JP2018054252A - 冷凍装置 - Google Patents

冷凍装置 Download PDF

Info

Publication number
JP2018054252A
JP2018054252A JP2016193140A JP2016193140A JP2018054252A JP 2018054252 A JP2018054252 A JP 2018054252A JP 2016193140 A JP2016193140 A JP 2016193140A JP 2016193140 A JP2016193140 A JP 2016193140A JP 2018054252 A JP2018054252 A JP 2018054252A
Authority
JP
Japan
Prior art keywords
refrigerant
state
heat exchanger
unit
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016193140A
Other languages
English (en)
Inventor
山田 拓郎
Takuo Yamada
拓郎 山田
中川 裕介
Yusuke Nakagawa
裕介 中川
祐輔 岡
Yusuke Oka
祐輔 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2016193140A priority Critical patent/JP2018054252A/ja
Publication of JP2018054252A publication Critical patent/JP2018054252A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

【課題】省冷媒の実現と信頼性低下の抑制を両立可能な冷凍装置を提供する。【解決手段】空調システムは、室外熱交換器20を含む室外ユニット10と、室内熱交換器を含む複数の室内ユニットと、室内ユニット内の冷媒の流れを切り換える切換弁を含み第3連絡管53等で室外ユニット10と接続される中間ユニットと、室外熱交換器20/室内熱交換器と第3連絡管53との間に配置される減圧弁と、切換弁を制御して室内ユニット毎に第1サイクル状態(蒸発器状態)/第2サイクル状態(凝縮器状態)を切り換えるコントローラとを備える。コントローラは、冷暖均衡状態(運転均衡状態)時に冷暖均衡制御(第1制御)を実行し、第3連絡管53にて室外ユニット10側から各室内ユニット側へ冷媒が流れるように室外熱交換器20を凝縮器として機能させる。【選択図】図2

Description

本発明は、冷凍装置に関する。
従来、熱源ユニット及び複数の利用ユニットを含む冷媒回路において、熱源ユニット及び利用ユニット間に、利用ユニット内の冷媒の流れを切り換える切換弁を複数有し、各切換弁の状態を個別に制御することで各利用ユニット内の冷媒の流れ方向を個別に切り換えることが可能な冷凍装置が存在する。例えば、特許文献1(特開2008−39276号公報)には、室外ユニットと複数の室内ユニットとの間に切換弁を含む冷媒流路切換ユニットが配置され、各室内ユニットが冷房運転と暖房運転とを個別に選択可能なように構成された空調装置が開示されている。
昨今、コスト抑制や環境保護の観点から、冷媒回路に充填される冷媒量を低減させる省冷媒に係る取り組みが活発化している。この点、熱源ユニット及び利用ユニット間で延びる液側冷媒流路において搬送される冷媒に関し、気液二相状態で搬送させる気液二相搬送によれば、液状態で搬送される場合と比較して能力低下が抑制されつつ少ない冷媒充填量で運転を行うことが可能となるため、係る気液二相搬送を採用することが省冷媒を実現する方法として考えられる。
しかし、上述のような各利用ユニット内の冷媒の流れ方向を個別に切り換えることが可能な冷凍装置においては、液側の出入口から冷媒が流入する第1サイクル状態で運転中の利用ユニットの熱負荷と、ガス側の出入口から冷媒が流入する第2サイクル状態で運転中の利用ユニットの熱負荷と、が均衡する場合、上記液側冷媒流路において冷媒が滞留し若しくは状態が不安定となって寝込みや逆流が生じることで、冷媒回路において冷媒が想定通りに流れないケースが考えられる。係る場合、冷媒回路全体における冷媒循環量が不足し、信頼性が低下することも考えられる。
そこで、本発明の課題は、省冷媒の実現と信頼性低下の抑制を両立可能な冷凍装置を提供することである。
本発明の第1観点に係る冷凍装置は、冷媒回路において冷凍サイクルを行う冷凍装置であって、熱源ユニットと、複数の利用ユニットと、冷媒流路切換ユニットと、減圧弁と、コントローラと、を備える。熱源ユニットは、熱源側熱交換器を有する。熱源側熱交換器は、冷媒の流れに応じて、冷媒の凝縮器及び/又は蒸発器として機能する。利用ユニットは、利用側熱交換器を有する。利用側熱交換器は、冷媒の流れに応じて、冷媒の蒸発器又は凝縮器として機能する。冷媒流路切換ユニットは、第1連絡管、第2連絡管、及び第3連絡管で熱源ユニットと接続される。第1連絡管は、高圧のガス冷媒が流れる配管である。第2連絡管は、低圧のガス冷媒が流れる配管である。第3連絡管は、気液二相冷媒が流れる配管である。冷媒流路切換ユニットは、第1冷媒配管及び第2冷媒配管で利用ユニットと接続される。第1冷媒配管は、ガス冷媒が流れる配管である。第2冷媒配管は、液冷媒/気液二相冷媒が流れる配管である。冷媒流路切換ユニットは、切換弁を有する。切換弁は、利用ユニット内の冷媒の流れを切り換える。減圧弁は、熱源側熱交換器若しくは利用側熱交換器と、第3連絡管と、の間に配置される。減圧弁は、開度に応じて冷媒を減圧する。コントローラは、各機器の動作又は状態を制御する。
コントローラは、切換弁の状態を制御して各利用ユニット内の冷媒の流れを個別に切り換えることで、利用ユニット毎に、第1サイクル状態及び第2サイクル状態のいずれかに個別に切り換える。第1サイクル状態は、第2冷媒配管側が冷媒流れの上流側となるとともに第1冷媒配管側が冷媒流れの下流側となる状態である。第2サイクル状態は、第1冷媒配管側が冷媒流れの上流側となるとともに第2冷媒配管側が冷媒流れの下流側となる状態である。コントローラは、運転均衡状態となった場合には、第1制御を実行する。運転均衡状態は、第1サイクル状態で運転中の利用ユニットの熱負荷と、第2サイクル状態で運転中の利用ユニットの熱負荷と、が均衡する状態である。第1制御は、第3連絡管において熱源ユニット側から各利用ユニット側へ冷媒が流れるように、熱源側熱交換器を凝縮器として機能させる制御である。
本発明の第1観点に係る冷凍装置では、開度に応じて冷媒を減圧する減圧弁が、熱源側熱交換器若しくは利用側熱交換器と、第3連絡管と、の間に配置される。これにより、熱源ユニット及び利用ユニット間で延びる第3連絡管において搬送される冷媒に関し、気液二相状態で搬送させる気液二相搬送が可能となり、液状態で搬送される場合と比較して能力低下が抑制されつつ少ない冷媒充填量で運転を行うことが可能となる。よって、省冷媒が実現されうる。
一方で、第2冷媒配管側(液側)の出入口から冷媒が流入する第1サイクル状態で運転中の利用ユニットの熱負荷と、第1冷媒配管側(ガス側)の出入口から冷媒が流入する第2サイクル状態で運転中の利用ユニットの熱負荷と、が均衡する運転均衡状態となった場合には、コントローラは、第3連絡管において熱源ユニット側から各利用ユニット側へ冷媒が流れるように、熱源側熱交換器を凝縮器として機能させる第1制御を実行する。これにより、運転均衡状態となった場合には、熱源側熱交換器が凝縮器として機能する。その結果、第3連絡管において熱源ユニット側から各利用ユニット側へ冷媒が流れることが助長される。このため、各利用ユニット内の冷媒の流れ方向を個別に切り換えることが可能な冷凍装置において、運転中、運転均衡状態となった場合にも、第3連絡管で流れる冷媒が滞留し若しくは状態(特に流れる方向)が不安定となって冷媒回路において冷媒が想定通りに流れないことが抑制される。よって、信頼性低下が抑制される。
したがって、省冷媒の実現と信頼性低下の抑制を両立可能である。
なお、ここでの「運転均衡状態」とは、所定条件が満たされることにより、第1サイクル状態で運転中の利用ユニットの熱負荷と、第2サイクル状態で運転中の利用ユニットの熱負荷と、が均衡していると想定される状態を意味する。係る所定条件については、設置環境や設計仕様に応じて適宜選択される。
例えば、係る所定条件は、第1サイクル状態で運転中の利用ユニットの台数と、第2サイクル状態で運転中の利用ユニットの台数と、が等しいことである。
また、例えば、係る所定条件は、第1サイクル状態で運転中の利用ユニットと第2サイクル状態で運転中の利用ユニットとが混在する場合において、第1サイクル状態で運転中の全利用ユニットの熱負荷が第2サイクル状態で運転中の全利用ユニットの熱負荷よりも130パーセント以上の割合で大きい状態と、第2サイクル状態で運転中の全利用ユニットの熱負荷が第1サイクル状態で運転中の全利用ユニットの熱負荷よりも130パーセント以上の割合で大きい状態と、のいずれにも該当しないことである。
本発明の第2観点に係る冷凍装置は、第1観点に係る冷凍装置であって、コントローラは、第1制御では、第3連絡管において熱源ユニットから各冷媒流路切換ユニット側へ気液二相冷媒が搬送されるように、減圧弁の開度を制御する。
これにより、運転中、運転均衡状態となった場合には、第3連絡管において熱源ユニットから各冷媒流路切換ユニット側へ気液二相冷媒が搬送されるように減圧弁の開度が制御される。その結果、第3連絡管において熱源ユニット側から各利用ユニット側へ気液二相冷媒が流れることが助長される。よって、各利用ユニット内の冷媒の流れ方向を個別に切り換えることが可能な冷凍装置において、運転均衡状態となった場合にも、信頼性低下が抑制されつつ省冷媒が実現される。
本発明の第3観点に係る冷凍装置は、第1観点又は第2観点に係る冷凍装置であって、流量調整弁をさらに備える。熱源側熱交換器は、第1熱源側熱交換器及び第2熱源側熱交換器を含む。第1熱源側熱交換器は、冷媒の蒸発器として機能する。第2熱源側熱交換器は、冷媒の凝縮器として機能する。流量調整弁は、第1熱源側熱交換器の冷媒の入口側又は出口側に配置される。流量調整弁は、開度に応じて、第1熱源側熱交換器内における冷媒の流量を増減させる。コントローラは、第1制御では流量調整弁を絞る。
これにより、運転中、運転均衡状態となった場合には、蒸発器として機能する第1熱源側熱交換器における冷媒流量が低減する。その結果、第3連絡管において熱源ユニット側から各利用ユニット側へ冷媒が流れることが特に助長される。
本発明の第4観点に係る冷凍装置は、第3観点に係る冷凍装置であって、コントローラは、第1制御では、流量調整弁を全閉状態に制御する。これにより、運転中、運転均衡状態となった場合には、蒸発器として機能する第1熱源側熱交換器における冷媒の流れが遮断される。その結果、第3連絡管において熱源ユニット側から各利用ユニット側へ冷媒が流れることがより確実に助長される。
本発明の第5観点に係る冷凍装置は、第1観点又は第2観点に係る冷凍装置であって、流量調整弁をさらに備える。熱源側熱交換器は、第1熱源側熱交換器及び第2熱源側熱交換器を含む。第1熱源側熱交換器は、冷媒の蒸発器として機能する。第2熱源側熱交換器は、冷媒の凝縮器として機能する。流量調整弁は、第2熱源側熱交換器の冷媒の入口側又は出口側に配置される。流量調整弁は、開度に応じて、第2熱源側熱交換器内における冷媒の流量を増減させる。コントローラは、第1制御では、第2熱源側熱交換器が凝縮器として機能するように、流量調整弁を全閉状態よりも大きい開状態に制御する。
これにより、運転中、運転均衡状態となった場合には、第2熱源側熱交換器が凝縮器として機能するように第2熱源側熱交換器において冷媒が流れる。その結果、第3連絡管において熱源ユニット側から各利用ユニット側へ冷媒が流れることがより確実に助長される。
本発明の第6観点に係る冷凍装置は、第1観点又は第2観点に係る冷凍装置であって、流路切換弁をさらに備える。流路切換弁は、熱源側熱交換器の冷媒の入口側又は出口側に配置される。流路切換弁は、冷媒の流れを切り換える。流路切換弁は、コントローラによって、第1状態と第2状態とを切り換えられる。第1状態は、熱源側熱交換器が凝縮器として機能するように冷媒流路を形成する状態である。第2状態は、熱源側熱交換器が蒸発器として機能するように冷媒流路を形成する状態である。コントローラは、第1制御では、流路切換弁を第1状態に制御する。
これにより、運転中、運転均衡状態となった場合には、熱源側熱交換器が凝縮器として機能するように冷媒流路が形成され、熱源側熱交換器が凝縮器として機能する。その結果、第3連絡管において熱源ユニット側から各利用ユニット側へ冷媒が流れることがより確実に助長される。
本発明の第7観点に係る冷凍装置は、第1観点又は第2観点に係る冷凍装置であって、流路切換弁をさらに備える。熱源側熱交換器は、第1熱源側熱交換器と第2熱源側熱交換器とを含む。流路切換弁は、第1熱源側熱交換器及び/又は第2熱源側熱交換器の冷媒の入口側又は出口側に配置される。流路切換弁は、冷媒の流れを切り換える。流路切換弁は、コントローラによって、第1状態と第2状態とを切り換えられる。第1状態は、コントローラによって、第1熱源側熱交換器及び/又は第2熱源側熱交換器が凝縮器として機能するように、冷媒流路を形成する状態である。第2状態は、第1熱源側熱交換器及び/又は第2熱源側熱交換器が蒸発器として機能するように、冷媒流路を形成する状態である。コントローラは、第1制御では流路切換弁を第1状態に制御する。
これにより、運転中、運転均衡状態となった場合には、第1熱源側熱交換器及び/又は第2熱源側熱交換器が凝縮器として機能するように冷媒流路が形成され、第1熱源側熱交換器及び/又は第2熱源側熱交換器が凝縮器として機能する。その結果、第3連絡管において熱源ユニット側から各利用ユニット側へ冷媒が流れることがより確実に助長される。
本発明の第8観点に係る冷凍装置は、第1観点から第7観点のいずれかに係る冷凍装置であって、コントローラは、第2サイクル状態で運転中の利用ユニットの熱負荷が、第1サイクル状態で運転中の利用ユニットの熱負荷よりも所定の割合で大きい状態から、運転均衡状態となった場合に、第1制御を実行する。
これにより、運転中、第3連絡管で流れる冷媒が滞留し若しくは状態が不安定となり冷媒回路において冷媒が想定通りに流れない可能性が特に大きい場合にも、第3連絡管において熱源ユニット側から各利用ユニット側へ冷媒が流れることが助長され、信頼性低下が抑制される。
本発明の第9観点に係る冷凍装置は、第1観点から第8観点のいずれかに係る冷凍装置であって、コントローラは、第1サイクル状態で運転中の利用ユニットの熱負荷が、第2サイクル状態で運転中の利用ユニットの熱負荷よりも所定の割合で大きい状態から、運転均衡状態となった場合には、第1制御を実行しない。
これにより、運転中、第3連絡管で流れる冷媒が滞留し若しくは状態が不安定となり冷媒回路において冷媒が想定通りに流れない可能性が特に大きい場合にのみ、第1制御が実行される。よって、信頼性低下のおそれが大きくない場合に第1制御が実行されることで、かえってCOP低下・能力低下を招くことが抑制される。
本発明の第1観点に係る冷凍装置では、熱源ユニット及び利用ユニット間で延びる第3連絡管において搬送される冷媒に関し、気液二相状態で搬送させる気液二相搬送が可能となり、液状態で搬送される場合と比較して能力低下が抑制されつつ少ない冷媒充填量で運転を行うことが可能となる。よって、省冷媒が実現されうる。
また、運転均衡状態となった場合には、熱源側熱交換器が凝縮器として機能する。その結果、第3連絡管において熱源ユニット側から各利用ユニット側へ冷媒が流れることが助長される。このため、各利用ユニット内の冷媒の流れ方向を個別に切り換えることが可能な冷凍装置において、運転中、運転均衡状態となった場合にも、第3連絡管で流れる冷媒が滞留し若しくは状態(特に流れる方向)が不安定となって冷媒回路において冷媒が想定通りに流れないことが抑制される。よって、信頼性低下が抑制される。
したがって、省冷媒の実現と信頼性低下の抑制を両立可能である。
本発明の第2観点に係る冷凍装置では、各利用ユニット内の冷媒の流れ方向を個別に切り換えることが可能な冷凍装置において、運転均衡状態となった場合にも、信頼性低下が抑制されつつ省冷媒が実現される。
本発明の第3観点に係る冷凍装置では、第3連絡管において熱源ユニット側から各利用ユニット側へ冷媒が流れることが特に助長される。
本発明の第4観点、第5観点、第6観点、又は第7観点に係る冷凍装置では、第3連絡管において熱源ユニット側から各利用ユニット側へ冷媒が流れることがより確実に助長される。
本発明の第8観点に係る冷凍装置では、運転中、第3連絡管で流れる冷媒が滞留し若しくは状態が不安定となり冷媒回路において冷媒が想定通りに流れない可能性が特に大きい場合にも、第3連絡管において熱源ユニット側から各利用ユニット側へ冷媒が流れることが助長され、信頼性低下が抑制される。
本発明の第9観点に係る冷凍装置では、信頼性低下のおそれが大きくない場合に第1制御が実行されることで、かえってCOP低下・能力低下を招くことが抑制される。
本発明の一実施形態に係る空調システムの全体構成図。 室外ユニット内の冷媒回路図。 室内ユニット及び中間ユニット内の冷媒回路図。 コントローラ、及びコントローラに接続される各部を模式的に示したブロック図。 コントローラに含まれる各機能部を模式的に示したブロック図。 運転中、コントローラによって行われる各アクチュエータの制御の流れの一例について示したフローチャート。 運転中、コントローラによって行われる各アクチュエータの制御の流れの一例について示したフローチャート。 運転時における各弁の状態変化の一例を示すタイミングチャート。 運転時における各弁の状態変化の一例を示すタイミングチャート。
以下、図面を参照しながら、本発明の一実施形態に係る空調システム100(冷凍装置)について説明する。なお、以下の実施形態は、本発明の具体例であって、本発明の技術的範囲を限定するものではなく、発明の要旨を逸脱しない範囲で適宜変更が可能である。
(1)空調システム100
図1は、本発明の一実施形態に係る空調システム100の全体構成図である。空調システム100は、ビルや工場等に設置されて対象空間の空気調和を実現する。空調システム100は、冷媒配管方式の空調システムであって、冷媒回路において冷凍サイクルを行うことにより、対象空間の冷房や暖房などを行う。
空調システム100は、主として、熱源ユニットとしての1台の室外ユニット10と、利用ユニットとしての複数の室内ユニット30(30a、30b、30c、30d・・・)と、室外ユニット10及び室内ユニット30間における冷媒の流れを切り換える複数の中間ユニット40(40a、40b、40c、40d・・・)と、室外ユニット10及び中間ユニット40の間で延びる室外側連絡配管50(第1連絡管51、第2連絡管52、及び第3連絡管53)と、室内ユニット30及び中間ユニット40の間で延びる複数の室内側連絡配管60(液側連絡管LP及びガス側連絡管GP)と、空調システム100の動作を制御するコントローラ70と、を有している。
空調システム100では、中間ユニット40(特許請求の範囲記載の「冷媒流路切換ユニット」に相当)が、いずれかの室内ユニット30と対応付けられており、対応する室内ユニット30における冷媒の流れを切り換える。これにより、空調システム100では、各室内ユニット30が冷房運転及び暖房運転等の運転種別を個別に切り換えられる。すなわち、空調システム100は、室内ユニット30毎に冷房運転及び暖房運転を個別に選択可能ないわゆる冷暖フリータイプである。なお、各室内ユニット30は、図示しないリモートコントロール装置を介して、運転種別や設定温度等の各種設定項目の切換えに係るコマンドを入力される。
以下の説明においては、説明の便宜上、冷房運転中の室内ユニット30を「冷房室内ユニット30」と称し、暖房運転中の室内ユニット30を「暖房室内ユニット30」と称する。なお、ここでの冷房室内ユニット30は特許請求の範囲記載の「第1サイクル状態で運転中の前記利用ユニット」に相当し、暖房室内ユニット30は特許請求の範囲記載の「第2サイクル状態で運転中の前記利用ユニット」に相当する。
また、説明の便宜上、冷房室内ユニット30に対応する中間ユニット40を「冷房中間ユニット40」と称し、暖房室内ユニット30に対応する中間ユニット40を「暖房中間ユニット40」と称する。
空調システム100では、室外ユニット10と各中間ユニット40とが室外側連絡配管50で個別に接続され、各中間ユニット40と対応する室内ユニット30とが各室内側連絡配管60で接続されることで、冷媒回路RCが構成されている。具体的に、室外ユニット10と各中間ユニット40とは、室外側連絡配管50としての第1連絡管51(特許請求の範囲記載の「第1連絡管」に相当)、第2連絡管52(特許請求の範囲記載の「第2連絡管」に相当)、及び第3連絡管53(特許請求の範囲記載の「第3連絡管」に相当)で接続されている。また、いずれかの室内ユニット30といずれかの中間ユニット40とは、室内側連絡配管60としてのガス側連絡管GP(特許請求の範囲記載の「第1冷媒配管」に相当)及び液側連絡管LP(特許請求の範囲記載の「第2冷媒配管」に相当)で接続されている。
空調システム100では、冷媒回路RC内に封入された冷媒が、圧縮され、冷却又は凝縮され、減圧され、加熱又は蒸発された後に、再び圧縮される、という蒸気圧縮冷凍サイクルが行われる。冷媒回路RCには、例えば、R32冷媒が封入されている。
空調システム100では、室外ユニット10及び中間ユニット40間で延びる第3連絡管53において、冷媒が気液二相状態で搬送される気液二相搬送が行われる。より詳細には、室外ユニット10及び中間ユニット40間で延びる第3連絡管53において搬送される冷媒に関し、液状態で搬送される場合と比較して、気液二相状態で搬送される場合のほうが、能力低下が抑制されつつ少ない冷媒充填量で運転を行うことが可能となることに鑑みて、空調システム100は、省冷媒を実現するために第3連絡管53において気液二相搬送が行われるように構成されている。
空調システム100では、運転中、全冷房状態、全暖房状態、冷房主体状態、暖房主体状態、及び冷暖均衡状態のいずれかに運転状態が遷移する。全冷房状態は、運転中の全ての室内ユニット30が冷房室内ユニット30である状態(すなわち、運転中の室内ユニット30の全てが冷房運転を行っている状態)である。全暖房状態は、運転中の全ての室内ユニット30が暖房室内ユニット30である状態(すなわち、運転中の室内ユニット30の全てが暖房運転を行っている状態)である。
冷房主体状態は、全ての冷房室内ユニット30の熱負荷が、全ての暖房室内ユニット30の熱負荷よりも大きいと想定される状態である。例えば、冷房主体状態は、冷房室内ユニット30の台数が、暖房室内ユニット30の台数よりも多い状態である。また、例えば、冷房主体状態は、冷房室内ユニット30と暖房室内ユニット30とが混在する場合において、全ての冷房室内ユニット30の熱負荷の合計値が全ての暖房室内ユニット30の熱負荷の合計値よりも所定の割合(例えば130パーセント以上の割合)で大きい状態である。なお、これら以外の状態をもって冷房主体状態としてもよい。
暖房主体状態は、全ての暖房室内ユニット30の熱負荷が、全ての冷房室内ユニット30の熱負荷よりも大きいと想定される状態である。例えば、暖房主体状態は、例えば、暖房室内ユニット30の台数が、冷房室内ユニット30の台数よりも多い状態である。また、例えば、暖房主体状態は、冷房室内ユニット30と暖房室内ユニット30とが混在する場合において、全ての暖房室内ユニット30の熱負荷の合計値が全ての冷房室内ユニット30の熱負荷の合計値よりも所定の割合(130パーセント以上の割合)で大きい状態である。なお、これら以外の状態をもって暖房主体状態としてもよい。
冷暖均衡状態(特許請求の範囲記載の「運転均衡状態」に相当)は、全ての冷房室内ユニット30の熱負荷と、全ての暖房室内ユニット30の熱負荷と、が均衡していると想定される状態である。例えば、冷暖均衡状態は、冷房室内ユニット30の台数と、暖房室内ユニット30の台数と、が等しい状態である。また、例えば、冷暖均衡状態は、冷房室内ユニット30と暖房室内ユニット30とが混在する場合において、全ての冷房室内ユニット30の熱負荷が全ての暖房室内ユニット30の熱負荷よりも所定の割合(例えば130パーセント以上の割合)で大きい状態、及び全ての冷房室内ユニット30の熱負荷が全ての暖房室内ユニット30の熱負荷の合計値よりも所定の割合(例えば130パーセント以上の割合)で大きい状態のいずれにも該当しない状態である。すなわち、係る場合、冷房室内ユニット30と暖房室内ユニット30とが混在するときにおいて、全ての冷房室内ユニット30の熱負荷の合計値が全ての暖房室内ユニット30の熱負荷の合計値よりも所定の割合(例えば100パーセント以上130パーセント未満の割合)で大きい状態、又は全ての暖房室内ユニット30の熱負荷の合計値が全ての冷房室内ユニット30の熱負荷の合計値よりも所定の割合(例えば100パーセント以上130パーセント未満の割合)で大きい状態が、冷暖均衡状態に該当する。なお、これら以外の状態をもって冷暖均衡状態としてもよい。
ここでの熱負荷は、室内ユニット30で処理を要求される熱負荷であり、例えば、室内ユニット30において設定される設定温度、室内ユニット30が設置される対象空間内の温度、室内ユニット30における冷媒循環量、室内ファン33の回転数、圧縮機15の運転容量、室外熱交換器20の容量、及び室内熱交換器32の容量等のいずれか/全てに基づき、算出される。
(1−1)室外ユニット10(熱源ユニット)
図2は、室外ユニット10内の冷媒回路図である。室外ユニット10は、例えば建物の屋上やベランダ等の屋外、又は地下等の室外(対象空間外)に設置される。室外ユニット10は、主として、ガス側第1閉鎖弁11と、ガス側第2閉鎖弁12と、液側閉鎖弁13と、アキュームレータ14と、圧縮機15と、第1流路切換弁16と、第2流路切換弁17と、第3流路切換弁18と、室外熱交換器20と、第1室外膨張弁23と、第2室外膨張弁24と、第3室外膨張弁25と、第4室外膨張弁26と、過冷却熱交換器27と、を有している。室外ユニット10では、これらの機器が冷媒配管を介して接続されることで冷媒回路RCの一部が構成されている。また、室外ユニット10は、室外ファン28及び室外ユニット制御部29を有している。
ガス側第1閉鎖弁11、ガス側第2閉鎖弁12及び液側閉鎖弁13は、冷媒の充填やポンプダウン等の際に開閉される手動の弁である。ガス側第1閉鎖弁11は、一端が第1連絡管51に接続され、他端がアキュームレータ14まで延びる冷媒配管に接続されている。ガス側第2閉鎖弁12は、一端が第2連絡管52に接続され、他端が第3流路切換弁18まで延びる冷媒配管に接続されている。液側閉鎖弁13は、一端が第3連絡管53に接続され、他端が第3室外膨張弁25まで延びる冷媒配管に接続されている。
アキュームレータ14は、圧縮機15に吸入される低圧冷媒を一時的に貯留し気液分離するための容器である。アキュームレータ14の内部では、気液二相状態の冷媒がガス冷媒と液冷媒とに分離される。アキュームレータ14は、ガス側第1閉鎖弁11と圧縮機15との間に配置されている。アキュームレータ14の冷媒出入口には、ガス側第1閉鎖弁11から延びる冷媒配管が接続されている。アキュームレータ14の冷媒流出口には、圧縮機15まで延びる吸入配管Paが接続されている。
圧縮機15は、圧縮機用モータ(図示省略)を内蔵する密閉式の構造を有しており、例えばスクロール方式やロータリ方式等の圧縮機構を有する容積式の圧縮機である。なお、圧縮機15は、本実施形態において1台のみであるが、これに限定されず、2台以上の圧縮機15が直列或いは並列に接続されていてもよい。圧縮機15の吸入口(図示省略)には、吸入配管Paが接続されている。圧縮機15の吐出口(図示省略)には、吐出配管Pbが接続されている。圧縮機15は、吸入配管Paを介して吸入した低圧冷媒を圧縮後、吐出配管Pbへ吐出する。
第1流路切換弁16、第2流路切換弁17及び第3流路切換弁18(以下、これらをまとめて「流路切換弁19」と称する)は、四路切換弁であり、状況に応じて冷媒の流れを切り換えている(図2の流路切換弁19内の実線及び破線を参照)。流路切換弁19の冷媒出入口には、吐出配管Pb又は吐出配管Pbから延びる分岐管が接続されている。また、流路切換弁19は、運転時において、一の冷媒流路における冷媒の流れが遮断されるように構成されており、事実上、三方弁として機能している。流路切換弁19は、圧縮機15の吐出側(吐出配管Pb)から送られる冷媒を、下流側へと送る第1流路状態(図2の流路切換弁19内の実線を参照)と、閉塞させる第2流路状態(図2の流路切換弁19内の破線を参照)と、を切り換えられる。
第1流路切換弁16(特許請求の範囲記載の「流路切換弁」に相当)は、室外熱交換器20の第1室外熱交換器21(後述)の冷媒の入口側/出口側に配置されている。第1流路切換弁16は、第1流路状態となると、圧縮機15の吐出側と第1室外熱交換器21のガス側出入口とを連通させ(図2の第1流路切換弁16内の実線を参照)、第2流路状態となると圧縮機15の吸入側(アキュームレータ14)と第1室外熱交換器21のガス側出入口とを連通させる(図2の第1流路切換弁16内の破線を参照)。なお、第1流路切換弁16において、第1流路状態は、後述の第1室外熱交換器21が凝縮器として機能するように冷媒流路を形成する状態であり、特許請求の範囲記載の「第1状態」に相当する。また、第1流路切換弁16において、第2流路状態は、後述の第1室外熱交換器21が蒸発器として機能するように冷媒流路を形成する状態であり、特許請求の範囲記載の「第2状態」に相当する。
第2流路切換弁17(特許請求の範囲記載の「流路切換弁」に相当)は、室外熱交換器20の第2室外熱交換器22(後述)の冷媒の入口側/出口側に配置されている。第2流路切換弁17は、第1流路状態となると圧縮機15の吐出側と第2室外熱交換器22のガス側出入口とを連通させ(図2の第2流路切換弁17内の実線を参照)、第2流路状態となると圧縮機15の吸入側(アキュームレータ14)と第2室外熱交換器22のガス側出入口とを連通させる(図2の第2流路切換弁17内の破線を参照)。なお、第2流路切換弁17において、第1流路状態は、後述の第2室外熱交換器22が凝縮器として機能するように冷媒流路を形成する状態であり、特許請求の範囲記載の「第1状態」に相当する。また、第2流路切換弁17において、第2流路状態は、後述の第2室外熱交換器22が蒸発器として機能するように冷媒流路を形成する状態であり、特許請求の範囲記載の「第2状態」に相当する。
第3流路切換弁18は、第1流路状態となると、圧縮機15の吐出側とガス側第2閉鎖弁12とを連通させ(図2の第3流路切換弁18内の実線を参照)、第2流路状態となると圧縮機15の吸入側(アキュームレータ14)と第2室外熱交換器22のガス側第2閉鎖弁12とを連通させる(図2の第3流路切換弁18内の破線を参照)。
室外熱交換器20(特許請求の範囲記載の「熱源側熱交換器」に相当)は、クロスフィン型式や積層型式等の熱交換器であり、冷媒が通過する伝熱管(図示省略)を含んでいる。室外熱交換器20は、冷媒の流れに応じて、冷媒の凝縮器及び/又は蒸発器として機能する。より具体的には、室外熱交換器20は、第1室外熱交換器21と、第2室外熱交換器22とを含んでいる。
第1室外熱交換器21は、第1流路切換弁16に接続される冷媒配管がガス側の冷媒出入口に接続され、第1室外膨張弁23まで延びる冷媒配管が液側の冷媒出入口に接続されている。第2室外熱交換器22は、第2流路切換弁17に接続される冷媒配管がガス側の冷媒出入口に接続され、第2室外膨張弁24まで延びる冷媒配管が液側の冷媒出入口に接続されている。第1室外熱交換器21及び第2室外熱交換器22を通過する冷媒は、室外ファン28が生成する空気流と熱交換する。
第1室外熱交換器21は、第1流路切換弁16が第1流路状態にある場合には、ガス側の冷媒出入口が冷媒流れの上流側となり液側の冷媒出入口が下流側となる状態(以下、「凝縮器状態」と称する)となる(すなわち冷媒の凝縮器として機能する状態となる)。また、第1室外熱交換器21は、第1流路切換弁16が第2流路状態にある場合には、液側の冷媒出入口が冷媒流れの上流側となりガス側の冷媒出入口が下流側となる状態(以下、「蒸発器状態」と称する)となる(すなわち冷媒の蒸発器として機能する状態となる)。
同様に、第2室外熱交換器22は、第2流路切換弁17が第1流路状態にある場合には凝縮器状態となり、第2流路切換弁17が第2流路状態にある場合には蒸発器状態となる。
第1室外熱交換器21と第2室外熱交換器22とは個別に凝縮器状態及び蒸発器状態を切り換えられる。すなわち、運転中、室外熱交換器20は、第1室外熱交換器21及び第2室外熱交換器22の双方が蒸発器状態にある場合には、蒸発器として機能する。また、運転中、室外熱交換器20は、第1室外熱交換器21及び第2室外熱交換器22の双方が凝縮器状態にある場合には、凝縮器として機能する。また、運転中、室外熱交換器20は、第1室外熱交換器21及び第2室外熱交換器22の一方が蒸発器状態にあり他方が凝縮器状態にある場合には、蒸発器及び凝縮器として機能する。
第1室外膨張弁23、第2室外膨張弁24、第3室外膨張弁25及び第4室外膨張弁26は、例えば開度調整が可能な電動弁である。第1室外膨張弁23、第2室外膨張弁24、第3室外膨張弁25及び第4室外膨張弁26は、状況に応じて開度が調整され、内部を通過する冷媒をその開度に応じて減圧する、若しくは通過する冷媒流量を増減させる。
第1室外膨張弁23(特許請求の範囲記載の「流量調整弁」に相当)は、第1室外熱交換器21から延びる冷媒配管が一端に接続され、過冷却熱交換器27の第1流路271(後述)の一端まで延びる液側配管Pcが他端に接続されている。すなわち、第1室外膨張弁23は、第1室外熱交換器21の冷媒の入口側/出口側に配置されている。
第2室外膨張弁24(特許請求の範囲記載の「流量調整弁」に相当)は、第2室外熱交換器22から延びる冷媒配管が一端に接続され、過冷却熱交換器27の第1流路271の一端まで延びる液側配管Pcが他端に接続されている。すなわち、第2室外膨張弁24は、第2室外熱交換器22の冷媒の入口側/出口側に配置されている。
なお、液側配管Pcは、一端が二手に分岐しており、第1室外膨張弁23及び第2室外膨張弁24のそれぞれに個別に接続されている。
第3室外膨張弁25(特許請求の範囲記載の「減圧弁」に相当)は、過冷却熱交換器27の第1流路271の他端まで延びる冷媒配管が一端に接続され、他端が液側閉鎖弁13まで延びる冷媒配管に接続されている。すなわち、第3室外膨張弁25は、室外熱交換器20と第3連絡管53の間に配置されている。なお、後述するが、第3室外膨張弁25は、空調システム100の運転状態が全冷房状態、冷房主体状態、及び冷暖均衡状態のいずれかとなった場合には、第3連絡管53における気液二相搬送が実現されるべく、二相搬送開度に制御される。二相搬送開度は、流入する冷媒を、第3連絡管53において冷媒が気液二相状態で搬送される際に適していると想定される冷媒の圧力に、減圧する開度である。すなわち、二相搬送開度は、第3連絡管53における気液二相搬送に適した開度である。
第4室外膨張弁26は、液側配管Pcの両端間において分岐する分岐管が一端に接続され、過冷却熱交換器27の第2流路272(後述)の一端まで延びる冷媒配管が他端に接続されている。
過冷却熱交換器27は、室外熱交換器20から流出した冷媒を過冷却状態の液冷媒とするための熱交換器である。過冷却熱交換器27は、例えば二重管型熱交換器である。過冷却熱交換器27は、第1流路271及び第2流路272を形成されている。より詳細には、過冷却熱交換器27は、第1流路271を流れる冷媒と、第2流路272を流れる冷媒と、が熱交換しうる構造を有している。第1流路271は、一端が液側配管Pcの他端に接続され、他端が第3室外膨張弁25まで延びる冷媒配管に接続されている。第2流路272は、一端が第4室外膨張弁26まで延びる冷媒配管に接続され、他端がアキュームレータ14まで延びる冷媒配管(より詳細には、アキュームレータ14と、第1流路切換弁16又はガス側第1閉鎖弁11と、の間で延びる冷媒配管)に接続されている。
室外ファン28は、例えばプロペラファンであり、駆動源である室外ファン用モータ(図示省略)を含む。室外ファン28が駆動すると、室外ユニット10内に流入し室外熱交換器20を通過して室外ユニット10外へ流出する空気流が生成される。
室外ユニット制御部29は、CPUやメモリ等で構成されるマイクロコンピュータを含む。室外ユニット制御部29は、通信線(図示省略)を介して、室内ユニット制御部34(後述)及び中間ユニット制御部45(後述)と、相互に信号の送受信を行う。室外ユニット制御部29は、状況に応じて、室外ユニット10に含まれる各種機器の動作や状態(例えば、圧縮機15及び室外ファン28の発停や回転数、各種の弁の状態や開度、又は第1室外熱交換器21や第2室外熱交換器22に関して蒸発器状態/凝縮器状態の切換え等)を制御している。
また、図2において図示は省略するが、室外ユニット10は、吐出配管Pbを流れる冷媒の温度(吐出温度)を検出する温度センサや、第1室外熱交換器21及び第2室外熱交換器22を通過する冷媒の過熱度/過冷却度を検出する温度センサ、過冷却熱交換器27(第1流路271)を通過する冷媒の過冷却度を検出する温度センサ、及び室外ファン28によって取り込まれる室外の空気の温度等を検出する温度センサ等、各種センサ10a(図4参照)を有している。各種センサ10aは、室外ユニット制御部29と電気的に接続されており、室外ユニット制御部29に対して所定のタイミングで検出値を出力する。
(1−2)室内ユニット30(利用ユニット)
図3は、室内ユニット30及び中間ユニット40内の冷媒回路図である。室内ユニット30は、例えば、天井裏の空間に設置される天井設置型である。空調システム100は、複数(n台)の室内ユニット30(30a、30b、30c、30d・・・)を有している。
各室内ユニット30は、室内膨張弁31と、室内熱交換器32と、を有しており、これらが冷媒配管によって接続されることで冷媒回路RCの一部が構成されている。また、各室内ユニット30は、室内ファン33及び室内ユニット制御部34を有している。
室内膨張弁31(特許請求の範囲記載の「減圧弁」に相当)は、開度調整が可能な電動弁である。室内膨張弁31は、その一端が液側連絡管LPに接続され、他端が室内熱交換器32まで延びる冷媒配管に接続されている。すなわち、室内膨張弁31は、室内熱交換器32と第3連絡管53の間に配置されている。室内膨張弁31は、その開度に応じて、通過する冷媒を減圧する。
なお、後述するが、運転中の室内ユニット30において室内膨張弁31は、空調システム100の運転状態が全暖房状態及び暖房主体状態のいずれかとなった時には、開状態で開度制御される(より詳細には、暖房室内ユニット30の室内熱交換器32を通過する冷媒の過冷却度等に応じて適当な開度に制御される)。これによって、暖房室内ユニット30の室内熱交換器32を通過して凝縮した冷媒は、室内膨張弁31を通過する際に減圧されて気液二相冷媒となる。その結果、全暖房状態又は暖房主体状態において冷媒が第3連絡管53を通過する際に気液二相状態で通過することとなる(すなわち、気液二相搬送が実現される)。つまり、室内膨張弁31は、全暖房状態又は暖房主体状態において、気液二相搬送用の「減圧弁」としても機能する。
室内熱交換器32(特許請求の範囲記載の「利用側熱交換器」に相当)は、例えばクロスフィン型式や積層型式の熱交換器であり、冷媒が通過する伝熱管(図示省略)を含んでいる。室内熱交換器32は、冷媒の流れに応じて、冷媒の蒸発器又は凝縮器として機能する。室内熱交換器32は、液側の冷媒出入口に室内膨張弁31から延びる冷媒配管が接続され、ガス側の冷媒出入口にガス側連絡管GPが接続されている。室内熱交換器32に流入した冷媒は、伝熱管を通過する際、室内ファン33が生成する空気流と熱交換する。
室内熱交換器32は、対応する中間ユニット40内における電動切換弁EV(41、42)の状態(開閉状態)、及び室外ユニット10における各流路切換弁19(16、17、18)の状態(流路状態)に応じて、流入する冷媒流れの上流側と下流側とが切り換わり、蒸発器状態(冷媒の蒸発器として機能する状態)と凝縮器状態(冷媒の凝縮器として機能する状態)とが切り換わる。
なお、室内ユニット30において室内熱交換器32が蒸発器状態にある場合には、液側連絡管LP側が冷媒流れの上流側となり、ガス側連絡管GP側が冷媒流れの下流側となる。すなわち、各室内ユニット30において室内熱交換器32が蒸発器状態にある場合は、特許請求の範囲記載の「第1サイクル状態」に相当する。
また、室内ユニット30において室内熱交換器32が凝縮器状態にある場合には、ガス側連絡管GP側が冷媒流れの上流側となり、液側連絡管LP側が冷媒流れの下流側となる。すなわち、各室内ユニット30において室内熱交換器32が凝縮器状態にある場合は、特許請求の範囲記載の「第2サイクル状態」に相当する。
つまり、各室内ユニット30は、対応する中間ユニット40内における電動切換弁EV(41、42)の状態(開閉状態)、及び室外ユニット10における各流路切換弁19(16、17、18)の状態(流路状態)に応じて、「第1サイクル状態」と「第2サイクル状態」とを個別に切り換えられる。
室内ファン33は、例えばターボファン等の遠心ファンである。室内ファン33は、駆動源である室内ファン用モータ(図示省略)を含む。室内ファン33が駆動すると、対象空間から室内ユニット30内部に流入して室内熱交換器32を通過してから対象空間へ流出する空気流が生成される。
室内ユニット制御部34は、CPUやメモリ等で構成されるマイクロコンピュータを含む。室内ユニット制御部34は、リモートコントローラ(図示省略)を介して、ユーザの指示を入力され、当該指示に応じて、室内ユニット30に含まれる各種機器の動作や状態(例えば室内ファン33の回転数や室内膨張弁31の開度)を制御する。また、室内ユニット制御部34は、通信線(図示省略)を介して室外ユニット制御部29及び中間ユニット制御部45(後述)と接続されており、相互に信号の送受信を行う。また、室内ユニット制御部34は、有線通信や無線通信によってリモートコントローラと通信を行う通信モジュールを含み、リモートコントローラと相互に信号の送受信を行う。
また、図3において図示は省略するが、室内ユニット30は、室内熱交換器32を通過する冷媒の過熱度/過冷却度を検出する温度センサ、及び室内ファン33によって取り込まれる対象空間の空気の温度(室内温度)等を検出する温度センサ等、各種センサ36(図4参照)を有している。各種センサ36は、室内ユニット制御部34と電気的に接続されており、室内ユニット制御部34に対して所定のタイミングで検出値を出力する。
(1−3)中間ユニット40
空調システム100では、複数(ここでは、室内ユニット30の台数と同数)の中間ユニット40(40a、40b、40c、40d・・・)を有している。本実施形態において、各中間ユニット40は、いずれかの室内ユニット30と1:1に対応付けられている。各中間ユニット40は、対応する室内ユニット30(以下、「対応室内ユニット30」と記載)と、室外ユニット10と、の間に配置され、対応室内ユニット30及び室外ユニット10へ流入する冷媒の流れを切り換えている。
中間ユニット40内では、図3に示すように、複数の冷媒配管(第1配管P1−第5配管P5)が配置されることで、冷媒回路RCの一部を構成する複数(ここでは3つ)の冷媒流路(第1冷媒流路L1、第2冷媒流路L2及び第3冷媒流路L3)が構成されている。
第1冷媒流路L1は、一端がガス側連絡管GPに接続される第2配管P2と、一端が第1連絡管51に接続される第3配管P3と、によって構成されている。第2冷媒流路L2は、一端が第2配管P2の両端間に接続される第4配管P4と、一端が第2連絡管52に接続される第5配管P5と、によって構成されている。第3冷媒流路L3は、一端が第3連絡管53に接続され他端が液側連絡管LPに接続される第1配管P1によって構成されている。中間ユニット40内に配置される各冷媒配管(P1−P5)は、必ずしも1本の配管で構成される必要はなく、複数の配管が継手等を介して接続されることで構成されてもよい。
中間ユニット40は、複数(ここでは2つ)の電動切換弁EV(特許請求の範囲記載の「切換弁」に相当)を有している。電動切換弁EVは、状況に応じて、対応室内ユニット30及び室外ユニット10間で形成される冷媒流路(L1、L2)の開閉を切り換える。電動切換弁EVは、例えば開度調整が可能な電動弁であり、開度に応じて冷媒を通過させたり遮断したりすることで冷媒の流れを切り換える。換言すると、電動切換弁EVは、対応する室内ユニット30内の冷媒の流れを切り換えるための切換弁である。中間ユニット40は、電動切換弁EVとして、第1電動切換弁41及び第2電動切換弁42を有している。
第1電動切換弁41は、一端が第2配管P2の他端に接続され、他端が第3配管P3の他端に接続されている。すなわち、第1電動切換弁41は、第1冷媒流路L1上に配置されており、第1冷媒流路L1を流れる冷媒に関し、開度に応じて流量を調整する、若しくは流れを開通/遮断する。
第2電動切換弁42は、一端が第4配管P4の他端に接続され、他端が第5配管P5の他端に接続されている。すなわち、第2電動切換弁42は、第2冷媒流路L2上に配置されており、開度に応じて第2冷媒流路L2を流れる冷媒に関し、開度に応じて流量を調整する、若しくは流れを開通/遮断する。
また、中間ユニット40は、中間ユニット40に含まれる各種機器の状態を制御する中間ユニット制御部45を有している。中間ユニット制御部45は、CPUやメモリ等で構成されるマイクロコンピュータを含む。中間ユニット制御部45は、通信線を介して室外ユニット制御部29又は室内ユニット制御部34からの信号を受信し、状況に応じて、中間ユニット40に含まれる各種機器の動作や状態(ここでは、各電動切換弁EVの開度)を制御する。
(1−4)室外側連絡配管50、室内側連絡配管60
各室外側連絡配管50及び各室内側連絡配管60は、現地においてサービスマンによって設置される冷媒連絡配管である。各室外側連絡配管50及び各室内側連絡配管60の配管長や配管径は、設置環境や設計仕様に応じて適宜選択される。各室外側連絡配管50及び各室内側連絡配管60は、室外ユニット10及び中間ユニット40間、又は各中間ユニット40及び各室内ユニット30(対応室内ユニット30)間で延びている。なお、各室外側連絡配管50及び各室内側連絡配管60は、必ずしも1本の配管で構成される必要はなく、複数の配管が継手や開閉弁等を介して接続されることで構成されてもよい。
室外側連絡配管50(第1連絡管51、第2連絡管52及び第3連絡管53)は、室外ユニット10と各中間ユニット40との間で延び、両者を接続している。具体的には、第1連絡管51は、一端がガス側第1閉鎖弁11に接続され、他端側において各中間ユニット40の第3配管P3に接続されている。第2連絡管52は、一端がガス側第2閉鎖弁12に接続され、他端側において各中間ユニット40の第5配管P5に接続されている。第3連絡管53は、一端が液側閉鎖弁13に接続され、他端側において各中間ユニット40の第1配管P1に接続されている。
第1連絡管51は、運転中、低圧のガス冷媒が流れる冷媒流路として機能する。また、第2連絡管52は、運転中、第3流路切換弁18が第1流路状態にある場合には高圧のガス冷媒が流れる冷媒流路として機能し、第3流路切換弁18が第2流路状態にある場合には低圧のガス冷媒が流れる冷媒流路として機能する。第3連絡管53は、運転中、減圧弁(第3室外膨張弁25/室内膨張弁31)において減圧され中間ユニット40(第1配管P1)を通過した気液二相冷媒が流れる冷媒流路として機能する。
室内側連絡配管60(ガス側連絡管GP及び液側連絡管LP)は、各中間ユニット40と対応室内ユニット30との間で延び、両者を接続している。具体的には、ガス側連絡管GPは、一端が第2配管P2に接続され、他端が室内熱交換器32のガス側出入口に接続されている。ガス側連絡管GPは、運転中、ガス冷媒が流れる冷媒流路として機能する。液側連絡管LPは、一端が第1配管P1に接続され、他端が室内膨張弁31に接続されている。液側連絡管LPは、運転中、液冷媒/気液二相冷媒が流れる冷媒流路として機能する。
(1−5)コントローラ70
コントローラ70は、空調システム100に含まれる各機器の動作及び状態を制御することで、空調システム100の運転状態を制御する制御ユニットである。本実施形態において、コントローラ70は、室外ユニット制御部29、各室内ユニット30の室内ユニット制御部34、及び各中間ユニット40の中間ユニット制御部45が、通信ネットワーク(ここでは通信線)を介して接続されることで構成されるコンピュータである。コントローラ70は、空調システム100に含まれる各アクチュエータと電気的に接続されており、信号の入出力を行う。また、コントローラ70は、空調システム100に含まれる各種センサ(10a、36等)と電気的に接続されており、検出結果に相当する信号を適宜入力される。
(2)コントローラ70の詳細
図4は、コントローラ70、及びコントローラ70に接続される各部を模式的に示したブロック図である。図5は、コントローラ70に含まれる各機能部を模式的に示したブロック図である。
コントローラ70は、室外ユニット10に含まれる各アクチュエータ(具体的には、圧縮機15、第1流路切換弁16、第2流路切換弁17、第3流路切換弁18、第1室外膨張弁23、第2室外膨張弁24、第3室外膨張弁25、第4室外膨張弁26、及び室外ファン28等)や各種センサ10aと、配線を介して電気的に接続されている。また、コントローラ70は、各室内ユニット30(30a、30b、30c、30d・・・)に含まれる各アクチュエータ(具体的には、室内膨張弁31及び室内ファン33等)や各種センサ36と、配線を介して電気的に接続されている。また、コントローラ70は、各中間ユニット40(40a、40b、40c、40d・・・)に含まれる各アクチュエータ(具体的には、第1電動切換弁41及び第2電動切換弁42等)や各種センサ(図示省略)と、配線を介して電気的に接続されている。
コントローラ70は、主として、記憶部71、入力制御部72、運転状態判断部73、アクチュエータ制御部74、及び駆動信号出力部75等の機能部を含んでいる。なお、コントローラ70内におけるこれらの各機能部は、コントローラ70を構成する各要素(CPU、各種メモリ、通信モジュール、各種インターフェース、及び各種電気部品等)が有機的に機能することによって実現されている。
(2−1)記憶部71
記憶部71は、例えば、ROM、RAM、及び/又はフラッシュメモリ等の各種メモリで構成されており、複数の記憶領域を含む。例えば、記憶部71には、コントローラ70の各部における処理を定義した制御プログラムを記憶するためのプログラム記憶領域711が含まれている。
また、記憶部71には、ユーザによって入力される各種コマンド(例えば各室内ユニット30の運転の種別や設定温度を指定するコマンド等)を記憶するためのコマンド記憶領域712等が含まれている。
また、記憶部71には、センサ値記憶領域713が含まれている。センサ値記憶領域713は、空調システム100に含まれる各センサ(10a、36等)の検出値を個別に記憶するための記憶領域である。
また、記憶部71には、空調システム100の運転状態を判別するためのフラグが複数設けられている。コントローラ70に含まれる各機能部は、各フラグ(714−718)の状態を参照することで、空調システム100の運転状態をリアルタイムに判別可能である。例えば、記憶部71には、全冷房状態フラグ714、全暖房状態フラグ715、冷房主体状態フラグ716、暖房主体状態フラグ717、及び冷暖均衡状態フラグ718が設けられている。各フラグは、運転状態の変化に応じて、運転状態判断部73によって立てられる(又はクリアされる)。
具体的に、全冷房状態フラグ714は、空調システム100が全冷房状態となった時に立てられる。全暖房状態フラグ715は、空調システム100が全暖房状態となった時に立てられる。冷房主体状態フラグ716は、空調システム100が冷房主体状態となった時に立てられる。暖房主体状態フラグ717は、空調システム100が暖房主体状態となった時に立てられる。冷暖均衡状態フラグ718は、空調システム100が冷暖均衡状態となった時に立てられる。
なお、冷暖均衡状態フラグ718は、複数のビットを含んでおり、冷房主体状態から冷暖均衡状態に遷移した場合と、暖房主体状態から冷暖均衡状態に遷移した場合と、で異なるビットが立てられる。すなわち、冷暖均衡状態フラグ718は、冷房主体状態から冷暖均衡状態に遷移した場合と、暖房主体状態から冷暖均衡状態に遷移した場合と、を判別可能に構成されている。
(2−2)入力制御部72
入力制御部72は、コントローラ70に対して入力された信号を取得して記憶部71の所定の記憶領域に当該信号を格納する。例えば、入力制御部72は、図示しないリモートコントロール装置を介して入力されたコマンドをコマンド記憶領域712に格納する。また、例えば、入力制御部72は、各種センサ(10a、36等)から出力された検出結果に相当する信号を受け、センサ値記憶領域713に個別に格納する。
(2−3)運転状態判断部73
運転状態判断部73は、運転中、コマンド記憶領域712に記憶されているコマンド(すなわち空調システム100に入力されたコマンド)、及びセンサ値記憶領域713に記憶されている各種センサ(10a、36等)の検出値、及びその他の変数に応じて、制御プログラムに基づき、空調システム100がいずれの運転状態にあるか(すなわち、全冷房状態、全暖房状態、冷房主体状態、暖房主体状態、及び冷暖均衡状態のいずれにあるか)を判断し、判断結果に応じて対応するフラグ(714−718)を択一的に立てる。
ここで、運転状態判断部73が運転状態を判断するためのアルゴリズムは、設置環境や設計仕様に応じて予め設定され、制御プログラムにおいて定義されている。
一例として、運転状態判断部73は、冷房室内ユニット30及び/又は暖房室内ユニット30の台数に応じて、運転状態を判断する。例えば、運転状態判断部73は、冷房室内ユニット30の台数が、暖房室内ユニット30の台数よりも多い場合(又は所定の割合を超えて多い場合)には冷房主体状態と判断し、暖房室内ユニット30の台数よりも少ない場合(又は所定の割合を超えて少ない場合)には暖房主体状態と判断し、暖房室内ユニット30の台数と同一である場合(又は所定の割合の範囲内で近似している場合)には冷暖均衡状態と判断する。
また、他の一例として、運転状態判断部73は、各冷房室内ユニット30の熱負荷、及び/又は各暖房室内ユニット30の熱負荷を算出し、算出した熱負荷に基づき、運転状態を判断する。例えば、運転状態判断部73は、各冷房室内ユニット30における熱負荷の合計値が、各暖房室内ユニット30の熱負荷の合計値よりも所定の割合を超えて大きい場合(例えば130パーセント以上の割合で大きい場合)には冷房主体状態と判断する。また、例えば、運転状態判断部73は、各冷房室内ユニット30における熱負荷の合計値が、各暖房室内ユニット30の熱負荷の合計値よりも所定の割合を超えて小さい場合(例えば各暖房室内ユニット30の熱負荷の合計値が各冷房室内ユニット30における熱負荷の合計値よりも130パーセント以上の割合で大きい場合)には暖房主体状態と判断する。
また、例えば、運転状態判断部73は、各冷房室内ユニット30における熱負荷の合計値が、各暖房室内ユニット30の熱負荷の合計値と同一又は所定の割合の範囲内(例えば100パーセント以上130パーセント未満の範囲内)で近似している場合には冷暖均衡状態と判断する。また、例えば、運転状態判断部73は、各暖房室内ユニット30における熱負荷の合計値が、各冷房室内ユニット30の熱負荷の合計値と同一又は所定の割合の範囲内(例えば100パーセント以上130パーセント未満の範囲内)で近似している場合には冷暖均衡状態と判断する。
なお、運転状態判断部73が運転状態を判断するためのアルゴリズムは、必ずしも上述の態様には限定されず、設置環境や設計仕様に応じて適宜変更が可能である。
(2−4)アクチュエータ制御部74
アクチュエータ制御部74は、制御プログラムに沿って、状況に応じて、空調システム100(室外ユニット10、各室内ユニット30、及び各中間ユニット40)に含まれる各アクチュエータの動作を制御する。アクチュエータ制御部74は、制御プログラムにおいて定義されている複数の制御のうち、状況に応じた制御を選択して実行する。
例えば、アクチュエータ制御部74は、運転中、熱負荷制御、全冷房制御、全暖房制御、冷房主体制御、暖房主体制御、及び冷暖均衡制御(特許請求の範囲記載の「第1制御」に相当)等を、状況に応じて適宜実行する。なお、全冷房制御、全暖房制御、冷房主体制御、暖房主体制御及び冷暖均衡制御については、記憶部71に含まれる各フラグ(714−718)の状態に応じて、択一的に選択される。以下、各制御について説明する。
〈熱負荷制御〉
アクチュエータ制御部74は、運転中、熱負荷制御を常時実行する。アクチュエータ制御部74は、熱負荷制御によって、コマンド記憶領域712に記憶されているコマンド(すなわち空調システム100に入力されたコマンド)、センサ値記憶領域713に記憶されている各種センサ(10a、36等)の検出値、及び/又はその他の変数に応じて、制御プログラムに基づき、運転中の各室内ユニット30で処理する熱負荷、及び空調システム100全体で処理する熱負荷を算出する。そして、アクチュエータ制御部74は、算出した熱負荷や他の制御変数に応じて、各アクチュエータの状態(例えば、圧縮機15の回転数、室外ファン28の回転数、各室内ファン33の回転数、各弁の開度等)を、それぞれリアルタイムに制御する。
〈全冷房制御〉
アクチュエータ制御部74は、運転状態が全冷房状態(すなわち、運転中の室内ユニット30が全て冷房室内ユニット30の状態)にある場合に、全冷房制御を実行する。アクチュエータ制御部74は、全冷房制御によって、第1流路切換弁16及び第2流路切換弁17を第1流路状態に制御するとともに、第3流路切換弁18を第2流路状態に制御する。
また、アクチュエータ制御部74は、第1室外膨張弁23及び第2室外膨張弁24を、開状態(最小開度よりも大きい開度)で開度制御する(より詳細には、最大開度、又は室外熱交換器20若しくは過冷却熱交換器27の第1流路271を通過する冷媒の過冷却度等に応じて適当な開度に制御する)。
また、アクチュエータ制御部74は、第3室外膨張弁25を、第3連絡管53における気液二相搬送が実現されるべく、二相搬送開度(第3連絡管53における気液二相搬送に適した開度)に制御する。また、アクチュエータ制御部74は、第4室外膨張弁26を、開状態で開度制御する(より詳細には、過冷却熱交換器27の第1流路271を通過する冷媒の過冷却度等に応じて適当な開度に制御する)。
また、アクチュエータ制御部74は、冷房室内ユニット30の室内膨張弁31を、開状態で開度制御する(より詳細には、室内熱交換器32における冷媒の過熱度等に応じて開度を適宜調整する)。
また、アクチュエータ制御部74は、冷房中間ユニット40(冷房室内ユニット30に対応する中間ユニット40)の、第1電動切換弁41を開状態に制御し(より詳細には最大開度(ここでは全開)に制御し)、第2電動切換弁42を開状態(より詳細には最大開度)若しくは閉状態(より詳細には最小開度(ここでは全閉))に制御する。
〈全暖房制御〉
アクチュエータ制御部74は、運転状態が全暖房状態(すなわち、運転中の室内ユニット30が全て暖房室内ユニット30の状態)にある場合に、全暖房制御を実行する。アクチュエータ制御部74は、全暖房制御によって、第1流路切換弁16及び第2流路切換弁17を第2流路状態に制御し、第3流路切換弁18を第1流路状態に制御する。
また、アクチュエータ制御部74は、第1室外膨張弁23及び第2室外膨張弁24を、開状態で開度制御する(より詳細には、室外熱交換器20を通過する冷媒の過熱度等に応じて適当な開度に制御する)。
また、アクチュエータ制御部74は、第3室外膨張弁25及び第4室外膨張弁26を、開状態で開度制御する(より詳細には、最大開度又は過冷却熱交換器27(第1流路271)を通過する冷媒の過冷却度等に応じて適当な開度に制御する)。
また、アクチュエータ制御部74は、暖房室内ユニット30の室内膨張弁31を、開状態で開度制御する(より詳細には、暖房室内ユニット30の室内熱交換器32を通過する冷媒の過冷却度等に応じて適当な開度に制御する)。なお、係る開度制御によって、暖房室内ユニット30の室内熱交換器32を通過して凝縮した冷媒は、室内膨張弁31を通過する際に減圧されて気液二相冷媒となる。これにより、全暖房状態においても冷媒が第3連絡管53を通過する際に気液二相状態で通過することとなる(すなわち、気液二相搬送が実現される)。
また、アクチュエータ制御部74は、暖房中間ユニット40の、第1電動切換弁41を閉状態(最小開度)に制御し、第2電動切換弁42を開状態(最大開度)に制御する。
〈冷房主体制御〉
アクチュエータ制御部74は、運転状態が冷房主体状態(すなわち、全ての冷房室内ユニット30の熱負荷が、全ての暖房室内ユニット30の熱負荷よりも大きいと想定される状態)にある場合に、冷房主体制御を実行する。アクチュエータ制御部74は、冷房主体制御によって、第1流路切換弁16、第2流路切換弁17及び第3流路切換弁18を、第1流路状態に制御する。
また、アクチュエータ制御部74は、第1室外膨張弁23及び第2室外膨張弁24を、開状態で開度制御する(より詳細には、最大開度、又は室外熱交換器20若しくは過冷却熱交換器27の第1流路271を通過する冷媒の過冷却度等に応じて適当な開度に制御する)。
また、アクチュエータ制御部74は、第3室外膨張弁25を、第3連絡管53における気液二相搬送が実現されるべく、二相搬送開度に制御する。また、アクチュエータ制御部74は、第4室外膨張弁26を、開状態で開度制御する(より詳細には、過冷却熱交換器27の第1流路271を通過する冷媒の過冷却度等に応じて適当な開度に制御する)。
また、アクチュエータ制御部74は、冷房室内ユニット30の室内膨張弁31を、開状態で開度制御する(より詳細には、室内熱交換器32を通過する冷媒の過熱度等に応じて適当な開度に制御する)。また、アクチュエータ制御部74は、暖房室内ユニット30の室内膨張弁31を、開状態で開度制御する(より詳細には、室内熱交換器32を通過する冷媒の過冷却度等に応じて適当な開度に制御する。
また、アクチュエータ制御部74は、冷房中間ユニット40の、第1電動切換弁41を開状態(最大開度)に制御し、第2電動切換弁42を閉状態(最小開度)に制御する。また、暖房中間ユニット40の、第1電動切換弁41を閉状態(最小開度)に制御し、第2電動切換弁42を開状態(最大開度)に制御する。
〈暖房主体制御〉
アクチュエータ制御部74は、運転状態が暖房主体状態(すなわち、全ての暖房室内ユニット30の熱負荷が、全ての冷房室内ユニット30の熱負荷よりも大きいと想定される状態)にある場合に、暖房主体制御を実行する。アクチュエータ制御部74は、暖房主体制御によって、第1流路切換弁16及び第2流路切換弁17を第2流路状態に制御し、第3流路切換弁18を第1流路状態に制御する。
また、アクチュエータ制御部74は、第1室外膨張弁23及び第2室外膨張弁24を、開状態で開度制御する(より詳細には、室外熱交換器20を通過する冷媒の過熱度等に応じて適当な開度に制御する)。
また、アクチュエータ制御部74は、第3室外膨張弁25及び第4室外膨張弁26を、開状態で開度制御する(より詳細には、最大開度又は過冷却熱交換器27(第1流路271)を通過する冷媒の過冷却度等に応じて適当な開度に制御する)。
また、アクチュエータ制御部74は、冷房室内ユニット30の室内膨張弁31を、開状態で開度制御する(より詳細には、暖房室内ユニット30の室内熱交換器32を通過する冷媒の過冷却度等に応じて適当な開度に制御する)。なお、係る開度制御によって、暖房室内ユニット30の室内熱交換器32を通過して凝縮した冷媒は、室内膨張弁31を通過する際に減圧されて気液二相冷媒となる。これにより、暖房主体状態においても冷媒が第3連絡管53を通過する際に気液二相状態で通過することとなる(すなわち、気液二相搬送が実現される)。
また、アクチュエータ制御部74は、冷房中間ユニット40の、第1電動切換弁41を開状態(最大開度)に制御し、第2電動切換弁42を閉状態(最小開度)に制御する。また、アクチュエータ制御部74は、暖房中間ユニット40の、第1電動切換弁41を閉状態(最小開度)に制御し、第2電動切換弁42を開状態(最大開度)に制御する。
〈冷暖均衡制御〉
アクチュエータ制御部74は、運転状態が冷暖均衡状態(すなわち、全ての冷房室内ユニット30の熱負荷と、全ての暖房室内ユニット30の熱負荷と、が均衡していると想定される状態)にある場合に、冷暖均衡制御を実行する。より詳細には、アクチュエータ制御部74は、運転状態が暖房主体状態から冷暖均衡状態となった場合に、冷暖均衡制御を実行する。冷暖均衡制御は、第3連絡管53において、室外ユニット10側から各室内ユニット30側(各中間ユニット40側)へ冷媒が流れるように、室外熱交換器20を凝縮器として機能させるための各処理を実行する制御である。
すなわち、空調システム100のように、熱源ユニット(室外ユニット10)及び複数の利用ユニット(室内ユニット30)を含む冷媒回路において、熱源ユニット及び利用ユニット間に、利用ユニット内の冷媒の流れを切り換える切換弁(第1電動切換弁41/第2電動切換弁42)を複数有し、各切換弁の状態を個別に制御することで各利用ユニット内の冷媒の流れ方向を個別に切り換えることが可能な冷凍装置においては、液側の出入口から冷媒が流入する第1サイクル状態(蒸発器状態)で運転中の利用ユニット(冷房室内ユニット30)の熱負荷と、ガス側の出入口から冷媒が流入する第2サイクル状態(凝縮器状態)で運転中の利用ユニット(暖房室内ユニット30)の熱負荷と、が均衡する場合、液側冷媒流路(第3連絡管53)において冷媒が滞留し若しくは状態が不安定となって寝込みや逆流が生じることで、冷媒回路において冷媒が想定通りに流れないケースが考えられる。これに起因して、冷媒回路全体における冷媒循環量が不足し、信頼性が低下することも考えられる。空調システム100では、係る事態が生じることを抑制すべく、冷暖均衡状態にある場合にアクチュエータ制御部74が冷暖均衡制御を実行するように構成されている。
より詳細には、運転状態が暖房主体状態から冷暖均衡状態となった場合においては、第3連絡管53において上記事態が生じる可能性が特に大きく、運転状態が冷房主体状態から冷暖均衡状態となった場合には上記事態が生じる可能性が大きくないことに鑑みて、本実施形態において、アクチュエータ制御部74は、運転状態が暖房主体状態から冷暖均衡状態となった場合に、冷暖均衡制御を実行する(すなわち、アクチュエータ制御部74は、運転状態が冷房主体状態から冷暖均衡状態となった場合には、冷暖均衡制御を実行しない)。つまり、アクチュエータ制御部74は、運転中、第3連絡管53で流れる冷媒が滞留し若しくは状態が不安定となり冷媒回路RCにおいて冷媒が想定通りに流れない可能性が特に大きい場合にのみ、冷暖均衡制御を実行するようになっている。これにより、信頼性低下のおそれが大きくない場合に冷暖均衡制御が実行されることで、かえってCOP低下・能力低下を招くことが抑制されている。
アクチュエータ制御部74は、冷暖均衡制御によって、第1流路切換弁16を第2流路状態に制御し、第2流路切換弁17及び第3流路切換弁18を第1流路状態に制御する(すなわち第2流路切換弁17を第2流路状態から第1流路状態に切り換える)。これにより、第2室外熱交換器22における冷媒の流れが切り換わり、第2室外熱交換器22が凝縮器状態となる。
また、アクチュエータ制御部74は、第1室外膨張弁23(すなわち、蒸発器状態の第1室外熱交換器21の流量調整弁)を、最小開度(閉状態、ここでは全閉状態)に制御する(すなわち第1室外膨張弁23の開度を絞る)。これにより、第1室外熱交換器21における冷媒の流れが遮断される。すなわち、室外熱交換器20では、凝縮器状態の第2室外熱交換器22のみにおいて冷媒が循環するようになる(つまり室外熱交換器20が凝縮器として機能する)。
また、アクチュエータ制御部74は、第2室外膨張弁24を、開状態で制御する(すなわち、第2室外熱交換器22が凝縮器として機能するように、最大開度、又は第2室外熱交換器22若しくは過冷却熱交換器27(第1流路271)を通過する冷媒の過冷却度等に応じて適当な開度に制御する)。
また、アクチュエータ制御部74は、第3室外膨張弁25を、第3連絡管53における気液二相搬送が実現されるべく、二相搬送開度に制御する。すなわち、アクチュエータ制御部74は、第3連絡管53において室外ユニット10から各中間ユニット40側へ気液二相冷媒が搬送されるように、減圧弁としての第3室外膨張弁25を二相搬送開度に切り換える。
また、アクチュエータ制御部74は、第4室外膨張弁26を、開状態で開度制御する(より詳細には、過冷却熱交換器27の第1流路271を通過する冷媒の過冷却度等に応じて適当な開度に制御する)。
また、アクチュエータ制御部74は、冷房室内ユニット30の室内膨張弁31を、開状態で開度制御する(より詳細には、室内熱交換器32を通過する冷媒の過熱度等に応じて適当な開度に制御する)。また、アクチュエータ制御部74は、暖房室内ユニット30の室内膨張弁31を、開状態で開度制御する(より詳細には、室内熱交換器32を通過する冷媒の過冷却度等に応じて適当な開度に制御する。
また、アクチュエータ制御部74は、冷房中間ユニット40の、第1電動切換弁41を開状態(最大開度)に制御し、第2電動切換弁42を閉状態(最小開度)に制御する。また、アクチュエータ制御部74は、暖房中間ユニット40の、第1電動切換弁41を閉状態(最小開度)に制御し、第2電動切換弁42を開状態(最大開度)に制御する。
(2−5)駆動信号出力部75
駆動信号出力部75は、アクチュエータ制御部74の制御内容に応じて、各アクチュエータ(15−18、23−26、28、31、33、41、42等)に対して対応する駆動信号(駆動電圧)を出力する。駆動信号出力部75には、インバータ(図示省略)が複数含まれており、特定の機器(例えば圧縮機15、室外ファン28、又は各室内ファン33)に対しては、対応するインバータを介して駆動信号を出力する。
(3)コントローラ70の処理の流れ
以下、運転中、コントローラ70が運転状態に応じて行う各アクチュエータの制御の流れの一例について説明する、図6及び図7は、運転中、コントローラ70によって行われる各アクチュエータの制御の流れの一例について示したフローチャートである。
コントローラ70は、運転中、図6及び図7に示すステップS101からS113に示すような流れで処理を実行する。なお、図6及び図7に示される処理の流れは、一例であり、適宜変更可能である。例えば、矛盾のない範囲でステップの順序が変更されてもよいし、一部のステップが他のステップと並列に実行されてもよいし、図示されない他のステップが適宜追加されてもよい。
ステップS101において、コントローラ70は、熱負荷制御を実行する。すなわち、入力されたコマンド及び各種センサ(10a、36)の検出値等に応じて、制御プログラムに基づき、各アクチュエータの状態(例えば、圧縮機15の回転数、室外ファン28の回転数、各室内ファン33の回転数、各弁の開度等)を制御する。その後、ステップS102へ進む。
ステップS102において、コントローラ70は、全冷房状態に該当しない場合(すなわちNOの場合)には、ステップS104へ進む。一方、全冷房状態に該当する場合(すなわちYESの場合)には、ステップS103へ進む。
ステップS103において、コントローラ70は、運転状態が全冷房状態であることに関連して、全冷房制御を行う。その後、ステップS101に戻る。
ステップS104において、コントローラ70は、全暖房状態に該当しない場合(すなわちNOの場合)には、ステップS106へ進む。一方、全暖房状態に該当する場合(すなわちYESの場合)には、ステップS105へ進む。
ステップS105において、コントローラ70は、運転状態が全暖房状態であることに関連して、全暖房制御を行う。その後、ステップS101に戻る。
ステップS106において、コントローラ70は、冷暖混在状態(すなわち冷房室内ユニット30と暖房室内ユニット30とが混在する状態)に該当しない場合(すなわちNOの場合)には、ステップS101に戻る。一方、冷暖混在状態に該当する場合(すなわちYESの場合)には、ステップS107へ進む。
ステップS107において、コントローラ70は、冷房主体状態に該当しない場合(すなわちNOの場合)には、ステップS109へ進む。一方、冷房主体状態に該当する場合(すなわちYESの場合)には、ステップS108へ進む。
ステップS108において、コントローラ70は、運転状態が冷房主体状態であることに関連して、冷房主体制御を行う。その後、ステップS101に戻る。
ステップS109において、コントローラ70は、暖房主体状態に該当しない場合(すなわちNOの場合)には、ステップS111へ進む。一方、暖房主体状態に該当する場合(すなわちYESの場合)には、ステップS110へ進む。
ステップS110において、コントローラ70は、運転状態が暖房主体状態であることに関連して、暖房主体制御を行う。その後、ステップS101に戻る。
ステップS111において、コントローラ70は、冷暖均衡状態に該当しない場合(すなわちNOの場合)には、ステップS101に戻る。一方、冷暖均衡状態に該当する場合(すなわちYESの場合)には、ステップS112へ進む。
ステップS112において、コントローラ70は、暖房主体状態から冷暖均衡状態に遷移していない場合(すなわちNOの場合)には、ステップS101に戻る。一方、暖房主体状態から冷暖均衡状態に遷移した場合(すなわちYESの場合)には、ステップS113へ進む。
ステップS113において、コントローラ70は、運転状態が暖房主体状態から冷暖均衡状態に遷移したことに関連して、冷暖均衡制御を行う。その後、ステップS101に戻る。
(4)各弁の状態の変化について
以下、図8及び図9を参照して、空調システム100の運転状態に応じた各弁(第1流路切換弁16、第2流路切換弁17、第3流路切換弁18、第1室外膨張弁23、第2室外膨張弁24、第3室外膨張弁25、第4室外膨張弁26、冷房室内ユニット30の室内膨張弁31、暖房室内ユニット30の室内膨張弁31、冷房中間ユニット40の第1電動切換弁41及び第2電動切換弁42、及び暖房中間ユニット40の第1電動切換弁41及び第2電動切換弁42)の状態の変化について説明する。図8及び図9は、運転時における各弁の状態変化の一例を示すタイミングチャートである。
(4−1)期間S1(全冷房状態)
期間S1(図8)においては、空調システム100の運転状態が全冷房状態であることに関連して、第1流路切換弁16及び第2流路切換弁17は第1流路状態に制御され、第3流路切換弁18が第2流路状態に制御されている。
また、第1室外膨張弁23及び第2室外膨張弁24は、開状態で開度制御されている(より詳細には、最大開度、又は室外熱交換器20若しくは過冷却熱交換器27の第1流路271を通過する冷媒の過冷却度等に応じて適当な開度に制御されている)。
また、第3室外膨張弁25は、第3連絡管53における気液二相搬送が実現されるべく、二相搬送開度(第3連絡管53における気液二相搬送に適した開度)に制御されている。また、第4室外膨張弁26は、開状態で開度制御されている(より詳細には、過冷却熱交換器27の第1流路271を通過する冷媒の過冷却度等に応じて適当な開度に制御されている)。
また、冷房室内ユニット30の室内膨張弁31は、開状態で開度制御されている(より詳細には、室内熱交換器32における冷媒の過熱度等に応じて開度を適宜調整されている)。
また、冷房中間ユニット40(冷房室内ユニット30に対応する中間ユニット40)の、第1電動切換弁41は開状態に制御され(より詳細には最大開度(ここでは全開)に制御され)、第2電動切換弁42は開状態(より詳細には最大開度)若しくは閉状態(より詳細には最小開度(ここでは全閉))に制御されている。
(4−2)期間S2(冷房主体状態)
期間S2(図8)においては、空調システム100の運転状態が冷房主体状態であることに関連して、第1流路切換弁16、第2流路切換弁17及び第3流路切換弁18は、第1流路状態に制御されている。
また、第1室外膨張弁23及び第2室外膨張弁24は、開状態で開度制御されている(より詳細には、最大開度、又は室外熱交換器20若しくは過冷却熱交換器27の第1流路271を通過する冷媒の過冷却度等に応じて適当な開度に制御されている)。
また、第3室外膨張弁25は、第3連絡管53における気液二相搬送が実現されるべく、二相搬送開度に制御されている。また、第4室外膨張弁26は、開状態で開度制御されている(より詳細には、過冷却熱交換器27の第1流路271を通過する冷媒の過冷却度等に応じて適当な開度に制御されている)。
また、冷房室内ユニット30の室内膨張弁31が、開状態で開度制御されている(より詳細には、室内熱交換器32を通過する冷媒の過熱度等に応じて適当な開度に制御されている)。また、暖房室内ユニット30の室内膨張弁31が、開状態で開度制御されている(より詳細には、室内熱交換器32を通過する冷媒の過冷却度等に応じて適当な開度に制御されている。
また、冷房中間ユニット40の、第1電動切換弁41は開状態(最大開度)に制御され、第2電動切換弁42は閉状態(最小開度)に制御されている。また、暖房中間ユニット40の、第1電動切換弁41は閉状態(最小開度)に制御され、第2電動切換弁42は開状態(最大開度)に制御されている。
(4−3)期間S3(冷房主体状態から遷移した冷暖均衡状態)
期間S3(図8)においては、空調システム100の運転状態が冷房主体状態から冷暖均衡状態に遷移したことに関連して、各弁が期間S2(冷房主体状態)と同様の態様で制御されている。
(4−4)期間S4(全暖房状態)
期間S4(図9)においては、空調システム100の運転状態が全暖房状態であることに関連して、第1流路切換弁16及び第2流路切換弁17は第2流路状態に制御され、第3流路切換弁18は第1流路状態に制御されている。
また、第1室外膨張弁23及び第2室外膨張弁24は、開状態で開度制御されている(より詳細には、室外熱交換器20を通過する冷媒の過熱度等に応じて適当な開度に制御されている)。
また、第3室外膨張弁25及び第4室外膨張弁26は、開状態で開度制御されている(より詳細には、最大開度又は過冷却熱交換器27(第1流路271)を通過する冷媒の過冷却度等に応じて適当な開度に制御されている)。
また、暖房室内ユニット30の室内膨張弁31は、開状態で開度制御されている(より詳細には、暖房室内ユニット30の室内熱交換器32を通過する冷媒の過冷却度等に応じて適当な開度に制御されている)。
また、暖房中間ユニット40の、第1電動切換弁41は閉状態(最小開度)に制御され、第2電動切換弁42は開状態(最大開度)に制御されている。
(4−5)期間S5(暖房主体状態)
期間S5(図9)においては、空調システム100の運転状態が暖房主体状態であることに関連して、第1流路切換弁16及び第2流路切換弁17は第2流路状態に制御され、第3流路切換弁18は第1流路状態に制御されている。
また、第1室外膨張弁23及び第2室外膨張弁24は、開状態で開度制御されている(より詳細には、室外熱交換器20を通過する冷媒の過熱度等に応じて適当な開度に制御されている)。
また、第3室外膨張弁25及び第4室外膨張弁26は、開状態で開度制御されている(より詳細には、最大開度又は過冷却熱交換器27(第1流路271)を通過する冷媒の過冷却度等に応じて適当な開度に制御されている)。
また、冷房室内ユニット30の室内膨張弁31は、開状態で開度制御されている(より詳細には、室内熱交換器32を通過する冷媒の過熱度等に応じて適当な開度に制御されている)。暖房室内ユニット30の室内膨張弁31は、開状態で開度制御されている(より詳細には、暖房室内ユニット30の室内熱交換器32を通過する冷媒の過冷却度等に応じて適当な開度に制御されている)。
また、冷房中間ユニット40の、第1電動切換弁41は開状態(最大開度)に制御され、第2電動切換弁42は閉状態(最小開度)に制御されている。また、暖房中間ユニット40の、第1電動切換弁41は閉状態(最小開度)に制御され、第2電動切換弁42は開状態(最大開度)に制御されている。
(4−6)期間S6(暖房主体状態から遷移した冷暖均衡状態)
期間S6(図9)においては、空調システム100の運転状態が暖房主体状態から冷暖均衡状態に遷移したことに関連して、第1流路切換弁16は第2流路状態に制御され、第2流路切換弁17及び第3流路切換弁18は第1流路状態に制御されている(すなわち、第2流路切換弁17が第2流路状態から第1流路状態に切り換えられている)。これにより、第1室外熱交換器21における冷媒の流れが切り換わり、第1室外熱交換器21が凝縮器として機能する凝縮器状態となる。
また、第1室外膨張弁23は、閉状態(最小開度)に制御されている(すなわち、第1室外膨張弁23は開状態から閉状態に切り換えられている)。これにより、第1室外熱交換器21における冷媒の流れが遮断される。すなわち、室外熱交換器20では、凝縮器状態の第2室外熱交換器22のみで冷媒が循環するようになっている(つまり室外熱交換器20が凝縮器として機能するようになっている)。
また、第2室外膨張弁24は、開状態で制御されている(すなわち、最大開度、又は室外熱交換器20若しくは過冷却熱交換器27(第1流路271)を通過する冷媒の過冷却度等に応じて適当な開度に制御されている)。
また、第3室外膨張弁25は、第3連絡管53における気液二相搬送が実現されるべく、二相搬送開度に制御されている。(すなわち、第3室外膨張弁25が二相搬送開度に切り換えられている)。また、第4室外膨張弁26は、開状態で開度制御されている(より詳細には、過冷却熱交換器27の第1流路271を通過する冷媒の過冷却度等に応じて適当な開度に制御されている)。
また、冷房室内ユニット30の室内膨張弁31が、開状態で開度制御されている(より詳細には、室内熱交換器32を通過する冷媒の過熱度等に応じて適当な開度に制御されている)。また、暖房室内ユニット30の室内膨張弁31が、開状態で開度制御されている(より詳細には、室内熱交換器32を通過する冷媒の過冷却度等に応じて適当な開度に制御されている。
また、冷房中間ユニット40の、第1電動切換弁41は開状態(最大開度)に制御され、第2電動切換弁42は閉状態(最小開度)に制御されている。また、暖房中間ユニット40の、第1電動切換弁41は閉状態(最小開度)に制御され、第2電動切換弁42は開状態(最大開度)に制御されている。
(5)冷媒回路RCにおける冷媒の流れ
以下、冷媒回路RCにおける冷媒の流れについて、運転状態別に説明する。
(5−1)全冷房状態
〈A1〉
空調システム100が全冷房状態にある場合には、各弁が図8の期間S1で示される態様でそれぞれ制御される。これにより、室外ユニット10において第1室外熱交換器21及び第2室外熱交換器22はともに、凝縮器状態(すなわち冷媒の凝縮器として機能する状態)となる。また、冷房室内ユニット30において、室内熱交換器32は、蒸発器状態(すなわち冷媒の蒸発器として機能する状態)となる。
〈A2〉
係る状態で圧縮機15が駆動する場合には、冷媒が吸入配管Paを介して圧縮機15に吸入されて圧縮される。圧縮された高圧のガス冷媒は、吐出配管Pb、第1流路切換弁16又は第2流路切換弁17を経て、室外熱交換器20(第1室外熱交換器21又は第2室外熱交換器22)に流入する。室外熱交換器20に流入した冷媒は、室外熱交換器20を通過する際に、室外ファン28によって送られる空気と熱交換を行い凝縮する。室外熱交換器20を通過した冷媒は、第1室外膨張弁23又は第2室外膨張弁24を通過した後、液側配管Pcを流れる過程において二手に分岐する。
〈A3〉
液側配管Pcにおいて二手に分岐した一方の冷媒は、第4室外膨張弁26に流入し、第4室外膨張弁26の開度に応じて減圧される。第4室外膨張弁26を通過した冷媒は、過冷却熱交換器27の第2流路272に流入し、第2流路272を通過する際に第1流路271を通過する冷媒と熱交換を行う。第2流路272を通過した冷媒は、アキュームレータ14に流入し、アキュームレータ14内において気液分離する。アキュームレータ14から流出するガス冷媒は、吸入配管Paを流れ、圧縮機15に再び吸入される。
〈A4〉
液側配管Pcにおいて二手に分岐した冷媒の他方は、過冷却熱交換器27の第1流路271に流入する。第1流路271に流入した冷媒は、第1流路271を通過する際に、第2流路272を通過する冷媒と熱交換を行い、過冷却度のついた液冷媒となる。第1流路271を通過した冷媒は、第3室外膨張弁25に流入し、第3室外膨張弁25の開度に応じて気液二相搬送に適した圧力に減圧されて気液二相冷媒となる。第3室外膨張弁25を通過した冷媒は、液側閉鎖弁13を通過して第3連絡管53に流入し、気液二相状態で第3連絡管53を通過する。第3連絡管53を通過した冷媒は、冷房室内ユニット30に対応する中間ユニット40のいずれかに流入する。
〈A5〉
中間ユニット40に流入した冷媒は、第3冷媒流路L3(すなわち第1配管P1)を通過し、液側連絡管LPに流入する。液側連絡管LPを通過した冷媒は、冷房室内ユニット30に流入する。冷房室内ユニット30に流入した冷媒は、室内膨張弁31を通過する際に減圧される。室内膨張弁31を通過した冷媒は、室内熱交換器32に流入し、室内熱交換器32を通過する際に、室内ファン33によって送られる空気と熱交換を行い蒸発して、過熱度のついたガス冷媒となる。各室内熱交換器32を通過した冷媒は、ガス側連絡管GPを経て、対応する中間ユニット40に流入する。
〈A6〉
中間ユニット40に流入した冷媒は、第1冷媒流路L1(すなわち、第2配管P2、第1電動切換弁41及び第3配管P3)又は第2冷媒流路L2(すなわち、第4配管P4、第2電動切換弁42及び第5配管P5)を通過し、中間ユニット40から流出する。中間ユニット40の第1冷媒流路L1から流出した冷媒は、第1連絡管51を通過し、ガス側第1閉鎖弁11を経て室外ユニット10に流入する。中間ユニット40の第2冷媒流路L2から流出した冷媒は、第2連絡管52を通過し、ガス側第2閉鎖弁12を経て室外ユニット10に流入する。
〈A7〉
ガス側第1閉鎖弁11又はガス側第2閉鎖弁12を経て室外ユニット10に流入した冷媒は、アキュームレータ14に流入し、アキュームレータ14内において気液分離する。アキュームレータ14から流出するガス冷媒は、吸入配管Paを流れ、圧縮機15に再び吸入される。
(5−2)全暖房状態
〈B1〉
空調システム100が全暖房状態にある場合には、各弁が図9の期間S4で示される態様でそれぞれ制御される。これにより、室外ユニット10において第1室外熱交換器21及び第2室外熱交換器22はともに蒸発器状態となる。暖房室内ユニット30において室内熱交換器32は、凝縮器状態となる。
〈B2〉
係る状態で圧縮機15が駆動する場合には、冷媒が吸入配管Paを介して圧縮機15に吸入されて圧縮される。圧縮された高圧のガス冷媒は、吐出配管Pb及び第3流路切換弁18、及びガス側第2閉鎖弁12を経て、第2連絡管52に流入する。
〈B3〉
第2連絡管52を通過した冷媒は、暖房室内ユニット30に対応する中間ユニット40のいずれかに流入する。中間ユニット40に流入した冷媒は、第2冷媒流路L2(すなわち、第5配管P5、第2電動切換弁42及び第4配管P4)を通過して、ガス側連絡管GPを経て暖房室内ユニット30に流入する。
〈B4〉
暖房室内ユニット30に流入した冷媒は、室内熱交換器32に流入し、室内熱交換器32を通過する際に、室内ファン33によって送られる空気と熱交換を行い凝縮して、液冷媒又は気液二相冷媒となる。各室内熱交換器32を通過した冷媒は、室内膨張弁31に流入し、減圧されて気液二相冷媒となる。室内膨張弁31を通過した冷媒は、液側連絡管LPを経て、対応する中間ユニット40に流入する。
〈B5〉
中間ユニット40に流入した冷媒は、第3冷媒流路L3(すなわち第1配管P1)を通過した後、第3連絡管53に流入し、気液二相状態で第3連絡管53を通過する。第3連絡管53を通過した冷媒は、液側閉鎖弁13を経て室外ユニット10に流入する。
〈B6〉
液側閉鎖弁13を経て室外ユニット10に流入した冷媒は、第3室外膨張弁25を通過し、開度に応じて減圧される。第3室外膨張弁25を通過した冷媒は、過冷却熱交換器27の第1流路271に流入する。第1流路271に流入した冷媒は、第1流路271を通過する際に、第2流路272を通過する冷媒と熱交換を行い、過冷却度のついた液冷媒となる。第1流路271を通過した冷媒は、液側配管Pcを流れる過程において二手に分岐する。
液側配管Pcにおいて二手に分岐した一方の冷媒は、上記〈A3〉で説明した態様で流れ、圧縮機15に再び吸入される。
液側配管Pcにおいて二手に分岐した冷媒の他方は、第1室外膨張弁23又は第2室外膨張弁24に流入し、第1室外膨張弁23又は第2室外膨張弁24の開度に応じて減圧される。第1室外膨張弁23又は第2室外膨張弁24を通過した冷媒は、室外熱交換器20(第1室外熱交換器21又は第2室外熱交換器22)に流入する。室外熱交換器20に流入した冷媒は、室外熱交換器20を通過する際に、室外ファン28によって送られる空気と熱交換を行い蒸発する。室外熱交換器20を通過した冷媒は、第1流路切換弁16又は第2流路切換弁17を通過した後、アキュームレータ14に流入し、アキュームレータ14内において気液分離する。アキュームレータ14から流出するガス冷媒は、吸入配管Paを流れ、圧縮機15に再び吸入される。
(5−3)冷房室内ユニット30と、暖房室内ユニット30と、が混在する場合
冷房室内ユニット30と、暖房室内ユニット30と、が混在する場合については、冷房主体状態にある場合と、暖房主体状態にある場合と、冷暖均衡状態にある場合と、に分けて説明する。また、冷暖均衡状態の場合については、冷房主体状態から冷暖均衡状態となった場合と、暖房主体状態から冷暖均衡状態となった場合と、にさらに分けて説明する。
(5−3−1)冷房主体状態にある場合
〈C1〉
空調システム100が冷房主体状態にある場合には、各弁が図8の期間S2で示される態様でそれぞれ制御される。これにより、室外ユニット10において第1室外熱交換器21及び第2室外熱交換器22はともに凝縮器状態となる。また、冷房室内ユニット30において室内熱交換器32は蒸発器状態となり、暖房室内ユニット30において室内熱交換器32は凝縮器状態となる。
〈C2〉
係る状態で圧縮機15が駆動する場合には、冷媒が吸入配管Paを介して圧縮機15に吸入されて圧縮される。圧縮された高圧のガス冷媒は、吐出配管Pbを流れる際に二手に分岐する。
〈C3〉
吐出配管Pbを流れる際に二手に分岐した冷媒の一方は、第3流路切換弁18及びガス側第2閉鎖弁12を経て、第2連絡管52に流入する。第2連絡管52に流入した冷媒は、上記〈B3〉に記載の態様で流れ、暖房室内ユニット30に流入する。暖房室内ユニット30に流入した冷媒は、上記〈B4〉に記載の態様で流れ、対応する中間ユニット40の第3冷媒流路L3(すなわち第1配管P1)に流入する。係る冷媒は、第3冷媒流路L3を通過した後、第3連絡管53を経て、冷房室内ユニット30に対応する中間ユニット40のいずれかにおける第3冷媒流路L3に流入する。
〈C4〉
冷房室内ユニット30に対応する中間ユニット40のいずれかにおける第3冷媒流路L3に流入した冷媒は、上記〈A5〉に記載の態様で流れ、対応する中間ユニット40の第1冷媒流路L1(すなわち、第2配管P2、第1電動切換弁41及び第3配管P3)に流入する。その後、中間ユニット40の第1冷媒流路L1を通過した冷媒は、第1連絡管51を通過しガス側第1閉鎖弁11を経て室外ユニット10に流入する。ガス側第1閉鎖弁11を経て室外ユニット10に流入した冷媒は、上記〈A7〉に記載の態様で流れ、圧縮機15に再び吸入される。
〈C5〉
一方、上記〈C2〉において吐出配管Pbを流れる際に二手に分岐した冷媒の他方は、第1流路切換弁16又は第2流路切換弁17を経て、室外熱交換器20(第1室外熱交換器21又は第2室外熱交換器22)に流入する。室外熱交換器20に流入した冷媒は、室外熱交換器20を通過する際に、室外ファン28によって送られる空気と熱交換を行い凝縮する。室外熱交換器20を通過した冷媒は、第1室外膨張弁23又は第2室外膨張弁24を通過した後、液側配管Pcを流れる過程において二手に分岐する。
〈C6〉
液側配管Pcにおいて二手に分岐した一方の冷媒は、上記〈A3〉に記載の態様で流れ、圧縮機15に再び吸入される。液側配管Pcにおいて二手に分岐した冷媒の他方は、上記〈A4〉に記載の態様で流れ、冷房室内ユニット30に対応する中間ユニット40のいずれかにおける第3冷媒流路L3に流入する。係る冷媒は、上記〈A5〉に記載の態様で流れ、室内ユニット30で蒸発してガス冷媒となった後、ガス側連絡管GPを経て、中間ユニット40の第1冷媒流路L1に流入する。
〈C7〉
中間ユニット40の第1冷媒流路L1に流入した冷媒は、上記〈A6〉に記載の態様で流れ、ガス側第2閉鎖弁12を経て室外ユニット10に流入する。ガス側第2閉鎖弁12を経て室外ユニット10に流入した冷媒は、上記〈A7〉に記載の態様で流れ、圧縮機15に再び吸入される。
(5−3−2)暖房主体状態にある場合
〈D1〉
空調システム100が暖房主体状態にある場合には、各弁が図9の期間S5で示される態様でそれぞれ制御される。これにより、室外ユニット10において第1室外熱交換器21及び第2室外熱交換器22はともに蒸発器状態となる。また、冷房室内ユニット30において室内熱交換器32は蒸発器状態となり、暖房室内ユニット30において室内熱交換器32は凝縮器状態となる。
〈D2〉
係る状態で圧縮機15が駆動する場合には、冷媒が吸入配管Paを介して圧縮機15に吸入され、上記〈B2〉に記載の態様で流れ、第2連絡管52に流入する。第2連絡管52に流入した冷媒は、上記〈B3〉に記載の態様で流れ、暖房室内ユニット30に流入する。暖房室内ユニット30に流入した冷媒は、上記〈B4〉に記載の態様で流れ、対応する中間ユニット40の第3冷媒流路L3(すなわち第1配管P1)に流入する。係る冷媒は、中間ユニット40の第3冷媒流路L3を通過した後、第3連絡管53に流入する。
〈D3〉
第3連絡管53に流入した冷媒の一部は、冷房室内ユニット30に対応する中間ユニット40のいずれかにおける第3冷媒流路L3に流入する。冷房室内ユニット30に対応する中間ユニット40のいずれかにおける第3冷媒流路L3に流入した冷媒は、上記〈A5〉に記載の態様で流れ、対応する中間ユニット40の第1冷媒流路L1(すなわち、第2配管P2、第1電動切換弁41及び第3配管P3)に流入する。その後、中間ユニット40の第1冷媒流路L1を通過した冷媒は、第1連絡管51を通過しガス側第1閉鎖弁11を経て室外ユニット10に流入する。ガス側第1閉鎖弁11を経て室外ユニット10に流入した冷媒は、上記〈A7〉に記載の態様で流れ、圧縮機15に再び吸入される。
〈D4〉
一方、第3連絡管53に流入した他の冷媒は、液側閉鎖弁13を経て室外ユニット10に流入する。液側閉鎖弁13を経て室外ユニット10に流入した冷媒は、上記〈B6〉に記載の態様で流れ、圧縮機15に再び吸入される。
(5−3−3)冷暖均衡状態の場合
(5−3−3−1)冷房主体状態において冷暖均衡状態となった場合
空調システム100が冷房主体状態において冷暖均衡状態となった場合には、各弁が図8の期間S3で示される態様でそれぞれ制御される。これにより、室外ユニット10において第1室外熱交換器21及び第2室外熱交換器22はともに凝縮器状態となる。また、冷房室内ユニット30において室内熱交換器32は蒸発器状態となり、暖房室内ユニット30において室内熱交換器32は凝縮器状態となる。
そして、「(5−3−1)冷房主体状態にある場合」における〈C2〉―〈C7〉において説明した態様で冷媒回路RC内を冷媒が流れる。
(5−3−3−2)暖房主体状態において冷暖均衡状態となった場合
〈E1〉
空調システム100が暖房主体状態において冷暖均衡状態となった場合には、各弁が図9の期間S6で示される態様でそれぞれ制御される。これにより、室外ユニット10において第1室外熱交換器21における冷媒の流れが遮断され、第2室外熱交換器22が凝縮器状態となる。すなわち、室外熱交換器20が凝縮器として機能する。また、冷房室内ユニット30において室内熱交換器32は蒸発器状態となり、暖房室内ユニット30において室内熱交換器32は凝縮器状態となる。
〈E2〉
係る状態で圧縮機15が駆動する場合には、冷媒が吸入配管Paを介して圧縮機15に吸入されて圧縮される。圧縮された高圧のガス冷媒は、吐出配管Pbを流れる際に二手に分岐する。
〈E3〉
吐出配管Pbを流れる際に二手に分岐した冷媒の一方は、上記〈C3〉−〈C4〉
で説明した態様で流れ、圧縮機15に再び吸入される。
〈E4〉
一方、上記〈E2〉において吐出配管Pbを流れる際に二手に分岐した冷媒の他方は、吐出配管Pb、第1流路切換弁16を経て、室外熱交換器20(第2室外熱交換器22)に流入する。室外熱交換器20に流入した冷媒は、室外熱交換器20を通過する際に、室外ファン28によって送られる空気と熱交換を行い凝縮する。室外熱交換器20を通過した冷媒は、第2室外膨張弁24を通過した後、液側配管Pcを流れる過程において二手に分岐する。
〈E5〉
液側配管Pcにおいて二手に分岐した一方の冷媒は、上記〈A3〉に記載の態様で流れ、圧縮機15に再び吸入される。
〈E6〉
液側配管Pcにおいて二手に分岐した冷媒の他方は、上記〈A4〉に記載の態様で流れ、冷房室内ユニット30に対応する中間ユニット40のいずれかにおける第3冷媒流路L3に流入する。係る冷媒は、上記〈A5〉に記載の態様で流れ、冷房室内ユニット30で蒸発してガス冷媒となった後、ガス側連絡管GPを経て、中間ユニット40の第1冷媒流路L1に流入する。中間ユニット40の第1冷媒流路L1に流入した冷媒は、第1冷媒流路L1(すなわち、第2配管P2、第1電動切換弁41及び第3配管P3)を通過し、中間ユニット40から流出する。中間ユニット40の第1冷媒流路L1から流出した冷媒は、第1連絡管51を通過し、ガス側第1閉鎖弁11を経て室外ユニット10に流入する。ガス側第1閉鎖弁11を経て室外ユニット10に流入した冷媒は、上記〈A7〉に記載の態様で流れ、圧縮機15に再び吸入される。
(6)特徴
(6−1)
空調システム100では、省冷媒の実現と信頼性低下の抑制を両立可能となっている。
すなわち、昨今、コスト抑制や環境保護の観点から、冷媒回路に充填される冷媒量を低減させる省冷媒に係る取り組みが活発化している。この点、熱源ユニット及び利用ユニット間で延びる液側冷媒流路において搬送される冷媒に関し、気液二相状態で搬送させる気液二相搬送によれば、液状態で搬送される場合と比較して能力低下が抑制されつつ少ない冷媒充填量で運転を行うことが可能となるため、係る気液二相搬送を採用することが省冷媒を実現する方法として考えられる。
しかし、熱源ユニット及び複数の利用ユニットを含む冷媒回路において、熱源ユニット及び利用ユニット間に、利用ユニット内の冷媒の流れを切り換える切換弁を複数有し、各切換弁の状態を個別に制御することで各利用ユニット内の冷媒の流れ方向を個別に切り換えることが可能な従来の冷凍装置においては、液側の出入口から冷媒が流入する第1サイクル状態で運転中の利用ユニットの熱負荷と、ガス側の出入口から冷媒が流入する第2サイクル状態で運転中の利用ユニットの熱負荷と、が均衡する場合、上記液側冷媒流路において冷媒が滞留し若しくは状態が不安定となって寝込みや逆流が生じることで、冷媒回路において冷媒が想定通りに流れないケースが考えられる。係る場合、冷媒回路全体における冷媒循環量が不足し、信頼性が低下することも考えられる。
この点、空調システム100では、開度に応じて冷媒を減圧する減圧弁(第3室外膨張弁25/室内膨張弁31)が、室外熱交換器20/室内熱交換器32と、第3連絡管53と、の間に配置されている。これにより、室外ユニット10及び室内ユニット30間で延びる第3連絡管53において搬送される冷媒に関し、気液二相状態で搬送させる気液二相搬送が可能となっており、液状態で搬送される場合と比較して能力低下が抑制されつつ少ない冷媒充填量で運転を行うことが可能となっている。よって、省冷媒が実現可能となっている。
一方で、液側連絡管LP側(液側)の出入口から冷媒が流入する第1サイクル状態(すなわち室内熱交換器32が蒸発器として機能する蒸発器状態)で運転中の冷房室内ユニット30の熱負荷と、ガス側連絡管GP側(ガス側)の出入口から冷媒が流入する第2サイクル状態(すなわち室内熱交換器32が凝縮器として機能する凝縮器状態)で運転中の暖房室内ユニット30の熱負荷と、が均衡する冷暖均衡状態となった場合には、コントローラ70は、第3連絡管53において室外ユニット10側から各室内ユニット30側へ冷媒が流れるように、室外熱交換器20を凝縮器として機能させる冷暖均衡制御を実行している。これにより、運転均衡状態となった場合に、室外熱交換器20が凝縮器として機能するようになっている。その結果、第3連絡管53において室外ユニット10側から各室内ユニット30側へ冷媒が流れることが助長されるようになっている。このため、各室内ユニット30内の冷媒の流れ方向を個別に切り換えることが可能な空調システム100において、運転中、冷暖均衡状態となった場合にも、第3連絡管53で流れる冷媒が滞留し若しくは状態(特に流れる方向)が不安定となって冷媒回路RCにおいて冷媒が想定通りに流れないことが抑制されている。よって、信頼性低下が抑制されている。
したがって、省冷媒の実現と信頼性低下の抑制を両立可能となっている。
(6−2)
空調システム100では、コントローラ70は、冷暖均衡制御では、第3連絡管53において室外ユニット10から各中間ユニット40側へ気液二相冷媒が搬送されるように、減圧弁(第3室外膨張弁25)を二相搬送開度に制御している。これにより、運転中、冷暖均衡状態となった場合には、第3連絡管53において室外ユニット10から各中間ユニット40側へ気液二相冷媒が搬送されるように減圧弁(第3室外膨張弁25)の開度が制御されるようになっている。その結果、第3連絡管53において室外ユニット10側から各室内ユニット30側へ気液二相冷媒が流れることが助長されるようになっている。よって、各室内ユニット30内の冷媒の流れ方向を個別に切り換えることが可能な空調システム100において、冷暖均衡状態となった場合にも、信頼性低下が抑制されつつ省冷媒が実現されるようになっている。
(6−3)
空調システム100では、室外熱交換器20は、冷暖均衡時に冷媒の蒸発器として機能する第1室外熱交換器21及び冷暖均衡時に冷媒の凝縮器として機能する第2室外熱交換器22を含み、流量調整弁(第1室外膨張弁23)は、第1室外熱交換器21の冷媒の入口側又は出口側に配置され、開度に応じて第1室外熱交換器21内における冷媒の流量を増減させている。コントローラ70は、冷暖均衡制御では流量調整弁(第1室外膨張弁23)を全閉状態に制御している(すなわち最小開度に絞っている)。これにより、運転中、冷暖均衡状態となった場合には、蒸発器として機能する第1室外熱交換器21における冷媒流量が低減する(より詳細には遮断される)ようになっている。その結果、第3連絡管53において室外ユニット10側から各室内ユニット30側へ冷媒が流れることが確実に助長されるようになっている。
(6−4)
空調システム100では、室外熱交換器20は、冷暖均衡時に冷媒の蒸発器として機能する第1室外熱交換器21及び冷暖均衡時に冷媒の凝縮器として機能する第2室外熱交換器22を含み、流量調整弁(第2室外膨張弁24)は、第2室外熱交換器22の冷媒の入口側又は出口側に配置され、開度に応じて第2室外熱交換器22内における冷媒の流量を増減させている。コントローラ70は、冷暖均衡制御では、第2室外熱交換器22が凝縮器として機能するように、流量調整弁(第2室外膨張弁24)を全閉状態よりも大きい開状態に制御している。
これにより、運転中、冷暖均衡状態となった場合には、第2室外熱交換器22が凝縮器として機能するように第2室外熱交換器22に冷媒が流れるようになっている。その結果、第3連絡管53において室外ユニット10側から各室内ユニット30側へ冷媒が流れることが確実に助長されるようになっている。
(6−5)
空調システム100では、冷媒の流れを切り換える流路切換弁(第1流路切換弁16/第2流路切換弁17)が、室外熱交換器20の冷媒の入口側又は出口側に配置されている。流路切換弁(第1流路切換弁16/第2流路切換弁17)は、コントローラ70によって、第1室外熱交換器21/第2室外熱交換器22が凝縮器として機能するように冷媒流路を形成する第1流路状態と、第1室外熱交換器21/第2室外熱交換器22が蒸発器として機能するように冷媒流路を形成する第2流路状態と、を切り換えられている。コントローラ70は、冷暖均衡制御では、流路切換弁(第2流路切換弁17)を第1流路状態に制御している。
これにより、運転中、冷暖均衡状態となった場合には、室外熱交換器20が凝縮器として機能するように冷媒流路が形成され、室外熱交換器20(第2室外熱交換器22)が凝縮器として機能するようになっている。その結果、第3連絡管53において室外ユニット10側から各室内ユニット30側へ冷媒が流れることが確実に助長されるようになっている。
(6−6)
空調システム100では、室外熱交換器20は第1室外熱交換器21と第2室外熱交換器22とを含み、冷媒の流れを切り換える流路切換弁(第1流路切換弁16/第2流路切換弁17)が第1室外熱交換器21及び/又は第2室外熱交換器22の冷媒の入口側又は出口側に配置されている。流路切換弁(第1流路切換弁16/第2流路切換弁17)は、コントローラ70によって、第1室外熱交換器21/第2室外熱交換器22が凝縮器として機能するように冷媒流路を形成する第1流路状態と、第1室外熱交換器21/第2室外熱交換器22が蒸発器として機能するように冷媒流路を形成する第2流路状態と、を切り換えられている。コントローラ70は、冷暖均衡制御では流路切換弁(第2流路切換弁17)を第1状態に制御している。
これにより、運転中、冷暖均衡状態となった場合には、室外熱交換器20第2室外熱交換器22が凝縮器として機能するように冷媒流路が形成されるようになっており、室外熱交換器20(第2室外熱交換器22)が凝縮器として機能するようになっている。その結果、第3連絡管53において室外ユニット10側から各室内ユニット30側へ冷媒が流れることが確実に助長されるようになっている。
(6−7)
空調システム100では、コントローラ70は、第2サイクル状態(室内熱交換器32が凝縮器として機能する凝縮器状態)で暖房運転中の暖房室内ユニット30の熱負荷が、第1サイクル状態(室内熱交換器32が蒸発器として機能する蒸発器状態)で冷房運転中の冷房室内ユニット30の熱負荷よりも所定の割合で大きい暖房主体状態から、冷暖均衡状態となった場合に、冷暖均衡制御を実行している。これにより、運転中、第3連絡管53で流れる冷媒が滞留し若しくは状態が不安定となり冷媒回路RCにおいて冷媒が想定通りに流れない可能性が特に大きい場合にも、第3連絡管53において室外ユニット10側から各室内ユニット30側へ冷媒が流れることが助長されるようになっており、信頼性低下が抑制されている。
(6−8)
空調システム100では、コントローラ70は、第1サイクル状態(室内熱交換器32が蒸発器として機能する蒸発器状態)で冷房運転中の冷房室内ユニット30の熱負荷が、第2サイクル状態(室内熱交換器32が凝縮器として機能する凝縮器状態)で暖房運転中の暖房室内ユニット30の熱負荷よりも所定の割合で大きい冷房主体状態から、冷暖均衡状態となった場合には、冷暖均衡制御を実行しないようになっている。すなわち、運転中、第3連絡管53で流れる冷媒が滞留し若しくは状態が不安定となり冷媒回路RCにおいて冷媒が想定通りに流れない可能性が特に大きい場合にのみ、冷暖均衡制御が実行されるようになっている。よって、信頼性低下のおそれが大きくない場合に冷暖均衡制御が実行されることで、かえってCOP低下・能力低下を招くことが抑制されている。
(7)変形例
上記実施形態は、以下の変形例に示すように適宜変形が可能である。なお、各変形例は、矛盾が生じない範囲で他の変形例と組み合わせて適用されてもよい。
(7−1)変形例A
上記実施形態では、冷暖均衡制御において、第2流路切換弁17が第1流路状態に制御さることで、第2室外熱交換器22が凝縮器状態に切り換えられ、これにより室外熱交換器20が凝縮器として機能するようになっていた。しかし、冷暖均衡制御において、室外熱交換器20を凝縮器として機能させる処理については、必ずしもこれに限定されず、適宜変更が可能である。
例えば、冷暖均衡制御においては、室外熱交換器20を凝縮器として機能させるために、第2流路切換弁17が第1流路状態に制御されるとともに/第2流路切換弁17が第1流路状態に制御されるのに代えて、第1流路切換弁16が第1流路状態に制御されてもよい。すなわち、第2室外熱交換器22が凝縮器状態に切り換えられるとともに/第2室外熱交換器22が凝縮器状態に切り換えられるのに代えて、第1室外熱交換器21が凝縮器状態に切り換えられてもよい。係る場合には、第1室外膨張弁23が開状態で適宜開度制御されればよい。また、係る場合において、第2流路切換弁17が第2流路状態に切り換えられるときには、第2室外膨張弁24が最小開度(閉状態)に制御されればよい。
なお、冷暖均衡制御において、第1室外熱交換器21及び第2室外熱交換器22の双方が凝縮器状態となるように処理を行った場合には、第3連絡管53において、室外ユニット10側から中間ユニット40側(室内ユニット30側)へ送られる冷媒流量が過大となり、冷凍サイクルが正常に行われないことも考えられる。このため、冷暖均衡制御においては、第1室外熱交換器21及び第2室外熱交換器22の一方を凝縮器状態とすることが原則的に好ましい。すなわち、冷暖均衡状態にある場合に第1室外熱交換器21及び第2室外熱交換器22の双方が凝縮器状態となる処理に関しては、第3連絡管53において室外ユニット10側から中間ユニット40側(室内ユニット30側)へ送られる冷媒流量が過大となって冷凍サイクルに支障が生じる可能性が大きくない場合に、行われることが好ましい。
(7−2)変形例B
上記実施形態では、冷暖均衡制御において、蒸発器状態の室外熱交換器20(第1室外熱交換器21)の流量調整弁(第1室外膨張弁23)が閉状態(最小開度)に制御されることで、蒸発器状態の熱交換器における冷媒の流れが遮断されるように構成されていた。しかし、冷暖均衡制御において、蒸発器状態の熱交換器への冷媒の流入を遮断する処理は、必ずしもこれに限定されず、適宜変更が可能である。
例えば、蒸発器状態の室外熱交換器20(第1室外熱交換器21)の入口側/出口側において、冷媒流量を増減させる弁(例えば、電磁弁や電動弁等)を流量調整弁(第1室外膨張弁23)とは別に配置し、冷暖均衡制御においては、係る弁の開閉を切り換えることで蒸発器として機能する熱交換器への冷媒の流入を遮断するようにしてもよい。
(7−3)変形例C
上記実施形態では、全冷房状態、冷房主体状態及び冷暖均衡状態において、第3連絡管53における気液二相搬送が実現されるべく、室外ユニット10内の第3室外膨張弁25が二相搬送開度に制御され、気液二相搬送用の「減圧弁」として機能していた。しかし、係る運転状態において第3連絡管53における気液二相搬送を実現するうえで、必ずしも第3室外膨張弁25が「減圧弁」として機能する必要はない。例えば、第3室外膨張弁25に代えて他の新たな弁(例えば電動弁等)を室外熱交換器20と第3連絡管53の間の冷媒流路上に配置し、二相搬送制御において当該新たな弁を二相搬送開度に制御することで、第3連絡管53における気液二相搬送が実現されてもよい。
また、上記実施形態では、全暖房状態及び暖房主体状態において、暖房室内ユニット30内の室内膨張弁31が開状態で開度制御されることで、第3連絡管53における気液二相搬送が実現されていた。すなわち、全暖房状態及び暖房主体状態において、暖房室内ユニット30内の室内膨張弁31は、気液二相搬送用の「減圧弁」として機能していた。しかし、係る運転状態において第3連絡管53における気液二相搬送を実現するうえで、必ずしも暖房室内ユニット30内の室内膨張弁31が「減圧弁」として機能する必要はない。例えば、係る弁に代えて他の新たな弁(例えば電動弁等)を室内熱交換器32と第3連絡管53の間の冷媒流路(例えば第1冷媒流路L1)上に配置し、冷暖均衡制御において当該新たな弁を二相搬送開度に制御することで、第3連絡管53における気液二相搬送が実現されてもよい。
(7−4)変形例D
上記実施形態では、複数の流路切換弁19(第1流路切換弁16、第2流路切換弁17、及び第3流路切換弁18)が配置され、各流路切換弁19が運転状態に応じて第1流路状態と第2流路状態とを切り換えられることで、冷媒回路RC内における冷媒の流れが切り換えられていた。しかし、これに限定されず、他の方法によって冷媒回路RC内における冷媒の流れを切り換えるように構成されてもよい。
例えば、いずれかの流路切換弁19(四路切換弁)に代えて、三方弁が配置されてもよい。また例えば、いずれかの流路切換弁19に代えて、第1の弁(例えば電磁弁又は電動弁)及び第2の弁(例えば電磁弁又は電動弁)を配置し、第1の弁を開状態に制御するとともに第2の弁を閉状態に制御することで上記実施形態において流路切換弁19が第1流路状態にある場合に形成される冷媒流路が開通され、第1の弁を閉状態に制御するとともに第2の弁を開状態に制御することで上記実施形態において流路切換弁19が第2流路状態にある場合に形成された冷媒流路が開通されるように構成されてもよい。
(7−5)変形例E
上記実施形態では、コントローラ70(アクチュエータ制御部74)は、冷暖均衡制御において、第1室外膨張弁23(すなわち、蒸発器状態の第1室外熱交換器21の流量調整弁)を、全閉状態に制御していた。しかし、コントローラ70は、冷暖均衡制御において、第1室外膨張弁23の開度を絞る(小さくする)制御を行う限り、第1室外膨張弁23を必ずしも全閉状態に制御する必要はない。
例えば、コントローラ70は、冷暖均衡制御において、第1室外膨張弁23の開度を全閉状態よりも開度が大きい微開状態に制御してもよい。すなわち、第3連絡管53において室外ユニット10側から室内ユニット30側へと冷媒が流れるうえで支障が生じない限り、蒸発器状態の第1室外熱交換器21において冷媒の流れが必ずしも遮断される必要はない。係る場合でも、冷暖均衡状態において第3連絡管53において室外ユニット10側から室内ユニット30側へと冷媒が流れることが助長される以上、上記(6−1)で記載した作用効果については実現可能である。
(7−6)変形例F
上記実施形態では、コントローラ70は、(アクチュエータ制御部74)は、運転状態が暖房主体状態から冷暖均衡状態となった場合に冷暖均衡制御を実行する一方で、運転状態が冷房主体状態から冷暖均衡状態となった場合には冷暖均衡制御を実行しないように構成されていた。しかし、必ずしもこれに限定されず、コントローラ70は、運転状態が冷暖均衡状態となった場合には、常に冷暖均衡制御を実行するように構成されてもよい。すなわち、設置環境や設計仕様に応じて、冷暖均衡制御が実行されることで、かえってCOP低下・能力低下を招く可能性が大きくない場合には、本発明の目的に沿って、冷房主体状態から冷暖均衡状態となった場合にも冷暖均衡制御が実行されてもよい。
(7−7)変形例G
上記実施形態における図6−図9に示す各弁の制御態様については、本発明の目的を達成するうえで支障が生じない限り、適宜変更が可能である。
例えば、図8及び図9に示される期間S1−S5においては、第1室外膨張弁23及び第2室外膨張弁24は、ともに開状態で開度制御されていた。しかし、必ずしもこれに限定されず、運転状況に応じて、第1室外熱交換器21又は第2室外熱交換器22における冷媒の流れを遮断することが望ましい場合には、第1室外膨張弁23又は第2室外膨張弁24が閉状態(最小開度)に制御されてもよい。
また、例えば、図8及び図9に示される期間S1−S6においては、室内膨張弁31は、開状態で開度制御されていた。しかし、必ずしもこれに限定されず、運転状況に応じて、対応する室内熱交換器32における冷媒の流れを遮断することが望ましい場合(例えば、対象空間の温度が設定温度に到達した場合等)には、室内膨張弁31が閉状態(最小開度)に制御されてもよい。
また、例えば、図8及び図9に示される期間S1−S5においては、第1流路切換弁16及び第2流路切換弁17が同一の状態(第1流路状態/第2流路状態)に制御されていた。しかし、必ずしもこれに限定されず、期間S1−S5においては、第1流路切換弁16及び第2流路切換弁17の状態が異なるように制御されてもよい。すなわち、運転状況に応じて、第1室外熱交換器21及び第2室外熱交換器22の一方を蒸発器として機能させるとともに他方を凝縮器として機能させることが好ましい場合には、第1流路切換弁16及び第2流路切換弁17の一方を第1流路状態に制御するとともに他方を第2流路状態に制御してもよい。
特に上記実施形態では、期間S5(暖房主体状態)から期間S6(冷暖均衡状態)となった場合には、ともに蒸発器状態の第1室外熱交換器21及び第2室外熱交換器22の一方が凝縮器状態となるように、第2流路切換弁17が第2流路状態から第1流路状態に切り換えられていた。これに関し、第1室外熱交換器21及び第2室外熱交換器22の一方が凝縮器として機能し他方が蒸発器として機能する状態から、他方の熱交換器が凝縮器状態に切り換えられるようにしてもよい。
(7−8)変形例H
上記実施形態では、コントローラ70は、室外ユニット制御部29、各室内ユニット30の室内ユニット制御部34、及び各中間ユニット40の中間ユニット制御部45が、通信ネットワークで接続されることで構成されていた。しかし、コントローラ70の構成態様については、必ずしもこれに限定されず、適宜変更が可能である。
例えば、コントローラ70は、室外ユニット制御部29、各室内ユニット30の室内ユニット制御部34、及び各中間ユニット40の中間ユニット制御部45の一部が省略されて構成されてもよい。また、例えば、コントローラ70は、室外ユニット制御部29、各室内ユニット30の室内ユニット制御部34、及び各中間ユニット40の中間ユニット制御部45の一部/全てに代えて新たな装置(例えば管理サーバや集中リモコン等)が用いられることで構成されてもよい。係る場合、新たな装置は、室外ユニット10、各室内ユニット30、又は各中間ユニット40と通信可能な態様で配置される限り、室外ユニット10、各室内ユニット30、又は各中間ユニット40とは離れた遠隔地に配置されてもよい。そして、コントローラ70に含まれる各機能部(71−75)の一部/全部については、当該新たな装置内に配置されてもよい。
(7−9)変形例I
上記実施形態における冷媒回路RCの回路構成や回路内に配置される機器については、本発明の目的を達成するうえで支障が生じない限り、設置環境や設計仕様に応じて適宜変更が可能であり、一部の機器を省略してもよいし、他の機器を新たに追加してもよいし、新たな流路を含んでいてもよい。
例えば、室外ユニット10に配置されるアキュームレータ14若しくは過冷却熱交換器27については必ずしも必要ではなく、省略されてもよい。また、冷媒回路RCには、冷媒を貯留するレシーバを適当な位置に(例えば液側配管Pc上に)配置されてもよい。また、冷媒回路RCには、図1及び図2に示されない流路(例えば圧縮機15へ中間圧冷媒をインジェクションするための流路)が含まれていてもよい。
また、例えば、室内膨張弁31については、必ずしも室内ユニット30内に配置される必要はなく、対応する中間ユニット40内の第3冷媒流路L3上に配置されてもよい。
(7−10)変形例J
上記実施形態では、室外ユニット10は1台のみであった。しかし、室外ユニット10は、各室内ユニット30又は各中間ユニット40に対して、直列又は並列に複数台配置されてもよい。
(7−11)変形例K
上記実施形態では、いずれかの室内ユニット30と1対1に対応する複数の中間ユニット40が、個別に配置されていた。しかし、中間ユニット40の設置態様については、必ずしもこれに限定されない。
例えば、各中間ユニット40は、室内ユニット30と、1対多、又は多対1に対応づけられるように、構成・配置されてもよい。また、例えば、複数(例えば、4台、8台或いは16台等)の中間ユニット40を集めて1つのケーシング内に収容した集合ユニットとして配置されてもよい。
(7−12)変形例L
上記実施形態では、本発明が空調システム100において適用される場合について説明したが、本発明は、上記実施形態の冷媒回路RCと同様の冷媒回路を含み第1サイクル状態で運転する利用ユニットと第2サイクル状態で運転する利用ユニットとが混在しうる他の冷凍装置(例えば給湯器やチラー等)にも適用可能である。
(7−13)変形例M
上記実施形態では、冷媒回路RCを循環する冷媒の一例としてR32を挙げた。しかし、冷媒回路RCで用いられる冷媒は、特に限定されない。例えば、冷媒回路RCでは、HFO1234yf、HFO1234ze(E)やこれらの冷媒の混合冷媒などが、R32に代えて用いられてもよい。また、冷媒回路RCでは、R407CやR410A等のHFC系冷媒を用いられてもよい。
本発明は、冷凍装置に利用可能である。
10 :室外ユニット(熱源ユニット)
11 :ガス側第1閉鎖弁
12 :ガス側第2閉鎖弁
13 :液側閉鎖弁
14 :アキュームレータ
15 :圧縮機
16 :第1流路切換弁(流路切換弁)
17 :第2流路切換弁(流路切換弁)
18 :第3流路切換弁(流路切換弁)
20 :室外熱交換器(熱源側熱交換器)
21 :第1室外熱交換器(第1熱源側熱交換器)
22 :第2室外熱交換器(第2熱源側熱交換器)
23 :第1室外膨張弁(流量調整弁)
24 :第2室外膨張弁(流量調整弁)
25 :第3室外膨張弁(減圧弁)
26 :第4室外膨張弁
27 :過冷却熱交換器
28 :室外ファン
29 :室外ユニット制御部
30 :室内ユニット(利用ユニット)
31 :室内膨張弁(減圧弁)
32 :室内熱交換器
33 :室内ファン
34 :室内ユニット制御部
40 :中間ユニット(冷媒流路切換ユニット)
41 :第1電動切換弁
42 :第2電動切換弁
45 :中間ユニット制御部
50 :室外側連絡配管
51 :第1連絡管
52 :第2連絡管
53 :第3連絡管
60 :室内側連絡配管
70 :コントローラ
71 :記憶部
72 :入力制御部
73 :運転状態判断部
74 :アクチュエータ制御部
75 :駆動信号出力部
100 :空調システム(冷凍装置)
271 :第1流路
272 :第2流路
EV :電動切換弁
GP :ガス側連絡管
L1 :第1冷媒流路
L2 :第2冷媒流路
L3 :第3冷媒流路
LP :液側連絡管
Pa :吸入配管
Pb :吐出配管
Pc :液側配管
RC :冷媒回路
特開2008−39276号公報

Claims (9)

  1. 冷媒回路(RC)において冷凍サイクルを行う冷凍装置(100)であって、
    冷媒の流れに応じて冷媒の凝縮器及び/又は蒸発器として機能する熱源側熱交換器(20)を有する熱源ユニット(10)と、
    冷媒の流れに応じて冷媒の蒸発器又は凝縮器として機能する利用側熱交換器(32)を有する複数の利用ユニット(30)と、
    低圧のガス冷媒が流れる第1連絡管(51)、高圧のガス冷媒が流れる第2連絡管(52)、及び気液二相冷媒が流れる第3連絡管(53)で前記熱源ユニットと接続され、ガス冷媒が流れる第1冷媒配管(GP)及び液冷媒/気液二相冷媒が流れる第2冷媒配管(LP)で前記利用ユニットと接続され、前記利用ユニット内の冷媒の流れを切り換える切換弁(41、42)を有する冷媒流路切換ユニット(40)と、
    前記熱源側熱交換器若しくは前記利用側熱交換器と前記第3連絡管との間に配置され、開度に応じて冷媒を減圧する減圧弁(25、31)と、
    各機器の動作又は状態を制御するコントローラ(70)と、
    を備え、
    前記コントローラは、
    前記切換弁の状態を制御して各前記利用ユニット内の冷媒の流れを個別に切り換えることで、前記利用ユニット毎に、前記第2冷媒配管側が冷媒流れの上流側となるとともに前記第1冷媒配管側が冷媒流れの下流側となる第1サイクル状態、及び前記第1冷媒配管側が冷媒流れの上流側となるとともに前記第2冷媒配管側が冷媒流れの下流側となる第2サイクル状態のいずれかに個別に切り換え、
    前記第1サイクル状態で運転中の前記利用ユニットの熱負荷と、前記第2サイクル状態で運転中の前記利用ユニットの熱負荷と、が均衡する運転均衡状態となった場合には、前記第3連絡管において前記熱源ユニット側から各前記利用ユニット側へ冷媒が流れるように、前記熱源側熱交換器を凝縮器として機能させる第1制御を実行する、
    冷凍装置(100)。
  2. 前記コントローラは、前記第1制御では、前記第3連絡管において前記熱源ユニットから各前記冷媒流路切換ユニット側へ気液二相冷媒が搬送されるように、前記減圧弁(25)の開度を制御する、
    請求項1に記載の冷凍装置(100)。
  3. 前記熱源側熱交換器は、冷媒の蒸発器として機能する第1熱源側熱交換器(21)、及び冷媒の凝縮器として機能する第2熱源側熱交換器(22)を含み、
    前記第1熱源側熱交換器の冷媒の入口側又は出口側に配置され、開度に応じて前記第1熱源側熱交換器内における冷媒の流量を増減させる流量調整弁(23)をさらに備え、
    前記コントローラは、前記第1制御では前記流量調整弁を絞る、
    請求項1又は2に記載の冷凍装置(100)。
  4. 前記コントローラは、前記第1制御では前記流量調整弁を全閉状態に制御する、
    請求項3に記載の冷凍装置(100)。
  5. 前記熱源側熱交換器は、冷媒の蒸発器として機能する第1熱源側熱交換器(21)、及び冷媒の凝縮器として機能する第2熱源側熱交換器(22)を含み、
    前記第2熱源側熱交換器の冷媒の入口側又は出口側に配置され、開度に応じて前記第2熱源側熱交換器内における冷媒の流量を増減させる流量調整弁(24)をさらに備え、
    前記コントローラは、前記第1制御では、前記第2熱源側熱交換器が凝縮器として機能するように、前記流量調整弁を全閉状態よりも大きい開状態に制御する、
    請求項1又は2のいずれか1項に記載の冷凍装置(100)。
  6. 前記熱源側熱交換器の冷媒の入口側又は出口側に配置され、冷媒の流れを切り換える流路切換弁(16、17)をさらに備え、
    前記流路切換弁は、前記コントローラによって、前記熱源側熱交換器が凝縮器として機能するように冷媒流路を形成する第1状態と、前記熱源側熱交換器が蒸発器として機能するように冷媒流路を形成する第2状態と、を切り換えられ、
    前記コントローラは、前記第1制御では前記流路切換弁(17)を前記第1状態に制御する、
    請求項1又は2のいずれか1項に記載の冷凍装置(100)。
  7. 前記熱源側熱交換器は、第1熱源側熱交換器(21)及び第2熱源側熱交換器(22)を含み、
    前記第1熱源側熱交換器及び/又は前記第2熱源側熱交換器の冷媒の入口側又は出口側に配置され、冷媒の流れを切り換える流路切換弁(16、17)をさらに備え、
    前記流路切換弁は、前記コントローラによって、前記第1熱源側熱交換器及び/又は前記第2熱源側熱交換器が凝縮器として機能するように冷媒流路を形成する第1状態と、前記第1熱源側熱交換器及び/又は前記第2熱源側熱交換器が蒸発器として機能するように冷媒流路を形成する第2状態と、を切り換えられ、
    前記コントローラは、前記第1制御では前記流路切換弁を前記第1状態に制御する、
    請求項1又は2のいずれか1項に記載の冷凍装置(100)。
  8. 前記コントローラは、前記第2サイクル状態で運転中の前記利用ユニットの熱負荷が前記第1サイクル状態で運転中の前記利用ユニットの熱負荷よりも所定の割合で大きい状態から前記運転均衡状態となった場合に、前記第1制御を実行する、
    請求項1から7のいずれか1項に記載の冷凍装置(100)。
  9. 前記コントローラは、前記第1サイクル状態で運転中の前記利用ユニットの熱負荷が前記第2サイクル状態で運転中の前記利用ユニットの熱負荷よりも所定の割合で大きい状態から前記運転均衡状態となった場合には、前記第1制御を実行しない、
    請求項1から8のいずれか1項に記載の冷凍装置(100)。
JP2016193140A 2016-09-30 2016-09-30 冷凍装置 Pending JP2018054252A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016193140A JP2018054252A (ja) 2016-09-30 2016-09-30 冷凍装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016193140A JP2018054252A (ja) 2016-09-30 2016-09-30 冷凍装置

Publications (1)

Publication Number Publication Date
JP2018054252A true JP2018054252A (ja) 2018-04-05

Family

ID=61836495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016193140A Pending JP2018054252A (ja) 2016-09-30 2016-09-30 冷凍装置

Country Status (1)

Country Link
JP (1) JP2018054252A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024185830A1 (ja) * 2023-03-07 2024-09-12 東芝キヤリア株式会社 空気調和装置の室外ユニット、および空気調和装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024185830A1 (ja) * 2023-03-07 2024-09-12 東芝キヤリア株式会社 空気調和装置の室外ユニット、および空気調和装置

Similar Documents

Publication Publication Date Title
JP6927315B2 (ja) 冷凍装置
JP6528909B2 (ja) 冷凍装置
CN110691948B (zh) 空调系统
US8966919B2 (en) Air conditioning apparatus having heat-source-side expansion valve control
WO2017141899A1 (ja) 冷凍装置
US10976090B2 (en) Air conditioner
US11022354B2 (en) Air conditioner
JP2010175189A (ja) 空気調和機
JP6067178B2 (ja) 熱源側ユニット及び空気調和装置
WO2019064332A1 (ja) 冷凍サイクル装置
JP6747226B2 (ja) 冷凍装置
WO2018101439A1 (ja) 配管径の決定方法、配管径の決定装置、および冷凍装置
WO2017110816A1 (ja) 空気調和装置
JP2018054252A (ja) 冷凍装置
JP7467827B2 (ja) 空気調和機
JP2018096575A (ja) 冷凍装置
JP5765278B2 (ja) 室外マルチ型空気調和装置
CN114341571A (zh) 制冷装置
WO2021059635A1 (ja) 冷凍装置
JP2014126289A (ja) 空気調和システム
US20240191900A1 (en) Outdoor unit, indoor unit, and air conditioning system
CN118159793A (zh) 冷冻循环装置
JP2019086201A (ja) 冷房専用空調システム