JP2018063674A - 電源装置及び画像形成装置 - Google Patents

電源装置及び画像形成装置 Download PDF

Info

Publication number
JP2018063674A
JP2018063674A JP2016202968A JP2016202968A JP2018063674A JP 2018063674 A JP2018063674 A JP 2018063674A JP 2016202968 A JP2016202968 A JP 2016202968A JP 2016202968 A JP2016202968 A JP 2016202968A JP 2018063674 A JP2018063674 A JP 2018063674A
Authority
JP
Japan
Prior art keywords
voltage
capacitor
transformer
power supply
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016202968A
Other languages
English (en)
Other versions
JP6808438B2 (ja
Inventor
利明 杉山
Toshiaki Sugiyama
利明 杉山
朗 龍末
Akira Tatsuzue
朗 龍末
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2016202968A priority Critical patent/JP6808438B2/ja
Publication of JP2018063674A publication Critical patent/JP2018063674A/ja
Application granted granted Critical
Publication of JP6808438B2 publication Critical patent/JP6808438B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)
  • Developing For Electrophotography (AREA)
  • Control Or Security For Electrophotography (AREA)
  • Power Sources (AREA)

Abstract

【課題】交流電圧に直流電圧を重畳した交流電圧を生成する高電圧電源において、高電圧電源を停止させる際の出力電圧の立下りに要する時間を短縮すること。【解決手段】交流電圧と直流電圧とを重畳した出力電圧を出力する電源装置であって、コンデンサ131を有し、トランス115の2次巻線115bの一端に接続された電圧検知回路155を有し、CPU101は、出力電圧の出力を停止させる際に、コンデンサ119の両端の電圧が、直流電圧Vdc(=V)よりも低い直流電圧(Vdc=0)となるようにトランス115を制御し(S106)、その後、トランス115の駆動を停止させる(S108)。【選択図】図2

Description

本発明は、交流電圧に直流電圧を重畳した交流電圧を生成する電源装置及びその電源装置を有する画像形成装置に関する。
高電圧電源には、交流電圧に直流電圧を重畳した高電圧の交流電圧(以下、直流重畳交流高電圧という)を生成する方式がある。例えば、電子写真方式を採用する画像形成装置は高電圧電源を備えている。高電圧電源は、紙等の記録材に対する画像形成プロセスには欠かせない存在となっている。画像形成装置の高電圧電源には、帯電高電圧電源、現像高電圧電源、転写高電圧電源等、各種モジュール化された電源(以下、高電圧モジュールという)が存在する。各高電圧モジュールは、画像形成装置の構成に応じて異なった仕様を有している。例えば、現像高電圧電源に直流重畳交流高電圧を生成する電源を用いるものがある。直流重畳交流高電圧を発生する現像高電圧電源の従来例は、例えば特許文献1に開示されている。図7に従来例の直流重畳交流高電圧電源回路の一例を示す。図7の電源装置は、トランス115の2次巻線115bに発生した交流電圧に、抵抗118の両端に発生した直流電圧を重畳することにより、2次側の出力端122から直流重畳交流高電圧を出力する。
図7の電源装置において、2次側からの出力を停止する際には、CPU101は、図8のフローチャートに示すような制御を行う。図9は、CPU101が図8の制御を行う際のパルス信号CLKと出力端122から出力される電圧を示すタイミングチャートである。CPU101は、トランス115の2次側に接続されているコンデンサ119、402、抵抗118により決定される時定数に基づいて待機時間Xを設定する。CPU101は、待機時間Xが経過したことに応じで、電源装置から高電圧の出力が停止されたと判断し、処理を終了する。
特開2011−232450号公報
しかしながら、直流重畳交流高電圧電源回路を含む高電圧電源回路は、高電圧電源の立下りに時間を要する。なお、立下りとは、高電圧出力が所定の電圧からゼロ電位に収束することを意味する。高電圧電源は、一般的に数100Vから数kVの電圧を生成するため、トランス115の2次側に設けられる抵抗118は、耐圧を満足させるために、数MΩから数10MΩの定数に設定される。高電圧回路はプッシュプル駆動回路による制御を停止したとき、トランス115の2次側のコンデンサと抵抗で決まる時定数で電荷が放電される。高電圧回路は、一般的に、トランス115の2次側が数1000pFのコンデンサと数MΩの抵抗で構成される。そのため、高電圧回路では、高電圧回路がプッシュプル駆動回路による駆動を停止してから高電圧出力がゼロ電位に収束するまでに、数100ミリ秒の時間を必要としている。
例えば、高電圧電源の立下りに時間を要した場合、上述した高電圧電源を有する画像形成装置では、以下に説明する課題が存在する。一般的に、電子写真方式を用いた画像形成装置は、感光体に電荷を一様に帯電させる帯電処理、感光体に静電潜像を形成する露光処理、感光体に形成された静電潜像にトナー像を形成する現像処理を行う。画像形成装置は、更に、感光体に形成されたトナー像を記録材に形成する転写処理、記録材に転写されたトナー像を形成する定着処理を行い、画像を形成する。画像形成に使用される感光体の寿命は、感光体の削れ量に比例することがわかっており、感光体の削れ量は交流帯電電圧の印加時間に比例して増加することが判明している。そのため、交流帯電電圧の印加時間が長いほど感光体の寿命が短くなる。近年、画像形成装置の高速化やプリントボリュームの増加が進んでいるため、交流帯電電圧の印加時間が増加することから、感光体の長寿命化も求められている。こうした中、高電圧電源の立下りに時間を要してしまうと、感光体に交流帯電電圧を印加する時間が長くなり、感光体の寿命を短くさせてしまう。更に、交流現像電圧回路を適用した画像形成装置は、交流帯電電圧を停止させる前に交流現像電圧を停止させる構成である。交流帯電電圧を交流現像電圧よりも先に停止させると、感光体の表面電位、トナー電位、現像電圧の出力値の電位関係がくずれ、意図しないタイミングでトナーが感光体に飛翔し、クリーニング不良を引き起こしてしまう。このため、交流現像電圧を停止させた後に交流帯電電圧を停止させている。このような構成をとっているため、交流現像電圧を停止させるまでは交流帯電電圧が感光体に印加されることになる。その結果、感光体の寿命をより短くさせてしまうという課題がある。このため、高電圧電源を停止させる際に、出力電圧の立下りに要する時間を短縮することが求められている。
本発明は、交流電圧に直流電圧を重畳した交流電圧を生成する高電圧電源において、高電圧電源を停止させる際の出力電圧の立下りに要する時間を短縮することを目的とする。
上述した課題を解決するために、本発明は、以下の構成を備える。
(1)1次巻線と2次巻線とを有する第1のトランスを有し、前記第1のトランスの2次巻線の一端から交流電圧を生成する第1の生成手段と、前記第1のトランスの2次巻線の他端に接続された第1のコンデンサを有し、直流電圧を生成する第2の生成手段と、前記第1の生成手段及び前記第2の生成手段を制御する制御手段と、を有し、前記第1の生成手段により生成された交流電圧と前記第2の生成手段により生成された直流電圧とを重畳した出力電圧を出力する電源装置であって、第2のコンデンサを有し、前記第1のトランスの2次巻線の前記一端に接続された第1の回路を有し、前記制御手段は、前記出力電圧の出力を停止させる際に、前記第1のコンデンサの両端の電圧が、前記第2の生成手段により生成されている第1の直流電圧よりも低い第2の直流電圧となるように前記第1の生成手段を制御し、その後、前記第1の生成手段を停止させることを特徴とする電源装置。
(2)感光体と、前記感光体を帯電する帯電手段と、前記帯電手段により帯電された前記感光体に静電潜像を形成する露光手段と、前記露光手段により形成された静電潜像をトナーにより現像しトナー像を形成する現像手段と、前記現像手段により形成されたトナー像を被転写体に転写する転写手段と、前記帯電手段、前記現像手段及び前記転写手段の少なくとも1つに交流電圧を供給する前記(1)に記載の電源装置と、を備えることを特徴とする画像形成装置。
本発明によれば、交流電圧に直流電圧を重畳した交流電圧を生成する高電圧電源において、高電圧電源を停止させる際の出力電圧の立下りに要する時間を短縮することができる。
実施例1、2の画像形成装置の構成図、実施例1の電源装置の回路図 実施例1の出力電圧を停止するときの動作を説明するフローチャート 実施例1の出力電圧を停止するときの動作を説明するタイムチャート 実施例2の電源装置の回路図 実施例2の出力電圧を停止するときの動作を説明するフローチャート 実施例2の出力電圧を停止するときの動作を説明するタイムチャート 従来例の電源装置の回路図 従来例の出力電圧を停止するときの動作を説明するフローチャート 従来例の出力電圧を停止するときの動作を説明するタイムチャート
[一般的な電源装置]
図7に示す回路は、交流電圧を生成する昇圧トランスから、交流電圧とともに直流電圧も生成する回路である。制御手段であるCPU101は、抵抗102を介してNPNトランジスタ(以下、トランジスタとする)401のベース端子にパルス信号CLKを出力する。CPU101は、交流電圧を生成するためのパルス信号CLKの1周期における時間幅を変化させることで直流電圧を調整する。パルス信号CLKの1周期における時間幅を、以下、デューティーとする。パルス信号CLKの論理がハイレベルのとき、トランジスタ401はオンする。トランジスタ401は、コレクタ端子が抵抗103を介して電源電圧V1に接続され、エミッタ端子はグランド(以下、GNDとする)に接続されている。トランジスタ401がオンすると、電源電圧V1から供給される電流は、抵抗103とトランジスタ401のコレクタ−エミッタ間を介して、GNDに流れ込む。
抵抗103とトランジスタ401の接続点は、NPNトランジスタ(以下、トランジスタとする)111のベース端子と、PNPトランジスタ(以下、トランジスタとする)112のベース端子とに接続されている。トランジスタ111は、コレクタ端子に抵抗110を介して電源電圧V1が接続され、エミッタ端子にコンデンサ114を介してトランス115の1次巻線115aの一端が接続されている。トランジスタ112は、エミッタ端子にコンデンサ114を介してトランス115の1次巻線115aの一端が接続され、コレクタ端子は抵抗113を介してGNDに接続されている。トランス115の1次巻線115aの他端はGNDに接続されている。抵抗103、110、113、トランジスタ111、112は、プッシュプル駆動回路350を構成している。第1のトランスであるトランス115は、同極性の1次巻線115aと2次巻線115bを有しており、2次巻線115bの一端から所定の交流電圧を生成する第1の生成手段として機能する。
トランジスタ401がオンのとき、トランジスタ111にはベース電流が供給されない。このため、トランジスタ111はオフしている。トランジスタ111がオフしていると、トランス115の1次巻線115aに電流は流れないため、トランス115の2次巻線115bに電圧は誘起されず出力端122に高電圧は発生しない。出力端122は、トランス115の2次巻線115bの一端から抵抗121を介して負荷に電圧を供給するための負荷との接続点である。
パルス信号CLKの論理がハイレベルからローレベルに遷移すると、トランジスタ401がオンからオフに遷移する。トランジスタ401がオフすると、電源電圧V1から供給される電流は、抵抗103を介してトランジスタ111のベース端子に流れ込み、トランジスタ111はオンする。一方、トランジスタ112はオフする。その結果、電源電圧V1から供給される電流は、抵抗110、トランジスタ111のコレクタ−エミッタ間、コンデンサ114を介してトランス115の1次巻線115aに流れ込み、トランス115の1次巻線115aが励磁される。
トランス115の1次巻線115aが励磁されると、トランス115の2次巻線115bには、1次巻線115aと2次巻線115bとの巻数比に応じた電圧が誘起され、出力端122には2次巻線115bに誘起された電圧に応じた電圧が発生する。2次巻線115bに誘起された電圧から生じるトランス115の2次巻線115bに流れる電流は、ダイオード403を介して、コンデンサ402に流れこむ。また、2次巻線115bに流れる電流は、ダイオード403のカソード端子に接続されたツェナーダイオード116、抵抗404、GNDを介して、抵抗118と第1のコンデンサであるコンデンサ119にも流れる。第2の抵抗である抵抗118はコンデンサ119に並列に接続されている。抵抗118とコンデンサ119の一方の接続点はトランス115の2次巻線115bの他端に接続され、抵抗118とコンデンサ119の他方の接続点はGNDに接続(接地)されている。コンデンサ119に充電された所定の直流電圧は、トランス115の2次巻線115bに発生した交流電圧に重畳され、抵抗121を介して出力端122に直流重畳交流高電圧として生成される。抵抗118及びコンデンサ119は、所定の直流電圧を生成する第2の生成手段として機能する。
パルス信号CLKの論理がローレベルから再度ハイレベルに遷移すると、トランジスタ111はオフし、トランジスタ112がオンする。トランジスタ112がオンすると、トランス115の1次巻線115aに流れる電流は、コンデンサ114、トランジスタ112、抵抗113を介してGNDに流れ込む。このとき、トランス115の2次巻線115bにはトランジスタ112のオフ時とは逆向きに電圧が生じるため、2次巻線115bには電流は流れない。以上の動作をパルス信号CLKのデューティーで繰り返すことで、図7の電源装置は、直流重畳交流高電圧を生成する。
上述した回路について、高電圧の出力を停止するときの動作を説明する。図8は高電圧の出力を停止するように指示されたときにCPU101が実行するフローチャートを示している。なお、高電圧の出力を停止するように指示する制御部は、CPU101とは別に設けられているCPUであってもよいし、CPU101であってもよい。図9は高電圧の出力を停止するように指示されたときのタイムチャートを示している。図9(i)はパルス信号CLKのハイレベル(H)、ローレベル(L)を示しており、(ii)はトランス115の2次巻線115bの出力端122から出力される電圧の変動を示している。(ii)の細線は直流電圧Vdcが重畳された交流電圧を示し、太線は直流電圧Vdcを示している。横軸はいずれも時間を示している。図9の領域Aに示すように、CPU101が所定のデューティーでパルス信号CLKを出力する区間では、交流電圧と直流電圧が重畳された高電圧が出力される。領域Aでは、CPU101は、直流電圧Vdcが例えばV(Vdc=V)となるようなデューティーでパルス信号CLKを出力している。
高電圧の出力を停止する指示を受けると、CPU101は、ステップ(以下、Sとする)102で、パルス信号CLKの論理をハイレベルに固定する。これにより、図9の領域Aの区間が終了し領域Bの区間に遷移する。CPU101は、タイマ(不図示)をリセットしてスタートする。パルス信号CLKがハイレベルに固定されたため、トランジスタ401はオン状態を維持する。これにより、抵抗103、110、113、トランジスタ111、112で構成されるプッシュプル駆動回路350はプル動作を維持する。その結果、領域Bに示すように、トランス115の2次巻線115bには高電圧の交流電圧は生成されなくなる。
S103でCPU101は、タイマを参照することにより、パルス信号CLKの論理をハイレベルに固定してからXミリ秒(msec)(以下、待機時間Xという)が経過したか否かを判断する。Xミリ秒は、トランス115の2次側に蓄積された直流電圧Vdcの電荷が放電するまでの時間に設定されている。直流電圧Vdcの電荷の放電時間は、トランス115の2次側に設けられているコンデンサと抵抗の時定数により決定される。すなわち、直流電圧Vdcの電荷の放電時間においては、コンデンサ119、402、抵抗118が支配的となる。そのため、待機時間Xはコンデンサ119、402、抵抗118の回路定数や実機状態を加味し、適切な値に設定される。S103でCPU101は、待機時間Xミリ秒が経過していないと判断した場合、処理をS103に戻し、待機時間Xミリ秒が経過したと判断した場合、処理をS104に進める。S104でCPU101は、領域Bに示すように、トランス115の2次側の時定数で決まる待機時間Xが経過すると、直流電圧Vdcの電荷が放電され、高電圧の出力が停止された(高電圧出力オフ)と判断し、処理を終了する。なお、図9で示す待機時間Xは設定値であるため、電荷が放電される時間にマージンを取るために、十分長い時間に設定されることもあれば、電荷が放電される前の時間に設定されることもある。
[画像形成装置]
電源装置を有する画像形成装置の一例として、レーザビームプリンタを例にあげて説明する。図1(a)に電子写真方式のプリンタの一例であるレーザビームプリンタの概略構成を示す。レーザビームプリンタ300(以下、プリンタ300という)は、静電潜像が形成される感光体としての感光ドラム311、感光ドラム311を一様に帯電する帯電部317(帯電手段)を備えている。プリンタ300は、更に、感光ドラム311に静電潜像を形成する露光部319(露光手段)、感光ドラム311上に形成された静電潜像をトナーで現像する現像部312(現像手段)を備えている。そして、感光ドラム311に現像されたトナー像をカセット316から供給された被転写体としてのシート(不図示)に転写部318(転写手段)によって転写して、シートに転写したトナー像を定着器314で定着してトレイ315に排出する。この感光ドラム311、帯電部317、露光部319、現像部312、転写部318が画像形成部である。また、プリンタ300は、後述する電源装置400を備えている。なお、画像形成装置は、図1(a)に例示したものに限定されず、例えば複数の画像形成部を備える画像形成装置であってもよい。更に、感光ドラム311上のトナー像を中間転写ベルトに転写する1次転写部と、中間転写ベルト上のトナー像をシートに転写する2次転写部を備える画像形成装置であってもよい。
プリンタ300は、画像形成部による画像形成動作や、シートの搬送動作を制御するCPUを有するコントローラ320を備えている。電源装置400は、例えばコントローラ320に電力を供給する低電圧電源と、帯電部317、現像部312、転写部318の少なくとも1つに交流高電圧を供給する高電圧電源と、を備えている。電源装置400の高電圧電源は、交流電圧に直流電圧を重畳した交流電圧を出力する。
[高電圧電源]
図1(b)に実施例1の高電圧電源の回路図を示す。図7の構成と同じ構成には同じ符号を付す。図1(b)の高電圧電源は、交流電圧を生成する昇圧トランスから交流電圧とともに直流電圧も生成する回路である。図1(b)の高電圧電源では、交流電圧を生成するためのパルス信号のデューティーを変化させることで直流電圧が調整される。制御手段であるCPU101は、パルス信号CLKの出力、停止、デューティーを制御するCPUであり、内部にタイマ(不図示)を有している。なお、CPU101は、プリンタ300が有するコントローラ320のCPUであってもよいし、コントローラ320のCPUとは独立に設けられた電源装置の制御用のCPUであってもよく、以下の実施例についても同様とする。抵抗102、103、電界効果トランジスタ(以下、FETとする)104は、CPU101から出力されるパルス信号CLKの電圧を変換する回路である。FET104は、パルス信号CLKがハイレベルのときにオンされ、パルス信号CLKがローレベルのときにオフされる。
コンデンサ105はパルス信号CLKの直流成分をカットするカップリングコンデンサであり、電源電圧V1を抵抗106、107で分圧した電圧を中間電圧とする交流電圧を生成する。抵抗108、109、110、113、トランジスタ111、112、コンデンサ114は、トランス115に入力される交流電圧を生成する、駆動手段であるプッシュプル型の駆動回路150である。プッシュプル型の駆動回路150では、パルス信号CLKの論理がローレベルのとき、トランジスタ111がオンし、電源電圧V1から抵抗110、トランジスタ111、コンデンサ114を介してトランス115の1次巻線115aに電流が流れ込む。これにより、トランス115の1次巻線115aが励磁される。トランス115の1次巻線115aが励磁されると、トランス115の2次巻線115bには、1次巻線115aと2次巻線115bとの巻数比に応じた電圧が誘起され、出力端122には2次巻線115bに誘起された電圧に応じた電圧が発生する。
トランス115の2次巻線115bに生じる電流は、抵抗120、ツェナーダイオード116、ダイオード117、GNDを介してコンデンサ119と抵抗118に流れ込む。トランス115の2次巻線115bに誘起された電圧の波形において、上端のピーク電圧は、ツェナーダイオード116によりクランプされ、コンデンサ119には直流電圧Vdcが充電される。ダイオード117は、トランス115の2次巻線115bに誘起された電圧の波形における下端の電圧が出力される区間において、逆方向に電流が流れることを防止する目的で接続されている。抵抗121は出力端122の保護抵抗である。出力端122には、高電圧電源により動作させる負荷が接続される。負荷は、例えば、プリンタ300の帯電部317、現像部312、転写部318等である。
パルス信号CLKの論理がローレベルからハイレベルに遷移すると、トランス115の2次巻線115bにはパルス信号CLKの論理がローレベルのときとは逆向きの電圧が誘起される。このときトランス115の2次巻線115bに生じる電流は、コンデンサ119、GND、コンデンサ131、ダイオード130、抵抗120を介して流れる。ダイオード130は、カソード端子にトランス115の一端が接続されている。
ここで、ダイオード130、コンデンサ131、135、抵抗132、133、134は、トランス115の出力電圧の波形の下端のピーク電圧をホールドすることにより電圧を検知する第1の回路として機能する電圧検知回路155である。なお、電圧検知回路155は、トランス115の出力電圧の波形の下端又は上端のいずれか一方のピーク電圧をホールドしてもよいし、下端及び上端の両方のピーク電圧をホールドする回路でもよい。トランス115の出力電圧の波形の下端のピーク電圧(以下、下端ピーク電圧という)は、第1のダイオードであるダイオード130、第2のコンデンサであるコンデンサ131により整流、平滑される。整流、平滑された電圧は、抵抗132、133、134により分圧され、分圧された電圧は、オペアンプ136の非反転入力端子に入力される。電源電圧V2は、電圧検知回路155用の電源電圧である。直列に接続された抵抗132と抵抗134は、第1の抵抗として機能する。直列に接続された抵抗132、134は、コンデンサ131に並列に接続されている。コンデンサ131と抵抗132、134の一方の接続点はダイオード130のアノード端子に接続され、コンデンサ131と抵抗132、134の他方の接続点は接地されている。
CPU101はパルス信号PWMを出力している。CPU101から出力されたパルス信号PWMは、抵抗137、コンデンサ138により平滑され、平滑された直流電圧はオペアンプ136の反転入力端子に入力されている。CPU101は、パルス信号PWMのデューティーを変化させることで、オペアンプ136の反転入力端子に入力される直流電圧を変化させることができる。コンデンサ139はオペアンプ136の出力電圧を安定させるためのコンデンサである。オペアンプ136は反転入力端子と非反転入力端子とにそれぞれ入力された電圧が等しくなるように、出力電圧を制御する。すなわち、オペアンプ136は、下端ピーク電圧を一定電圧とするようにフィードバック制御を行っている。CPU101から出力されるパルス信号PWMのデューティーを変化させることで、下端ピーク電圧を変化させることができる。
[高電圧電源の出力停止時の動作]
図1(b)の高電圧電源について、高電圧の出力を停止する際(出力オフ時)の動作を説明する。実施例1では、プリンタ300で使用する高電圧回路を想定しており、出力端122はトランス115の2次側と比べて高インピーダンスとなっている。図2は高電圧の出力を停止する際のフローチャートを示しており、図3は高電圧の出力を停止する際の制御のタイムチャートを示している。図3(i)はパルス信号CLKのハイレベル、ローレベルを示しており、(ii)は図1(b)の高電圧電源の出力端122から出力される電圧の変動を示している。(ii)の細線は出力端122から出力される交流電圧を示し、太線は抵抗118の両端に発生する直流電圧Vdcを示している。横軸はいずれも時間を示している。
図3の領域C示すように、CPU101が所定のデューティーでパルス信号CLKを出力する区間では、交流電圧と直流電圧が重畳された高電圧が出力される。領域Cでは、CPU101は、直流電圧Vdcが例えばVとなるように(Vdc=V)、パルス信号CLKのデューティーを制御している。CPU101は、高電圧の出力を停止する際、S106以降の処理を実行する。これにより、領域Cの区間が終了し、領域Dの区間に遷移する。S106でCPU101は、直流電圧Vdcがゼロ電位となるように(Vdc=0)パルス信号CLKのデューティーを設定し、パルス信号CLKを出力する。ここで、CPU101は、直流電圧Vdcがゼロ電位となるようにパルス信号CLKのデューティーを設定している。しかし、CPU101は、領域Cの直流電圧VdcであるVよりも低い直流電圧V3(V3<V)となるようにパルス信号CLKのデューティーを設定してもよい。CPU101は、タイマ(不図示)をリセットしてスタートさせる。なお、実施例1では、パルス信号CLKのハイレベルのデューティー(以下、正デューティーという)を領域Cにおける45%から領域Dでは20%に変更した場合で説明する。
領域Dに示すように、パルス信号CLKの正デューティーを20%にすることで、直流電圧Vdcがゼロ電位に近づく。パルス信号CLKがローレベルのとき、コンデンサ119はトランス115の2次巻線115bに流れる電流で電荷が充電される一方で、コンデンサ131は抵抗132を介して電荷が放電される。また、パルス信号CLKがハイレベルのとき、コンデンサ131が充電される一方で、コンデンサ119は放電される。ここで、領域C、領域Dにおけるコンデンサ131は、パルス信号CLKがローレベルのときに放電された電荷を、パルス信号CLKがハイレベルのときに充電するという動作をしている。コンデンサ131には、トランス115の2次巻線115bに流れる電流だけでなく、コンデンサ119から放電された電荷も流れ込み、コンデンサ131は充電される。これは、一般的に抵抗118は、数MΩから数10MΩの定数で構成されるため、コンデンサ131を介した電流経路の方が抵抗118を介した電流経路よりもインピーダンスが低いからである。なお、前述したように出力端122は高インピーダンスとなっているため、出力端122を介した電流経路に電流はほぼ流れない。その結果、従来例ではコンデンサ119の電荷が抵抗118を介して放電されるのに対し、実施例1では、抵抗118より低インピーダンスのコンデンサ131を介した電流経路で、コンデンサ119の電荷が放電される。このため、実施例1の構成の方が従来例よりトランス115の2次側に充電された電荷を早く放電することができ、直流電圧Vdcの立下りが早くなる。
S107でCPU101は、タイマを参照することにより、パルス信号CLKのデューティーを切り替えてから、所定の時間Yミリ秒が経過したか否かを判断する。S107でCPU101は、所定の時間Yミリ秒が経過していないと判断した場合、処理をS107に戻し、所定の時間Yミリ秒が経過したと判断した場合、処理をS108に進める。S108でCPU101は、パルス信号CLKの論理をハイレベルに固定する。CPU101は、タイマをリセットしてスタートさせる。ここで、所定の時間Yは、あらかじめパルス信号CLKの正デューティーを、例えば45%から20%に切り替えたときに、直流電圧Vdcがゼロ電位になる時間を見積もっておき、見積もった時間に基づき最適な値に設定される。パルス信号CLKの論理がハイレベルに固定されると、領域Dから領域Eに遷移する。
S109でCPU101は、タイマを参照することにより、領域Dから領域Eに遷移してから所定の時間Zミリ秒が経過したか否かを判断する。S109でCPU101は、所定の時間Zミリ秒が経過していないと判断した場合、処理をS109に戻し、所定の時間Zミリ秒が経過したと判断した場合、処理をS110に進める。S110でCPU101は、高電圧の出力が停止したと判断し、処理を終了する。所定の時間Zは、あらかじめパルス信号CLKの正デューティーを、例えば20%からハイレベルに固定したときに、交流電圧がゼロ電位になる時間を見積もっておき、見積もった時間に基づき最適な値に設定される。なお、図3の所定の時間Y、Zはあくまで設定値であるため、コンデンサ119に充電された電荷が放電される時間のマージンを取るために、十分長い時間に設定してもよい。また、製品仕様上許容される範囲であれば、コンデンサ119の電荷の放電が終了する前の時間に設定してもよい。
[感光ドラムの削れ量の改善]
実施例1において、交流電圧のピークトゥピーク電圧(上端電圧−下端電圧)を1500V、直流電圧Vdcを−375V、抵抗118、132を10MΩ、コンデンサ119を4700pF、コンデンサ131を2200pFにそれぞれ設定する。このような設定値の場合、従来例における図9の領域Bは180ミリ秒、実施例1の図3の領域Dは17ミリ秒となる。実施例1の構成では、高電圧の出力停止を指示してから高電圧の出力が実際に停止されるまでの時間を、従来例よりも163ミリ秒短縮することができる。なお、上述した構成は実施例1を説明するための一例であり、実施例1の回路設定に限定されない。
実施例1の高電圧電源を画像形成装置の交流現像回路に適用した場合の効果を説明する。一例として、ある画像形成装置の動作シーケンスを考える。シート1枚をプリントするために帯電電圧を従来よりも163ミリ秒早く停止させた場合、シート1枚あたりの感光ドラム311の削れ量は、従来の削れ量に比べて2.2%改善できることが確認されている。寿命まで20000枚を印刷できる感光ドラム311において、シート1枚当たりの削れ量が従来の削れ量に比べて2.2%改善できた場合、163ミリ秒の時間の短縮により、20440枚のプリントを実行することができる。つまり、プリントの実行枚数にして440枚分、感光ドラム311の寿命を延長させることができる。
以上のような制御を実施することで、従来の制御よりも早く高電圧出力をゼロ電位に近づけることができる。その結果、直流重畳交流高電圧回路を有する画像形成装置においては、交流帯電電圧の印加時間を短縮することができ、感光体の寿命を延長することができる。なお、高電圧を生成するためのパルス信号CLKのデューティーを、直流電圧Vdcをゼロ電位又は直流電圧Vdcよりも低い電位に設定することで高電圧出力の停止を早くする制御を実施する構成は、実施例1の回路構成に限定されない。以上、実施例1によれば、交流電圧に直流電圧を重畳した交流電圧を生成する高電圧電源において、高電圧電源を停止させる際の出力電圧の立下りに要する時間を短縮することができる。
図4に実施例2を説明するための高電圧電源の回路図を示す。図4の高電圧電源は、交流電圧を生成する昇圧トランスと、直流電圧を生成する昇圧トランスとを、独立に設けた回路である。実施例2の高電圧電源は、両方の昇圧トランスの2次側を接続することで、直流重畳交流高電圧を生成している。図4の動作を説明する。図1(b)と同一部分においては同一符号を付し、図1(b)と同じ回路の詳細な説明は省略する。
[高電圧電源]
CPU101はパルス信号CLKの出力、停止、デューティーに加え、パルス信号CLK2の出力、停止、デューティーを制御する。CPU101は、所定のデューティーのパルス信号CLK2を出力することで、抵抗501を介してFET503のスイッチング動作を行う。トランス506は1次巻線と2次巻線を有し、所定の直流電圧を生成する第2の生成手段として機能する。トランス506の2次巻線には、第1のコンデンサであるコンデンサ508が接続されている。コンデンサ508には、第2の抵抗である抵抗509が並列に接続されている。コンデンサ508と抵抗509の一方の接続点はトランス115の2次巻線115bの他端に接続され、コンデンサ508と抵抗509の他方の接続点は接地されている。FET503がオンしたとき、トランス506の1次巻線には抵抗502を介して電源電圧V1から電流が流れ込み、トランス506の1次巻線が励磁される。トランス506の1次巻線が励磁されると、トランス506の2次巻線には、1次巻線と2次巻線との巻数比に応じた電圧が誘起される。ただし、ダイオード507により電流が流れる方向が制限されるため、トランス506の2次側には電流は流れない。
パルス信号CLK2のデューティーで決まる時間によりパルス信号CLK2の論理がハイレベルからローレベルに遷移すると、FET503がオフする。トランス506の1次側では、トランス506の回生電流がダイオード505、トランス506を介してコンデンサ504に流れ込み、回生電流がコンデンサ504に充電される。一方、トランス506の2次巻線には、FET503がオンしたときとは逆向きの電圧が誘起され、トランス506の2次側には、コンデンサ508と抵抗509を介してダイオード507に電流が流れる。このとき、コンデンサ508に充電される電荷は、高電圧電源の直流電圧Vdcとして生成される。
コンデンサ508の一端は、ダイオード507のアノードに接続され、他端はGNDに接続されている。コンデンサ508に充電された直流電圧Vdcは、交流電圧を生成するトランス115を介して出力端122から出力される。なお、第1のダイオードであるダイオード130、第2のコンデンサであるコンデンサ131、第1の抵抗である抵抗132は、トランス115の2次巻線115bに発生した交流電圧の波形の下端電圧をクランプする回路であり、第1の回路として機能する。ダイオード130は、トランス115の一端にカソード端子が接続されている。抵抗132は、コンデンサ131に並列に接続されている。コンデンサ131と抵抗132の一方の接続点はダイオード130のアノード端子に接続され、コンデンサ131と抵抗132の他方の接続点は接地されている。
実施例2では、コンデンサ131と抵抗132は、実施例1のような電圧検知回路155としてではなく、直流電圧Vdcが充電されているコンデンサ508の電荷を早く放電させるための機能を果たしている。また、図4の回路では、トランス115の2次巻線115bに発生した交流電圧の波形の上端電圧をクランプするツェナーダイオード116と、ダイオード117は接続されていない。以上説明したように図4の回路構成では、交流電圧と直流電圧を独立したトランスを用いて生成し、直流電圧を交流電圧に重畳することで直流重畳交流電圧を生成している。
[高電圧電源の出力停止時の動作]
上述した回路について、高電圧出力を停止する際の動作を説明する。実施例2では、プリンタ300で使用する高電圧回路を想定しており、出力端122はトランス115の2次側と比べて高インピーダンスとなっている。図5は高電圧の出力を停止させる際のフローチャートを示しており、図6は高電圧の出力を停止させる際の制御のタイムチャートを示している。図6(i)はパルス信号CLKのハイレベル、ローレベルを示しており、(ii)はパルス信号CLK2のハイレベル、ローレベルを示している。図6(iii)は図4の高電圧電源の出力端122の電圧の変動を示している。(iii)で、細線は高電圧出力の交流電圧を示し、太線は高電圧出力の直流電圧Vdcを示している。横軸はいずれも時間を示している。
図6の領域C示すように、CPU101が所定のデューティーでパルス信号CLK、CLK2をそれぞれ出力すると、交流電圧と直流電圧Vdcが重畳された高電圧が出力される。領域Cでは、CPU101は、直流電圧Vdcが例えばVとなるように(Vdc=V)、パルス信号CLK2のデューティーを設定している。CPU101が高電圧電源からの出力を停止する処理を開始すると、領域Cから領域Dの区間に遷移する。S206でCPU101は、パルス信号CLKを直流電圧Vdcがゼロ電位となるようなデューティーに設定し、パルス信号CLK2の論理をローレベルに固定する。ここで、実施例1と同様に、CPU101は、領域Cの直流電圧VdcであるVよりも低い直流電圧V3(V3<V)となるようにパルス信号CLKのデューティーを設定してもよい。CPU101は、タイマをリセットしてスタートさせる。実施例2では、パルス信号CLKの正デューティーを、例えば45%から20%に変更する。領域Dに示すように、パルス信号CLKの正デューティーを20%にすることで、直流電圧Vdcがゼロ電位に近づく。従来の高電圧の出力を停止する際の動作は、パルス信号CLK、CLK2を高電圧の出力を停止させる際の論理に固定するだけである。すなわち、従来の制御では、パルス信号CLKをハイレベルに固定し、パルス信号CLK2をローレベルに固定するだけである。そのため、従来の高電圧電源では、図9の領域Bと同じように、トランス506で生成される直流電圧Vdcは抵抗509を介して放電される。
一方、実施例2の高電圧の出力を停止させる際は、トランス115が所定のデューティー設定で動作している。パルス信号CLKの論理がハイレベルのとき、トランス115のプッシュプル型の駆動回路150はプル動作をしている。このとき、トランス115の2次側に流れる電流は、コンデンサ508、GND、コンデンサ131、ダイオード130を介して流れるが、2次側に流れる電流だけでなく、コンデンサ508から放電された電流も流れる。なお、前述したように出力端122は高インピーダンスとなっているため、出力端122を介した電流経路に電流はほぼ流れない。その結果、従来の高電圧電源ではコンデンサ508の電荷が抵抗509を介して放電されるのに対し、実施例2では、抵抗509より低インピーダンスのコンデンサ131側の電流経路で、コンデンサ508に充電された電荷が放電される。このため、実施例2の構成の方が、従来よりも早くコンデンサ508の電荷を放電することができる。
S207でCPU101は、タイマを参照することにより、所定の時間Nミリ秒が経過したか否かを判断する。S207でCPU101は、所定の時間Nミリ秒が経過していないと判断した場合、処理をS207に戻し、所定の時間Nミリ秒が経過したと判断した場合、処理をS208に進める。S208でCPU101は、パルス信号CLKの論理をハイレベルに固定し、タイマをリセットしてスタートさせる。ここで、所定の時間Nミリ秒は、あらかじめパルス信号CLKの正デューティーを45%から20%に切り替えたときに直流電圧Vdcがゼロ電位になる時間を見積もっておき、見積もった値に基づき最適な値に設定される。パルス信号CLKの論理をハイレベルに固定すると、領域Dから領域Eに遷移する。
S209でCPU101は、タイマを参照することにより、所定の時間Kミリ秒が経過したか否かを判断する。S209でCPU101は、所定の時間Kミリ秒が経過していないと判断した場合、処理をS209に戻し、所定の時間Kミリ秒が経過したと判断した場合、処理をS210に進める。S210でCPU101は、高電圧の出力が停止されたと判断し、処理を終了する。所定の時間Kミリ秒は、あらかじめパルス信号CLKの正デューティーが20%からハイレベルに固定されたときの交流電圧がゼロ電位になる時間を見積もっておき、見積もった時間に基づき最適な値に設定される。なお、図5で示す所定の時間N、Kはあくまで設定値であるため、コンデンサ508の電荷が放電される時間のマージンを取るために、十分長い時間に設定してもよい。また、製品仕様上、許容範囲であれば、コンデンサ508の電荷の放電が終了する前の時間に設定してもよい。
実施例2では、交流電圧のピークトゥピーク電圧(上端電圧−下端電圧)を1500V、直流電圧Vdcを−375V、抵抗509、132を10MΩ、コンデンサ508を4700pF、コンデンサ131を2200pFと設定する。この結果、従来における領域Bに相当する時間は180ミリ秒、図6の領域Dは10ミリ秒となり、実施例2の制御は従来の制御より170ミリ秒時間を短縮することができる。なお、上述した構成は、実施例2を説明するための一例であり、実施例2の回路設定に限定されない。また、実施例2の高電圧電源を画像形成装置の交流現像回路に適用した場合も、実施例1と同様の効果を得ることができる。
以上のような制御を実施することで、パルス信号CLKをハイレベルに固定する場合よりも早く高電圧の出力電圧をゼロ電位に近づけることができる。これにより、交流高電圧回路を有する画像形成装置においては、感光体の寿命を延長することができる。なお、高電圧生成のパルス信号のデューティーを、直流電圧Vdcをゼロ電位又は直流電圧Vdcよりも低い電位に設定することで高電圧出力の停止を早める制御を実施する構成は、実施例2の回路構成に限定されない。以上、実施例2によれば、交流電圧に直流電圧を重畳した交流電圧を生成する高電圧電源において、高電圧電源を停止させる際の出力電圧の立下りに要する時間を短縮することができる。
なお、実施例1の図1の回路構成において、直流電圧Vdcを生成する回路を実施例2の図4の直流電圧Vdcを生成する回路のように構成してもよい。また、実施例2の図4の回路構成において、直流電圧Vdcを生成する回路を実施例1の図1の直流電圧Vdcを生成する回路のように構成してもよい。このように構成した場合でも、実施例1、実施例2と同様の効果を得ることができる。
101 CPU
115 トランス
118 抵抗
119 コンデンサ
131 コンデンサ
155 電圧検知回路

Claims (9)

  1. 1次巻線と2次巻線とを有する第1のトランスを有し、前記第1のトランスの2次巻線の一端から交流電圧を生成する第1の生成手段と、
    前記第1のトランスの2次巻線の他端に接続された第1のコンデンサを有し、直流電圧を生成する第2の生成手段と、
    前記第1の生成手段及び前記第2の生成手段を制御する制御手段と、
    を有し、前記第1の生成手段により生成された交流電圧と前記第2の生成手段により生成された直流電圧とを重畳した出力電圧を出力する電源装置であって、
    第2のコンデンサを有し、前記第1のトランスの2次巻線の前記一端に接続された第1の回路を有し、
    前記制御手段は、前記出力電圧の出力を停止させる際に、前記第1のコンデンサの両端の電圧が、前記第2の生成手段により生成されている第1の直流電圧よりも低い第2の直流電圧となるように前記第1の生成手段を制御し、その後、前記第1の生成手段を停止させることを特徴とする電源装置。
  2. 前記第1のトランスを駆動する駆動手段を有し、
    前記制御手段は、前記第1のトランスを駆動するためのパルス信号を前記駆動手段に出力し、
    前記出力電圧の出力を停止させる際に、前記第1のコンデンサの両端の電圧が前記第2の直流電圧となるように前記パルス信号のデューティーを調整し、その後、前記パルス信号の論理を前記第1の生成手段を停止させる論理に固定することを特徴とする請求項1に記載の電源装置。
  3. 前記第1の回路は、前記出力電圧の波形の上端の電圧と前記出力電圧の波形の下端の電圧とのいずれか一方、又は前記出力電圧の波形の上端の電圧と前記出力電圧の波形の下端の電圧との両方をホールドする回路であることを特徴とする請求項1又は請求項2に記載の電源装置。
  4. 前記第1の回路は、前記第1のトランスの前記一端にカソード端子が接続された第1のダイオードを有することを特徴とする請求項3に記載の電源装置。
  5. 前記第2のコンデンサに並列に接続された第1の抵抗を有し、
    前記第2のコンデンサと前記第1の抵抗の一方の接続点は前記第1のダイオードのアノード端子に接続され、前記第2のコンデンサと前記第1の抵抗の他方の接続点は接地されていることを特徴とする請求項4に記載の電源装置。
  6. 前記第1の抵抗は、直列に接続された2つの抵抗であることを特徴とする請求項5に記載の電源装置。
  7. 前記第2の生成手段は、前記第1のコンデンサに並列に接続された第2の抵抗を有し、
    前記第1のコンデンサと前記第2の抵抗の一方の接続点は前記第1のトランスの2次巻線の他端に接続され、前記第1のコンデンサと前記第2の抵抗の他方の接続点は接地されていることを特徴とする請求項1から請求項6のいずれか1項に記載の電源装置。
  8. 前記第2の生成手段は、1次巻線と2次巻線とを有する第2のトランスを有し、
    前記第2のトランスの2次巻線に接続された前記第1のコンデンサと、前記第1のコンデンサに並列に接続された第2の抵抗と、を有し、
    前記第1のコンデンサと前記第2の抵抗の一方の接続点は前記第1のトランスの前記他端に接続され、前記第1のコンデンサと前記第2の抵抗の他方の接続点は接地されていることを特徴とする請求項1から請求項6のいずれか1項に記載の電源装置。
  9. 感光体と、
    前記感光体を帯電する帯電手段と、
    前記帯電手段により帯電された前記感光体に静電潜像を形成する露光手段と、
    前記露光手段により形成された静電潜像をトナーにより現像しトナー像を形成する現像手段と、
    前記現像手段により形成されたトナー像を被転写体に転写する転写手段と、
    前記帯電手段、前記現像手段及び前記転写手段の少なくとも1つに交流電圧を供給する請求項1から請求項8のいずれか1項に記載の電源装置と、
    を備えることを特徴とする画像形成装置。
JP2016202968A 2016-10-14 2016-10-14 電源装置及び画像形成装置 Active JP6808438B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016202968A JP6808438B2 (ja) 2016-10-14 2016-10-14 電源装置及び画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016202968A JP6808438B2 (ja) 2016-10-14 2016-10-14 電源装置及び画像形成装置

Publications (2)

Publication Number Publication Date
JP2018063674A true JP2018063674A (ja) 2018-04-19
JP6808438B2 JP6808438B2 (ja) 2021-01-06

Family

ID=61967881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016202968A Active JP6808438B2 (ja) 2016-10-14 2016-10-14 電源装置及び画像形成装置

Country Status (1)

Country Link
JP (1) JP6808438B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4105722A3 (en) * 2021-06-17 2023-05-31 Canon Kabushiki Kaisha Power supply apparatus and image forming apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4105722A3 (en) * 2021-06-17 2023-05-31 Canon Kabushiki Kaisha Power supply apparatus and image forming apparatus
US11841666B2 (en) 2021-06-17 2023-12-12 Canon Kabushiki Kaisha Power supply apparatus for supplying various voltages and image forming apparatus operating on voltage supplied from power supply apparatus

Also Published As

Publication number Publication date
JP6808438B2 (ja) 2021-01-06

Similar Documents

Publication Publication Date Title
US9904232B2 (en) Power supply apparatus and image forming apparatus
US8213823B2 (en) High-voltage power supply device and image forming apparatus including the same
US20140293659A1 (en) High-voltage generating apparatus, high-voltage power supply, and image forming apparatus
JP6727806B2 (ja) 電源装置及び画像形成装置
JP6808438B2 (ja) 電源装置及び画像形成装置
EP2003510A1 (en) Power supply device and image forming apparatus having the same
JP6448305B2 (ja) 電源装置および画像形成装置
JP2011232450A (ja) 画像形成装置
JP6700695B2 (ja) 電源装置及び画像形成装置
JP2017200303A (ja) 高圧電源装置及び画像形成装置
US10379457B2 (en) Image forming apparatus
JP5012846B2 (ja) 画像形成装置および帯電器用電源
JP2020188583A (ja) 電源装置および画像形成装置
JP6765906B2 (ja) 高圧発生装置及び画像形成装置
JP2020122843A (ja) 画像形成装置および制御方法
JP6562618B2 (ja) 電源装置及び画像形成装置
US20220181976A1 (en) Power supply apparatus and image forming apparatus
JP7114350B2 (ja) 電源装置及び画像形成装置
JP2022077437A (ja) 画像形成装置
JP2011215373A (ja) 画像形成装置
JPH10201230A (ja) 直流高電圧電源の駆動回路
JP2016226158A (ja) 電源及び画像形成装置
JP2021092625A (ja) 画像形成装置
JP2022084376A (ja) 高圧電源装置、画像形成装置
JP4590250B2 (ja) 高圧電源装置

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20171201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201209

R151 Written notification of patent or utility model registration

Ref document number: 6808438

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151