242604A (en) * 1985-04-18 1986-10-28 Asahi Chem Ind Co Ltd Steam sterilization method for filtration device
JPS62273013A (en) * 1986-05-22 1987-11-27 Kubota Ltd Method for regenerating ceramic ultrafiltration membrane module
WO1998035749A1 (en) * 1997-02-14 1998-08-20 Nihon Millipore Kabushiki Kaisha Cross-filter apparatus
WO2008003663A1 (en) * 2006-07-03 2008-01-10 Imes Management Ag Humidification exchanger with a cleaning system

Similar Documents

Publication Publication Date Title
Snow et al. New techniques for extreme conditions: high temperature reverse osmosis and nanofiltration
KR20000069372A (en) A method for the removal of carbon dioxide from a process gas
Cartier et al. Treatment of sugar decolorizing resin regeneration waste using nanofiltration
US6977047B2 (en) Method and system for the manufacture of pharmaceutical water
KR20190005843A (en) Starting method of ultrapure water producing device
WO2011105566A1 (en) Seawater desalting system
JPS6019003A (en) Operation of membrane module
US20020038782A1 (en) Plate-and -frame type membrane module system with inserted durable balls using vortex flow
KR101603785B1 (en) Hydrogen peroxide refined system using reverse osmosis and hydrogen peroxide produced thereof
JPS6019004A (en) Continuous operation of liquid separation apparatus
JPS60190298A (en) Preparation of ultra-pure water
CA1269622A (en) Process for the treatment of boiler condensate
JP2000317413A (en) Method for washing ultrapure water production system
JP2922059B2 (en) Operating method of hollow fiber membrane filter
JP3690818B2 (en) Membrane separator
JPS63315112A (en) Washing method of ceramic filter
BG64339B1 (en) Device for cleaning a fluid in the form of a vapour and plant for treating waste waters
JP2004531376A (en) Method for purifying corrosive gas
JP2005279460A (en) Water treatment method
Reimann et al. Ultrafiltration of agricultural waste waters with organic and inorganic membranes
JP2001314734A (en) Method for cleaning membrane separator
JP2954652B2 (en) Removal method of gas or low boiling volatile organic matter
JP2954629B2 (en) Removal method of gas or low boiling volatile organic matter
JPH0785796B2 (en) Power plant blow water treatment method
JPH1157415A (en) Operating method of membrane deaerator and apparatus for the same