<時間相関カメラの基本構成>
本実施形態の検査システムについて説明する。第1の実施形態の検査システム1は、被検査体を検査するために様々な構成を備えている。図1は、本実施形態の検査システムの構成例を示した図である。図1に示されるように、本実施形態の検査システム1は、PC100と、時間相関カメラ110と、照明装置120と、スクリーン130と、移動機構140と、を備えている。時間相関カメラ110は、撮像部の一例である。
移動機構140は、被検査体150を固定するために用いられ、PC100からの制御に応じて、時間相関カメラ110が撮影可能な被検査体150の表面の位置と向きを変化させる。
照明装置120は、被検査体150に光を照射する装置であって、PC100からの縞パターンに従って、照射する光の強度を領域単位で制御できる。さらに、照明装置120は、周期的な時間の遷移に従って当該領域単位の光の強度を制御できる。換言すれば、照明装置120は、光の強度の周期的な時間変化および空間変化を与えることができる。なお、具体的な光の強度の制御手法については後述する。
スクリーン130は、照明装置120から出力された光を拡散させた上で、被検査体150に対して面的に光を照射する。本実施形態のスクリーン130は、照明装置120から入力された周期的な時間変化および空間変化が与えられた光を、面的に被検査体150に照射する。なお、照明装置120とスクリーン130との間には、集光用のフレネルレンズ等の光学系部品(図示されず)が設けられてもよい。
なお、本実施形態は、照明装置120とスクリーン130とを組み合わせて、光強度の周期的な時間変化および空間変化を与える面的な照射部を構成する例について説明するが、このような組み合わせに制限するものではなく、例えば、LEDを面的に配置して照明部を構成してもよい。
時間相関カメラ110は、光学系210と、イメージセンサ220と、データバッファ230と、制御部240と、参照信号出力部250と、を備えている。図2は、本実施形態の時間相関カメラ110の構成を示したブロック図である。
光学系210は、撮影レンズ等を含み、時間相関カメラ110の外部の被写体(被検査体を含む)からの光束を透過し、その光束により形成される被写体の光学像を結像させる。
イメージセンサ220は、光学系210を介して入射された光の強弱を光強度信号として画素毎に高速に出力可能なセンサとする。
本実施形態の光強度信号は、検査システムの照明装置120が被写体(被検査体を含む)に対して光を照射し、当該被写体からの反射光を、イメージセンサ220が受け取ったものである。
イメージセンサ220は、例えば従来のものと比べて高速に読み出し可能なセンサであり、行方向(x方向)、列方向(y方向)の2種類の方向に画素が配列された2次元平面状に構成されたものとする。そして、イメージセンサ220の各画素を、画素P(1,1),……,P(i,j),……,P(X,Y)とする(なお、本実施形態の画像サイズをX×Yとする。)。なお、イメージセンサ220の読み出し速度を制限するものではなく、従来と同様であってもよい。
イメージセンサ220は、光学系210によって透過された、被写体(被検査体を含む)からの光束を受光して光電変換することで、被写体から反射された光の強弱を示した光強度信号(撮影信号)で構成される、2次元平面状のフレームを生成し、制御部240に出力する。本実施形態のイメージセンサ220は、読み出し可能な単位時間毎に、当該フレームを出力する。
本実施形態の制御部240は、例えばCPU、ROM、およびRAM等で構成され、ROMに格納された検査プログラムを実行することで、転送部241と、読出部242と、強度画像用重畳部243と、第1の乗算器244と、第1の相関画像用重畳部245と、第2の乗算器246と、第2の相関画像用重畳部247と、画像出力部248と、を実現する。なお、CPU等で実現することに制限するものではなく、FPGA、またはASICで実現してもよい。
転送部241は、イメージセンサ220から出力された、光強度信号で構成されたフレームを、データバッファ230に、時系列順に蓄積する。
データバッファ230は、イメージセンサ220から出力された、光強度信号で構成されたフレームを、時系列順に蓄積する。
図3は、本実施形態の時間相関カメラ110で時系列順に蓄積されたフレームを表した概念図である。図3に示されるように、本実施形態のデータバッファ230には、時刻t(t=t0,t1,t2,……,tn)毎の複数の光強度信号G(1,1,t),……,G(i,j,t),……,G(X,Y,t)の組み合わせで構成された複数のフレームFk(k=1,2,……,n)が、時系列順に蓄積される。なお、時刻tで作成される一枚のフレームは、光強度信号G(1,1,t),……,G(i,j,t),……,G(X,Y,t)で構成される。
本実施形態の光強度信号(撮像信号)G(1,1,t),……,G(i,j,t),……,G(X,Y,t)には、フレーム画像Fk(k=1,2,……,n)を構成する各画素P(1,1),……,P(i,j),……,P(X,Y)が対応づけられている。
イメージセンサ220から出力されるフレームは、光強度信号のみで構成されており、換言すればモノクロの画像データとも考えることができる。なお、本実施形態は、解像度、感度、およびコスト等を考慮して、イメージセンサ220がモノクロの画像データを生成する例について説明するが、イメージセンサ220としてモノクロ用のイメージセンサに制限するものではなく、カラー用のイメージセンサを用いてもよい。
図2に戻り、本実施形態の読出部242は、データバッファ230から、光強度信号G(1,1,t),……,G(i,j,t),……,G(X,Y,t)をフレーム単位で、時系列順に読み出して、第1の乗算器244と、第2の乗算器246と、強度画像用重畳部243と、に出力する。
本実施形態の時間相関カメラ110は、読出部242の出力先毎に画像データを生成する。換言すれば、時間相間カメラ110は、3種類の画像データを作成する。
本実施形態の時間相関カメラ110は、3種類の画像データとして、強度画像データと、2種類の時間相関画像データと、を生成する。なお、本実施形態は、3種類の画像データを生成することに制限するものではなく、強度画像データを生成しない場合や、1種類又は3種類以上の時間相関画像データを生成する場合も考えられる。時間相関カメラ110は、時間相関画像生成部の一例である。
本実施形態のイメージセンサ220は、上述したように単位時間毎に、光強度信号で構成されたフレームを出力している。しかしながら、通常の画像データを生成するためには、撮影に必要な露光時間分の光強度信号が必要になる。そこで、本実施形態では、強度画像用重畳部243が、撮影に必要な露光時間分の複数のフレームを重畳して、強度画像データを生成する。なお、強度画像データの各画素値(光の強度を表す値)G(x,y)は、以下に示す式(1)から導き出すことができる。なお、露光時間は、t0とtnの時間差とする。
これにより、従来のカメラの撮影と同様に、被写体(被検査体を含む)が撮影された強度画像データが生成される。そして、強度画像用重畳部243は、生成した強度画像データを、画像出力部248に出力する。
時間相関画像データは、時間遷移に応じた光の強弱の変化を示す画像データである。つまり、本実施形態では、時系列順のフレーム毎に、当該フレームに含まれる光強度信号に対して、時間遷移を示した参照信号を乗算し、参照信号と光強度信号と乗算結果である時間相関値で構成された、時間相関値フレームを生成し、複数の時間相関値フレームを重畳することで、時間相関画像データを生成する。
ところで、時間相関画像データを用いて、被検査体の異常を検出するためには、イメージセンサ220に入力される光強度信号を、参照信号に同期させて変化させる必要がある。このために、照明装置120が、上述したように、スクリーン130を介して周期的に時間変化および縞の空間的な移動を与えるような、面的な光の照射を行うこととした。
本実施形態では、2種類の時間相関画像データを生成する。参照信号は、時間遷移を表した信号であればよいが、本実施形態では、複素正弦波e-jωtを用いる。なお、角周波数ω、時刻tとする。参照信号を表す複素正弦波e-jωtが、上述した露光時間(換言すれば強度画像データ、時間相関画像を生成するために必要な時間)の一周期と相関をとるように、角周波数ωが設定されるものとする。換言すれば、照明装置120およびスクリーン130等の照明部によって形成された面的かつ動的な光は、被検査体150の表面(反射面)の各位置で第一の周期(時間周期)での時間的な照射強度の変化を与えるとともに、表面に沿った少なくとも一方向に沿った第二の周期(空間周期)での空間的な照射強度の増減分布を与える。この面的な光は、表面で反射される際に、当該表面のスペック(法線ベクトルの分布等)に応じて複素変調される。時間相関カメラ110は、表面で複素変調された光を受光し、第一の周期の参照信号を用いて直交検波(直交復調)することにより、複素信号としての時間相関画像データを得る。このような複素時間相関画像データに基づく変復調により、表面の法線ベクトルの分布に対応した特徴を検出することができる。
複素正弦波e-jωtは、e-jωt=cos(ωt)−j・sin(ωt)と表すこともできる。従って、時間相関画像データの各画素値C(x,y)は、以下に示す式(2)から導き出すことができる。
本実施形態では、式(2)において、実数部を表す画素値C1(x,y)と、虚数部を表す画素値C2(x,y)と、に分けて2種類の時間相関画像データを生成する。
このため、参照信号出力部250は、第1の乗算器244と、第2の乗算器246と、に対してそれぞれ異なる参照信号を生成し、出力する。本実施形態の参照信号出力部250は、複素正弦波e-jωtの実数部に対応する第1の参照信号cosωtを第1の乗算器244に出力し、複素正弦波e-jωtの虚数部に対応する第2の参照信号sinωtを第2の乗算器246に出力する。このように本実施形態の参照信号出力部250は、互いにヒルベルト変換対をなす正弦波および余弦波の時間関数として表される2種類の参照信号を出力する例について説明するが、参照信号は時間関数のような時間遷移に応じて変化する参照信号であればよい。
そして、第1の乗算器244は、読出部242から入力されたフレーム単位で、当該フレームの光強度信号毎に、参照信号出力部250から入力された複素正弦波e-jωtの実数部cosωtを乗算する。
第1の相関画像用重畳部245は、撮影に必要な露光時間分の複数のフレームについて、第1の乗算器244の乗算結果を画素毎に重畳する処理を行う。これにより、第1の時間相関画像データの各画素値C1(x,y)が、以下の式(3)から導出される。
そして、第2の乗算器246は、読出部242から入力されたフレームの光強度信号に対して、参照信号出力部250から入力された複素正弦波e-jωtの虚数部sinωtを乗算する。
第2の相関画像用重畳部247は、撮影に必要な露光時間分の複数のフレームについて、第2の乗算器246の乗算結果を画素毎に重畳する処理を行う。これにより、第2の時間相関画像データの各画素値C2(x,y)が、以下の式(4)から導出される。
上述した処理を行うことで、2種類の時間相関画像データ、換言すれば2自由度を有する時間相関画像データを生成できる。
また、本実施形態は、参照信号の種類を制限するものではない。例えば、本実施形態では、複素正弦波e-jωtの実部と虚部の2種類の時間相関画像データを作成するが、光の振幅と、光の位相と、による2種類の画像データを生成してもよい。
なお、本実施形態の時間相関カメラ110は、時間相関画像データとして、複数系統分作成可能とする。これにより、例えば複数種類の幅の縞が組み合わされた光が照射された際に、上述した実部と虚部とによる2種類の時間相関画像データを、縞の幅毎に作成可能とする。このために、時間相関カメラ110は、2個の乗算器と2個の相関画像用重畳部とからなる組み合わせを、複数系統分備えるとともに、参照信号出力部250は、系統毎に適した角周波数ωによる参照信号を出力可能とする。
そして、画像出力部248が、2種類の時間相関画像データと、強度画像データと、をPC100に出力する。これにより、PC100が、2種類の時間相関画像データと、強度画像データと、を用いて、被検査体の異常を検出する。そのためには、被写体に対して光を照射する必要がある。
本実施形態の照明装置120は、高速に移動する縞パターンを照射する。図4は、本実施形態の照明装置120が照射する縞パターンの一例を示した図である。図4に示す例では、縞パターンをx方向にスクロール(移動)させている例とする。白い領域が縞に対応した明領域、黒い領域が縞と縞との間に対応した間隔領域(暗領域)である。
本実施形態では、時間相関カメラ110が強度画像データおよび時間相関画像データを撮影する露光時間で、照明装置120が照射する縞パターンを一周期分移動させる。これにより、照明装置120は、光の強度の縞パターンの空間的な移動により光の強度の周期的な時間変化を与える。本実施形態では、図4の縞パターンが一周期分移動する時間を、露光時間と対応させることで、時間相関画像データの各画素には、少なくとも、縞パターン一周期分の光の強度信号に関する情報が埋め込まれる。
図4に示されるように、本実施形態では、照明装置120が矩形波に基づく縞パターンを照射する例について説明するが、矩形波以外を用いてもよい。なお、照明光を拡散する拡散部材を用いることにより、矩形波の明暗の境界領域をぼかすことができる。スクリーン130は、拡散部材の一例である。
本実施形態では、照明装置120が照射する縞パターンをA(1+cos(ωt+kx))と表す。すなわち、縞パターンには、複数の縞が反復的に(周期的に)含まれる。なお、被検査体に照射される光の強度は0〜2Aの間で調整可能とし、光の位相をkxとする。kは、縞の波数である。xは、位相が変化する方向である。
そして、フレームの各画素の光強度信号f(x,y,t)の基本周波数成分は、以下の式(5)として表すことができる。式(5)で示されるように、x方向で縞の明暗が変化する。
f(x,y,t)=A(1+cos(ωt+kx))
=A+A/2{ej(ωt+kx)+e-j(ωt+kx)}……(5)
式(5)で示されるように、照明装置120が照射する縞パターンの強度信号は、複素数として考えることができる。
そして、イメージセンサ220には、当該照明装置120からの光が被写体(被検査体を含む)から反射して入力される。
したがって、イメージセンサ220に入力される光強度信号G(x,y,t)を、照明装置120が照射された際のフレームの各画素の光強度信号f(x,y,t)とできる。そこで、強度画像データを導出するための式(1)に式(5)を代入すると、式(6)を導出できる。なお、位相をkxとする。
式(6)から、強度画像データの各画素には、露光時間Tに、照明装置120が出力している光の強度の中間値Aを乗じた値が入力されていることが確認できる。さらに、時間相関画像データを導出するための式(2)に式(5)を代入すると、式(7)を導出できる。なお、AT/2を振幅とし、kxを位相とする。
これにより、式(7)で示された複素数で示された時間相関画像データは、上述した2種類の時間相関画像データと置き換えることができる。つまり、上述した実部と虚部とで構成される時間相関画像データには、被検査体に照射された光強度変化における位相変化と振幅変化とが含まれている。換言すれば、本実施形態のPC100は、2種類の時間相関画像データに基づいて、照明装置120から照射された光の位相変化と、光の振幅変化と、を検出できる。そこで、本実施形態のPC100が、時間相関画像データおよび強度画像データに基づいて、画素毎に入る光の振幅を表した振幅画像データと、画素毎に入る光の位相変化を表した位相画像データと、を生成する。
さらに、PC100は、生成した振幅画像データと位相画像データとに基づいて、被検査体の異常を検出する。
ところで、被検査体の表面形状に凹凸に基づく異常が生じている場合、被検査体の表面の法線ベクトルの分布には異常に対応した変化が生じている。また、被検査体の表面に光を吸収するような異常が生じている場合、反射した光の強度に変化が生じる。法線ベクトルの分布の変化は、光の位相変化および振幅変化のうち少なくともいずれか一つとして検出される。そこで、本実施形態では、時間相関画像データおよび強度画像データを用いて、法線ベクトルの分布の変化に対応した、光の位相変化および振幅変化のうち少なくともいずれか一つを検出する。これにより、表面形状の異常を検出可能となる。次に、被検査体の異常、法線ベクトル、および光の位相変化又は振幅変化の関係について説明する。
図5は、第1の実施形態の時間相関カメラ110による、被検査体の異常の第1の検出例を示した図である。図5に示される例では、被検査体500に突形状の異常501がある状況とする。当該状況においては、異常501の点502の近傍領域においては、法線ベクトル521、522、523が異なる方向を向いていることを確認できる。そして、当該法線ベクトル521、522、523が異なる方向を向いていることで、異常501から反射した光に拡散(例えば、光511、512、513)が生じ、時間相関カメラ110のイメージセンサ220の任意の画素531に入る縞パターンの幅503が広くなる。
図6は、図5に示される異常501が被検査体500にある場合に、当該異常に応じて変化する、光の振幅の例を表した図である。図6に示される例では、光の振幅を実部(Re)と、虚部(Im)に分けて2次元平面上に表している。図6では、図5の光511、512、513に対応する光の振幅611、612、613として示している。そして、光の振幅611、612、613は互いに打ち消し合い、イメージセンサ220の当該任意の画素531には、振幅621の光が入射する。
したがって、図6に示される状況で、被検査体500の異常501が撮像された領域で振幅が小さいことが確認できる。換言すれば、振幅変化を示した振幅画像データで、周囲と比べて暗くなっている領域がある場合に、当該領域で光同士の振幅の打ち消し合いが生じていると推測できるため、当該領域に対応する被検査体500の位置で異常501が生じていると判断できる。
本実施形態の検査システム1は、図5の異常501のように傾きが急峻に変化しているものに限らず、緩やかに変化する異常も検出できる。図7は、第1の実施形態の時間相関カメラ110による、被検査体の異常の第2の検出例を示した図である。図7に示される例では、正常な場合は被検査体の表面が平面(換言すれば法線が平行)となるが、被検査体700に緩やかな勾配701が生じた状況とする。このような状況においては、勾配701上の法線ベクトル721、722、723も同様に緩やかに変化する。したがって、イメージセンサ220に入力する光711、712、713も少しずつずれていく。図7に示される例では、緩やかな勾配701のために光の振幅の打ち消し合いは生じないため、図5、図6で表したような光の振幅はほとんど変化しない。しかしながら、本来照明装置120およびスクリーン130から投影された光が、そのままイメージセンサに平行に入るはずが、緩やかな勾配701のために、照明装置120およびスクリーン130から投影された光が平行の状態でイメージセンサに入らないために、光に位相変化が生じる。従って、光の位相変化について、周囲等との違いを検出することで、図7に示したような緩やかな勾配701による異常を検出できる。
また、被検査体の表面形状(換言すれば、被検査体の法線ベクトルの分布)以外にも異常が生じる場合がある。図8は、第1の実施形態の時間相関カメラ110による、被検査体の異常の第3の検出例を示した図である。図8に示される例では、被検査体800に汚れ801が付着しているため、照明装置120から照射された光が吸収あるいは拡散反射し、時間相関カメラ110の、汚れ801を撮影している任意の画素領域では光がほとんど強度変化しない例を表している。換言すれば、汚れ801を撮影している任意の画素領域では、光強度は位相打ち消しを起こし振動成分がキャンセルされ、ほとんど直流的な明るさになる例を示している。
このような場合、汚れ801を撮影している画素領域においては、光の振幅がほとんどないため、振幅画像データを表示した際に、周囲と比べて暗くなる領域が生じる。したがって、当該領域に対応する被検査体800の位置に、汚れ等の異常801があることを推定できる。
このように、本実施形態では、時間相関画像データに基づいて、光の振幅の変化と、光の位相の変化と、を検出することで、被検査体に異常があることを推定できる。
図1に戻り、PC100について説明する。PC100は、検出システム全体の制御を行う。PC100は、移動機構制御部101と、発光制御部102と、制御部103と、記憶部109と、を備える。記憶部109は、演算処理に用いられるデータや、演算処理結果等を記憶する。
移動機構制御部101は、被検査体150の時間相関カメラ110による撮像対象となる表面を変更するために、移動機構140を制御する。移動機構140は、例えば、ロボットアームである。本実施形態では、PC100において、被検査体150の撮影対象となる表面を複数設定しておく。そして、時間相関カメラ110が被検査体150の撮影が終了する毎に、移動機構制御部101が、当該設定に従って、時間相関カメラ110が設定された表面を撮影できるように、移動機構140が被検査体150を移動させる。なお、本実施形態は撮影が終了する毎に移動機構140を移動させ、撮影が開始する前に停止させることを繰り返すことに制限するものではなく、継続的に移動機構140を駆動させてもよい。なお、移動機構140は、搬送部、移動部、把持部、位置変更部、姿勢変更部等とも称されうる。
発光制御部102は、被検査体150を検査するために照明装置120が照射する縞パターンを出力する。本実施形態の発光制御部102は、少なくとも3枚以上の縞パターンを、照明装置120に受け渡し、当該縞パターンを露光時間中に切り替えて表示するように照明装置120に指示する。発光制御部102は、照明制御部とも称されうる。
図9は、発光制御部102が照明装置120に出力する縞パターンの例を示した図である。図9(B)に示す矩形波に従って、図9(A)に示す黒領域と白領域とが設定された縞パターンが出力されるように、発光制御部102が制御を行う。
本実施形態で照射する縞パターン毎の縞の間隔は、検出対象となる異常(欠陥)の大きさに応じて設定されるものとしてここでは詳しい説明を省略する。
また、縞パターンを出力するための矩形波の角周波数ωは、参照信号の角周波数ωと同じ値とする。
図9に示されるように、発光制御部102が出力する縞パターンは、矩形波として示すことができるが、スクリーン130(拡散部材)を介することで、縞パターンの境界領域をぼかす、すなわち、縞パターンにおける明領域(縞の領域)と暗領域(間隔の領域)との境界での光の強度変化を緩やかにする(鈍らせる)ことで、正弦波に近似させることができる。図10は、スクリーン130を介した後の縞パターンを表した波の形状の例を示した図である。図10に示されるように波の形状が、正弦波に近づくことで、計測精度を向上させることができる。また、縞に明度が多段階に変化するグレー領域を追加したり、グラデーションを与えたりしてもよい。また、カラーの縞を含む縞パターンを用いてもよい。
図1に戻り、制御部103は、振幅−位相画像生成部104と、異常検出処理部105と、を備え、時間相関カメラ110から入力された強度画像データと、時間相関画像データと、により、被検査体150の検査面の法線ベクトルの分布と対応した特徴であって、周囲との違いによって異常を検出する特徴を算出するための処理を行う。なお、本実施形態は、検査を行うために、複素数で示した時間相関画像データ(複素時間相関画像データと称す)の代わりに、複素数相関画像データの実部と虚部とで分けた2種類の時間相関画像データを、時間相関カメラ110から受け取る。振幅−位相画像生成部104(制御部103)は、演算処理部の一例である。異常検出処理部105は、演算処理部および異常判別部の一例である。
振幅−位相画像生成部104は、時間相関カメラ110から入力された強度画像データと、時間相関画像データと、に基づいて、振幅画像データと、位相画像データと、を生成する。
振幅画像データは、画素毎に入る光の振幅を表した画像データとする。位相画像データは、画素毎に入る光の位相を表した画像データとする。
本実施形態は振幅画像データの算出手法を制限するものではないが、例えば、振幅−位相画像生成部104は、2種類の時間相関画像データの画素値C1(x,y)およびC2(x,y)から、式(8)を用いて、振幅画像データの各画素値F(x,y)を導き出せる。
そして、本実施形態では、振幅画像データの画素値(振幅)と、強度画像データの画素値と、に基づいて、異常が生じている領域があるか否かを判定できる。例えば、強度画像データの画素値(AT)を2で除算した値と、振幅画像データの振幅(打ち消し合いが生じない場合にはAT/2となる)と、がある程度一致する領域は異常が生じていないと推測できる。一方、一致していない領域については、振幅の打ち消し合いが生じていると推測できる。なお、具体的な手法については後述する。
同様に、振幅−位相画像生成部104は、画素値C1(x,y)およびC2(x,y)から、式(9)を用いて、位相画像データの各画素値P(x,y)を導き出せる。
異常検出処理部105は、振幅−位相画像生成部104により生成された振幅画像データ、および位相画像データにより、検査対象面の法線ベクトルの分布と対応した特徴であって、周囲との違いによって、被検査体150の異常に関連する特徴を検出する。本実施形態では、法線ベクトルの分布に対応した特徴として、複素時間相関画像の振幅の分布を用いた例について説明する。なお、複素時間相関画像の振幅の分布とは、複素時間相関画像の各画素の振幅の分布を示したデータであり、振幅画像データに相当する。
次に、本実施形態の異常検出処理部105における振幅に基づく異常検出処理について説明する。図11は、本実施形態の異常検出処理部105における当該処理の手順を示すフローチャートである。
まず、異常検出処理部105は、振幅画像データの各画素に格納された、光の振幅値(を表した画素値)から、当該画素を基準(例えば中心)として、N×N領域の平均振幅値を減算し(ステップS1101)、振幅の平均差分画像データを生成する。振幅の平均差分画像データは、振幅の勾配に対応する。なお、整数Nは実施の態様に応じて適切な値が設定されるものとする。
次に、異常検出処理部105は、減算により生成された振幅の平均差分画像データに対して、予め定められた振幅の閾値を用いたマスク処理を行う(ステップS1102)。
さらに、異常検出処理部105は、平均差分画像データのマスク領域内について画素毎に標準偏差を算出する(ステップS1103)。なお、本実施形態では、標準偏差に基づいた手法について説明するが、標準偏差を用いた場合に制限するものではなく、例えば平均値等を用いてもよい。
そして、異常検出処理部105は、平均を引いた振幅画素値が−4.5σ(σ:標準偏差)より小さい値の画素を、異常(欠陥)がある領域として検出する(ステップS1104)。
上述した処理手順により、各画素の振幅値(換言すれば、振幅の分布)から、被検査体の異常を検出できる。しかしながら、本実施形態は、複素時間相関画像の振幅の分布から異常を検出することに制限するものではない。検査対象面の法線ベクトルの分布と対応した特徴として、位相の分布の勾配を用いてもよい。そこで、次に位相の分布の勾配を用いた例について説明する。
次に、本実施形態の異常検出処理部105における位相に基づく異常検出処理について説明する。図12は、本実施形態の異常検出処理部105における当該処理の手順を示すフローチャートである。
まず、異常検出処理部105は、位相画像データの画素毎の光の位相値(を表した画素値)から、当該画素を基準(例えば中心)として、N×N領域の平均位相値を減算し(ステップS1201)、位相の平均差分画像データを生成する。位相の平均差分画像データは、位相の勾配に対応する。
次に、異常検出処理部105は、減算により生成された位相の平均差分画像データの大きさ(絶対値)と、閾値とを比較し、平均差分画像データの大きさが閾値以上となる画素を、異常(欠陥)のある画素として検出する(ステップS1202)。
このS1202の検出結果により、異常検出処理部105は、平均差分画像データの正負、すなわち、画素の位相値と平均位相値との大小関係によって、凹凸を判別することができる(ステップS1203)。画素の位相値と平均位相値とのどちらが大きい場合に凸となるかは、各部の設定によって変化するが、大小関係が異なると、凹凸が異なる。
なお、他の手法によって得られた位相の分布の勾配から、異常を検出することができる。例えば、異常検出処理部105は、別の手法として、正規化された時間相関画像データのN×N領域の平均ベクトルと、正規化された各画素のベクトルとの差の大きさが、閾値よりも大きい場合に、異常(欠陥)がある画素として検出することができる。また、位相の分布の勾配に限られず、位相の分布に対応する情報に基づいて被検査体の異常を検出すればよい。
次に、本実施形態の異常検出処理部105における振幅および強度に基づく異常検出処理について説明する。図13は、本実施形態の異常検出処理部105における当該処理の手順を示すフローチャートである。
まず、異常検出処理部105は、時間相関画像データと強度画像データとから、各画素について、次の式(100)を用いて、振幅(を表す画素値)C(x,y)(式(7)参照)と強度(を表す画素値)G(x,y)(式(6)参照)との比R(x,y)を算出する(ステップS1301)。
R(x,y)=C(x,y)/G(x,y)……(100)
次に、異常検出処理部105は、比R(x,y)と閾値とを比較し、比R(x,y)の値が対応する閾値以下となる画素を、異常(欠陥)のある画素として検出する(ステップS1302)。また、異常検出処理部105は、比R(x,y)と閾値とを比較し、比R(x,y)の値が対応する別の閾値以上となる画素を、ムラ(汚れ等)のある画素として検出する(ステップS1303)。法線ベクトルの分布の異常により、振幅の打ち消し合い(減殺)が顕著となった場合には、強度に比べて振幅がより大きく下がる。一方、法線ベクトルの分布にはそれほどの異常は無いものの被検査体150の表面の汚れ等によって光の吸収が顕著となった場合には、振幅に比べて強度がより大きく下がる。よって、異常検出処理部105は、ステップS1302およびステップS1303による異常種別の検出が可能となる。
次に、本実施形態の検査システムにおける被検査体の検査処理について説明する。図14は、本実施形態の検査システムにおける上述した処理の手順を示すフローチャートである。なお、被検査体150は、すでに移動機構140に固定された状態で、検査の初期位置に配置されているものとする。
本実施形態のPC100が、照明装置120に対して、被検査体を検査するための縞パターンを出力する(ステップS1401)。
照明装置120は、PC100から入力された縞パターンを格納する(ステップS1421)。そして、照明装置120は、格納された縞パターンを、時間遷移に従って変化するように表示する(ステップS1422)。なお、照明装置120が表示を開始する条件は、縞パターンが格納された際に制限するものではなく、例えば検査者が照明装置120に対して開始操作を行った際でもよい。
そして、PC100の制御部103が、時間相関カメラ110に対して、撮影の開始指示を送信する(ステップS1402)。
次に、時間相関カメラ110が、送信されてきた撮影指示に従って、被検査体150を含む領域について撮像を開始する(ステップS1411)。次に、時間相関カメラ110の制御部240が、強度画像データと、時間相関画像データと、を生成する(ステップS1412)。そして、時間相関カメラ110の制御部240が、強度画像データと、時間相関画像データと、を、PC100に出力する(ステップS1413)。
PC100の制御部103は、強度画像データと、時間相関画像データと、を受け取る(ステップS1403)。そして、振幅−位相画像生成部104は、受け取った強度画像データと時間相関画像データとから、振幅画像データと、位相画像データとを生成する(ステップS1404)。
そして、異常検出処理部105が、振幅画像データと、位相画像データとに基づいて、被検査体の異常検出制御を行う(ステップS1405)。そして、異常検出処理部105は、異常検出結果を、PC100が備える(図示しない)表示装置に出力する(ステップS1406)。
異常検出結果の出力例としては、強度画像データを表示するとともに、振幅画像データと位相画像データとに基づいて異常が検出された領域に対応する、強度画像データの領域を、検査者が異常を認識できるように装飾表示するなどが考えられる。また、視覚に基づく出力に制限するものではなく、音声等で異常が検出されたことを出力してもよい。
制御部103は、当該被検査体の検査が終了したか否かを判定する(ステップS1407)。検査が終了していないと判定した場合(ステップS1407:No)、移動機構制御部101が、予め定められた設定に従って、次の検査対象となる被検査体の表面が、時間相関カメラ110で撮影できるように、アームの移動制御を行う(ステップS1408)。アームの移動制御が終了した後、制御部103が、再び時間相関カメラ110に対して、撮影の開始指示を送信する(ステップS1402)。
一方、制御部103は、当該被検査体の検査が終了したと判定した場合(ステップS1407:Yes)、終了指示を時間相関カメラ110に対して出力し(ステップS1409)、処理を終了する。
そして、時間相関カメラ110は、終了指示を受け付けたか否かを判定する(ステップS1414)。終了指示を受け付けていない場合(ステップS1414:No)、再びステップS1411から処理を行う。一方、終了指示を受け付けた場合(ステップS1414:Yes)、処理を終了する。
なお、照明装置120の終了処理は、検査者が行ってもよいし、他の構成からの指示に従って終了してもよい。
また、本実施形態では、時間相関カメラ110を用いて生成された強度画像データと、時間相関画像データと、を生成する例について説明した。しかしながら、強度画像データと、時間相関画像データと、を生成するために時間相関カメラ110を用いることに制限するものではなく、アナログ的な処理で実現可能な時間相関カメラや、それと等価な動作をする撮像システムを用いてもよい。例えば、通常のデジタルスチルカメラが生成した画像データを出力し、情報処理装置が、デジタルスチルカメラが生成した画像データを、フレーム画像データとして用いて参照信号を重畳することで、時間相関画像データを生成してもよいし、イメージセンサ内で光強度信号に参照信号を重畳するようなデジタルカメラを用いて、時間相関画像データを生成してもよい。
(変形例1)
本実施形態では、周囲との違いに基づいて、異常に関連する特徴を検出する例について説明したが、周囲との違いに基づいて当該特徴を検出することに制限するものではなく、参照形状のデータ(参照データ、例えば、時間相関データや、振幅画像データ、位相画像データ等)との差異に基づいて当該特徴を検出してもよい。この場合、参照データの場合とで、空間位相変調照明(縞パターン)の位置合わせおよび同期が必要となる。
本変形例では、異常検出処理部105が、予め記憶部109に記憶された、参照表面から得られた振幅画像データおよび位相画像データと、被検査体150の振幅画像データおよび位相画像データと、を比較し、被検査体150の表面と参照表面との間で、光の振幅および光の位相とのうちいずれか一つ以上について所定の基準以上の違いがあるか否かを判定する。
本変形例は、第1の実施形態と同じ構成の検査システムを用い、参照表面として正常な被検査体の表面を用いる例とする。
照明装置120がスクリーン130を介してパターンを照射している間に、時間相関カメラ110が、正常な被検査体の表面を撮像し、時間相関画像データを生成する。そして、PC100が、時間相関カメラ110で生成された時間相関画像データを入力し、振幅画像データおよび位相画像データを生成し、PC100の記憶部109に振幅画像データおよび位相画像データを記憶させておく。そして、時間相関カメラ110が、異常が生じているか否かを判定したい被検査体を撮像し、時間相関画像データを生成する。そして、PC100が、時間相関画像データから、振幅画像データおよび位相画像データを生成した後、記憶部109に記憶されていた、正常な被検査体の振幅画像データおよび位相画像データと比較する。その際に、正常な被検査体の振幅画像データおよび位相画像データと、検査対象の被検査体の振幅画像データおよび位相画像データと、の比較結果を、異常を検出する特徴を示したデータとして出力する。そして、異常を検出する特徴が、当該所定の基準以上の場合に、被検査体150に対して異常があると推測できる。
これにより、本変形例では、正常な被検査体の表面と差異が生じているか否かを、換言すれば、被検査体の表面に異常が生じているか否かを判定できる。なお、振幅画像データおよび位相画像データの比較手法は、どのような手法を用いてもよいので、説明を省略する。
さらに、本変形例では参照表面との違いに基づいて、異常を検出する特徴を示したデータを出力する例について説明したが、参照表面との違いと、第1の実施形態で示した周囲との違いと、を組み合わせて、異常を検出する特徴を算出してもよい。組み合わせる手法は、どのような手法を用いてもよいので、説明を省略する。
(変形例2)
第1の実施形態では、x方向に縞パターンを動かして、被検査体の異常(欠陥)を検出する例について説明した。しかしながら、x方向に垂直なy方向で急峻に法線の分布が変化する異常(欠陥)が被検査体に生じている場合、x方向に縞パターンを動かすよりも、y方向に縞パターンを動かす方が欠陥の検出が容易になる場合がある。そこで、変形例では、x方向に移動する縞パターンと、y方向に移動する縞パターンとを、交互に切り替える例について説明する。
本変形例の発光制御部102は、所定の時間間隔毎に、照明装置120に出力する縞パターンを切り替える。これにより、照明装置120は、一つの検査面に対して、異なる方向に延びた複数の縞パターンを出力する。
図15は、本変形例の発光制御部102が出力する縞パターンの切り替え例を示した図である。図15の(A)では、発光制御部102は、照明装置120が表示する縞パターンをx方向に遷移させる。その後、(B)に示されるように、発光制御部102は、照明装置120が表示する縞パターンをy方向に遷移させる。
そして、PC100の制御部103は、図15の(A)の縞パターン照射から得られた時間相関画像データに基づいて、異常検出を行い、図15の(B)の縞パターン照射から得られた時間相関画像データに基づいて、異常検出を行う。
図16は、本変形例の発光制御部102が、異常(欠陥)1601を含めた表面に縞パターンを照射した例を示した図である。図16に示す例では、異常(欠陥)1601が、x方向に延びている。この場合、発光制御部102は、x方向に交差するy方向、換言すれば異常(欠陥)1601の長手方向に交差する方向に縞パターンが移動するように設定する。当該設定により、検出精度を向上させることができる。
図17は、y方向、換言すれば欠陥1701の長手方向に直交する方向に縞パターンを変化させた場合における、異常(欠陥)1701と照明装置120上の縞パターンの関係を示した図である。図17に示されるように、y方向に幅が狭く、且つ当該y方向に交差するx方向を長手方向とする異常(欠陥)1701が生じている場合、照明装置120から照射された光は、x方向に交差するy方向で光の振幅の打ち消しが大きくなる。このため、PC100では、y方向に移動させた縞パターンに対応する振幅画像データから、当該異常(欠陥)を検出できる。
本変形例の検査システムにおいて、被検査体に生じる欠陥の長手方向がランダムな場合には、複数方向(例えば、x方向、および当該x方向に交差するy方向等)で縞パターンを表示することで、欠陥の形状を問わずに当該欠陥の検出が可能となり、異常(欠陥)の検出精度を向上させることができる。また、異常の形状に合わせた縞パターンを投影することで、異常の検出精度を向上させることができる。
(変形例3)
また、上述した変形例2は、x方向の異常検出と、y方向の異常検出と、を行う際に、縞パターンを切り替える手法に制限するものでない。そこで、変形例3では、発光制御部102が照明装置120に出力する縞パターンをx方向およびy方向に同時に動かす例について説明する。
図18は、本変形例の発光制御部102が照明装置120に出力する縞パターンの例を示した図である。図18に示される例では、発光制御部102が縞パターンを、方向1801に移動させる。
図18に示される縞パターンは、x方向では1周期1802の縞パターンを含み、y方向では一周期1803の縞パターンを含んでいる。つまり、図18に示される縞パターンは、幅が異なる交差する方向に延びた複数の縞を有している。なお、x方向の縞パターンの幅と、y方向の縞パターンの幅と、を異ならせる必要がある。これにより、x方向に対応する時間相関画像データと、y方向に対応する時間相関画像データと、を生成する際に、対応する参照信号を異ならせることができる。なお、縞パターンによる光の強度の変化の周期(周波数)が変化すればよいので、縞の幅を変化させるのに代えて、縞パターン(縞)の移動速度を変化させてもよい。
そして、時間相関カメラ110が、x方向の縞パターンに対応する参照信号に基づいて、x方向の縞パターンに対応する時間相関画像データを生成し、y方向の縞パターンに対応する参照信号に基づいて、y方向の縞パターンに対応する時間相関画像データを生成する。その後、PC100の制御部103は、x方向の縞パターンに対応する時間相関画像データに基づいて、異常検出を行った後、y方向の縞パターンに対応する時間相関画像データに基づいて、異常検出を行う。これにより、本変形例では、欠陥の生じた方向を問わずに検出が可能となり、異常(欠陥)の検出精度を向上させることができる。
<位相逆行に基づく異常判定(1)>
図19は、異常検出処理部105のブロック図、図20は、形状の変化が比較的緩やかな異常領域Aaを含むサンプルの側面図、図21は、異常領域Aaの近傍における位相の変化を示す図、図22は、位相の逆行についての説明図である。
図19に示されるように、異常検出処理部105は、位相微分値算出部105a、位相逆行領域検出部105b、および異常判別部105cを有する。位相微分値算出部105aおよび位相逆行領域検出部105bは、演算処理部の一例である。
位相微分値算出部105aは、各画素における位相の方向微分値を算出する。方向微分値は、画像平面に沿った方向、例えば、x方向およびy方向のそれぞれの、方向微分値である。方向微分値は、隣接画素の位相差に基づいて算出することができ、隣接画素の位相差は、例えば、振幅および位相で定まる各画素の複素数(複素輝度値)の除算に基づいて算出することができる。
位相逆行領域検出部105bは、画像平面に沿った方向に向けて位相が逆行する位相逆行領域を検出する。位相逆行領域とは、正常領域(一般領域)とは逆向きに位相が増加する領域である。正常領域は、検出対象とする異常が確認されない領域である。
位相逆行領域は、図20に示されるような、形状の変化が比較的緩やかな異常領域Aaと正常領域Anとの境界近傍に出現することがある。よって、位相逆行領域を検出することにより、異常領域Aaを特定することが可能となる。形状が急変する部分では、位相が逆行する領域は狭くなる(あるいは短くなる)。したがって、位相逆行領域の検出は、形状の変化が比較的緩やかな異常領域Aa、例えば、塗装時に塗料の滴が溜まったこと等による緩やかな膨らみや、緩やかな凹み等の検出に、適している。
図21の例では、位相順行領域Apでは、x方向に向かうにつれて各画素の位相φが増加するのに対して、位相逆行領域Arでは、x方向に向かうにつれて各画素の位相φが減少する。なお、位相φの範囲は、−πから+πまでに限定されているため、位相が増加している領域では、位相は+πに到達した時点で−πにスキップし、位相が減少している領域では、位相は−πに到達した位置で+πにスキップしている。図21に示されるように、位相順行領域Apにおける位相φの画像平面に沿ったx方向の方向微分値の符号は+(正)であるのに対し、位相逆行領域Arにおける位相φのx方向の方向微分値の符号は−(負)である。すなわち、位相逆行領域Arは、その位相φの方向微分値の符号(図22では−)が、位相順行領域Apの位相φの方向微分値の符号(図22では+)と異なる領域である。
図22に示されるように、検査面がx方向に向かうにつれて緩やかに上る場合、すなわち、検査面のx方向の勾配が徐々に大きくなる場合、点1から点7にかけてはx方向に向かうにつれて位相は増大するが、点7と点8との間の位置から位相が逆行を開始し、点8から点11にかけてはx方向に向かうにつれて位相が減少する。また、点11と点12との間の位置から位相は順行に戻り、点12から点14にかけてはx方向に向かうにつれて位相が増大する。この場合、点1と点7との間の領域、および点12と点14との間の領域が位相順行領域Apであり、点8と点11との間の領域が位相逆行領域Arとなる。
位相逆行領域検出部105bは、位相の方向微分値の符号によって各画素をグルーピングおよびラベリングすることにより、位相順行領域Apおよび位相逆行領域Arを検出する。すなわち、位相逆行領域検出部105bは、互いに隣接する複数の画素について位相の方向微分値の符号が同一であった場合に、当該複数の画素を、当該符号に基づいて、位相順行領域Apまたは位相逆行領域Arとする。なお、位相逆行領域検出部105bは、例えば、膨張や、収縮、オープニング、クロージング等のモフォロジー処理を施してもよい。また、位相逆行領域検出部105bは、位相順行領域検出部とも称されうる。
異常判別部105cは、位相逆行領域検出部105bによる検出結果に基づいて、異常領域Aaを判別する。
具体的には、異常判別部105cは、例えば、位相逆行領域Arの少なくとも一部が対象領域M(図20,23,25参照)内に位置されていた場合であって、当該位相逆行領域Arの広さ(含まれる画素数)が所定の範囲内である場合に、当該位相逆行領域Arを異常領域Aaと判別することができる。対象領域Mは、所定の領域の一例である。また、広さが所定の範囲内にあるとは、広さが第一の閾値よりも大きくかつ第二の閾値よりも小さいことを意味する。この場合、第一の閾値は、例えば、検出対象としない微少な凹凸等の異常と区別するために設定されうる。また、第二の閾値は、例えば、典型的な異常領域Aaの大きさに基づいて経験的に設定されうる。
また、異常判別部105cは、例えば、位相順行領域Apが、異常領域Aaと判別された二つの位相逆行領域Arに挟まれていた場合や、異常領域Aaと判別された位相逆行領域Arに囲まれていた場合、異常領域Aaと判別された位相逆行領域Arと隣接していた場合等であって、当該位相順行領域Apの広さが第三の閾値よりも小さい場合には、当該位相順行領域Apを異常領域Aaと判別することができる。位相逆行領域Arは、形状の変化が比較的緩やかな異常領域Aaと正常領域Anとの境界近傍に出現するため、このような条件を満たす位相順行領域Apは、異常領域Aaと推定されうる。第三の閾値は、例えば、典型的な異常領域Aaの大きさに基づいて経験的に設定されうる。
さらに、異常判別部105cは、位相逆行領域Arの振幅の代表値(例えば、平均値)が第四の閾値よりも小さい場合に、当該位相逆行領域Arを異常領域Aaと判別することができる。第四の閾値は、例えば、典型的な異常領域Aaの振幅に基づいて設定されてもよいし、異常領域Aaの周囲の正常領域の振幅に対する比率等で設定されてもよい。第四の閾値は、所定の値の一例である。
<位相逆行に基づく異常判定(2)>
また、位相逆行領域検出部105bは、時間相関画像の空間周波数領域における周波数フィルタリングに基づいて、位相逆行領域Arを検出してもよい。具体的には、位相逆行領域検出部105bは、(1)複素時間相関画像に対して、x方向およびy方向についての2次元フーリエ変換(離散フーリエ変換、高速フーリエ変換)を実行し、(2)空間周波数領域において、周波数の符号が+(正)または−(負)の周波数領域を抽出し、(3)当該抽出した周波数領域について2次元逆フーリエ変換(逆離散フーリエ変換、逆高速フーリエ変換)を実行することにより、周波数フィルタリングされた時間相関画像を得る。位相の方向微分値の符号が+(正)である場合、周波数の符号は+(正)となり、位相の方向微分値の符号が−(負)である場合、周波数の符号は−(負)となる。よって、このような手法により、より容易にあるいはより確実に、位相逆行領域Arを検出することができる。
図23〜25は、空間周波数領域における周波数フィルタリングによる位相逆行領域Arの検出の、検証結果の一例を示している。図23は、形状の変化が比較的緩やかな異常(領域A1)を含むサンプルの位相画像の一例であり、図24は、図23のサンプルの時間相関画像の空間周波数領域における2次元パワースペクトルであり、図25は、図24の周波数領域SFFに対応した位相画像、すなわち周波数領域SFFについて逆フーリエ変換を実行して得られた位相画像である。図23では、検査面において−π(黒)から+π(白)にかけて位相が変化している様子が、白黒の縞模様によって示されている。図24の横軸は、図23,24のx方向における周波数、図24の縦軸は、図23,24のy方向における周波数である。また、周波数領域SFFは、x方向の周波数fxの範囲は、0<fx<Lxであり、y方向の周波数fyの範囲は、−Ly<fy<+Lyである。図25では、便宜上、図23とは白黒が反転されており、データが無い部分は白で示されている。
図23を見れば、破線DL内の領域A1の部分で、位相が乱れていることがわかる。別のより詳しい分析によれば、当該領域A1の部分ではその周辺部分(正常領域An)と位相の進行方向が逆になっている。すなわち、正常領域Anでは、図23の右方向(x方向の反対方向)に向かうにつれて位相が増大し、領域A1では、図23の左方向(x方向)に向かうにつれて位相が増大している。ここで、図24のように、位相逆行領域検出部105bが、(1)図23の時間相関画像に対してx方向およびy方向についての2次元フーリエ変換を実行し、(2)さらに、x方向の+(正)の周波数領域SFFを抽出し、(3)当該周波数領域SFFについて2次元逆フーリエ変換を施して、図25に示されるような位相画像を得る。この場合、周波数が+(正)の領域A1、すなわち、位相の方向微分値が+(正)の領域A1として、位相逆行領域Arが検出される。
以上、説明したように、本実施形態では、位相逆行領域検出部105bは、時間相関画像の位相の画像平面に沿った方向(x方向,y方向)の方向微分値の符号が正常領域Anの符号と異なる位相逆行領域Arを検出し、異常判別部105cは、位相逆行領域検出部105bの検出結果に基づいて、異常領域Aaを判別する。位相逆行領域Arは、例えば、形状の変化が比較的緩やかな異常領域Aaと正常領域Anとの境界部分に出現する。よって、本実施形態によれば、例えば、位相の方向微分値の符号に基づいて、従来の手法では見つかり難かった、形状の変化が比較的緩やかな異常領域Aaを、より容易にあるいはより確実に判別することができる。
また、本実施形態では、異常判別部105cは、位相逆行領域Arの少なくとも一部が対象領域M(所定の領域)に含まれていた場合に(場所の条件)、当該位相逆行領域Arを異常領域Aaと判別してもよいし、異常判別部105cは、位相逆行領域Arの広さが所定の範囲内である場合に(広さの条件)、当該位相逆行領域Arを異常領域Aaと判別してもよいし、異常判別部105cは、位相逆行領域Arの振幅の代表値が第四の閾値(所定の値)よりも小さい場合に(振幅の条件)、当該当該位相逆行領域Arを異常領域Aaと判別してもよい。よって、本実施形態によれば、例えば、位相逆行領域Arの出現した場所や、広さ、振幅等に応じて、異常領域Aaをより精度良く検出することができる。なお、これらの条件は、OR条件(論理和)であってもよい。また、場所(位置)や、広さ(大きさ)、振幅以外のスペック(例えば、形状や、延びる方向等)を条件として、異常領域Aaを判別してもよい。また、これら各条件の種々の組み合わせにより、異常領域Aaを判別してもよい。
また、本実施形態では、位相逆行領域検出部105bは、時間相関画像の空間周波数領域における周波数フィルタリングに基づいて位相逆行領域Arを検出する。よって、本実施形態によれば、例えば、より容易にかつより精度良く位相逆行領域Arを検出し、ひいては異常領域Aaを判別することができる。
上述した実施形態のPC100で実行される検査プログラムは、インストール可能な形式又は実行可能な形式のファイルでCD−ROM、フレキシブルディスク(FD)、CD−R、DVD(Digital Versatile Disk)等のコンピュータで読み取り可能な記録媒体に記録されて提供される。
また、上述した実施形態のPC100で実行される検査プログラムを、インターネット等のネットワークに接続されたコンピュータ上に格納し、ネットワーク経由でダウンロードさせることにより提供するように構成してもよい。また、上述した実施形態のPC100で実行される検査プログラムおよび較正プログラムをインターネット等のネットワーク経由で提供または配布するように構成してもよい。
本発明のいくつかの実施形態および変形例を説明したが、これらの実施形態および変形例は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態および変形例は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形例は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。