JP2018059648A - Dual heat pump device - Google Patents

Dual heat pump device Download PDF

Info

Publication number
JP2018059648A
JP2018059648A JP2016196135A JP2016196135A JP2018059648A JP 2018059648 A JP2018059648 A JP 2018059648A JP 2016196135 A JP2016196135 A JP 2016196135A JP 2016196135 A JP2016196135 A JP 2016196135A JP 2018059648 A JP2018059648 A JP 2018059648A
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
refrigeration circuit
heat exchanger
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016196135A
Other languages
Japanese (ja)
Other versions
JP6692083B2 (en
Inventor
明広 重田
Akihiro Shigeta
明広 重田
誠之 飯高
Masayuki Iidaka
誠之 飯高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2016196135A priority Critical patent/JP6692083B2/en
Publication of JP2018059648A publication Critical patent/JP2018059648A/en
Application granted granted Critical
Publication of JP6692083B2 publication Critical patent/JP6692083B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a dual heat pump device that can prevent liquid return to an air conditioning compressor by absorbing a surplus of an air conditioning refrigerant, and can improve reliability of equipment.SOLUTION: A dual heat pump device comprises: a first refrigerating circuit that connects a compressor, a condenser, first throttling means, and an evaporator with a pipe, and circulates a first refrigerant; a second refrigerating circuit that circulates a second refrigerant, and exchanges heat with the first refrigerant in the evaporator; and a heat medium circuit that circulates a heat medium, and exchanges heat with the first refrigerant in the condenser. A liquid receiver 19 and second throttling means 20 are sequentially connected to the second refrigerating circuit on the side of an outlet of the evaporator.SELECTED DRAWING: Figure 1

Description

本発明は、二元冷凍サイクルの低段側サイクルにおいて、端末の運転状況によって回路内を循環する冷媒量を調整する二元ヒートポンプ装置に関するものである。   The present invention relates to a binary heat pump device that adjusts the amount of refrigerant circulating in a circuit according to the operating state of a terminal in a low-stage cycle of a binary refrigeration cycle.

従来、空調用冷凍サイクルと、給湯用冷凍サイクルと、熱媒体回路とを備えた二元ヒートポンプ装置が知られている。
このような二元ヒートポンプ装置として、例えば、空調用圧縮機、流路切替手段、室外熱交換器、室内熱交換器および空調用絞り手段が直列に接続されているとともに、冷媒−冷媒熱交換器および給湯熱源用絞り手段が直列に接続されて室内熱交換器および空調用絞り手段に並列に接続されている第1冷媒回路に空調用冷媒を循環させる空調用冷凍サイクルと、給湯用圧縮機、熱媒体−冷媒熱交換器、給湯用絞り手段および冷媒−冷媒熱交換器が直列に接続されている第2冷媒回路に給湯用冷媒を循環させる給湯用冷凍サイクルと、を備え、空調用冷凍サイクルと給湯用冷凍サイクルとを、冷媒−冷媒熱交換器で、空調用冷媒と給湯用冷媒とが熱交換を行なうように接続するようにした技術が開示されている(例えば、特許文献1を参照)。
Conventionally, a dual heat pump apparatus including an air conditioning refrigeration cycle, a hot water supply refrigeration cycle, and a heat medium circuit is known.
As such a dual heat pump device, for example, a compressor for air conditioning, a flow path switching means, an outdoor heat exchanger, an indoor heat exchanger, and a throttle means for air conditioning are connected in series, and a refrigerant-refrigerant heat exchanger An air-conditioning refrigeration cycle for circulating air-conditioning refrigerant in a first refrigerant circuit connected in series to a hot water supply heat source throttle means and connected in parallel to the indoor heat exchanger and the air-conditioning throttle means, and a hot water supply compressor, A hot water supply refrigeration cycle that circulates the hot water supply refrigerant in a second refrigerant circuit in which the heat medium-refrigerant heat exchanger, the hot water supply throttling means, and the refrigerant-refrigerant heat exchanger are connected in series. And a hot water supply refrigeration cycle are connected by a refrigerant-refrigerant heat exchanger so that the air conditioning refrigerant and the hot water supply refrigerant exchange heat (see, for example, Patent Document 1). ).

国際公開WO2009/098751号公報International Publication WO2009 / 098751

一般的に、冷媒−冷媒熱交換器は室内熱交換器のような空気−冷媒熱交換器と比べて熱伝達率が高くなるので、同一能力の場合に必要な伝熱面積が小さくなり、熱交換器の体積が小さくなる。
また、熱媒体回路において温水を生成する場合、入水温度の上昇によって熱媒体−冷媒熱交換器でのエンタルピ差が小さくなって加熱能力が減少するため、冷媒−冷媒熱交換器の体積を必要以上に大きくすることができない。
Generally, a refrigerant-refrigerant heat exchanger has a higher heat transfer coefficient than an air-refrigerant heat exchanger such as an indoor heat exchanger. The volume of the exchanger is reduced.
When hot water is generated in the heat medium circuit, the enthalpy difference in the heat medium-refrigerant heat exchanger is reduced due to an increase in the incoming water temperature and the heating capacity is reduced, so the volume of the refrigerant-refrigerant heat exchanger is more than necessary. I can't make it bigger.

しかしながら、前記従来の構成では、一般的には、空調用冷凍サイクルには、空調用冷凍サイクルの全熱交換器、すなわち、室外熱交換器と、室内熱交換器と、冷媒−冷媒熱交換器とが使用される全端末が運転した場合でも、空調用冷媒が不足しないように充填されており、端末の運転台数が少ない場合には冷媒の余剰が生じる。
特に、給湯用冷凍サイクルでの給湯用熱媒体の加熱運転のみを行う場合に、入水温度が上昇すると、空調用冷媒の余剰が過多となって、冷媒−冷媒熱交換器の体積では空調用冷媒の余剰が吸収できずに蒸発圧力が上昇し、空調用圧縮機に吸入される空調用冷媒の過熱度が小さくなることで、空調用圧縮機への液戻りにつながって機器の信頼性が低下するという課題を有していた。
However, in the conventional configuration, generally, the air-conditioning refrigeration cycle includes a total heat exchanger of the air-conditioning refrigeration cycle, that is, an outdoor heat exchanger, an indoor heat exchanger, and a refrigerant-refrigerant heat exchanger. Even when all the terminals that are used are operated, the air-conditioning refrigerant is charged so as not to be insufficient, and when the number of operating terminals is small, a surplus of refrigerant occurs.
In particular, when only the heating operation of the hot water supply heat medium in the hot water supply refrigeration cycle is performed, if the incoming water temperature rises, the surplus of air conditioning refrigerant becomes excessive, and the volume of the refrigerant-refrigerant heat exchanger causes the air conditioning refrigerant. The excess of the gas cannot be absorbed, the evaporation pressure rises, and the degree of superheat of the air-conditioning refrigerant sucked into the air-conditioning compressor decreases, leading to liquid return to the air-conditioning compressor and lowering the reliability of the equipment Had the problem of doing.

本発明は前記した点に鑑みてなされたものであり、空調用冷媒の余剰を吸収して、空調用圧縮機への液戻りを防止することができ、機器の信頼性を向上させることのできる二元ヒートポンプ装置を提供することを目的とする。   The present invention has been made in view of the above points, and can absorb the surplus of the air conditioning refrigerant, prevent liquid return to the air conditioning compressor, and improve the reliability of the device. An object is to provide a dual heat pump device.

前記目的を達成するため、本発明の二元ヒートポンプ装置は、圧縮機、凝縮器、第1絞り手段および蒸発器を配管で接続し、第1冷媒を循環させる第1冷凍回路と、第2冷媒を循環させ、前記蒸発器で前記第1冷媒と熱交換を行う第2冷凍回路と、熱媒体を循環させ、前記凝縮器で前記第1冷媒と熱交換を行う熱媒体回路と、を備え、前記第2冷凍回路の前記蒸発器の出口側に受液器および第2絞り手段を順次に接続したことを特徴とする。
この発明よれば、第1冷凍回路において、熱媒体の加熱運転のみを行う場合に、蒸発器から流出した液状態の第2冷媒を受液器に貯留することができ、蒸発器において第2冷媒の保有量が変化した場合でも、第2絞り手段の手前で貯留することとなり、第2冷凍回路を循環する第2冷媒の量を低減させ、第2圧縮機に吸入される第2冷媒の密度を低下させるので、第2圧縮機に吸入される第2冷媒の圧力(蒸発圧力)の上昇を抑制することができる。
In order to achieve the above object, a binary heat pump device according to the present invention includes a first refrigeration circuit that connects a compressor, a condenser, a first throttling means, and an evaporator with piping to circulate the first refrigerant, and a second refrigerant. A second refrigeration circuit that exchanges heat with the first refrigerant in the evaporator, and a heat medium circuit that circulates a heat medium and exchanges heat with the first refrigerant in the condenser, A liquid receiver and a second throttle means are sequentially connected to the outlet side of the evaporator of the second refrigeration circuit.
According to the present invention, when only the heating operation of the heat medium is performed in the first refrigeration circuit, the liquid second refrigerant flowing out of the evaporator can be stored in the liquid receiver, and the second refrigerant in the evaporator Even if the retained amount of the refrigerant has changed, the amount of the second refrigerant circulating in the second refrigeration circuit is reduced and the density of the second refrigerant sucked into the second compressor is stored before the second throttling means. Therefore, it is possible to suppress an increase in the pressure (evaporation pressure) of the second refrigerant sucked into the second compressor.

本発明の二元ヒートポンプ装置によれば、室内熱交換器のような空気−冷媒熱交換器を有する空調端末と並列して蒸発器のような冷媒−冷媒熱交換器を有する二元冷凍サイクルで熱媒体を加熱運転する時に、凝縮器に流入する熱媒体の温度が上昇して第1冷凍回路での熱媒体の加熱能力が低下し、蒸発器で余剰な第2冷媒が生じるような、第1冷凍回路にて熱媒体の加熱運転のみを行う場合でも、第2冷凍回路の蒸発圧力の上昇を抑制することができ、第2圧縮機への第2冷媒の液戻りを抑制して、機器の信頼性を向上させることができる。   According to the dual heat pump device of the present invention, in a dual refrigeration cycle having a refrigerant-refrigerant heat exchanger such as an evaporator in parallel with an air conditioning terminal having an air-refrigerant heat exchanger such as an indoor heat exchanger. When the heating medium is heated, the temperature of the heating medium flowing into the condenser rises, the heating capacity of the heating medium in the first refrigeration circuit decreases, and an excess second refrigerant is generated in the evaporator. Even when only the heating operation of the heat medium is performed in one refrigeration circuit, an increase in the evaporation pressure of the second refrigeration circuit can be suppressed, and the liquid return of the second refrigerant to the second compressor can be suppressed. Reliability can be improved.

本発明の第1実施形態における二元ヒートポンプ装置の回路図。The circuit diagram of the binary heat pump apparatus in 1st Embodiment of this invention. 本発明の第1実施形態における二元ヒートポンプ装置の第1冷凍回路にて熱媒体の加熱運転のみを行う場合の回路図。The circuit diagram in the case of performing only the heating operation of a heat medium in the 1st freezing circuit of the binary heat pump apparatus in 1st Embodiment of this invention. 本発明の第1実施形態における二元ヒートポンプ装置の第2冷凍回路を暖房運転し、第1冷凍回路にて熱媒体の加熱運転も行う場合の回路図。The circuit diagram in the case of heating operation of the 2nd freezing circuit of the binary heat pump apparatus in 1st Embodiment of this invention, and also performing the heating operation of a heat medium in a 1st freezing circuit. 本発明の第1実施形態における二元ヒートポンプ装置の第2冷凍回路を冷房運転し、第1冷凍回路にて熱媒体の加熱運転も行う場合の回路図。The circuit diagram at the time of carrying out the cooling operation of the 2nd freezing circuit of the binary heat pump apparatus in 1st Embodiment of this invention, and also performing the heating operation of a heat medium in a 1st freezing circuit. 本発明の第1実施形態における二元ヒートポンプ装置の第2冷凍回路を冷暖同時運転し、第1冷凍回路にて熱媒体の加熱運転も行う場合の回路図。The circuit diagram in case the 2nd freezing circuit of the binary heat pump apparatus in 1st Embodiment of this invention carries out the cooling-heating simultaneous operation, and also performs the heating operation of a heat medium in a 1st freezing circuit. 本発明の第1実施形態における二元ヒートポンプ装置の第2冷凍回路の室内熱交換器を変更して冷暖同時運転し、第1冷凍回路にて熱媒体の加熱運転も行う場合の回路図。The circuit diagram in the case of changing the indoor heat exchanger of the 2nd freezing circuit of the binary heat pump apparatus in 1st Embodiment of this invention, carrying out simultaneous cooling and heating operation, and also performing the heating operation of a heat medium in a 1st freezing circuit. 本発明の第1実施形態における第2絞り手段と第3絞り手段の制御を示すフローチャート。The flowchart which shows control of the 2nd aperture means and the 3rd aperture means in 1st Embodiment of this invention. 本発明の第2実施形態における第2冷凍回路中間圧力を用いた第3絞り手段の制御を示すフローチャート。The flowchart which shows control of the 3rd throttle means using the 2nd freezing circuit intermediate pressure in 2nd Embodiment of this invention. 本発明の第3実施形態における第2冷凍回路中間温度差を用いた第3絞り手段の制御を示すフローチャート。The flowchart which shows control of the 3rd aperture means using the 2nd freezing circuit intermediate temperature difference in 3rd Embodiment of this invention.

第1の発明は、圧縮機、凝縮器、第1絞り手段および蒸発器を配管で接続し、第1冷媒を循環させる第1冷凍回路と、第2冷媒を循環させ、前記蒸発器で前記第1冷媒と熱交換を行う第2冷凍回路と、熱媒体を循環させ、前記凝縮器で前記第1冷媒と熱交換を行う熱媒体回路と、を備え、前記第2冷凍回路の前記蒸発器の出口側に受液器および第2絞り手段を順次に接続したことを特徴とする二元ヒートポンプ装置である。   According to a first aspect of the present invention, a compressor, a condenser, a first throttle means, and an evaporator are connected by piping, a first refrigeration circuit that circulates a first refrigerant, a second refrigerant is circulated, and the evaporator uses the first refrigeration circuit. A second refrigeration circuit that exchanges heat with one refrigerant, and a heat medium circuit that circulates a heat medium and exchanges heat with the first refrigerant in the condenser, and the evaporator of the second refrigeration circuit A binary heat pump device characterized in that a liquid receiver and a second throttle means are sequentially connected to the outlet side.

これによれば、第1冷凍回路において、熱媒体の加熱運転のみを行う場合に、蒸発器から流出した液状態の第2冷媒を受液器に貯留することができ、蒸発器において第2冷媒の保有量が変化した場合でも、第2絞り手段の手前で貯留することとなり、第2冷凍回路を循環する第2冷媒の量を低減させ、第2圧縮機に吸入される第2冷媒の密度を低下させるので、第2圧縮機に吸入される第2冷媒の圧力(蒸発圧力)の上昇を抑制することができる。
これによって、室内熱交換器のような空気−冷媒熱交換器を有する空調端末と並列して蒸発器のような冷媒−冷媒熱交換器を有する二元冷凍サイクルで熱媒体を加熱運転する時に、凝縮器に流入する熱媒体の温度が上昇して第1冷凍回路での熱媒体の加熱能力が低下し、蒸発器で余剰な第2冷媒が生じるような、第1冷凍回路にて熱媒体の加熱運転のみを行う場合でも、第2冷凍回路の蒸発圧力の上昇を抑制することができ、第2圧縮機への第2冷媒の液戻りを抑制して、機器の信頼性を向上させることができる。
According to this, in the first refrigeration circuit, when only the heating operation of the heating medium is performed, the second refrigerant in the liquid state flowing out from the evaporator can be stored in the receiver, and the second refrigerant in the evaporator Even if the retained amount of the refrigerant has changed, the amount of the second refrigerant circulating in the second refrigeration circuit is reduced and the density of the second refrigerant sucked into the second compressor is stored before the second throttling means. Therefore, it is possible to suppress an increase in the pressure (evaporation pressure) of the second refrigerant sucked into the second compressor.
Thereby, when heating the heating medium in a dual refrigeration cycle having a refrigerant-refrigerant heat exchanger such as an evaporator in parallel with an air conditioning terminal having an air-refrigerant heat exchanger such as an indoor heat exchanger, The temperature of the heat medium flowing into the condenser rises, the heating capacity of the heat medium in the first refrigeration circuit decreases, and an excess second refrigerant is generated in the evaporator. Even when only the heating operation is performed, the increase in the evaporation pressure of the second refrigeration circuit can be suppressed, and the liquid return of the second refrigerant to the second compressor can be suppressed to improve the reliability of the device. it can.

第2の発明は、制御手段と、前記蒸発器と前記受液器との間に第3絞り手段とを備え、前記制御手段は、前記第1冷凍回路により前記熱媒体回路を循環する熱媒体の加熱運転のみを行う場合に、前記第2冷凍回路の前記蒸発器の出口側における前記第2冷媒の状態に応じて前記第2絞り手段の開度を制御することを特徴とする二元ヒートポンプ装置である。   The second invention includes a control means and a third throttle means between the evaporator and the liquid receiver, and the control means circulates the heat medium circuit by the first refrigeration circuit. In the case where only the heating operation is performed, the dual heat pump is characterized in that the opening degree of the second throttle means is controlled according to the state of the second refrigerant on the outlet side of the evaporator of the second refrigeration circuit. Device.

これによれば、室内熱交換器を利用して第2冷凍回路を空調運転し、第1冷凍回路において熱媒体の加熱運転を行っていて、途中で空調運転を停止した場合でも、第3絞り手段の開度を大きくすることで、受液器内の第2冷媒の圧力が上昇する。
従って、蒸発器出口の第2冷媒のエンタルピが一定の場合、受液器内の第2冷媒の密度が上昇し、受液器で貯留する第2冷媒の量が増加することとなり、第2冷凍回路を循環する第2冷媒の量が低減し、第2冷凍回路の蒸発圧力が低下することになる。
これによって、空調と熱媒体を加熱運転を同時に行っていて、空調が途中で停止して第2冷媒の余剰が生じる場合でも、確実に受液器に第2冷媒を貯留して第2冷凍回路の蒸発圧力の上昇を抑制し、第2圧縮機に吸入される第2冷媒の過熱度の低下を抑制することで、第2圧縮機への第2冷媒の液戻りを抑制して、機器の信頼性を向上することができる。
According to this, even if the air conditioning operation of the second refrigeration circuit is performed using the indoor heat exchanger, the heating medium heating operation is performed in the first refrigeration circuit, and the air conditioning operation is stopped halfway, the third throttle By increasing the opening of the means, the pressure of the second refrigerant in the liquid receiver increases.
Therefore, when the enthalpy of the second refrigerant at the outlet of the evaporator is constant, the density of the second refrigerant in the receiver increases, and the amount of the second refrigerant stored in the receiver increases. The amount of the second refrigerant circulating in the circuit is reduced, and the evaporation pressure of the second refrigeration circuit is lowered.
Thus, even when the air conditioning and the heating medium are simultaneously heated, even if the air conditioning is stopped halfway and surplus of the second refrigerant occurs, the second refrigerant is reliably stored in the liquid receiver. By suppressing the increase in the evaporation pressure of the second refrigerant and suppressing the decrease in the degree of superheat of the second refrigerant sucked into the second compressor, the liquid return of the second refrigerant to the second compressor is suppressed, Reliability can be improved.

第3の発明は、前記制御手段は、前記第3絞り手段を全開に制御した後、前記蒸発器の出口側における前記第2冷媒の過冷却度が所定範囲にあるか否かを判断し、前記第2冷媒の過冷却度が、所定範囲内にあると判断した場合は前記第2絞り手段の開度を維持し、所定範囲より大きいと判断した場合は前記第2絞り手段の開度を増加し、所定範囲より小さいと判断した場合は前記第2絞り手段の開度を減少するように制御することを特徴とする二元ヒートポンプ装置である。   In a third aspect of the invention, the control means determines whether or not the degree of supercooling of the second refrigerant on the outlet side of the evaporator is within a predetermined range after controlling the third throttling means to be fully opened. When it is determined that the degree of supercooling of the second refrigerant is within a predetermined range, the opening degree of the second throttle means is maintained, and when it is determined that the degree of supercooling is larger than the predetermined range, the opening degree of the second throttle means is set. The dual heat pump apparatus is characterized in that when it is determined that the opening degree of the second throttling means is decreased when it is increased and smaller than the predetermined range.

これによれば、蒸発器の出口側における第2冷媒の過冷却度に応じて、第2冷媒の冷媒量を制御することができる。   According to this, the refrigerant quantity of the second refrigerant can be controlled according to the degree of supercooling of the second refrigerant on the outlet side of the evaporator.

第4の発明は、前記第1冷媒は、二酸化炭素冷媒であることを特徴とする二元ヒートポンプ装置である。
これによれば、蒸発温度を臨界点以下とする場合、蒸発器での第2冷媒との温度差を大きくすることができる。したがって、第2冷媒の凝縮温度が同じ場合、蒸発温度が比較的高温となる冷媒(例えば、R134a)と比べて、蒸発器の出口における第2冷媒の過冷却度を大きくるすことが可能となる。
よって、蒸発器の出口における第2冷媒の密度が増加し、蒸発器の出口側の受液器に第2冷媒をより多く貯留することが可能となる。
また、第2冷凍回路の低圧側で外気からの吸熱量が減少して第2冷媒の余剰が多くなる、低外気温時に第1冷凍回路において、熱媒体の加熱運転のみが行われる場合でも、第2冷媒の密度を高めてより多くの第2冷媒を受液器に貯留して第2冷凍回路の蒸発圧力の上昇を抑制し、第2圧縮機に吸入される第2冷媒の過熱度の低下を抑制することで、第2圧縮機への第2冷媒の液戻りを抑制して、機器の信頼性を向上することができるとともに、高温かつ入水温度が高いところまで温水生成が可能となり、熱媒体貯留手段への熱媒体の蓄熱量を増加することができる。
A fourth invention is a dual heat pump device, wherein the first refrigerant is a carbon dioxide refrigerant.
According to this, when making evaporation temperature below a critical point, the temperature difference with the 2nd refrigerant | coolant in an evaporator can be enlarged. Therefore, when the condensation temperature of the second refrigerant is the same, it is possible to increase the degree of supercooling of the second refrigerant at the outlet of the evaporator as compared with a refrigerant (for example, R134a) having a relatively high evaporation temperature. Become.
Therefore, the density of the second refrigerant at the outlet of the evaporator increases, and it becomes possible to store more second refrigerant in the liquid receiver on the outlet side of the evaporator.
Further, even when only the heat medium heating operation is performed in the first refrigeration circuit at a low outside temperature, in which the amount of heat absorbed from the outside air decreases on the low pressure side of the second refrigeration circuit and the surplus of the second refrigerant increases. Increasing the density of the second refrigerant and storing more second refrigerant in the receiver to suppress the increase in the evaporation pressure of the second refrigeration circuit, and the degree of superheat of the second refrigerant sucked into the second compressor By suppressing the decrease, liquid return of the second refrigerant to the second compressor can be suppressed, the reliability of the equipment can be improved, and hot water can be generated up to a place where the temperature is high and the incoming water temperature is high. The amount of heat stored in the heat medium in the heat medium storage means can be increased.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によってこの発明が限定されるものではない。
(第1実施形態)
図1は本発明の第1実施形態における二元ヒートポンプ装置の冷媒と熱媒体の回路図を示すものである。図1において二元ヒートポンプ装置は、第1冷凍回路100と、第2冷凍回路102と、熱媒体回路104とから構成される。
第1冷凍回路100は、圧縮機1、凝縮器2、第1絞り手段3および蒸発器4を冷媒配管40で順次直列に接続して構成されている。第1冷凍回路100には、第1冷媒が循環される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments.
(First embodiment)
FIG. 1 shows a circuit diagram of the refrigerant and the heat medium of the dual heat pump apparatus in the first embodiment of the present invention. In FIG. 1, the dual heat pump apparatus includes a first refrigeration circuit 100, a second refrigeration circuit 102, and a heat medium circuit 104.
The first refrigeration circuit 100 is configured by sequentially connecting the compressor 1, the condenser 2, the first throttling means 3 and the evaporator 4 in series with a refrigerant pipe 40. A first refrigerant is circulated through the first refrigeration circuit 100.

また、圧縮機1の吐出側には、圧縮機1から吐出される第1冷媒の温度を検知する圧縮機吐出温度検知手段6が設けられており、圧縮機1の吸入側には、圧縮機1に吸入される第1冷媒の温度を検知する圧縮機吸入温度検知手段31が設けられている。さらに、圧縮機1の吸入側には、圧縮機1に吸入される第1冷媒の圧力を検知する圧縮機吸入圧力検知手段32が設けられている。さらに、蒸発器4には、第2冷凍回路102における蒸発器4の中間温度を検知する第2冷凍回路蒸発器中間温度検知手段30が設けられている。   A compressor discharge temperature detecting means 6 for detecting the temperature of the first refrigerant discharged from the compressor 1 is provided on the discharge side of the compressor 1, and a compressor is provided on the suction side of the compressor 1. Compressor suction temperature detection means 31 is provided for detecting the temperature of the first refrigerant sucked into 1. Further, on the suction side of the compressor 1, compressor suction pressure detection means 32 that detects the pressure of the first refrigerant sucked into the compressor 1 is provided. Further, the evaporator 4 is provided with second refrigeration circuit evaporator intermediate temperature detection means 30 for detecting the intermediate temperature of the evaporator 4 in the second refrigeration circuit 102.

蒸発器4は、第1冷媒と第2冷媒とを熱交換する冷媒−冷媒熱交換器であり、例えば、プレート熱交換器や二重管式熱交換器などが用いられる。
熱媒体回路104は、熱媒体貯留手段51と、例えば、ポンプなどからなる熱媒体搬送手段52と、凝縮器2とを熱媒体配管53で順次直列に接続して構成されており、熱媒体回路104には、熱媒体が循環される。
また、凝縮器2は、第1冷媒と熱媒体とを熱交換する熱媒体−冷媒熱交換器であり、例えば、プレート熱交換器や二重管式熱交換器、シェルチューブ熱交換器などが用いられる。
The evaporator 4 is a refrigerant-refrigerant heat exchanger that exchanges heat between the first refrigerant and the second refrigerant. For example, a plate heat exchanger or a double-pipe heat exchanger is used.
The heat medium circuit 104 is configured by sequentially connecting the heat medium storage means 51, the heat medium transport means 52 including, for example, a pump, and the condenser 2 in series with a heat medium pipe 53. In 104, a heat medium is circulated.
The condenser 2 is a heat medium-refrigerant heat exchanger that exchanges heat between the first refrigerant and the heat medium. For example, a plate heat exchanger, a double tube heat exchanger, a shell tube heat exchanger, or the like is used. Used.

第2冷凍回路102は、第2圧縮機11、室内空気と熱交換を行う室内熱交換器12a,12b、室内熱交換器12a,12bの一方の入口に配設された室内熱交換器用開閉手段13a,13b、13c、13d、室内熱交換器12a,12bの他方の入口に配設された室内熱交換器用絞り手段14a,14b、室外空気と熱交換を行う室外熱交換器15、室外熱交換器15の一方の入口に配設された室外熱交換器用開閉手段16a,16b、室外熱交換器15の他方の入口に配設された室外熱交換器用絞り手段17を第2冷媒配管41で直列に接続して構成されている。   The second refrigeration circuit 102 includes a second compressor 11, indoor heat exchangers 12a and 12b for exchanging heat with room air, and indoor heat exchanger opening / closing means disposed at one inlet of the indoor heat exchangers 12a and 12b. 13a, 13b, 13c, 13d, indoor heat exchanger throttling means 14a, 14b disposed at the other inlet of the indoor heat exchangers 12a, 12b, an outdoor heat exchanger 15 for exchanging heat with outdoor air, outdoor heat exchange The outdoor heat exchanger opening / closing means 16a, 16b disposed at one inlet of the condenser 15 and the outdoor heat exchanger throttle means 17 disposed at the other inlet of the outdoor heat exchanger 15 are connected in series by a second refrigerant pipe 41. Connected to and configured.

また、蒸発器4、第3絞り手段18、受液器19および第2絞り手段20が順次直列に接続されており、これら蒸発器4、第3絞り手段18、受液器19および第2絞り手段20は、室内熱交換器12a,12b、室内熱交換器用開閉手段13a,13b,13c,13d、室内熱交換器用絞り手段14a,14bと第2冷媒配管41で並列に接続して構成されている。第2冷凍回路102には、第2冷媒が循環される。   Further, the evaporator 4, the third throttle means 18, the liquid receiver 19 and the second throttle means 20 are sequentially connected in series, and the evaporator 4, the third throttle means 18, the liquid receiver 19 and the second throttle are connected. The means 20 is constituted by connecting the indoor heat exchangers 12a and 12b, the indoor heat exchanger opening / closing means 13a, 13b, 13c and 13d, the indoor heat exchanger throttle means 14a and 14b and the second refrigerant pipe 41 in parallel. Yes. A second refrigerant is circulated through the second refrigeration circuit 102.

また、第1冷媒および第2冷媒としては、R22、R410A、R407C、R32、R134aなどのフロン系冷媒のほかに、二酸化炭素(CO2)などの自然冷媒が用いられ、特に、第1冷媒としては高温用途に広く用いられるR407C、R134aや二酸化炭素(CO2)が望ましい。   Further, as the first refrigerant and the second refrigerant, natural refrigerants such as carbon dioxide (CO2) are used in addition to chlorofluorocarbon refrigerants such as R22, R410A, R407C, R32, and R134a. R407C, R134a and carbon dioxide (CO2) widely used for high temperature applications are desirable.

また、第2圧縮機11の吐出側には、第2圧縮機11から吐出される第2冷媒の圧力を検知する第2圧縮機吐出圧力検知手段21が設けられ、第2圧縮機11の吸入側には、第2圧縮機11に吸入される第2冷媒の圧力を検知する第2圧縮機吸入圧力検知手段22が設けられている。
各室内熱交換器12a,12bと各室内熱交換器用開閉手段13a,13b,13c,13dとの間には、第2冷媒の温度を検知する室内熱交換器第1温度検知手段23a,23bが設けられ、各室内熱交換器12a,12bと各室内熱交換器用絞り手段14a,14bとの間には、第2冷媒の温度を検知する室内熱交換器第2温度検知手段24a,24bが設けられている。
In addition, on the discharge side of the second compressor 11, second compressor discharge pressure detection means 21 that detects the pressure of the second refrigerant discharged from the second compressor 11 is provided. On the side, a second compressor suction pressure detecting means 22 for detecting the pressure of the second refrigerant sucked into the second compressor 11 is provided.
Between each indoor heat exchanger 12a, 12b and each indoor heat exchanger opening / closing means 13a, 13b, 13c, 13d, there are indoor heat exchanger first temperature detecting means 23a, 23b for detecting the temperature of the second refrigerant. Provided between each indoor heat exchanger 12a, 12b and each indoor heat exchanger throttling means 14a, 14b are indoor heat exchanger second temperature detecting means 24a, 24b for detecting the temperature of the second refrigerant. It has been.

また、室外熱交換器15と室外熱交換器用開閉手段16a,16bとの間には、第2冷媒の温度を検知する室外熱交換器第1温度検知手段25が設けられ、室外熱交換器15と室外熱交換器用絞り手段17との間には、第2冷媒の温度を検知する室外熱交換器第2温度検知手段26が設けられている。
また、蒸発器4と第3絞り手段18との間には、蒸発器4から流出する第2冷媒の温度を検知する第2冷凍回路蒸発器出口温度検知手段28が設けられている。
また、第2絞り手段20の出口側には、第2冷媒の圧力を検知する第2冷凍回路中間圧力検知手段33および第2冷媒の温度を検知する第2冷凍回路中間温度検知手段34がそれぞれ設けられている。
An outdoor heat exchanger first temperature detecting means 25 for detecting the temperature of the second refrigerant is provided between the outdoor heat exchanger 15 and the outdoor heat exchanger opening / closing means 16a, 16b. And an outdoor heat exchanger expansion means 17 are provided with an outdoor heat exchanger second temperature detection means 26 for detecting the temperature of the second refrigerant.
Further, a second refrigeration circuit evaporator outlet temperature detecting means 28 for detecting the temperature of the second refrigerant flowing out of the evaporator 4 is provided between the evaporator 4 and the third throttle means 18.
On the outlet side of the second throttle means 20, there are a second refrigeration circuit intermediate pressure detection means 33 for detecting the pressure of the second refrigerant and a second refrigeration circuit intermediate temperature detection means 34 for detecting the temperature of the second refrigerant, respectively. Is provided.

さらに、凝縮器2の熱媒体の出口側には、熱媒体凝縮器出口温度検出手段55が設けられており、凝縮器2の熱媒体の入口側には、熱媒体凝縮器入口温度検出手段56が設けられている。   Further, a heat medium condenser outlet temperature detecting means 55 is provided on the outlet side of the heat medium of the condenser 2, and a heat medium condenser inlet temperature detecting means 56 is provided on the inlet side of the heat medium of the condenser 2. Is provided.

また、本実施形態の二元ヒートポンプ装置は、第1冷凍回路100、第2冷凍回路102および熱媒体回路104の制御手段としての制御部29を備えている。制御部29は、ヒートポンプ装置の各部を中枢的に制御するものであり、CPU、実行可能な基本制御プログラムやこの基本制御プログラムに係るデータなどを不揮発的に記憶するROM、CPUに実行されるプログラムや所定データなどを一時的に記憶するRAM、その他の周辺回路などを備えている。
制御部29は、第1冷凍回路100において、圧縮機吐出温度検知手段6、圧縮機吸入温度検知手段31、圧縮機吸入圧力検知手段32による検知結果に基づいて、圧縮機1の駆動制御および第1絞り手段3の開度制御を行うように構成されている。
Further, the dual heat pump apparatus of the present embodiment includes a control unit 29 as a control unit for the first refrigeration circuit 100, the second refrigeration circuit 102, and the heat medium circuit 104. The control unit 29 centrally controls each unit of the heat pump apparatus, and includes a CPU, a ROM that stores an executable basic control program and data related to the basic control program, and a program executed by the CPU. And RAM for temporarily storing predetermined data, and other peripheral circuits.
In the first refrigeration circuit 100, the control unit 29 controls the driving of the compressor 1 and the first control based on the detection results by the compressor discharge temperature detection means 6, the compressor suction temperature detection means 31, and the compressor suction pressure detection means 32. The opening degree control of the 1 throttling means 3 is performed.

また、制御部29は、第2冷凍回路102において、第2圧縮機吐出圧力検知手段21、第2圧縮機吸入圧力検知手段22の検知結果や、室内熱交換器第1温度検知手段23a,23b、室内熱交換器第2温度検知手段24a,24b、室外熱交換器第1温度検知手段25、室外熱交換器第2温度検知手段26、第2冷凍回路蒸発器出口温度検知手段28の検知結果に基づいて、第2圧縮機11の駆動制御および第2絞り手段20、第3絞り手段18、室内熱交換器用絞り手段14a,14b、室外熱交換器用絞り手段17の開度制御を行うように構成されている。   In addition, in the second refrigeration circuit 102, the control unit 29 detects the detection results of the second compressor discharge pressure detection means 21 and the second compressor suction pressure detection means 22, and the indoor heat exchanger first temperature detection means 23a and 23b. The detection results of the indoor heat exchanger second temperature detection means 24a, 24b, the outdoor heat exchanger first temperature detection means 25, the outdoor heat exchanger second temperature detection means 26, and the second refrigeration circuit evaporator outlet temperature detection means 28. Based on the control, the drive control of the second compressor 11 and the opening control of the second throttle means 20, the third throttle means 18, the indoor heat exchanger throttle means 14a, 14b, and the outdoor heat exchanger throttle means 17 are performed. It is configured.

このように構成されるヒートポンプ装置においては、特に、第1冷凍回路100により熱媒体の加熱運転のみを行う場合、加熱された熱媒体により熱媒体貯留手段51の内部がほぼ満たされ、熱媒体貯留手段51の下部まで熱媒体の温度が上昇してくる。これにより、熱媒体貯留手段51から凝縮器2に搬送される熱媒体の温度も上昇して、第2冷媒の余剰が過多となって、蒸発器4の体積では第2冷媒の余剰が吸収できずに、蒸発圧力が上昇してしまうおそれがある。
このように蒸発器4における蒸発圧力が上昇すると、第2圧縮機11に吸入される第2冷媒の過熱度が小さくなり、第2圧縮機11への液戻りにつながって機器の信頼性を低下させてしまうおそれがある。
In the heat pump device configured as described above, in particular, when only the heating operation of the heat medium is performed by the first refrigeration circuit 100, the inside of the heat medium storage means 51 is substantially filled with the heated heat medium, and the heat medium storage The temperature of the heat medium rises to the lower part of the means 51. As a result, the temperature of the heat medium transported from the heat medium storage means 51 to the condenser 2 also rises, the surplus of the second refrigerant becomes excessive, and the surplus of the second refrigerant can be absorbed by the volume of the evaporator 4. Otherwise, the evaporation pressure may increase.
When the evaporation pressure in the evaporator 4 increases in this way, the degree of superheat of the second refrigerant sucked into the second compressor 11 decreases, leading to liquid return to the second compressor 11 and reducing the reliability of the equipment. There is a risk of letting you.

そのため、本実施形態においては、制御部29は、第1冷凍回路100において熱媒体の加熱運転のみを行うか否かを判断し、熱媒体の加熱運転のみを行う場合は第3絞り手段18を全開にするように制御する。
制御部29は、第3絞り手段18を全開に制御した後、第2冷凍回路102の蒸発器4の出口における第2冷媒の過冷却度SCeva_o_r2(第2圧縮機吐出圧力検知手段21で検知された圧力から算出される凝縮温度−第2冷凍回路蒸発器出口温度検知手段28で検知された温度)が所定範囲内(例えば、15K≦SCeva_o_r2≦20K)か否かを判断する。
For this reason, in the present embodiment, the control unit 29 determines whether or not only the heating operation of the heat medium is performed in the first refrigeration circuit 100. Control to fully open.
The control unit 29 controls the third throttling unit 18 to be fully opened, and then detects the degree of supercooling SCeva_o_r2 (second compressor discharge pressure detection unit 21) of the second refrigerant at the outlet of the evaporator 4 of the second refrigeration circuit 102. It is determined whether or not the condensation temperature calculated from the pressure minus the temperature detected by the second refrigeration circuit evaporator outlet temperature detection means 28 is within a predetermined range (for example, 15K ≦ SCeva_o_r2 ≦ 20K).

そして、制御部29は、蒸発器4の出口における第2冷媒の過冷却度SCeva_o_r2が所定範囲内であると判断した場合には、第2絞り手段20の開度を維持するように制御する。また、蒸発器4の出口における第2冷媒の過冷却度SCeva_o_r2が所定範囲より大きい(例えば、SCeva_o_r2>20K)と判断した場合には、第2絞り手段20の開度を増加し、所定範囲より小さい(例えば、15K>SCeva_o_r2)と判断した場合には、第2絞り手段20の開度を減少するように制御する。   When the control unit 29 determines that the degree of supercooling SCeva_o_r2 of the second refrigerant at the outlet of the evaporator 4 is within a predetermined range, the control unit 29 performs control so as to maintain the opening degree of the second throttle means 20. Further, when it is determined that the degree of supercooling SCeva_o_r2 of the second refrigerant at the outlet of the evaporator 4 is larger than a predetermined range (for example, SCeva_o_r2> 20K), the opening degree of the second throttling means 20 is increased, and from the predetermined range When it is determined that it is small (for example, 15K> SCeva_o_r2), the second throttle means 20 is controlled so as to decrease the opening.

このように制御することにより、第1冷凍回路100において熱媒体の加熱運転のみを行う場合に、蒸発器4から流出した液状態の第2冷媒を受液器19に貯留することができる。これにより、蒸発器4において、第2冷媒の保有量が変化した場合でも第2絞り手段20の手前で第2冷媒を貯留することになり、第2冷凍回路102を循環する第2冷媒の量を低減し、第2冷凍回路102の蒸発圧力の上昇を抑制することが可能となる。   By controlling in this way, when only the heating operation of the heat medium is performed in the first refrigeration circuit 100, the liquid second refrigerant flowing out of the evaporator 4 can be stored in the liquid receiver 19. Thereby, in the evaporator 4, even when the amount of the second refrigerant held changes, the second refrigerant is stored before the second throttling means 20, and the amount of the second refrigerant circulating in the second refrigeration circuit 102. And the increase in the evaporation pressure of the second refrigeration circuit 102 can be suppressed.

また、室内熱交換器12a,12bを利用して第2冷凍回路102を空調運転するとともに、第1冷凍回路100により熱媒体の加熱運転を行う場合、制御部29は、第2絞り手段20を全開に制御し、第2冷凍回路102の蒸発器4の出口における第2冷媒の過冷却度SCeva_o_r2が所定範囲内(例えば、15K≦SCeva_o_r2≦20K)か否かを判断する。   In addition, when the second refrigeration circuit 102 is air-conditioned using the indoor heat exchangers 12a and 12b and the heating medium is heated by the first refrigeration circuit 100, the control unit 29 sets the second throttling means 20 to It is controlled to fully open, and it is determined whether or not the supercooling degree SCeva_o_r2 of the second refrigerant at the outlet of the evaporator 4 of the second refrigeration circuit 102 is within a predetermined range (for example, 15K ≦ SCeva_o_r2 ≦ 20K).

そして、制御部29は、蒸発器4の出口における第2冷媒の過冷却度SCeva_o_r2が所定範囲内であると判断した場合には、第3絞り手段18の開度を維持するように制御し、所定範囲より大きいと判断した場合には、第3絞り手段18の開度を増加するように制御し、所定範囲より小さいと判断した場合には、第3絞り手段18の開度を減少するように制御する。
なお、第3絞り手段18の開度を減少させる場合、全閉にならないように最低開度のしきい値を予め設定しておくことが好ましい。
When the control unit 29 determines that the degree of supercooling SCeva_o_r2 of the second refrigerant at the outlet of the evaporator 4 is within a predetermined range, the control unit 29 performs control so as to maintain the opening degree of the third throttle unit 18; When it is determined that the opening is larger than the predetermined range, the opening of the third throttle means 18 is controlled to be increased. When it is determined that the opening is smaller than the predetermined range, the opening of the third throttle means 18 is decreased. To control.
When the opening degree of the third throttling means 18 is decreased, it is preferable to set a threshold value for the minimum opening degree beforehand so as not to be fully closed.

以上のように構成された二元ヒートポンプ装置について、以下その動作、作用を説明する。
図2は、本発明の実施形態1における二元ヒートポンプ装置の第1冷凍回路において、熱媒体の加熱運転のみを行う場合の例を示す回路図である。なお、図2中黒塗りつぶされた開閉手段は閉状態であることを示している(以下同じ)。
About the dual heat pump apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.
FIG. 2 is a circuit diagram illustrating an example in which only the heating operation of the heat medium is performed in the first refrigeration circuit of the dual heat pump apparatus according to Embodiment 1 of the present invention. In FIG. 2, the black-closed opening / closing means is in a closed state (the same applies hereinafter).

図2に示すように、第1冷凍回路100にて熱媒体の加熱運転のみを行う場合、第2圧縮機11から吐出された第2冷媒は、蒸発器4に流入する。
また、第1冷凍回路100においては、第2冷凍回路102の暖房運転時と同様に、圧縮機1から吐出された第1冷媒は、凝縮器2により放熱し、圧縮機吐出温度検知手段6で検知された温度に基づいて第1絞り手段3で絞られて蒸発器4に流入し、第2冷媒から吸熱して圧縮機1に吸入される。
熱媒体は、熱媒体貯留手段51の下部から熱媒体搬送手段52により凝縮器2に搬送され、凝縮器2で第1冷媒の熱で加熱された後に、熱媒体貯留手段51の上部から積層式に貯留される。
As shown in FIG. 2, when only the heat medium heating operation is performed in the first refrigeration circuit 100, the second refrigerant discharged from the second compressor 11 flows into the evaporator 4.
Further, in the first refrigeration circuit 100, as in the heating operation of the second refrigeration circuit 102, the first refrigerant discharged from the compressor 1 dissipates heat by the condenser 2, and the compressor discharge temperature detection means 6 Based on the detected temperature, the first throttle means 3 squeezes and flows into the evaporator 4, absorbs heat from the second refrigerant, and is sucked into the compressor 1.
The heat medium is conveyed from the lower part of the heat medium storing means 51 to the condenser 2 by the heat medium conveying means 52, heated by the heat of the first refrigerant in the condenser 2, and then stacked from the upper part of the heat medium storing means 51. It is stored in.

また、蒸発器4にて第1冷媒に吸熱された第2冷媒は、全開の第3絞り手段18および受液器19を通って第2圧縮機吐出圧力検知手段21で検知された圧力から算出される凝縮温度と、第2冷凍回路蒸発器出口温度検知手段28で検知された温度との差から求められる過冷却度に基づいて、第2絞り手段20で絞られ、室外熱交換器15にて室外空気から吸熱する。
室外熱交換器用絞り手段17は、第2圧縮機吸入圧力検知手段22で検知された圧力から算出される蒸発温度と、室外熱交換器第1温度検知手段25で検知された温度の差から求められる過熱度に基づいて、室外熱交換器15を流通する第2冷媒を調整する。
The second refrigerant absorbed by the first refrigerant in the evaporator 4 is calculated from the pressure detected by the second compressor discharge pressure detecting means 21 through the fully-open third throttle means 18 and the liquid receiver 19. On the basis of the degree of supercooling obtained from the difference between the condensation temperature to be detected and the temperature detected by the second refrigeration circuit evaporator outlet temperature detection means 28, the second expansion means 20 squeezes the air to the outdoor heat exchanger 15. Absorbs heat from outdoor air.
The outdoor heat exchanger throttling means 17 is obtained from the difference between the evaporation temperature calculated from the pressure detected by the second compressor suction pressure detecting means 22 and the temperature detected by the outdoor heat exchanger first temperature detecting means 25. The 2nd refrigerant | coolant which distribute | circulates the outdoor heat exchanger 15 is adjusted based on the degree of superheated.

そして、室外熱交換器15から流出した第2冷媒は、開状態の室外熱交換器用開閉手段16aを通って、第2圧縮機11に吸入される。この場合、室内熱交換器用開閉手段13b,13d、室外熱交換器用開閉手段16bおよび室内熱交換器用絞り手段14a,14bは閉じられており、第2冷媒が流通しないようになっている。
また、室内熱交換器12a,12b内に第2冷媒が溜まらないように室内熱交換器用開閉手段13a,13cは開かれている。
And the 2nd refrigerant | coolant which flowed out from the outdoor heat exchanger 15 is suck | inhaled by the 2nd compressor 11 through the open / close means 16a for outdoor heat exchangers of an open state. In this case, the indoor heat exchanger switching means 13b, 13d, the outdoor heat exchanger switching means 16b, and the indoor heat exchanger throttle means 14a, 14b are closed so that the second refrigerant does not flow.
The indoor heat exchanger opening / closing means 13a and 13c are opened so that the second refrigerant does not accumulate in the indoor heat exchangers 12a and 12b.

図3は、本発明の実施形態1における二元ヒートポンプ装置の第2冷凍回路を暖房運転し、第1冷凍回路により熱媒体の加熱運転も行う場合の例を示す回路図である。
図3に示すように、室内熱交換器12a,12bを凝縮器として利用して第2冷凍回路102を暖房運転し、第1冷凍回路100にて熱媒体の加熱運転も行う場合、第2圧縮機11から吐出された第2冷媒は、開状態の室内熱交換器用開閉手段13b,13dを通って室内熱交換器12a,12bに流入し、室内空気に放熱する。
FIG. 3 is a circuit diagram illustrating an example in which the second refrigeration circuit of the dual heat pump apparatus according to Embodiment 1 of the present invention is operated for heating and the heating medium is also heated by the first refrigeration circuit.
As shown in FIG. 3, when the second refrigeration circuit 102 is heated using the indoor heat exchangers 12a and 12b as condensers, and the first refrigeration circuit 100 also performs the heating operation of the heat medium, the second compression is performed. The second refrigerant discharged from the machine 11 flows into the indoor heat exchangers 12a and 12b through the open indoor heat exchanger opening and closing means 13b and 13d, and radiates heat to the indoor air.

また、第1冷凍回路100においては、圧縮機1から吐出された第1冷媒は、凝縮器2により放熱し、圧縮機吐出温度検知手段6で検知された温度に基づいて第1絞り手段3で絞られて蒸発器4に流入し、第2冷媒から吸熱して圧縮機1に吸入される。
熱媒体は、熱媒体貯留手段51の下部から熱媒体搬送手段52により凝縮器2に搬送され、凝縮器2で第1冷媒の熱で加熱された後に熱媒体貯留手段51の上部から積層式に貯留される。
Further, in the first refrigeration circuit 100, the first refrigerant discharged from the compressor 1 dissipates heat by the condenser 2, and the first throttling means 3 based on the temperature detected by the compressor discharge temperature detecting means 6. It is throttled and flows into the evaporator 4, absorbs heat from the second refrigerant, and is sucked into the compressor 1.
The heat medium is transported from the lower part of the heat medium storage means 51 to the condenser 2 by the heat medium transport means 52, heated by the heat of the first refrigerant in the condenser 2, and then stacked from the upper part of the heat medium storage means 51. Stored.

一方、蒸発器4において第1冷媒に吸熱された第2冷媒は、第2圧縮機吐出圧力検知手段21で検知された圧力から算出される凝縮温度と、第2冷凍回路蒸発器出口温度検知手段28で検知された温度との差から求められる過冷却度に基づいて、第3絞り手段18で絞られた後に、受液器19および全開の第2絞り手段20を流れる。
また、室内熱交換器12a,12bから流出した第2冷媒は、第2圧縮機吐出圧力検知手段21で検知された圧力から算出される凝縮温度と、室内熱交換器第2温度検知手段24a,24bで検知された温度との差から求められるそれぞれの過冷却度に基づいて、室内熱交換器用絞り手段14a,14bで絞られた後に合流し、室外熱交換器15において室外空気から吸熱する。
室外熱交換器用絞り手段17は、第2圧縮機吸入圧力検知手段22で検知された圧力から算出される蒸発温度と、室外熱交換器第1温度検知手段25で検知された温度の差から求められる過熱度に基づいて、室外熱交換器15を流通する第2冷媒を調整する。
On the other hand, the second refrigerant absorbed by the first refrigerant in the evaporator 4 includes the condensation temperature calculated from the pressure detected by the second compressor discharge pressure detection means 21 and the second refrigeration circuit evaporator outlet temperature detection means. Based on the degree of supercooling obtained from the difference from the temperature detected at 28, after being throttled by the third throttle means 18, it flows through the liquid receiver 19 and the fully opened second throttle means 20.
The second refrigerant that has flowed out of the indoor heat exchangers 12a and 12b includes the condensation temperature calculated from the pressure detected by the second compressor discharge pressure detecting means 21, the indoor heat exchanger second temperature detecting means 24a, Based on the respective degree of supercooling obtained from the difference from the temperature detected at 24 b, the air is constricted by the indoor heat exchanger throttling means 14 a, 14 b and then merged, and the outdoor heat exchanger 15 absorbs heat from the outdoor air.
The outdoor heat exchanger throttling means 17 is obtained from the difference between the evaporation temperature calculated from the pressure detected by the second compressor suction pressure detecting means 22 and the temperature detected by the outdoor heat exchanger first temperature detecting means 25. The 2nd refrigerant | coolant which distribute | circulates the outdoor heat exchanger 15 is adjusted based on the degree of superheated.

そして、室外熱交換器15から流出した第2冷媒は、開状態の室外熱交換器用開閉手段16aを通って、第2圧縮機11に吸入される。この場合、室内熱交換器用開閉手段13a,13cおよび室外熱交換器用開閉手段16bは閉じられており、第2冷媒が流通しないようになっている。   And the 2nd refrigerant | coolant which flowed out from the outdoor heat exchanger 15 is suck | inhaled by the 2nd compressor 11 through the open / close means 16a for outdoor heat exchangers of an open state. In this case, the indoor heat exchanger opening / closing means 13a, 13c and the outdoor heat exchanger opening / closing means 16b are closed so that the second refrigerant does not flow.

また、図4は本発明の実施の形態1における二元ヒートポンプ装置の第2冷凍回路を冷房運転し、第1冷凍回路により熱媒体の加熱運転も行う場合の例を示す回路図である。
図4に示すように、室内熱交換器12a,12bを蒸発器として利用して第2冷凍回路102を冷房運転し、第1冷凍回路100において熱媒体の加熱運転も行う場合、第2圧縮機11から吐出された第2冷媒は、開状態の室外熱交換器用開閉手段16bを通って室外熱交換器15に流入し、室外空気に放熱する。
FIG. 4 is a circuit diagram showing an example in the case where the second refrigeration circuit of the dual heat pump apparatus according to Embodiment 1 of the present invention performs a cooling operation and the heating operation of the heat medium is also performed by the first refrigeration circuit.
As shown in FIG. 4, when the second refrigeration circuit 102 is air-cooled using the indoor heat exchangers 12 a and 12 b as evaporators, and the first refrigeration circuit 100 also performs the heating operation of the heat medium, the second compressor The second refrigerant discharged from the refrigerant 11 flows into the outdoor heat exchanger 15 through the open / close means 16b for the outdoor heat exchanger, and dissipates heat to the outdoor air.

また、第1冷凍回路100においては、第2冷凍回路102の暖房運転時同様、圧縮機1から吐出された第1冷媒は、凝縮器2により放熱し、圧縮機吐出温度検知手段6で検知された温度に基づいて、第1絞り手段3で絞られて蒸発器4に流入し、第2冷媒から吸熱して圧縮機1に吸入される。
熱媒体は、熱媒体貯留手段51の下部から熱媒体搬送手段52により凝縮器2に搬送され、凝縮器2で第1冷媒の熱で加熱された後に熱媒体貯留手段51の上部から積層式に貯留される。
Further, in the first refrigeration circuit 100, as in the heating operation of the second refrigeration circuit 102, the first refrigerant discharged from the compressor 1 dissipates heat by the condenser 2, and is detected by the compressor discharge temperature detection means 6. Based on the detected temperature, the first throttle means 3 squeezes the gas into the evaporator 4, absorbs heat from the second refrigerant, and is sucked into the compressor 1.
The heat medium is transported from the lower part of the heat medium storage means 51 to the condenser 2 by the heat medium transport means 52, heated by the heat of the first refrigerant in the condenser 2, and then stacked from the upper part of the heat medium storage means 51. Stored.

また、蒸発器4にて第1冷媒に吸熱された第2冷媒は、第2圧縮機吐出圧力検知手段21で検知された圧力から算出される凝縮温度と、第2冷凍回路蒸発器出口温度検知手段28で検知された温度との差から求められる過冷却度に基づいて、第3絞り手段18で絞られた後に、受液器19および全開の第2絞り手段20を流れ、室外熱交換器15に流入する。
また、室外熱交換器15から流出した第2冷媒は、第2圧縮機吐出圧力検知手段21で検知された圧力から算出される凝縮温度と、室外熱交換器第2温度検知手段26で検知された温度との差から求められる過冷却度に基づいて、室外熱交換器用絞り手段17で絞られた後に合流し、室内熱交換器12a,12bにて室内空気から吸熱する。
Further, the second refrigerant absorbed by the first refrigerant in the evaporator 4 has a condensation temperature calculated from the pressure detected by the second compressor discharge pressure detection means 21 and a second refrigeration circuit evaporator outlet temperature detection. Based on the degree of supercooling obtained from the difference from the temperature detected by the means 28, after being throttled by the third throttle means 18, it flows through the liquid receiver 19 and the fully opened second throttle means 20, and the outdoor heat exchanger. 15 flows in.
The second refrigerant flowing out of the outdoor heat exchanger 15 is detected by the condensation temperature calculated from the pressure detected by the second compressor discharge pressure detecting means 21 and the outdoor heat exchanger second temperature detecting means 26. Based on the degree of supercooling obtained from the difference from the measured temperature, the air is constricted by the outdoor heat exchanger throttling means 17 and then merged, and the indoor heat exchangers 12a and 12b absorb heat from the indoor air.

室内熱交換器用絞り手段14a,14bは、第2圧縮機吸入圧力検知手段22で検知された圧力から算出される蒸発温度と、室内熱交換器第1温度検知手段23a,23bで検知された温度の差から求められるそれぞれの過熱度に基づいて、室内熱交換器12a,12bを流通する第2冷媒を調整する。
そして、室内熱交換器12a,12bから流出した第2冷媒は、開状態の室内熱交換器用開閉手段13a,13cを通って、第2圧縮機11に吸入される。この場合、室内熱交換器用開閉手段13b,13dおよび室外熱交換器用開閉手段16aは閉じられており、第2冷媒が流通しないようになっている。
The indoor heat exchanger throttling means 14a, 14b are the evaporation temperature calculated from the pressure detected by the second compressor suction pressure detecting means 22, and the temperature detected by the indoor heat exchanger first temperature detecting means 23a, 23b. The second refrigerant flowing through the indoor heat exchangers 12a and 12b is adjusted based on the degree of superheat calculated from the difference between the two.
And the 2nd refrigerant | coolant which flowed out from the indoor heat exchanger 12a, 12b is suck | inhaled by the 2nd compressor 11 through the open / close means 13a, 13c for indoor heat exchangers of an open state. In this case, the indoor heat exchanger opening / closing means 13b, 13d and the outdoor heat exchanger opening / closing means 16a are closed so that the second refrigerant does not flow.

また、図5は本発明の実施の形態1における二元ヒートポンプ装置の第2冷凍回路を冷暖同時運転し、第1冷凍回路にて熱媒体の加熱運転を行う場合の例を示す回路図である。
図5に示すように、室内熱交換器12aを凝縮器として、室内熱交換器12bを蒸発器として利用して第2冷凍回路102を冷暖同時運転し、第1冷凍回路100において熱媒体の加熱運転も行う場合、第2圧縮機11から吐出された第2冷媒は、開状態の室内熱交換器用開閉手段13bを通って室内熱交換器12aに流入し、室内空気に放熱する。
FIG. 5 is a circuit diagram showing an example in which the second refrigeration circuit of the dual heat pump apparatus according to Embodiment 1 of the present invention is operated simultaneously with cooling and heating, and the heating operation of the heat medium is performed in the first refrigeration circuit. .
As shown in FIG. 5, the second refrigeration circuit 102 is operated simultaneously with cooling and heating using the indoor heat exchanger 12a as a condenser and the indoor heat exchanger 12b as an evaporator, and heating of the heat medium in the first refrigeration circuit 100 is performed. When the operation is also performed, the second refrigerant discharged from the second compressor 11 flows into the indoor heat exchanger 12a through the open indoor heat exchanger opening / closing means 13b and dissipates heat to the indoor air.

また、第1冷凍回路100においては、圧縮機1から吐出された第1冷媒は、凝縮器2により放熱し、圧縮機吐出温度検知手段6で検知された温度に基づいて、第1絞り手段3で絞られて蒸発器4に流入し、第2冷媒から吸熱して圧縮機1に吸入される。
熱媒体は、熱媒体貯留手段51の下部から熱媒体搬送手段52により凝縮器2に搬送され、凝縮器2で第1冷媒の熱で加熱された後に熱媒体貯留手段51の上部から積層式に貯留される。
Further, in the first refrigeration circuit 100, the first refrigerant discharged from the compressor 1 dissipates heat by the condenser 2, and the first throttle means 3 is based on the temperature detected by the compressor discharge temperature detecting means 6. And then flows into the evaporator 4, absorbs heat from the second refrigerant, and is sucked into the compressor 1.
The heat medium is transported from the lower part of the heat medium storage means 51 to the condenser 2 by the heat medium transport means 52, heated by the heat of the first refrigerant in the condenser 2, and then stacked from the upper part of the heat medium storage means 51. Stored.

また、蒸発器4にて第1冷媒に吸熱された第2冷媒は、第2圧縮機吐出圧力検知手段21で検知された圧力から算出される凝縮温度と、第2冷凍回路蒸発器出口温度検知手段28で検知された温度との差から求められる過冷却度に基づいて、第3絞り手段18で絞られた後に、受液器19および全開の第2絞り手段20を流れる。
また、室内熱交換器12aから流出した第2冷媒は、第2圧縮機吐出圧力検知手段21で検知された圧力から算出される凝縮温度と、室内熱交換器第2温度検知手段24aで検知された温度との差から求められる過冷却度に基づいて、室内熱交換器用絞り手段14aで絞られた後に合流し、室内熱交換器12bおよび室外熱交換器15において室内空気と室外空気から吸熱する。
室内熱交換器用絞り手段14bおよび室外熱交換器用絞り手段17は、第2圧縮機吸入圧力検知手段22で検知された圧力から算出される蒸発温度と、室内熱交換器第1温度検知手段23bおよび室外熱交換器第1温度検知手段25で検知された温度の差から求められるそれぞれの過熱度に基づいて、室内熱交換器12bおよび室外熱交換器15を流通する第2冷媒を調整する。
Further, the second refrigerant absorbed by the first refrigerant in the evaporator 4 has a condensation temperature calculated from the pressure detected by the second compressor discharge pressure detection means 21 and a second refrigeration circuit evaporator outlet temperature detection. After being throttled by the third throttle means 18 based on the degree of supercooling obtained from the difference from the temperature detected by the means 28, it flows through the liquid receiver 19 and the fully opened second throttle means 20.
The second refrigerant flowing out of the indoor heat exchanger 12a is detected by the condensation temperature calculated from the pressure detected by the second compressor discharge pressure detecting means 21 and the indoor heat exchanger second temperature detecting means 24a. Based on the degree of supercooling obtained from the difference from the measured temperature, the air is constricted by the indoor heat exchanger constricting means 14a and then merged, and the indoor heat exchanger 12b and the outdoor heat exchanger 15 absorb heat from indoor air and outdoor air. .
The indoor heat exchanger throttling means 14b and the outdoor heat exchanger throttling means 17 include the evaporation temperature calculated from the pressure detected by the second compressor suction pressure detecting means 22, the indoor heat exchanger first temperature detecting means 23b, The second refrigerant flowing through the indoor heat exchanger 12b and the outdoor heat exchanger 15 is adjusted based on the degree of superheat obtained from the difference in temperature detected by the outdoor heat exchanger first temperature detection means 25.

そして、室内熱交換器12bおよび室外熱交換器15から流出した第2冷媒は、開状態の室内熱交換器用開閉手段13cと室外熱交換器用開閉手段16aを通って、第2圧縮機11に吸入される。この場合、室内熱交換器用開閉手段13a,13dおよび室外熱交換器用開閉手段16bは閉じられており、第2冷媒が流通しないようになっている。   The second refrigerant flowing out of the indoor heat exchanger 12b and the outdoor heat exchanger 15 is sucked into the second compressor 11 through the open indoor heat exchanger opening / closing means 13c and the outdoor heat exchanger opening / closing means 16a. Is done. In this case, the indoor heat exchanger opening / closing means 13a, 13d and the outdoor heat exchanger opening / closing means 16b are closed so that the second refrigerant does not flow.

図6は本発明の実施の形態1における二元ヒートポンプ装置の第2冷凍回路の室内熱交換器を変更して冷暖同時運転し、第1冷凍回路において熱媒体の加熱運転を行う場合の例を示す回路図である。
図6に示すように、室内熱交換器12aを蒸発器として、室内熱交換器12bを凝縮器として利用して第2冷凍回路を冷暖同時運転し、第1冷凍回路100にて熱媒体の加熱運転も行う場合、室内熱交換器用開閉手段13a,13dを開状態とし、室内熱交換器開閉手段13b、13cを閉状態として、室外熱交換器用開閉手段16a,16bの開閉状態は変えず運転する。
FIG. 6 shows an example in which the indoor heat exchanger of the second refrigeration circuit of the dual heat pump apparatus according to Embodiment 1 of the present invention is changed to perform simultaneous cooling and heating, and the heating medium is heated in the first refrigeration circuit. FIG.
As shown in FIG. 6, the indoor heat exchanger 12a is used as an evaporator and the indoor heat exchanger 12b is used as a condenser to simultaneously cool and heat the second refrigeration circuit, and the first refrigeration circuit 100 heats the heat medium. When the operation is also performed, the indoor heat exchanger switching means 13a and 13d are opened, the indoor heat exchanger switching means 13b and 13c are closed, and the outdoor heat exchanger switching means 16a and 16b are operated without changing the open / closed state. .

次に、本実施形態における制御部29による制御動作について、図7に示すフローチャートを参照して説明する。   Next, the control operation by the control unit 29 in the present embodiment will be described with reference to the flowchart shown in FIG.

本実施の形態では、図7に示すように、制御部29は、まず、第1冷凍回路100において、熱媒体の加熱運転のみを行うか否かを判断する(ST1)。
そして、熱媒体の加熱運転のみを行う場合は(ST1:YES)、制御部29は、第3絞り手段18を全開に制御し(ST2)、第2冷凍回路102の蒸発器4の出口での第2冷媒の過冷却度SCeva_o_r2が所定範囲内か否か判断する(ST3)。蒸発器4の出口での第2冷媒の過冷却度SCeva_o_r2が、所定範囲内であれば(ST3:YES)、第2絞り手段20の開度を維持するように制御する(ST4)。
In the present embodiment, as shown in FIG. 7, the control unit 29 first determines whether or not only the heating operation of the heat medium is performed in the first refrigeration circuit 100 (ST1).
When only the heating operation of the heat medium is performed (ST1: YES), the control unit 29 controls the third throttling means 18 to be fully opened (ST2), and at the outlet of the evaporator 4 of the second refrigeration circuit 102. It is determined whether or not the subcooling degree SCeva_o_r2 of the second refrigerant is within a predetermined range (ST3). If the degree of supercooling SCeva_o_r2 of the second refrigerant at the outlet of the evaporator 4 is within a predetermined range (ST3: YES), control is performed to maintain the opening degree of the second throttling means 20 (ST4).

また、制御部29は、蒸発器4の出口での第2冷媒の過冷却度SCeva_o_r2が所定範囲より大きいと判断した場合は(ST5:YES)、第2絞り手段20の開度を増加するように制御し(ST6)、蒸発器4の出口での第2冷媒の過冷却度SCeva_o_r2が所定範囲より小さいと判断した場合は(ST5:NO)、第2絞り手段20の開度を減少するように制御する(ST7)。   In addition, when the control unit 29 determines that the degree of supercooling SCeva_o_r2 of the second refrigerant at the outlet of the evaporator 4 is larger than the predetermined range (ST5: YES), the controller 29 increases the opening degree of the second throttling means 20. (ST6), and when the degree of supercooling SCeva_o_r2 of the second refrigerant at the outlet of the evaporator 4 is determined to be smaller than the predetermined range (ST5: NO), the opening degree of the second throttle means 20 is decreased. (ST7).

一方、室内熱交換器12a,12bを利用して第2冷凍回路102を空調運転するとともに、第1冷凍回路100において熱媒体の加熱運転を行う場合は(ST1:NO)、制御部29は、第2絞り手段20を全開に制御し(ST8)、第2冷凍回路102の蒸発器4の出口での第2冷媒の過冷却度SCeva_o_r2が所定範囲内か否か判断する(ST9)。
そして、制御部29は、蒸発器4の出口での第2冷媒の過冷却度SCeva_o_r2が所定範囲内であると判断した場合は(ST9:YES)、第3絞り手段18の開度を維持するように制御する(ST10)。
On the other hand, when performing the air conditioning operation of the second refrigeration circuit 102 using the indoor heat exchangers 12a and 12b and performing the heating operation of the heat medium in the first refrigeration circuit 100 (ST1: NO), the control unit 29 The second throttle means 20 is controlled to be fully opened (ST8), and it is determined whether or not the subcooling degree SCeva_o_r2 of the second refrigerant at the outlet of the evaporator 4 of the second refrigeration circuit 102 is within a predetermined range (ST9).
When the control unit 29 determines that the degree of supercooling SCeva_o_r2 of the second refrigerant at the outlet of the evaporator 4 is within the predetermined range (ST9: YES), the opening degree of the third throttling means 18 is maintained. Control is performed as follows (ST10).

また、蒸発器4の出口での第2冷媒の過冷却度SCeva_o_r2が所定範囲内でないと判断した場合は(ST9:NO)、制御部29は、さらに蒸発器4の出口での第2冷媒の過冷却度SCeva_o_r2が所定範囲より大きいか否かを判断する(ST11)。
そして、制御部29は、蒸発器4の出口での第2冷媒の過冷却度SCeva_o_r2が所定範囲より大きいと判断した場合は(ST11:YES)、第3絞り手段18の開度を増加するように制御し(ST12)、蒸発器4の出口での第2冷媒の過冷却度SCeva_o_r2が所定範囲より小さいと判断した場合は(ST11:NO)、第3絞り手段18の開度を減少するように制御する(ST13)。
Further, when it is determined that the degree of supercooling SCeva_o_r2 of the second refrigerant at the outlet of the evaporator 4 is not within the predetermined range (ST9: NO), the control unit 29 further controls the second refrigerant at the outlet of the evaporator 4. It is determined whether or not the degree of supercooling SCeva_o_r2 is greater than a predetermined range (ST11).
When the control unit 29 determines that the degree of supercooling SCeva_o_r2 of the second refrigerant at the outlet of the evaporator 4 is larger than the predetermined range (ST11: YES), the opening degree of the third throttling unit 18 is increased. (ST12), and when the degree of supercooling SCeva_o_r2 of the second refrigerant at the outlet of the evaporator 4 is determined to be smaller than the predetermined range (ST11: NO), the opening degree of the third throttle means 18 is decreased. (ST13).

これによって、第1冷凍回路100にて熱媒体の加熱運転のみを行う場合に、蒸発器4から流出した液状態の第2冷媒を受液器19にて貯留する。
従って、蒸発器4にて第2冷媒の保有量が変化した場合でも第2絞り手段20の手前で貯留することとなり、第2冷凍回路102を循環する第2冷媒の量を低減し、第2冷凍回路102の蒸発圧力の上昇を抑制することとなる。
Thereby, when only the heating operation of the heat medium is performed in the first refrigeration circuit 100, the liquid second refrigerant flowing out of the evaporator 4 is stored in the liquid receiver 19.
Therefore, even when the amount of the second refrigerant held in the evaporator 4 changes, the second refrigerant is stored in front of the second throttling means 20, and the amount of the second refrigerant circulating in the second refrigeration circuit 102 is reduced. An increase in the evaporation pressure of the refrigeration circuit 102 is suppressed.

以上述べたように、本実施形態においては、圧縮機1、凝縮器2、第1絞り手段3および蒸発器4を配管40で接続し、第1冷媒を循環させる第1冷凍回路100と、第2冷媒を循環させ、蒸発器4で第1冷媒と熱交換を行う第2冷凍回路102と、熱媒体を循環させ、凝縮器2で第1冷媒と熱交換を行う熱媒体回路104と、を備え、第2冷凍回路102の蒸発器4の出口側に受液器19および第2絞り手段20を順次に接続した。   As described above, in the present embodiment, the compressor 1, the condenser 2, the first throttle means 3, and the evaporator 4 are connected by the pipe 40, and the first refrigeration circuit 100 for circulating the first refrigerant, A second refrigeration circuit 102 that circulates two refrigerants and exchanges heat with the first refrigerant in the evaporator 4, and a heat medium circuit 104 that circulates the heat medium and exchanges heat with the first refrigerant in the condenser 2. The receiver 19 and the second throttle means 20 were sequentially connected to the outlet side of the evaporator 4 of the second refrigeration circuit 102.

これにより、第1冷凍回路100において、熱媒体の加熱運転のみを行う場合に、蒸発器4から流出した液状態の第2冷媒を受液器19に貯留することができ、蒸発器4において第2冷媒の保有量が変化した場合でも、第2絞り手段20の手前で貯留することとなり、第2冷凍回路102を循環する第2冷媒の量を低減させ、第2圧縮機11に吸入される第2冷媒の密度を低下させるので、第2圧縮機11に吸入される第2冷媒の圧力(蒸発圧力)の上昇を抑制することができる。
これによって、室内熱交換器12a,12bのような空気−冷媒熱交換器を有する空調端末と並列して蒸発器4のような冷媒−冷媒熱交換器を有する二元冷凍サイクルで熱媒体を加熱運転する時に、凝縮器2に流入する熱媒体の温度が上昇して第1冷凍回路100での熱媒体の加熱能力が低下し、蒸発器4で余剰な第2冷媒が生じるような、第1冷凍回路100にて熱媒体の加熱運転のみを行う場合でも、第2冷凍回路102の蒸発圧力の上昇を抑制することができ、第2圧縮機11への第2冷媒の液戻りを抑制して、機器の信頼性を向上させることができる。
Thus, in the first refrigeration circuit 100, when only the heating operation of the heat medium is performed, the second refrigerant in the liquid state flowing out from the evaporator 4 can be stored in the liquid receiver 19, and the evaporator 4 Even when the amount of the two refrigerants is changed, the refrigerant is stored before the second throttling means 20, and the amount of the second refrigerant circulating in the second refrigeration circuit 102 is reduced and sucked into the second compressor 11. Since the density of the second refrigerant is reduced, an increase in the pressure (evaporation pressure) of the second refrigerant sucked into the second compressor 11 can be suppressed.
This heats the heat medium in a dual refrigeration cycle having a refrigerant-refrigerant heat exchanger such as the evaporator 4 in parallel with an air conditioning terminal having an air-refrigerant heat exchanger such as the indoor heat exchangers 12a and 12b. When operating, the temperature of the heat medium flowing into the condenser 2 is increased, the heating capacity of the heat medium in the first refrigeration circuit 100 is decreased, and an excess second refrigerant is generated in the evaporator 4. Even when only the heating operation of the heat medium is performed in the refrigeration circuit 100, the increase in the evaporation pressure of the second refrigeration circuit 102 can be suppressed, and the liquid return of the second refrigerant to the second compressor 11 can be suppressed. The reliability of the equipment can be improved.

また、本実施形態においては、制御部29(制御手段)と、蒸発器4と受液器19との間に第3絞り手段18とを備え、制御部29は、第1冷凍回路100により熱媒体回路104を循環する熱媒体の加熱運転のみを行う場合に、第3絞り手段18を全開に制御した後、第2冷凍回路102の蒸発器4の出口側における前記第2冷媒の過冷却度(状態)に応じて絞り手段の開度を制御する。   In the present embodiment, the control unit 29 (control unit) and the third throttle unit 18 are provided between the evaporator 4 and the liquid receiver 19, and the control unit 29 is heated by the first refrigeration circuit 100. When only the heating operation of the heat medium circulating in the medium circuit 104 is performed, the degree of supercooling of the second refrigerant on the outlet side of the evaporator 4 of the second refrigeration circuit 102 is controlled after the third throttle means 18 is fully opened. The opening degree of the throttle means is controlled according to (state).

これにより、室内熱交換器12a,12bを利用して第2冷凍回路102を空調運転し、第1冷凍回路100において熱媒体の加熱運転を行っていて、途中で空調運転を停止した場合でも、第3絞り手段18の開度を大きくすることで、受液器19内の第2冷媒の圧力が上昇する。
従って、蒸発器4出口の第2冷媒のエンタルピが一定の場合、受液器19内の第2冷媒の密度が上昇し、受液器19で貯留する第2冷媒の量が増加することとなり、第2冷凍回路102を循環する第2冷媒の量が低減し、第2冷凍回路102の蒸発圧力が低下することになる。
これによって、空調と熱媒体を加熱運転を同時に行っていて、空調が途中で停止して第2冷媒の余剰が生じる場合でも、確実に受液器19に第2冷媒を貯留して第2冷凍回路102の蒸発圧力の上昇を抑制し、第2圧縮機11に吸入される第2冷媒の過熱度の低下を抑制することで、第2圧縮機11への第2冷媒の液戻りを抑制して、機器の信頼性を向上することができる。
Thereby, even if the air conditioning operation of the second refrigeration circuit 102 is performed using the indoor heat exchangers 12a and 12b, the heating medium heating operation is performed in the first refrigeration circuit 100, and the air conditioning operation is stopped halfway, By increasing the opening of the third throttle means 18, the pressure of the second refrigerant in the liquid receiver 19 increases.
Therefore, when the enthalpy of the second refrigerant at the outlet of the evaporator 4 is constant, the density of the second refrigerant in the liquid receiver 19 increases, and the amount of the second refrigerant stored in the liquid receiver 19 increases. The amount of the second refrigerant circulating through the second refrigeration circuit 102 decreases, and the evaporation pressure of the second refrigeration circuit 102 decreases.
As a result, even when the air conditioning and the heating medium are simultaneously heated, even if the air conditioning stops halfway and surplus of the second refrigerant occurs, the second refrigerant is reliably stored in the receiver 19 and the second refrigeration is performed. By suppressing the increase in the evaporation pressure of the circuit 102 and suppressing the decrease in the degree of superheat of the second refrigerant sucked into the second compressor 11, the liquid return of the second refrigerant to the second compressor 11 is suppressed. Thus, the reliability of the device can be improved.

また、本実施形態においては、制御部29は、第3絞り手段18を全開に制御した後、蒸発器4の出口側における第2冷媒の過冷却度が所定範囲にあるか否かを判断し、第2冷媒の過冷却度が、所定範囲内にあると判断した場合は第2絞り手段20の開度を維持し、所定範囲より大きいと判断した場合は第2絞り手段20の開度を増加し、所定範囲より小さいと判断した場合は第2絞り手段20の開度を減少するように制御する。
これにより、蒸発器4の出口側における第2冷媒の過冷却度に応じて、第2冷媒の冷媒量を制御することができる。
In the present embodiment, the control unit 29 determines whether or not the degree of supercooling of the second refrigerant on the outlet side of the evaporator 4 is within a predetermined range after controlling the third throttling means 18 to fully open. When the degree of supercooling of the second refrigerant is determined to be within the predetermined range, the opening degree of the second throttle means 20 is maintained, and when the degree of supercooling of the second refrigerant is determined to be larger than the predetermined range, the opening degree of the second throttle means 20 is set. If it is determined that the second throttle means 20 is smaller than the predetermined range, the second throttle means 20 is controlled to decrease the opening.
Thereby, according to the supercooling degree of the 2nd refrigerant | coolant in the exit side of the evaporator 4, the refrigerant | coolant amount of a 2nd refrigerant | coolant can be controlled.

また、本実施形態においては、第1冷媒は、二酸化炭素冷媒である。
これにより、蒸発温度を臨界点以下とする場合、蒸発器4での第2冷媒との温度差を大きくすることができる。したがって、第2冷媒の凝縮温度が同じ場合、蒸発温度が比較的高温となる冷媒(例えば、R134a)と比べて、蒸発器4の出口における第2冷媒の過冷却度を大きくすることが可能となる。
よって、蒸発器4の出口における第2冷媒の密度が増加し、蒸発器4の出口側の受液器19に第2冷媒をより多く貯留することが可能となる。
また、第2冷凍回路102の低圧側で外気からの吸熱量が減少して第2冷媒の余剰が多くなる、低外気温時に第1冷凍回路100において、熱媒体の加熱運転のみが行われる場合でも、第2冷媒の密度を高めてより多くの第2冷媒を受液器19に貯留して第2冷凍回路102の蒸発圧力の上昇を抑制し、第2圧縮機11に吸入される第2冷媒の過熱度の低下を抑制することで、第2圧縮機11への第2冷媒の液戻りを抑制して、機器の信頼性を向上することができるとともに、高温かつ入水温度が高いところまで温水生成が可能となり、熱媒体貯留手段51への熱媒体の蓄熱量を増加することができる。
In the present embodiment, the first refrigerant is a carbon dioxide refrigerant.
Thereby, when making evaporation temperature below a critical point, the temperature difference with the 2nd refrigerant | coolant in the evaporator 4 can be enlarged. Therefore, when the condensation temperature of the second refrigerant is the same, it is possible to increase the degree of supercooling of the second refrigerant at the outlet of the evaporator 4 as compared with a refrigerant (for example, R134a) whose evaporation temperature is relatively high. Become.
Therefore, the density of the second refrigerant at the outlet of the evaporator 4 increases, and it becomes possible to store more second refrigerant in the liquid receiver 19 on the outlet side of the evaporator 4.
In the case where only the heat medium heating operation is performed in the first refrigeration circuit 100 at a low outside temperature where the amount of heat absorbed from the outside air decreases on the low pressure side of the second refrigeration circuit 102 and the surplus of the second refrigerant increases. However, the density of the second refrigerant is increased and more second refrigerant is stored in the liquid receiver 19 to suppress the increase in the evaporation pressure of the second refrigeration circuit 102, and the second compressor 11 is sucked into the second compressor 11. By suppressing the decrease in the degree of superheat of the refrigerant, the liquid return of the second refrigerant to the second compressor 11 can be suppressed, and the reliability of the equipment can be improved, and the temperature is high and the water inlet temperature is high. Hot water generation is possible, and the heat storage amount of the heat medium in the heat medium storage means 51 can be increased.

また、本実施形態においては、積層式の熱媒体貯留手段51としたことにより、凝縮器2で熱媒体を使用可能な温度まで一気に加熱することができるので、熱媒体が足りなくなった場合でも、わずかな時間で補充することができ、利用者の使い勝手を向上することができる。   Further, in the present embodiment, by using the stacked heat medium storage means 51, the heat medium can be heated at a stretch to the usable temperature in the condenser 2, so even when the heat medium is insufficient, It can be replenished in a short time, and user convenience can be improved.

次に、本発明の第2実施形態について説明する。
図8は、第2実施形態の制御動作を示すフローチャートである。
なお、冷凍サイクルの回路図は、前記第1実施形態において説明した図1から図6と同様であるので、その説明を省略するとともに、本実施形態の制御動作については図1から図6に示した符号を用いて説明する。
Next, a second embodiment of the present invention will be described.
FIG. 8 is a flowchart showing the control operation of the second embodiment.
Since the circuit diagram of the refrigeration cycle is the same as that shown in FIGS. 1 to 6 described in the first embodiment, the description thereof is omitted and the control operation of this embodiment is shown in FIGS. 1 to 6. This will be described using the reference numerals.

本実施形態においては、図8に示すように、制御部29は、まず、第1冷凍回路100において、熱媒体の加熱運転のみを行うか否かを判断する(ST21)。
そして、熱媒体の加熱運転のみを行う場合は(ST21:YES)、制御部29は、第2冷凍回路102の蒸発器4の出口における第2冷凍回路中間圧力検知手段33で検知された圧力Pliqが所定範囲内か否かを判断する(ST22)。所定範囲は、例えば、1.3MPa<Pliq<2.0MPaに設定される。
蒸発器4の出口における圧力Pliqが、所定範囲内であれば(ST22:YES)、制御部29は、第3絞り手段18の開度を維持するように制御する(ST23)。
また、制御部29は、蒸発器4の出口における圧力Pliqが、所定範囲より大きいと判断した場合は(ST24:YES)、第3絞り手段18の開度を増加するように制御し(ST25)、蒸発器4の出口における圧力Pliqが、所定範囲より小さいと判断した場合は(ST24:NO)、第3絞り手段18の開度を減少するように制御する(ST26)。
In the present embodiment, as shown in FIG. 8, the control unit 29 first determines whether or not only the heating operation of the heat medium is performed in the first refrigeration circuit 100 (ST21).
When only the heating operation of the heat medium is performed (ST21: YES), the control unit 29 detects the pressure Pliq detected by the second refrigeration circuit intermediate pressure detection means 33 at the outlet of the evaporator 4 of the second refrigeration circuit 102. Is determined to be within a predetermined range (ST22). For example, the predetermined range is set to 1.3 MPa <Pliq <2.0 MPa.
If the pressure Pliq at the outlet of the evaporator 4 is within a predetermined range (ST22: YES), the control unit 29 controls to maintain the opening degree of the third throttle means 18 (ST23).
In addition, when it is determined that the pressure Pliq at the outlet of the evaporator 4 is larger than the predetermined range (ST24: YES), the control unit 29 performs control so as to increase the opening degree of the third throttle means 18 (ST25). When it is determined that the pressure Pliq at the outlet of the evaporator 4 is smaller than the predetermined range (ST24: NO), control is performed so as to decrease the opening degree of the third throttle means 18 (ST26).

一方、室内熱交換器12a,12bを利用して第2冷凍回路102を空調運転するとともに、第1冷凍回路100において熱媒体の加熱運転を行う場合は(ST21:NO)、制御部29は、第2冷凍回路102の蒸発器4の出口における第2冷凍回路中間圧力検知手段33で検知された圧力Pliqが所定値であるか否かを判断する(ST27)。所定値は、例えば、2.0MPaに設定される。
そして、制御部29は、蒸発器4の出口における圧力Pliqが、所定値であると判断した場合は(ST27:YES)、第3絞り手段18の開度を維持するように制御する(ST28)。
また、蒸発器4の出口における圧力Pliqが、所定値より大きいと判断した場合は(ST29:YES)、制御部29は、第3絞り手段18の開度を増加するように制御し(ST31)、蒸発器4の出口における圧力Pliqが、所定値より小さいと判断した場合は(ST29:NO)、第3絞り手段18の開度を減少するように制御する(ST31)。
On the other hand, when the second refrigeration circuit 102 is air-conditioned using the indoor heat exchangers 12a and 12b and the heating medium is heated in the first refrigeration circuit 100 (ST21: NO), the control unit 29 It is determined whether or not the pressure Pliq detected by the second refrigeration circuit intermediate pressure detection means 33 at the outlet of the evaporator 4 of the second refrigeration circuit 102 is a predetermined value (ST27). The predetermined value is set to 2.0 MPa, for example.
Then, when it is determined that the pressure Pliq at the outlet of the evaporator 4 is a predetermined value (ST27: YES), the control unit 29 performs control so as to maintain the opening degree of the third throttle means 18 (ST28). .
When it is determined that the pressure Pliq at the outlet of the evaporator 4 is larger than the predetermined value (ST29: YES), the control unit 29 controls to increase the opening degree of the third throttling means 18 (ST31). When it is determined that the pressure Pliq at the outlet of the evaporator 4 is smaller than the predetermined value (ST29: NO), control is performed so as to decrease the opening degree of the third throttle means 18 (ST31).

本実施形態においては、蒸発器4の出口における圧力Pliq基づいて、第3絞り手段18の開度を制御することにより、前記第1実施形態と同様に、機器の効率が最適となるように第2冷凍回路102を循環する第2冷媒の量を調整することができる。   In the present embodiment, by controlling the opening degree of the third throttling means 18 based on the pressure Pliq at the outlet of the evaporator 4, as in the first embodiment, the device efficiency is optimized. 2 The amount of the second refrigerant circulating in the refrigeration circuit 102 can be adjusted.

次に、本発明の第3実施形態について説明する。
図9は、第3実施形態の制御動作を示すフローチャートである。
なお、冷凍サイクルの回路図は、前記第1実施形態において説明した図1から図6と同様であるので、その説明を省略するとともに、本実施形態の制御動作については図1から図6に示した符号を用いて説明する。
Next, a third embodiment of the present invention will be described.
FIG. 9 is a flowchart showing the control operation of the third embodiment.
Since the circuit diagram of the refrigeration cycle is the same as that shown in FIGS. 1 to 6 described in the first embodiment, the description thereof is omitted and the control operation of this embodiment is shown in FIGS. 1 to 6. This will be described using the reference numerals.

本実施形態においては、図9に示すように、制御部29は、まず、第1冷凍回路100において、熱媒体の加熱運転のみを行うか否かを判断する(ST41)。
そして、熱媒体の加熱運転のみを行う場合は(ST41:YES)、制御部29は、第2冷凍回路102の蒸発器4の出口側において、第2冷凍回路蒸発器出口温度検知手段28で検知された温度と第2冷凍回路中間温度検知手段34で検知された温度との差Tliq(第2冷凍回路中間温度差)を判断する。
In the present embodiment, as shown in FIG. 9, the control unit 29 first determines whether or not only the heating operation of the heat medium is performed in the first refrigeration circuit 100 (ST41).
When only the heating operation of the heat medium is performed (ST41: YES), the control unit 29 detects the second refrigeration circuit evaporator outlet temperature detection means 28 on the outlet side of the evaporator 4 of the second refrigeration circuit 102. The difference Tliq (second refrigeration circuit intermediate temperature difference) between the detected temperature and the temperature detected by the second refrigeration circuit intermediate temperature detection means 34 is determined.

そして、温度差Tliqが、−20Kより小さいと判断した場合は(ST42:YES)、制御部29は、第3絞り手段18の開度を減少するように制御する(ST43)。
また、制御部29は、蒸発器4の出口側における温度差Tliqが、−20K以上であると判断した場合は(ST42:NO)、制御部29は、温度差Tliqが、0Kであるか否かを判断する(ST44)。
そして、温度差Tliqが、0Kであると判断した場合は(ST44:YES)、制御部29は、第3絞り手段18の開度を増加するように制御し(ST45)、温度差Tliqが、0Kでないと判断した場合は(ST44:NO)、制御部29は、第3絞り手段18の開度を維持するように制御する(ST46)。
If it is determined that the temperature difference Tliq is smaller than −20K (ST42: YES), the control unit 29 controls the opening degree of the third throttle means 18 to be decreased (ST43).
In addition, when the control unit 29 determines that the temperature difference Tliq on the outlet side of the evaporator 4 is −20K or more (ST42: NO), the control unit 29 determines whether or not the temperature difference Tliq is 0K. Is determined (ST44).
If it is determined that the temperature difference Tliq is 0K (ST44: YES), the control unit 29 controls to increase the opening of the third throttle means 18 (ST45), and the temperature difference Tliq is When it is determined that it is not 0K (ST44: NO), the control unit 29 controls to maintain the opening degree of the third throttle means 18 (ST46).

一方、室内熱交換器12a,12bを利用して第2冷凍回路102を空調運転するとともに、第1冷凍回路100において熱媒体の加熱運転を行う場合は(ST41:NO)、制御部29は、温度差Tliqが、−20Kより小さか否かを判断する(ST47)。
そして、温度差Tliqが、−20Kより小さいと判断した場合は(ST47:YES)、制御部29は、第3絞り手段18の開度を減少するように制御する(ST48)。
また、制御部29は、蒸発器4の出口側における温度差Tliqが、−20K以上であると判断した場合は(ST47:NO)、制御部29は、温度差Tliqが、0Kであるか否かを判断する(ST49)。
そして、温度差Tliqが、0Kであると判断した場合は(ST49:YES)、制御部29は、第3絞り手段18の開度を増加するように制御し(ST50)、温度差Tliqが、0Kでないと判断した場合は(ST49:NO)、制御部29は、第3絞り手段18の開度を維持するように制御する(ST51)。
On the other hand, when performing the air conditioning operation of the second refrigeration circuit 102 using the indoor heat exchangers 12a and 12b and performing the heating operation of the heat medium in the first refrigeration circuit 100 (ST41: NO), the control unit 29 It is determined whether the temperature difference Tliq is smaller than −20K (ST47).
When it is determined that the temperature difference Tliq is smaller than −20K (ST47: YES), the control unit 29 controls the opening degree of the third throttle means 18 to be decreased (ST48).
In addition, when the control unit 29 determines that the temperature difference Tliq on the outlet side of the evaporator 4 is −20K or more (ST47: NO), the control unit 29 determines whether or not the temperature difference Tliq is 0K. Is determined (ST49).
If the temperature difference Tliq is determined to be 0K (ST49: YES), the control unit 29 controls to increase the opening of the third throttling means 18 (ST50), and the temperature difference Tliq is When it is determined that it is not 0K (ST49: NO), the control unit 29 controls to maintain the opening degree of the third throttle means 18 (ST51).

本実施形態においては、蒸発器4の出口側における温度差Tliq基づいて、第3絞り手段18の開度を制御することにより、前記第1実施形態と同様に、機器の効率が最適となるように第2冷凍回路102を循環する第2冷媒の量を調整することができる。   In the present embodiment, by controlling the opening degree of the third throttling means 18 based on the temperature difference Tliq on the outlet side of the evaporator 4, the efficiency of the device is optimized as in the first embodiment. In addition, the amount of the second refrigerant circulating in the second refrigeration circuit 102 can be adjusted.

以上のように、本発明にかかる二元ヒートポンプ装置は、二元冷凍サイクルにおける低段側冷凍回路の圧縮機の液戻りを抑制するもので、空気調和機、チラー、乾燥機、給湯空調複合装置、温水暖房機等の用途に適用できる。   As described above, the dual heat pump device according to the present invention suppresses liquid return of the compressor of the low-stage refrigeration circuit in the dual refrigeration cycle, and is an air conditioner, chiller, dryer, and hot water supply air-conditioning composite device. It can be applied to applications such as hot water heaters.

1 圧縮機
2 凝縮器
3 第1絞り手段
4 蒸発器
11 第2圧縮機
12 室内熱交換器
15 室外熱交換器
18 第3絞り手段
19 受液器
20 第2絞り手段
29 制御部
40 冷媒配管
41 第2冷媒配管
51 熱媒体貯留手段
52 熱媒体搬送手段
53 熱媒体配管
100 第1冷凍回路
102 第2冷凍回路
104 熱媒体回路
DESCRIPTION OF SYMBOLS 1 Compressor 2 Condenser 3 1st throttle means 4 Evaporator 11 2nd compressor 12 Indoor heat exchanger 15 Outdoor heat exchanger 18 3rd throttle means 19 Liquid receiver 20 2nd throttle means 29 Control part 40 Refrigerant piping 41 Second refrigerant pipe 51 Heat medium storage means 52 Heat medium conveyance means 53 Heat medium pipe 100 First refrigeration circuit 102 Second refrigeration circuit 104 Heat medium circuit

Claims (4)

圧縮機、凝縮器、第1絞り手段および蒸発器を配管で接続し、第1冷媒を循環させる第1冷凍回路と、
第2冷媒を循環させ、前記蒸発器で前記第1冷媒と熱交換を行う第2冷凍回路と、
熱媒体を循環させ、前記凝縮器で前記第1冷媒と熱交換を行う熱媒体回路と、を備え、
前記第2冷凍回路の前記蒸発器の出口側に受液器および第2絞り手段を順次に接続したことを特徴とする二元ヒートポンプ装置。
A compressor, a condenser, a first throttle means and an evaporator connected by piping, and a first refrigeration circuit for circulating the first refrigerant;
A second refrigeration circuit for circulating a second refrigerant and exchanging heat with the first refrigerant in the evaporator;
A heat medium circuit that circulates a heat medium and performs heat exchange with the first refrigerant in the condenser;
A binary heat pump apparatus, wherein a liquid receiver and a second throttle means are sequentially connected to an outlet side of the evaporator of the second refrigeration circuit.
制御手段と、前記蒸発器と前記受液器との間に第3絞り手段とを備え、
前記制御手段は、前記第1冷凍回路により前記熱媒体回路を循環する熱媒体の加熱運転のみを行う場合に、前記第2冷凍回路の前記蒸発器の出口側における前記第2冷媒の状態に応じて前記第2絞り手段の開度を制御することを特徴とする請求項1に記載の二元ヒートポンプ装置。
A third throttle means between the control means and the evaporator and the liquid receiver;
The control means responds to the state of the second refrigerant on the outlet side of the evaporator of the second refrigeration circuit when performing only the heating operation of the heat medium circulating in the heat medium circuit by the first refrigeration circuit. The two-way heat pump device according to claim 1, wherein an opening degree of the second throttle means is controlled.
前記制御手段は、前記第3絞り手段を全開に制御した後、前記蒸発器の出口側における前記第2冷媒の過冷却度が所定範囲にあるか否かを判断し、前記第2冷媒の過冷却度が、所定範囲内にあると判断した場合は前記第2絞り手段の開度を維持し、所定範囲より大きいと判断した場合は前記第2絞り手段の開度を増加し、所定範囲より小さいと判断した場合は前記第2絞り手段の開度を減少するように制御することを特徴とする請求項2に記載の二元ヒートポンプ装置。   The control means, after controlling the third throttling means to fully open, determines whether or not the degree of supercooling of the second refrigerant at the outlet side of the evaporator is within a predetermined range, and When it is determined that the degree of cooling is within a predetermined range, the opening degree of the second throttle means is maintained, and when it is determined that the degree of cooling is greater than the predetermined range, the opening degree of the second throttle means is increased, and from the predetermined range. The two-way heat pump device according to claim 2, wherein when it is determined to be small, control is performed so as to reduce the opening of the second throttle means. 前記第1冷媒は、二酸化炭素冷媒であることを特徴とする請求項1から請求項3のいずれか一項に記載の二元ヒートポンプ装置。   The dual heat pump device according to any one of claims 1 to 3, wherein the first refrigerant is a carbon dioxide refrigerant.
JP2016196135A 2016-10-04 2016-10-04 Dual heat pump device Expired - Fee Related JP6692083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016196135A JP6692083B2 (en) 2016-10-04 2016-10-04 Dual heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016196135A JP6692083B2 (en) 2016-10-04 2016-10-04 Dual heat pump device

Publications (2)

Publication Number Publication Date
JP2018059648A true JP2018059648A (en) 2018-04-12
JP6692083B2 JP6692083B2 (en) 2020-05-13

Family

ID=61908453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016196135A Expired - Fee Related JP6692083B2 (en) 2016-10-04 2016-10-04 Dual heat pump device

Country Status (1)

Country Link
JP (1) JP6692083B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110260633A (en) * 2019-06-12 2019-09-20 珠海格力电器股份有限公司 Superposition type drying system and its control method, device and storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002081767A (en) * 2000-09-07 2002-03-22 Hitachi Ltd Air conditioner
JP2004132647A (en) * 2002-10-11 2004-04-30 Daikin Ind Ltd Hot-water supplier, air-conditioning hot-water supply system, and hot-water supply system
WO2012128229A1 (en) * 2011-03-18 2012-09-27 東芝キヤリア株式会社 Binary refrigeration cycle device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002081767A (en) * 2000-09-07 2002-03-22 Hitachi Ltd Air conditioner
JP2004132647A (en) * 2002-10-11 2004-04-30 Daikin Ind Ltd Hot-water supplier, air-conditioning hot-water supply system, and hot-water supply system
WO2012128229A1 (en) * 2011-03-18 2012-09-27 東芝キヤリア株式会社 Binary refrigeration cycle device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110260633A (en) * 2019-06-12 2019-09-20 珠海格力电器股份有限公司 Superposition type drying system and its control method, device and storage medium

Also Published As

Publication number Publication date
JP6692083B2 (en) 2020-05-13

Similar Documents

Publication Publication Date Title
JP5518089B2 (en) Air conditioner
JP5984914B2 (en) Air conditioner
JP5042262B2 (en) Air conditioning and hot water supply complex system
JP5791785B2 (en) Air conditioner
JP5855312B2 (en) Air conditioner
JP6067025B2 (en) Air conditioner
CN110741211B (en) Refrigerating machine
JPWO2017138059A1 (en) Air conditioner
WO2014049673A1 (en) Combined air-conditioning and hot-water supply system
JP2017161182A (en) Heat pump device
JP2014126350A (en) Air conditioner
CN113454408B (en) Air conditioning apparatus
CN113439188B (en) Air conditioner
JP6692083B2 (en) Dual heat pump device
JP6643630B2 (en) Air conditioner
JP6675083B2 (en) Binary heat pump device
JP2015124909A (en) Hot water supply air-conditioning system
JP5005011B2 (en) Air conditioner
JP6695034B2 (en) Heat pump device
JP6695033B2 (en) Heat pump device
JP6350577B2 (en) Air conditioner
KR20140133375A (en) Two stage heat pump cooling and heating apparatus using air heat source
KR20110066780A (en) Water circulation system associated with refrigerant system
EP3217118B1 (en) Heat pump apparatus
JP2017172898A (en) Air conditioning hot water system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200330

R151 Written notification of patent or utility model registration

Ref document number: 6692083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees