JP2018044186A - Metal mold for plastic working, and production method thereof - Google Patents

Metal mold for plastic working, and production method thereof Download PDF

Info

Publication number
JP2018044186A
JP2018044186A JP2016177556A JP2016177556A JP2018044186A JP 2018044186 A JP2018044186 A JP 2018044186A JP 2016177556 A JP2016177556 A JP 2016177556A JP 2016177556 A JP2016177556 A JP 2016177556A JP 2018044186 A JP2018044186 A JP 2018044186A
Authority
JP
Japan
Prior art keywords
layer
substrate
metal
molding
plastic working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016177556A
Other languages
Japanese (ja)
Other versions
JP7175077B2 (en
Inventor
裕仁 田丸
Hirohito Tamaru
裕仁 田丸
強 堀之内
Tsuyoshi Horinouchi
強 堀之内
正吉 原
Masayoshi Hara
正吉 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Maxell Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maxell Holdings Ltd filed Critical Maxell Holdings Ltd
Priority to JP2016177556A priority Critical patent/JP7175077B2/en
Publication of JP2018044186A publication Critical patent/JP2018044186A/en
Application granted granted Critical
Publication of JP7175077B2 publication Critical patent/JP7175077B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a mold for plastic working, which can mold a concave structure having a convex part or a concave part in the inside thereof and a complicated fine structure with high accuracy.SOLUTION: A mold for plastic working is a mold for molding a group of concave structures 4 provided with a concave part or a convex part in a target 3 to be processed. The mold for plastic working is provided with a group of molded convex parts 2 for molding a concave structure 4 on a top surface of a substrate 1 made of metal. The molding concave part 2 is formed into a multistage by laminating a plurality of metal layers. On a top surface of the substrate 1, a molding area 11 provided with a group of molding convex parts 2 is formed. In a state surrounding the molding area 11, a dummy area 13 is formed. In the dummy area 13, a group of dummy molding convex parts 15 having the same structure as the molding convex part 2 is formed.SELECTED DRAWING: Figure 1

Description

本発明は、成形対象に一群の凹状構造を成形するための塑性加工用の金型、なかでも、内部に凸部や凹部を備えている複雑な凹状構造を成形するための塑性加工用の金型と、その製造方法に関する。   The present invention relates to a metal mold for plastic working for forming a group of concave structures on a molding object, and in particular, a metal for plastic working for forming a complicated concave structure having convex portions and concave portions inside. The present invention relates to a mold and a manufacturing method thereof.

例えば、表面実装型のセラミックパッケージの製造方法として、基板にセラミックシートを積層したのち焼成して、片面にキャビティ(凹状構造)を備えたセラミック基板を得ることが特許文献1に開示されている。また、特許文献1には、合計4枚のセラミックシートを積層して、最下層のセラミックシートの中央に向かって階段状に凹むキャビティを形成することが開示されている。   For example, Patent Document 1 discloses a method for manufacturing a surface-mounted ceramic package, in which a ceramic sheet having a cavity (concave structure) on one side is obtained by laminating a ceramic sheet on a substrate and then firing. Further, Patent Document 1 discloses that a total of four ceramic sheets are stacked to form a cavity that is recessed stepwise toward the center of the lowermost ceramic sheet.

本出願人は、この種の成形金型に関して特許文献2の電鋳メタルを先に提案している。そこでは、銅合金製の基板の表面にニッケルを1次電鋳して電着層を形成し、電着層の表面に、電鋳用の開口部を備えた電着パターンをフォトリソグラフィ法によって形成する。開口部に合致する通口を備えた捨て電着用部材を別途形成しておき、捨て電着用部材を電着パターンの表面に密着した状態で、開口部および捨て電着用部材の表面にニッケルを2次電鋳する。次に、捨て電着用部材を剥離除去し、さらにパターンレジストを除去して、電着層の表面に穿孔用の凸部を形成し、凸部および電着層の表面にメッキ被膜を形成して電鋳メタルを完成する。凸部の厚みは200〜300μmである。この電鋳メタルを使用することにより、グリーンシートに微小部品を搭載するための一群の孔を形成することができる。   The present applicant has previously proposed the electroformed metal of Patent Document 2 regarding this type of mold. Therein, nickel is primary electroformed on the surface of a copper alloy substrate to form an electrodeposition layer, and an electrodeposition pattern having an electroforming opening is formed on the surface of the electrodeposition layer by photolithography. Form. A waste electrodeposition member having a through hole that matches the opening is separately formed, and in a state where the discard electrodeposition member is in close contact with the surface of the electrodeposition pattern, nickel is applied to the surface of the opening and the discard electrodeposition member. Next electroforming. Next, the discarded electrodeposition member is peeled and removed, and the pattern resist is further removed to form a projection for punching on the surface of the electrodeposition layer, and a plating film is formed on the surface of the projection and the electrodeposition layer. Complete electroformed metal. The thickness of the convex portion is 200 to 300 μm. By using this electroformed metal, it is possible to form a group of holes for mounting micro parts on the green sheet.

特開2003−158375公報(段落番号0032〜0033、図1)JP 2003-158375 A (paragraph numbers 0032 to 0033, FIG. 1) 特開2002−180282公報(段落番号0017〜0024、図1)JP 2002-180282 A (paragraph numbers 0017 to 0024, FIG. 1)

近年、表面実装型のセラミックパッケージの小形化と、低背化(薄形化)とが促進され、その外形サイズはますます小さくなりつつある。例えば、小形化されたセラミックパッケージの縦横寸法は1.6×1.2mmしかなく、そのため装填凹部を成形するための金型は、より高度の寸法精度や位置精度を備えていることが要求される。しかし、特許文献1の多層基板の製造方法においては、焼成前のセラミックシートにパンチング加工を施して開口やビアホールを形成するため、先に述べたような微小サイズのセラミックパッケージに対応した開口やビアホールを高精度に加工することが困難になる。セラミックパッケージが小さくなるのに伴い、加工寸法に対する許容誤差寸法が極端に小さくなるが、パンチング加工用の金型では、加工時のばらつき寸法が先の許容誤差寸法より大きくなるため、要求される精度の塑性加工を行うことは極めて困難になるからである。   In recent years, miniaturization and low profile (thinning) of surface mount ceramic packages have been promoted, and the external size is becoming smaller. For example, the miniaturized ceramic package has a width and dimension of only 1.6 × 1.2 mm, and therefore a mold for forming the loading recess is required to have higher dimensional accuracy and position accuracy. The However, in the method for manufacturing a multilayer substrate disclosed in Patent Document 1, since an opening and a via hole are formed by punching a ceramic sheet before firing, the opening and the via hole corresponding to the micro-sized ceramic package as described above are used. Is difficult to process with high precision. As the ceramic package becomes smaller, the tolerance dimension for the machining dimension becomes extremely small. However, in the punching mold, the variation dimension during machining becomes larger than the previous tolerance dimension, so the required accuracy This is because it is extremely difficult to perform the plastic working.

その点、特許文献2の電鋳メタルでは、電鋳加工によって成形凸部を高精度に形成できるので、グリーンシートに微小部品を搭載するための一群の孔を精密に形成できる。しかし、特許文献2の電鋳メタルは、成形用凸部の厚みが一定であるため、グリーンシートに形成される孔は、凸部の外形形状に合致した一定深さの孔にしかならない。そのため、微小パーツの構造や機能に対応した凹状構造を形成することができない。詳しくは、内部に凸部や凹部を備えている複雑な凹状構造を成形することはできない。   In that respect, in the electroformed metal of Patent Document 2, since the molding convex portion can be formed with high accuracy by electroforming, a group of holes for mounting micro parts on the green sheet can be precisely formed. However, in the electroformed metal of Patent Document 2, the thickness of the forming convex portion is constant, so the hole formed in the green sheet is only a constant depth hole that matches the outer shape of the convex portion. Therefore, it is impossible to form a concave structure corresponding to the structure and function of the minute parts. Specifically, it is impossible to mold a complicated concave structure having a convex portion or a concave portion inside.

本発明の目的は、内部に凸部や凹部を備えている複雑で微細な凹状構造を高精度で成形できる塑性加工用の金型と、その製造方法を提供することにある。   The objective of this invention is providing the metal mold | die for plastic working which can shape | mold the complicated and fine concave structure which has a convex part and a recessed part inside with high precision, and its manufacturing method.

本発明に係る塑性加工用の金型は、加工対象3に凸部や凹部を備えた凹状構造4の一群を成形するための金型である。塑性加工用の金型は、金属製の基板1の上面に、凹状構造4を形成するための一群の成形凸部2が設けられて、一群の成形凸部2の表面が金属カバー層29で覆われている。図1、図14(e)に示すように、成形凸部2は、多段状に積層した複数の金属層で構成する。   The metal mold for plastic working according to the present invention is a mold for forming a group of concave structures 4 provided with convex portions and concave portions on a workpiece 3. The metal mold for plastic working is provided with a group of molding convex portions 2 for forming the concave structure 4 on the upper surface of the metal substrate 1, and the surface of the group of molding convex portions 2 is a metal cover layer 29. Covered. As shown in FIG. 1 and FIG. 14 (e), the forming convex portion 2 is composed of a plurality of metal layers stacked in a multi-stage shape.

複数の金属層は電鋳層21・22・23からなる。   The plurality of metal layers are composed of electroformed layers 21, 22, and 23.

複数の金属層はメッキ層51・52からなる。   The plurality of metal layers are composed of plated layers 51 and 52.

図3に示すように、基板1の上面には一群の成形凸部2を備えた成形エリア11が形成されている。成形エリア11を囲む状態でダミーエリア13が形成されている。ダミーエリア13に、成形凸部2と同じ構造の一群のダミー成形凸部15が形成されている。   As shown in FIG. 3, a molding area 11 having a group of molding protrusions 2 is formed on the upper surface of the substrate 1. A dummy area 13 is formed so as to surround the molding area 11. A group of dummy molding convex portions 15 having the same structure as the molding convex portion 2 is formed in the dummy area 13.

基板1の周縁にダミーエリア13を囲む外周エリア14が形成されている。外周エリア14において金属カバー層29が露出している。   An outer peripheral area 14 surrounding the dummy area 13 is formed on the periphery of the substrate 1. The metal cover layer 29 is exposed in the outer peripheral area 14.

各金属層の上面は介在層26・27・28で覆われている。   The upper surface of each metal layer is covered with intervening layers 26, 27, and 28.

本発明に係る塑性加工用の金型の製造方法は、金属製の基板1の上面に多段状の成形凸部2の一群が形成された金型の製造方法である。本製造方法は、電鋳対象に、レジスト開口35・39を備えたレジストパターン36・40をフォトリソグラフィ法で形成するパターニング工程と、レジスト開口35・39に臨む電鋳対象の表面に電鋳層21・22・23を形成する電鋳工程と、レジストパターン36・40を除去するパターン除去工程を含む。パターニング工程と電鋳工程を2回以上交互に行い、最終の電鋳工程ののちパターン除去工程を行い、基板1の上面に複数の電鋳層21・22・23を積層形成して成形凸部2を多段状に形成し、一群の成形凸部2を含む基板1の上面にメッキ処理を施して金属カバー層29を形成することを特徴とする。   The method for manufacturing a metal mold for plastic working according to the present invention is a method for manufacturing a metal mold in which a group of multi-stage shaped convex portions 2 is formed on the upper surface of a metal substrate 1. In this manufacturing method, a patterning process for forming resist patterns 36 and 40 having resist openings 35 and 39 on an electroforming object by a photolithography method, and an electroformed layer on the surface of the electroforming object facing the resist openings 35 and 39 It includes an electroforming process for forming 21, 22, and 23 and a pattern removal process for removing the resist patterns 36 and 40. The patterning step and the electroforming step are alternately performed twice or more, the pattern removal step is performed after the final electroforming step, and a plurality of electroformed layers 21, 22, and 23 are formed on the upper surface of the substrate 1 to form a convex portion 2 is formed in a multi-stage shape, and the metal cover layer 29 is formed by performing plating on the upper surface of the substrate 1 including the group of forming convex portions 2.

本発明に係る塑性加工用の金型の別の製造方法においては、金属製の基板1の上面に多段状の成形凸部2の一群が形成された金型の製造方法である。本製造方法は、処理対象に、レジスト開口35・39を備えたレジストパターン36・40をフォトリソグラフィ法で形成するパターニング工程と、レジスト開口35・39に臨むメッキ対象の表面にメッキ層51・52を形成するメッキ工程と、レジストパターン36・40を除去するパターン除去工程を含む。パターニング工程とメッキ工程を2回以上交互に行い、最終のメッキ工程ののちパターン除去工程を行い、基板1の上面に複数のメッキ層51・52を積層形成して成形凸部2を多段状に形成し、一群の成形凸部2を含む基板1の上面にメッキ処理を施して金属カバー層29を形成することを特徴とする。   In another method for producing a metal mold for plastic working according to the present invention, a group of multi-stage shaped projections 2 is formed on the upper surface of a metal substrate 1. In this manufacturing method, a patterning process for forming resist patterns 36 and 40 having resist openings 35 and 39 on a processing target by a photolithography method, and plating layers 51 and 52 on the surface of the plating target facing the resist openings 35 and 39. And a pattern removing process for removing the resist patterns 36 and 40. The patterning process and the plating process are alternately performed twice or more, the pattern removal process is performed after the final plating process, and a plurality of plating layers 51 and 52 are formed on the upper surface of the substrate 1 to form the forming convex portion 2 in a multi-stage shape. The metal cover layer 29 is formed by performing plating treatment on the upper surface of the substrate 1 including the group of formed convex portions 2.

上記の製造方法は、基板1の上面にメッキ処理を施してストライクメッキ層20を形成する下地調整工程を備えており、下地調整工程を行ったのち、パターニング工程と電鋳工程またはメッキ工程を行って1層目の電鋳層21、または1層目のメッキ層51を形成する。   The above manufacturing method includes a base adjustment step of forming a strike plating layer 20 by plating the upper surface of the substrate 1, and after performing the base adjustment step, a patterning step and an electroforming step or a plating step are performed. Then, the first electroformed layer 21 or the first plated layer 51 is formed.

金属製の原板44に複数の基板1を同時に形成する。原板44を複数の基板1の集合外郭線Lに沿ってレーザーカッターで切断して、基板集合体45を形成する。基板集合体45を個々の基板1の外郭線に沿ってワイヤーカット放電加工機で切断して、複数の塑性加工用の金型を形成する。   A plurality of substrates 1 are simultaneously formed on a metal original plate 44. The original plate 44 is cut with a laser cutter along the assembly outline L of the plurality of substrates 1 to form a substrate assembly 45. The substrate assembly 45 is cut along a contour line of each substrate 1 with a wire cut electric discharge machine to form a plurality of plastic working dies.

本発明に係る塑性加工用の金型においては、金属製の基板1の上面に、凸部や凹部を備えた凹状構造4を形成するための一群の成形凸部2を設け、一群の成形凸部2の表面を金属カバー層29で覆うようにした。また、成形凸部2は、多段状に積層した複数の金属層で構成した。こうした塑性加工用の金型によれば、従来構造の金型に比べて、寸法精度や位置精度に優れた高精度の成形凸部2を精確に形成できる。従って、一群の成形凸部2を備えた金型を使用して加工対象3に塑性加工を施すことにより、内部に凸部や凹部を備えている複雑で微細な構造の凹状構造4を高精度に、しかも1回の塑性加工のみで確実に成形できる。また、一群の成形凸部2の表面を金属カバー層29で覆うことにより、成形凸部2の外隅部を覆う部分の金属カバー層29を丸めることができる。従って、塑性加工が施された加工対象3を金型から離型する場合に、加工対象3を容易に離型できる。   In the metal mold for plastic working according to the present invention, a group of molding projections 2 for forming a concave structure 4 having projections and depressions is provided on the upper surface of a metal substrate 1, and a group of molding projections is provided. The surface of the part 2 was covered with a metal cover layer 29. Moreover, the shaping | molding convex part 2 was comprised with the several metal layer laminated | stacked in multiple steps. According to such a metal mold for plastic working, it is possible to accurately form a high-precision molding convex portion 2 that is superior in dimensional accuracy and position accuracy as compared with a conventional mold. Therefore, by applying a plastic working to the workpiece 3 using a mold having a group of forming convex portions 2, the concave structure 4 having a complicated and fine structure having convex portions and concave portions inside can be obtained with high accuracy. Moreover, it can be reliably formed by only one plastic working. Further, by covering the surface of the group of forming convex portions 2 with the metal cover layer 29, the portion of the metal cover layer 29 covering the outer corners of the forming convex portions 2 can be rounded. Therefore, when the processing target 3 subjected to plastic processing is released from the mold, the processing target 3 can be easily released.

複数の金属層を電鋳層21・22・23で形成すると、内部に凸部や凹部を備えている複雑で微細な構造の凹状構造4を高精度に形成できる。   When the plurality of metal layers are formed of the electroformed layers 21, 22, and 23, the concave structure 4 having a complicated and fine structure having a convex portion and a concave portion therein can be formed with high accuracy.

複数の金属層をメッキ層51・52で形成すると、電鋳層21・22・23で金属層を形成する場合と同様に、複雑で微細な構造の凹状構造4を高精度に形成できるうえ、塑性加工用の金型をより低コストで提供できる。   When a plurality of metal layers are formed by the plating layers 51, 52, the concave structure 4 having a complicated and fine structure can be formed with high accuracy, as in the case of forming the metal layers by the electroformed layers 21, 22, 23. A mold for plastic working can be provided at a lower cost.

基板1の上面に一群の成形凸部2を備えた成形エリア11を形成し、さらに成形エリア11を囲む状態でダミーエリア13を形成して、同エリア13に成形凸部2と同じ構造の一群のダミー成形凸部15を形成すると、成形エリア11に形成される成形凸部2の層厚みを均一にすることができる。これは以下の理由による。電鋳加工時に、基板1上に電着される単位面積当たりの電着金属の量はほぼ一定であるが、各成形凸部2の形や外形寸法、あるいは隣接ピッチが同じであると、全ての成形凸部2の層厚みは同じになる。しかし、例えば各成形凸部2の形や外形寸法が同じであったとしても、隣接ピッチが異なっていると、成形凸部2の配置密度の違いに応じて各電鋳層21・22・23の層厚みに違いが生じてしまう。成形凸部2の配置密度が粗である領域ほど成形凸部2の層厚みが大きくなり、成形凸部2の配置密度が密である領域ほど成形凸部2の層厚みが小さくなる。こうした層厚みのばらつきを解消するために、成形エリア11の周囲にダミーエリア13を形成し、同エリア13に成形凸部2と同じ構造の一群のダミー成形凸部15を形成して、成形エリア11に形成される成形凸部2の層厚みを均一化している。因みに、ダミーエリア13が設けられていない場合には、成形エリア11の周縁寄りに位置する成形凸部2の層厚みが、成形エリア11の中央寄りに形成される成形凸部2の層厚みに比べて大きくなってしまう。   A molding area 11 having a group of molding projections 2 is formed on the upper surface of the substrate 1, and a dummy area 13 is formed in a state surrounding the molding area 11, and a group of the same structure as the molding projections 2 is formed in the area 13. When the dummy forming convex portion 15 is formed, the layer thickness of the forming convex portion 2 formed in the forming area 11 can be made uniform. This is due to the following reason. At the time of electroforming, the amount of electrodeposited metal per unit area electrodeposited on the substrate 1 is substantially constant. However, if the shape, external dimensions, or adjacent pitch of each forming convex portion 2 is the same, all The layer thickness of the molding convex part 2 is the same. However, for example, even if the shape and outer dimensions of each molding convex portion 2 are the same, if the adjacent pitch is different, each electroformed layer 21, 22, 23 depends on the arrangement density of the molding convex portion 2. Differences in layer thickness occur. The layer thickness of the molding convex part 2 increases as the area where the arrangement density of the molding convex part 2 is coarser, and the layer thickness of the molding convex part 2 decreases as the area where the arrangement density of the molding convex part 2 is dense. In order to eliminate such variations in layer thickness, a dummy area 13 is formed around the molding area 11, and a group of dummy molding convex portions 15 having the same structure as the molding convex portion 2 is formed in the area 13. The layer thickness of the molding convex part 2 formed in 11 is made uniform. Incidentally, when the dummy area 13 is not provided, the layer thickness of the molding convex portion 2 located near the periphery of the molding area 11 is equal to the layer thickness of the molding convex portion 2 formed near the center of the molding area 11. It will be bigger than that.

基板1の周縁に外周エリア14を設け、同エリア14において、金属カバー層29を露出させると、外周エリア14によって一群の成形凸部2を備えた金型の外縁を特定することができる。多くの場合には、金型を低コストで製造するために、面積が大きな原板44に多数個の基板1を同時に形成し、最後に個々の基板1として切分けるが、その場合に、外周エリア14を指標にして基板1を切断することにより、基板1の切断を適確に行うことができる。   When the outer peripheral area 14 is provided on the peripheral edge of the substrate 1 and the metal cover layer 29 is exposed in the area 14, the outer edge of the mold including the group of forming convex portions 2 can be specified by the outer peripheral area 14. In many cases, in order to manufacture a mold at a low cost, a large number of substrates 1 are simultaneously formed on an original plate 44 having a large area and finally cut into individual substrates 1. By cutting the substrate 1 using 14 as an index, the substrate 1 can be cut accurately.

各電鋳層21・22・23の上面を、電鋳層21・22・23との密着性に優れた介在層26・27・28で覆うと、隣接する電鋳層21・22・23同士の密着強度を高めて、成形凸部2の構造強度を増強でき、従って、一群の成形凸部2を備えている金型の耐久性を向上できる。これは以下の理由による。各電鋳層21・22・23は例えばニッケル−コバルト合金を電着させて形成するが、1層目の電鋳層21に2層目の電鋳層22を直接電着させ、あるいは2層目の電鋳層22に3層目の電鋳層23を直接電着させると、隣接する電鋳層21・22・23同士を強固に密着させることができない。このように、電着金属がニッケル系金属であると密着性の相性が悪く、充分な密着強度が得られないからである。しかし、各電鋳層21・22・23の上面に介在層26・27・28を形成し、その上面に2層目あるいは3層目の電鋳層23を形成すると、隣接する電鋳層21・22・23同士を、介在層26・27を介して強固に一体化して密着強度を増強できる。同様に、最外層の電鋳層22・23の上面に金属カバー層29を形成する場合にも、金属カバー層29と最外層の電鋳層22・23を、介在層26・27・28を介して強固に一体化して密着強度を増強できる。また、各メッキ層51・52の上面を介在層で覆ってもよく、その場合も同様な効果が得られる。なお、介在層26・27・28の形成素材としては、とくに制限はないが、各金属層や金属カバー層29をニッケル―コバルト合金で形成する場合には銅が好ましい。   When the upper surface of each electroformed layer 21, 22, 23 is covered with intervening layers 26, 27, 28 having excellent adhesion to the electroformed layers 21, 22, 23, the adjacent electroformed layers 21, 22, 23 are It is possible to increase the adhesion strength of the molding convex portion 2 and to enhance the structural strength of the molding convex portion 2, and thus improve the durability of a mold having a group of molding convex portions 2. This is due to the following reason. Each of the electroformed layers 21, 22, and 23 is formed, for example, by electrodeposition of a nickel-cobalt alloy. The second electroformed layer 22 is directly electrodeposited on the first electroformed layer 21, or two layers are formed. When the third electroformed layer 23 is directly electrodeposited on the electroformed layer 22, the adjacent electroformed layers 21, 22, and 23 cannot be firmly adhered to each other. Thus, if the electrodeposited metal is a nickel-based metal, the compatibility of the adhesion is poor and sufficient adhesion strength cannot be obtained. However, when the intervening layers 26, 27, and 28 are formed on the upper surfaces of the electroformed layers 21, 22, and 23, and the second or third electroformed layer 23 is formed on the upper surface, the adjacent electroformed layers 21 are formed. -The 22 and 23 can be firmly integrated with each other through the intervening layers 26 and 27 to enhance the adhesion strength. Similarly, when the metal cover layer 29 is formed on the upper surface of the outermost electroformed layers 22 and 23, the metal cover layer 29 and the outermost electroformed layers 22 and 23 are replaced with the intervening layers 26, 27, and 28. It is possible to strengthen the adhesion strength by integrating firmly. Further, the upper surface of each of the plating layers 51 and 52 may be covered with an intervening layer, and in this case, the same effect can be obtained. The material for forming the intervening layers 26, 27, and 28 is not particularly limited, but copper is preferable when the metal layers and the metal cover layer 29 are formed of a nickel-cobalt alloy.

本発明に係る塑性加工用の金型の製造方法においては、パターニング工程と電鋳工程を2回以上交互に行い、最終の電鋳工程ののちパターン除去工程を行って、基板1の上面に複数の電鋳層21・22・23を積層形成し、成形凸部2を多段状に形成するようにした。さらに、一群の成形凸部2を含む基板1の上面にメッキ処理を施して金属カバー層29を形成した。こうした金型の製造方法によれば、従来構造の金型に比べて、寸法精度や位置精度に優れた高精度の成形凸部2の一群を精確に形成できる。また、パターニング工程と電鋳工程を2回以上交互に行って複数の電鋳層21・22・23を積層し、多段状の成形凸部2を形成するので、成形凸部2の構造の自由度が高く、より複雑な形状の凹状構造4を成形するための成形凸部2を、確実に形成することができる。さらに、一群の成形凸部2を含む基板1の上面に金属カバー層29を形成するので、成形凸部2の外隅部を覆う部分の金属カバー層29を丸めることができる。従って、塑性加工時に加工対象3を金型から離型する場合に、加工対象3を円滑にしかも容易に離型できる。加工対象3に形成した微細な凹状構造4が、離型時に傷むこともない。   In the method for manufacturing a mold for plastic working according to the present invention, a patterning step and an electroforming step are alternately performed twice or more, a pattern removal step is performed after the final electroforming step, and a plurality of patterns are formed on the upper surface of the substrate 1. The electroformed layers 21, 22, and 23 were laminated to form the convex portions 2 in multiple stages. Furthermore, the metal cover layer 29 was formed by performing a plating process on the upper surface of the substrate 1 including the group of molded convex portions 2. According to such a mold manufacturing method, it is possible to accurately form a group of high-precision molding convex portions 2 that are superior in dimensional accuracy and position accuracy as compared with a conventional mold. In addition, the patterning process and the electroforming process are alternately performed twice or more, and a plurality of electroformed layers 21, 22, and 23 are laminated to form the multi-stage shaped convex part 2. The forming convex part 2 for forming the concave structure 4 having a high degree and a more complicated shape can be reliably formed. Furthermore, since the metal cover layer 29 is formed on the upper surface of the substrate 1 including the group of forming convex portions 2, the portion of the metal cover layer 29 covering the outer corners of the forming convex portions 2 can be rounded. Therefore, when the workpiece 3 is released from the mold during plastic processing, the workpiece 3 can be released smoothly and easily. The fine concave structure 4 formed on the workpiece 3 is not damaged at the time of mold release.

本発明に係る塑性加工用の金型の別の製造方法においては、パターニング工程とメッキ工程を2回以上交互に行い、最終のメッキ工程ののちパターン除去工程を行って、基板1の上面に複数のメッキ層51・52を積層形成し、成形凸部2を多段状に形成するようにした。こうした金型の製造方法によれば、従来構造の金型に比べて、寸法精度や位置精度に優れた高精度の成形凸部2の一群を精確に形成できる。また、パターニング工程とメッキ工程を2回以上交互に行って複数のメッキ層51・52を積層し、多段状の成形凸部2を形成するので、成形凸部2の構造の自由度が高く、より複雑な形状の凹状構造4を成形するための成形凸部2を、確実に形成することができる。さらに、一群の成形凸部2を含む基板1の上面に金属カバー層29を形成するので、成形凸部2の外隅部を覆う部分の金属カバー層29を丸めることができる。従って、塑性加工時に加工対象3を金型から離型する場合に、加工対象3を円滑にしかも容易に離型できる。加工対象3に形成した微細な凹状構造4が、離型時に傷むこともない。   In another method of manufacturing a metal mold for plastic working according to the present invention, a patterning step and a plating step are alternately performed twice or more, a pattern removal step is performed after the final plating step, and a plurality of patterns are formed on the upper surface of the substrate 1. The plating layers 51 and 52 are laminated to form the forming convex portion 2 in a multi-stage shape. According to such a mold manufacturing method, it is possible to accurately form a group of high-precision molding convex portions 2 that are superior in dimensional accuracy and position accuracy as compared with a conventional mold. In addition, the patterning step and the plating step are alternately performed twice or more, and the plurality of plating layers 51 and 52 are laminated to form the multi-stage shaped convex portion 2, so that the degree of freedom of the structure of the shaped convex portion 2 is high. The forming convex portion 2 for forming the concave structure 4 having a more complicated shape can be reliably formed. Furthermore, since the metal cover layer 29 is formed on the upper surface of the substrate 1 including the group of forming convex portions 2, the portion of the metal cover layer 29 covering the outer corners of the forming convex portions 2 can be rounded. Therefore, when the workpiece 3 is released from the mold during plastic processing, the workpiece 3 can be released smoothly and easily. The fine concave structure 4 formed on the workpiece 3 is not damaged at the time of mold release.

上記の製造方法において、下地調整工程においてストライクメッキ層20を形成したのち、パターニング工程と電鋳工程またはメッキ工程を行って1層目の電鋳層21、または1層目のメッキ層51を形成すると、1層目の電鋳層21または1層目のメッキ層51と基板1を、ストライクメッキ層20を介して強固に一体化して、両者1・2の密着強度を増強できる。   In the above manufacturing method, after the strike plating layer 20 is formed in the base preparation step, the patterning step and the electroforming step or the plating step are performed to form the first electroforming layer 21 or the first plating layer 51. Then, the first electroformed layer 21 or the first plated layer 51 and the substrate 1 are firmly integrated via the strike plated layer 20, and the adhesion strength between the two can be enhanced.

複数の基板1が同時に形成してある原板44を、複数の基板1の集合外郭線Lに沿ってレーザーカッターで切断して基板集合体45を形成し、さらに、基板集合体45を個々の基板1の外郭線に沿ってワイヤーカット放電加工機で切断するのは、切断時の熱によって成形エリア11に形成した成形凸部2が熱変形するのを避けるためである。詳しくは、原板44を多数個の基板1の集合外郭線Lに沿ってレーザーカッターで切断すると、集合体の切断を速やかに行える。また、レーザーによる切断位置が各基板1から充分に離れているので、切断時の熱によって成形エリア11に形成した成形凸部2が熱変形することはない。しかし、基板集合体45から個々の基板1を切断する際には、切断位置が成形エリア11に近づくため、切断時の熱によって成形エリア11に形成した成形凸部2が熱変形するおそれがある。こうした切断時の熱による成形凸部2の熱変形を避けるために、基板集合体45から個々の基板1を切断する際には、水槽中で切断を行うワイヤーカット放電加工機を使用している。   The original plate 44 on which the plurality of substrates 1 are simultaneously formed is cut with a laser cutter along the assembly outline L of the plurality of substrates 1 to form a substrate assembly 45, and the substrate assembly 45 is further divided into individual substrates. The reason why the wire cut electric discharge machine cuts along the outer contour line 1 is to avoid thermal deformation of the forming convex portion 2 formed in the forming area 11 due to heat at the time of cutting. Specifically, when the original plate 44 is cut with a laser cutter along the collective outline L of the large number of substrates 1, the aggregate can be cut quickly. Further, since the cutting position by the laser is sufficiently separated from each substrate 1, the molding convex portion 2 formed in the molding area 11 is not thermally deformed by heat at the time of cutting. However, when the individual substrates 1 are cut from the substrate assembly 45, the cutting position approaches the molding area 11, so that the molding convex portion 2 formed in the molding area 11 may be thermally deformed by heat during cutting. . In order to avoid the thermal deformation of the molding convex portion 2 due to the heat at the time of cutting, when cutting each substrate 1 from the substrate assembly 45, a wire cut electric discharge machine that performs cutting in a water tank is used. .

本発明の実施例1に係る塑性加工用の金型の成形凸部の構造を示す断面図である。It is sectional drawing which shows the structure of the shaping | molding convex part of the metal mold | die for plastic working which concerns on Example 1 of this invention. 塑性加工用の金型と加工対象の関係を示す説明図である。It is explanatory drawing which shows the metal mold | die for plastic working, and the relationship of a process target. 塑性加工用の金型の平面図である。It is a top view of the metal mold | die for plastic working. 図3におけるA−A線断面図である。It is the sectional view on the AA line in FIG. 基板に第1電鋳層を形成する工程を示す説明図である。It is explanatory drawing which shows the process of forming a 1st electroformed layer in a board | substrate. 基板に第2電鋳層を形成する工程を示す説明図である。It is explanatory drawing which shows the process of forming a 2nd electroformed layer in a board | substrate. 基板に銅層と金属カバー層を形成する工程を示す説明図である。It is explanatory drawing which shows the process of forming a copper layer and a metal cover layer in a board | substrate. 複数の基板を備えた原板から基板集合体を切断し、基板集合体から塑性加工用の金型を切断する過程を示す平面図である。It is a top view which shows the process of cut | disconnecting a board | substrate aggregate from the original plate provided with the some board | substrate, and cutting the metal mold | die for plastic working from a board | substrate aggregate. 本発明の実施例2に係る塑性加工用の金型における成形凸部の構造を示す断面図である。It is sectional drawing which shows the structure of the shaping | molding convex part in the metal mold | die for plastic working which concerns on Example 2 of this invention. 本発明の実施例3に係る塑性加工用の金型における成形凸部の構造を示す断面図である。It is sectional drawing which shows the structure of the shaping | molding convex part in the metal mold | die for plastic working which concerns on Example 3 of this invention. 本発明の実施例4に係る塑性加工用の金型における成形凸部の構造を示す断面図である。It is sectional drawing which shows the structure of the shaping | molding convex part in the metal mold | die for plastic working which concerns on Example 4 of this invention. 本発明の実施例5に係る塑性加工用の金型における成形凸部の構造を示す断面図である。It is sectional drawing which shows the structure of the shaping | molding convex part in the metal mold | die for plastic working which concerns on Example 5 of this invention. 本発明の実施例6に係る工程説明図であって、基板に第1メッキ層を形成する工程を示している。It is process explanatory drawing based on Example 6 of this invention, Comprising: The process of forming a 1st plating layer in a board | substrate is shown. 本発明の実施例6に係る工程説明図であって、基板に第2メッキ層を形成する工程を示している。It is process explanatory drawing which concerns on Example 6 of this invention, Comprising: The process of forming a 2nd plating layer in a board | substrate is shown.

(実施例1) 図1ないし図8は、本発明に係る塑性加工用の金型を、セラミックシートに塑性加工を施すスタンプ金型に適用した実施例1を示す。図2においてスタンプ金型は、厚みが1.0〜10.0mmのステンレス板材からなる基板1の上面に、一群の成形凸部2を形成して構成される。この金型を使用して、焼成前のセラミックシート(加工対象)3に表面実装用の電子部品やセンサーなどの微小パーツを収容するための装填凹部(凹状構造)4の一群が成形される。図2において符号5はセラミックシート3を支持する固定台、符号6は昇降移動して塑性加工用の金型をセラミックシート3に押付ける可動台である。 (Example 1) FIG. 1 thru | or FIG. 8 shows Example 1 which applied the metal mold | die for plastic working which concerns on this invention to the stamp metal mold | die which plastically processes a ceramic sheet. In FIG. 2, the stamp mold is formed by forming a group of forming convex portions 2 on the upper surface of a substrate 1 made of a stainless steel plate having a thickness of 1.0 to 10.0 mm. Using this mold, a group of loading recesses (concave structures) 4 for accommodating micro parts such as electronic components for surface mounting and sensors is formed in a ceramic sheet (processing object) 3 before firing. In FIG. 2, reference numeral 5 denotes a fixed base that supports the ceramic sheet 3, and reference numeral 6 denotes a movable base that moves up and down and presses a mold for plastic working against the ceramic sheet 3.

図3に示すようにスタンプ金型は、長方形状の基板1の中央部を含む成形エリア11と、成形エリア11の周囲を囲むダミーエリア13と、基板1の周縁に形成されてダミーエリア13を囲む外周エリア14を備えている。成形エリア11には、一群の成形凸部2がマトリクス状に形成されており、ダミーエリア13には、一群のダミー成形凸部15がマトリクス状に形成されている。成形凸部2やダミー成形凸部15は円形に形成するが、多角形状や楕円形状に形成してあってもよい。外周エリア14には、成形凸部2やダミー成形凸部15は形成されておらず、後述するカバーメッキ層29が外周エリア14において露出している。基板1の長辺部の長さは200mmであり、短辺部の長さは150mmである。   As shown in FIG. 3, the stamp mold is formed on the molding area 11 including the central portion of the rectangular substrate 1, the dummy area 13 surrounding the molding area 11, and the periphery of the substrate 1. A surrounding outer peripheral area 14 is provided. In the molding area 11, a group of molding projections 2 are formed in a matrix, and in the dummy area 13, a group of dummy molding projections 15 are formed in a matrix. The molding convex part 2 and the dummy molding convex part 15 are formed in a circular shape, but may be formed in a polygonal shape or an elliptical shape. In the outer peripheral area 14, the molding convex part 2 and the dummy molding convex part 15 are not formed, and a cover plating layer 29 described later is exposed in the outer peripheral area 14. The length of the long side portion of the substrate 1 is 200 mm, and the length of the short side portion is 150 mm.

成形凸部2とダミー成形凸部15は同じ構造に形成するが、成形エリア11に設けた成形凸部2で成形された装填凹部4のみがセラミックパッケージとして使用される。上記のように、成形エリア11の周囲にダミーエリア13を形成し、同エリア13に成形凸部2と同じ構造のダミー成形凸部15を形成するのは、成形エリア11とダミーエリア13に形成される成形凸部2の密度を均一にして、成形エリア11における成形凸部2の層厚み(高さ)を均一化するためである。   Although the molding convex part 2 and the dummy molding convex part 15 are formed in the same structure, only the loading concave part 4 molded by the molding convex part 2 provided in the molding area 11 is used as a ceramic package. As described above, the dummy area 13 is formed around the molding area 11 and the dummy molding convex part 15 having the same structure as the molding convex part 2 is formed in the molding area 11 and the dummy area 13. This is because the density of the formed convex portions 2 is made uniform, and the layer thickness (height) of the molded convex portions 2 in the molding area 11 is made uniform.

より詳しくは、電鋳加工時に基板1上に電着される単位面積当たりの電着金属の量はほぼ一定であり、各成形凸部2の形や外形寸法、あるいは隣接ピッチが同じであると、全ての成形凸部2の層厚みは同じになる。しかし、例えば各成形凸部2の形や外形寸法が同じであったとしても、隣接ピッチが異なっていると、成形凸部2の配置密度の違いに応じて層厚みに違いが生じてしまう。成形凸部2の配置密度が粗である領域ほど成形凸部2の層厚みが大きくなり、成形凸部2の配置密度が密である領域ほど成形凸部2の層厚みが小さくなる。こうした層厚みのばらつきを解消するために、成形エリア11の周囲にダミーエリア13を形成し、同エリア13に成形凸部2と同じ構造の一群のダミー成形凸部15を形成して、成形エリア11に形成される成形凸部2の層厚みが均一になるようにしている。   More specifically, the amount of electrodeposited metal per unit area that is electrodeposited on the substrate 1 during electroforming is substantially constant, and the shape, outer dimensions, or adjacent pitch of each molded convex portion 2 is the same. The layer thicknesses of all the molding convex portions 2 are the same. However, for example, even if the shape and outer dimensions of each molding convex part 2 are the same, if the adjacent pitches are different, the layer thickness varies depending on the arrangement density of the molding convex parts 2. The layer thickness of the molding convex part 2 increases as the area where the arrangement density of the molding convex part 2 is coarser, and the layer thickness of the molding convex part 2 decreases as the area where the arrangement density of the molding convex part 2 is dense. In order to eliminate such variations in layer thickness, a dummy area 13 is formed around the molding area 11, and a group of dummy molding convex portions 15 having the same structure as the molding convex portion 2 is formed in the area 13. The layer thickness of the molding convex part 2 formed in 11 is made uniform.

図1および図4に成形凸部2の詳細構造を示している。成形凸部2は、基板(電鋳対象)1の上面に形成される第1電鋳層(金属層)21と、電鋳対象である第1電鋳層21の上面に形成される銅メッキ層(介在層)26と、銅メッキ層26の上面に形成される2層目の第2電鋳層(金属層)22と、第2電鋳層22の上面に形成される銅メッキ層(介在層)27と、銅メッキ層27の上面に形成されるカバーメッキ層(金属カバー層)29で構成される。なお、基板1と第1電鋳層21の密着性を向上するために、基板1上にストライクメッキ層20を形成することが好ましく、このストライクメッキ層20の形成素材としては、ニッケル、銅、金、銀が好適である。図3および図4に示すように、この実施例では、第1電鋳層21を円形状に形成し、その上面の周囲および中央部の上面に第2電鋳層22を形成して、第2電鋳層22の形成領域に左右一対の平行な凹部30を備えたコンセント状の成形凸部2を形成した場合を示している。第1電鋳層21および第2電鋳層22はいずれもニッケル−コバルトを電鋳処理して形成するが、第2電鋳層22の第1電鋳層21に対する密着強度を高めるために、第1電鋳層21の上面に銅メッキ層26を形成している。同様に、ニッケル−コバルトのメッキ層からなるカバーメッキ層29の第2電鋳層22に対する密着強度を高めるために、第2電鋳層22の上面に銅メッキ層27を形成している。一群の成形凸部2を含む基板1の上面をカバーメッキ層29で覆うことにより、成形凸部2の外隅部を覆う部分のカバーメッキ層29を丸めることができる。従って、塑性加工が施された加工対象3を金型から離型する場合に、加工対象3を円滑にしかも容易に離型できる。セラミックシート3に形成した微細な凹状構造4が、離型時に傷むこともない。   The detailed structure of the shaping | molding convex part 2 is shown in FIG. 1 and FIG. The forming convex portion 2 includes a first electroformed layer (metal layer) 21 formed on the upper surface of the substrate (electroformed object) 1 and a copper plating formed on the upper surface of the first electroformed layer 21 that is the electroformed object. A layer (intervening layer) 26, a second second electroformed layer (metal layer) 22 formed on the upper surface of the copper plated layer 26, and a copper plated layer formed on the upper surface of the second electroformed layer 22 ( An intervening layer) 27 and a cover plating layer (metal cover layer) 29 formed on the upper surface of the copper plating layer 27. In order to improve the adhesion between the substrate 1 and the first electroformed layer 21, it is preferable to form a strike plating layer 20 on the substrate 1, and as a material for forming the strike plating layer 20, nickel, copper, Gold and silver are preferred. As shown in FIGS. 3 and 4, in this embodiment, the first electroformed layer 21 is formed in a circular shape, and the second electroformed layer 22 is formed around the upper surface and the upper surface of the central portion. 2 shows a case where the outlet-shaped forming convex portion 2 including a pair of left and right parallel concave portions 30 is formed in the formation region of the electroformed layer 22. Both the first electroformed layer 21 and the second electroformed layer 22 are formed by electroforming nickel-cobalt. In order to increase the adhesion strength of the second electroformed layer 22 to the first electroformed layer 21, A copper plating layer 26 is formed on the upper surface of the first electroformed layer 21. Similarly, a copper plating layer 27 is formed on the upper surface of the second electroforming layer 22 in order to increase the adhesion strength of the cover plating layer 29 made of a nickel-cobalt plating layer to the second electroforming layer 22. By covering the upper surface of the substrate 1 including the group of molding protrusions 2 with the cover plating layer 29, the cover plating layer 29 that covers the outer corners of the molding protrusions 2 can be rounded. Therefore, when the workpiece 3 subjected to plastic working is released from the mold, the workpiece 3 can be released smoothly and easily. The fine concave structure 4 formed on the ceramic sheet 3 is not damaged at the time of mold release.

上記のように、第1電鋳層21と第2電鋳層22で多段状に形成した成形凸部2で装填凹部4を成形することにより、図2に示すように、底面に左右一対の突リブ31を備えた
装填凹部4を形成することができる。第1電鋳層21の厚みは100〜200μm、第2電鋳層22の厚みは10〜100μmとした。ストライクメッキ層20の厚みは0.01〜1μm、銅メッキ層26・27・28の厚みは1〜5μm、カバーメッキ層29の厚みは1〜10μmとすることが好ましい。
As described above, by forming the loading concave portion 4 with the molding convex portion 2 formed in a multi-stage shape with the first electroforming layer 21 and the second electroforming layer 22, as shown in FIG. The loading recess 4 provided with the protruding rib 31 can be formed. The thickness of the first electroformed layer 21 was 100 to 200 μm, and the thickness of the second electroformed layer 22 was 10 to 100 μm. The thickness of the strike plating layer 20 is preferably 0.01 to 1 μm, the thickness of the copper plating layers 26, 27 and 28 is preferably 1 to 5 μm, and the thickness of the cover plating layer 29 is preferably 1 to 10 μm.

上記構成のスタンプ金型は、下地調整工程と、パターニング工程と、電鋳工程と、パターン除去工程と、電鋳工程の後に行われる研削工程、およびメッキ工程などを経て製造する。下地調整工程においては、ステンレス製の基板1の上面にメッキ処理を施してストライクメッキ層20を形成する。なお、ストライクメッキ層20は、基板1の上面全体に形成するが、以下のパターニング工程ののちに、レジスト開口35に露出する基板1の表面に形成してもよい。   The stamp mold having the above-described configuration is manufactured through a ground adjustment process, a patterning process, an electroforming process, a pattern removing process, a grinding process performed after the electroforming process, a plating process, and the like. In the base preparation step, the strike plating layer 20 is formed by plating the upper surface of the stainless steel substrate 1. The strike plating layer 20 is formed on the entire upper surface of the substrate 1, but may be formed on the surface of the substrate 1 exposed to the resist opening 35 after the following patterning process.

(パターニング工程)
1回目のパターニング工程においては、図5(a)および図5(b)に示すように、ストライクメッキ層(電鋳対象)20の上面にフォトレジスト層33を形成し、その上面にフォトマスク34を密着した状態で露光し、現像および乾燥を行い、未露光部を溶解除去して、レジスト開口35を備えたレジストパターン36をストライクメッキ層20の上面に形成する。このように1回目のパターニング工程においては、1層目のレジストパターン36をフォトリソグラフィ法で形成する。
(Patterning process)
In the first patterning step, as shown in FIGS. 5A and 5B, a photoresist layer 33 is formed on the top surface of the strike plating layer (electroforming target) 20, and a photomask 34 is formed on the top surface. The resist pattern 36 having the resist openings 35 is formed on the upper surface of the strike plating layer 20 by performing exposure and developing and drying in a state of being in close contact with each other, and dissolving and removing unexposed portions. Thus, in the first patterning step, the first resist pattern 36 is formed by photolithography.

(電鋳工程、研削工程、およびメッキ処理)
1回目の電鋳工程においては、図5(c)に示すように、レジストパターン36が形成された基板1を電鋳液に浸漬して、レジスト開口35に露出しているストライクメッキ層20に、電着金属がレジストパターン36の厚みを僅かに超えるまで成長させて、第1電鋳層21を形成する。図5(d)に示すように、得られた基板1の第1電鋳層21の上面側に研削加工を施して、第1電鋳層21の厚みを所定の厚みに調整する。さらに、第1電鋳層21の上面側に銅のメッキ処理を施して銅メッキ層(介在層)26を形成する。上記のように、下地調整工程においてストライクメッキ層20を形成したのち1層目の電鋳層21を形成すると、1層目の電鋳層21を基板1の上面に直接形成する場合に比べて、1層目の電鋳層21と基板1を、ストライクメッキ層20を介して強固に一体化して、基板1と成形凸部2の密着強度を増強できる。
(Electroforming process, grinding process, and plating process)
In the first electroforming process, as shown in FIG. 5C, the substrate 1 on which the resist pattern 36 is formed is immersed in an electroforming solution, and the strike plating layer 20 exposed in the resist opening 35 is formed. The first electroformed layer 21 is formed by growing the electrodeposited metal until the thickness of the resist pattern 36 is slightly exceeded. As shown in FIG.5 (d), the upper surface side of the 1st electroformed layer 21 of the obtained board | substrate 1 is ground, and the thickness of the 1st electroformed layer 21 is adjusted to predetermined thickness. Furthermore, a copper plating process is performed on the upper surface side of the first electroformed layer 21 to form a copper plating layer (intervening layer) 26. As described above, when the first electroformed layer 21 is formed after the strike plating layer 20 is formed in the base preparation step, the first electroformed layer 21 is formed directly on the upper surface of the substrate 1. The first electroformed layer 21 and the substrate 1 can be firmly integrated via the strike plating layer 20 to enhance the adhesion strength between the substrate 1 and the molding convex portion 2.

(パターニング工程)
2回目のパターニング工程においては、図6(a)および図6(b)に示すように、銅メッキ層(電鋳対象)26の上面にフォトレジスト層37を形成し、その上面にフォトマスク38を密着した状態で露光し、現像および乾燥を行い、未露光部を溶解除去して、レジスト開口39を備えたレジストパターン40を第1電鋳層21の上面側に形成する。このように2層目のレジストパターン40はフォトリソグラフィ法で形成する。
(Patterning process)
In the second patterning step, as shown in FIGS. 6A and 6B, a photoresist layer 37 is formed on the upper surface of the copper plating layer (electroforming target) 26, and a photomask 38 is formed on the upper surface. The resist pattern 40 having the resist openings 39 is formed on the upper surface side of the first electroformed layer 21 by performing exposure and developing and drying in an intimate contact state, and dissolving and removing unexposed portions. Thus, the second-layer resist pattern 40 is formed by a photolithography method.

(電鋳工程および研削工程)
2回目の電鋳工程においては、図6(c)に示すように、レジストパターン40が形成された基板1を電鋳液に浸漬して、レジスト開口39に露出している銅メッキ層26に、電着金属がレジストパターン40の厚みを僅かに超えるまで成長させて第2電鋳層22を形成する。図6(d)に示すように、第2電鋳層22の上面側に研削加工を施して、第2電鋳層22の厚みを所定の厚みに調整する。
(Electroforming process and grinding process)
In the second electroforming process, as shown in FIG. 6C, the substrate 1 on which the resist pattern 40 is formed is immersed in an electroforming solution, and the copper plating layer 26 exposed in the resist opening 39 is formed. The second electroformed layer 22 is formed by growing the electrodeposited metal until the thickness of the resist pattern 40 is slightly exceeded. As shown in FIG. 6 (d), the upper surface side of the second electroformed layer 22 is ground to adjust the thickness of the second electroformed layer 22 to a predetermined thickness.

(パターン除去工程およびメッキ処理)
パターン除去工程においては、レジストパターン36・40を溶解除去して、第1電鋳層21および第2電鋳層22を露出させる。次に、図7(a)に示すように、第2電鋳層22の上面側に銅のメッキ処理を施して銅メッキ層(介在層)27を形成する。さらに、図7(b)に示すように、銅メッキ層27の上面側にニッケル−コバルトのメッキ処理を施して、カバーメッキ層29を形成してスタンプ金型を完成する。以上のように、この実施例ではパターニング工程と電鋳工程を2回ずつ行って、成形凸部2を多段状に形成した。なお、カバーメッキ層29は、一群の成形凸部2の表面にのみ形成してあってもよい。また、カバーメッキ層29は、光沢メッキで形成するのが好ましい。
(Pattern removal process and plating process)
In the pattern removing step, the resist patterns 36 and 40 are dissolved and removed to expose the first electroformed layer 21 and the second electroformed layer 22. Next, as shown in FIG. 7A, copper plating is performed on the upper surface side of the second electroformed layer 22 to form a copper plated layer (intervening layer) 27. Further, as shown in FIG. 7B, a nickel-cobalt plating process is performed on the upper surface side of the copper plating layer 27 to form a cover plating layer 29 to complete the stamp die. As described above, in this example, the patterning step and the electroforming step were performed twice to form the forming convex portion 2 in a multistage shape. Note that the cover plating layer 29 may be formed only on the surface of the group of molded convex portions 2. The cover plating layer 29 is preferably formed by gloss plating.

上記のように、各電鋳層21・22の上面を銅メッキ層26・27で覆うと、隣接する電鋳層21・22同士の密着強度を高めて、成形凸部2の構造強度を増強できる。従って、一群の成形凸部2を備えている金型の耐久性を向上できる。各電鋳層21・22は例えばニッケル−コバルト合金を電着させて形成するが、1層目の電鋳層21に2層目の電鋳層22を直接電着させ、隣接する電鋳層21・22同士を強固に密着させることができない。電着金属が同じ素材であると、充分な密着強度が得られないからである。しかし、電鋳層21の上面に銅メッキ層26を形成し、その上面に2層目の電鋳層22を形成すると、隣接する電鋳層21・22同士を、銅メッキ層26を介して強固に一体化して密着強度を増強できる。同様に、最外層の電鋳層22の上面にカバーメッキ層29を形成する場合にも、カバーメッキ層29と最外層の電鋳層22を、銅メッキ層27を介して強固に一体化して密着強度を増強できる。   As described above, when the upper surfaces of the electroformed layers 21 and 22 are covered with the copper plating layers 26 and 27, the adhesion strength between the adjacent electroformed layers 21 and 22 is increased, and the structural strength of the molding convex portion 2 is enhanced. it can. Accordingly, it is possible to improve the durability of the mold including the group of molding convex portions 2. Each of the electroformed layers 21 and 22 is formed, for example, by electrodeposition of a nickel-cobalt alloy. The second electroformed layer 22 is directly electrodeposited on the first electroformed layer 21, and the adjacent electroformed layers are formed. 21 and 22 cannot be firmly adhered to each other. This is because sufficient adhesion strength cannot be obtained when the electrodeposited metal is the same material. However, when the copper plating layer 26 is formed on the upper surface of the electroformed layer 21 and the second electroformed layer 22 is formed on the upper surface, the adjacent electroformed layers 21 and 22 are connected to each other via the copper plated layer 26. It can be tightly integrated to enhance the adhesion strength. Similarly, when the cover plating layer 29 is formed on the upper surface of the outermost electroforming layer 22, the cover plating layer 29 and the outermost electroforming layer 22 are firmly integrated via the copper plating layer 27. The adhesion strength can be increased.

スタンプ金型は、原理的には上記の各工程を経て形成するが、実際には図8(a)に示すように、面積が大きなステンレス製の原板44を用意しておき、その板面に9個の基板1を同時に形成して、スタンプ金型をより低コストで製造できるようにしている。この場合のフォトマスク34・38は、9個分の基板1を覆う大きさに形成してある。一連の処理が施された原板44は、9個の基板1の集合外郭線Lに沿ってレーザーカッターで切断されて、図8(b)に示す9個の基板1を備えた基板集合体45とされる。また、基板集合体45を個々の基板1の外郭線に沿ってワイヤーカット放電加工機で切断することにより、図8(c)に示す9個の塑性加工用の金型を得ることができる。   In principle, the stamp mold is formed through the above-described steps. In practice, however, as shown in FIG. 8A, a stainless steel plate 44 having a large area is prepared, and the stamp surface is formed on the plate surface. Nine substrates 1 are formed at the same time so that the stamp mold can be manufactured at a lower cost. The photomasks 34 and 38 in this case are formed in a size that covers nine substrates 1. The original plate 44 that has been subjected to a series of processing is cut by a laser cutter along the assembly outline L of the nine substrates 1, and the substrate assembly 45 including the nine substrates 1 shown in FIG. It is said. Further, by cutting the substrate assembly 45 along the outline of each substrate 1 with a wire cut electric discharge machine, nine molds for plastic working shown in FIG. 8C can be obtained.

原板44を9個の基板1の集合外郭線Lに沿ってレーザーカッターで切断すると、基板1の集合体の切断を速やかに行える。また、レーザーによる切断位置が各基板1から充分に離れているので、切断時の熱によって成形エリア11に形成した成形凸部2が熱変形することはない。しかし、基板集合体45から9個の基板1を切断する際には、切断位置が成形エリア11に近づくため、切断時の熱によって成形エリア11に形成した成形凸部2が熱変形するおそれがある。こうした切断時の熱による成形凸部2の熱変形を避けるために、基板集合体45から9個の基板1を切断する際には、水槽中で切断を行うワイヤーカット放電加工機を使用している。   When the original plate 44 is cut with a laser cutter along the assembly outline L of the nine substrates 1, the assembly of the substrates 1 can be quickly cut. Further, since the cutting position by the laser is sufficiently separated from each substrate 1, the molding convex portion 2 formed in the molding area 11 is not thermally deformed by heat at the time of cutting. However, when the nine substrates 1 are cut from the substrate assembly 45, the cutting position approaches the molding area 11, so that the molding convex part 2 formed in the molding area 11 may be thermally deformed by heat at the time of cutting. is there. In order to avoid the thermal deformation of the molding convex portion 2 due to the heat at the time of cutting, when cutting nine substrates 1 from the substrate assembly 45, a wire cut electric discharge machine that performs cutting in a water tank is used. Yes.

個々のスタンプ金型は、洗浄し乾燥することにより完成する。得られたスタンプ金型を使用してセラミックシート3に塑性加工を施すことにより、内部に凸部や凹部を備えている複雑で微細な構造の装填凹部4の一群を高精度に形成できる。焼成されたセラミックシートの装填凹部4には、例えば水晶振動子、水晶発振器、加速度センサー、角速度センサーなどの微小パーツを装填したのち、装填凹部の開口面を蓋で封止することにより、真空封止されあるいは気密封止された表面実装型のセラミックパッケージを得ることができる。   Individual stamp dies are completed by washing and drying. By subjecting the ceramic sheet 3 to plastic working using the obtained stamp mold, a group of loading concave portions 4 having a complicated and fine structure having convex portions and concave portions therein can be formed with high accuracy. The loading recess 4 of the fired ceramic sheet is loaded with micro parts such as a quartz crystal oscillator, a crystal oscillator, an acceleration sensor, an angular velocity sensor, and the like, and then the opening surface of the loading recess is sealed with a lid, thereby vacuum sealing. A surface-mounted ceramic package that is stopped or hermetically sealed can be obtained.

以上のように電鋳法で形成した塑性加工用の金型によれば、従来構造の金型に比べて、寸法精度や位置精度に優れた高精度の成形凸部2を精確に形成できる。従って、一群の成形凸部2を備えた金型を使用して加工対象3に塑性加工を施すことにより、内部に凸部や凹部を備えている複雑で微細な構造の装填凹部4を高精度に、しかも1回の塑性加工のみで確実に成形できる。   As described above, according to the mold for plastic working formed by the electroforming method, it is possible to accurately form the high-precision forming convex portion 2 excellent in dimensional accuracy and position accuracy as compared with the conventional mold. Therefore, by applying a plastic working to the workpiece 3 using a mold having a group of molding convex portions 2, a complicated and fine structure loading concave portion 4 having a convex portion and a concave portion inside can be obtained with high accuracy. Moreover, it can be reliably formed by only one plastic working.

基板1の周縁に外周エリア14を設け、同エリア14においてカバーメッキ層29を露出させると、ダミーエリア13と外周エリア14の外観を大きく異ならせて、塑性加工用の金型の形状を明確に認識させることができる。また、ダミーエリア13と外周エリア14の単位面積当たりの電着量を、成形エリア11の単位面積当たりの電着量に近づけて、成形エリア11における成形凸部2の層厚みの均一化に寄与できる。なお、外周エリア14においてカバーメッキ層29を露出させる必要はなく、同エリア14にダミー成形凸部15を形成すると、成形エリア11における成形凸部2の層厚みの均一化により一層寄与できる。また、この実施例では成形凸部2とダミー成形凸部15を同じ構造としたが、その必要はなく、成形凸部2とダミー成形凸部15の構造が異なっていても良い。要は、成形エリア11と、外周エリア14を含むダミーエリア13の単位面積当たりの電着量が同じであれば良い。因みに、成形凸部2とダミー成形凸部15の構造を異ならせていれば、各凸部2・15で成形された成形品が入り混じったとしても、両成形品の識別を容易に行えるので、不必要な成形品を確実に取除くことができる。   When the outer peripheral area 14 is provided on the peripheral edge of the substrate 1 and the cover plating layer 29 is exposed in the area 14, the outer appearance of the dummy area 13 and the outer peripheral area 14 are greatly different, and the shape of the mold for plastic working is clearly defined. Can be recognized. Further, the electrodeposition amount per unit area of the dummy area 13 and the outer peripheral area 14 is brought close to the electrodeposition amount per unit area of the molding area 11, thereby contributing to the uniform thickness of the molding convex portion 2 in the molding area 11. it can. Note that it is not necessary to expose the cover plating layer 29 in the outer peripheral area 14, and if the dummy molding convex portion 15 is formed in the same area 14, it is possible to further contribute to the uniform thickness of the molding convex portion 2 in the molding area 11. Further, in this embodiment, the molding convex portion 2 and the dummy molding convex portion 15 have the same structure, but this is not necessary, and the structures of the molding convex portion 2 and the dummy molding convex portion 15 may be different. The point is that the electrodeposition amount per unit area of the molding area 11 and the dummy area 13 including the outer peripheral area 14 may be the same. By the way, if the molding convex part 2 and the dummy molding convex part 15 have different structures, even if the moldings molded by the convex parts 2 and 15 are mixed, it is possible to easily identify both moldings. Unnecessary molded products can be surely removed.

(実施例2) 図9は実施例2に係る成形凸部2を示す。実施例2においては、成形凸部2を1層目の第1電鋳層21と、2層目の第2電鋳層22と、3層目の第3電鋳層(金属層)23で多段状に形成した。詳しくは、第1電鋳層21の上面の周囲に限って第2電鋳層22を形成し、第2電鋳層22の上面の周囲に限って第3電鋳層23を形成して、第1電鋳層21の中央に向かって階段状に凹む凹部48を形成した。第3電鋳層23は、3層目のレジストパターンをフォトリソグラフィ法で形成したのち、3回目の電鋳工程を経て形成した。この実施例においては、第2電鋳層22の上面に形成した銅メッキ層27が、3回目の電鋳処理を行う場合の電鋳対象となる。符号28は第3電鋳層23の上面に形成した銅メッキ層(介在層)である。以上のように、この実施例ではパターニング工程と電鋳工程を3回ずつ行って、成形凸部2を多段状に形成した。図示していないが、先に説明した成形凸部2と同様に、各電鋳層21〜23の上面にはそれぞれ銅をメッキ処理して銅メッキ層が形成してあり、以下の実施例においても、同様の銅メッキ層が形成してある。他は先の実施例と同じであるので同じ部材に同じ符号を付して、その説明を省略する。以下の実施例においても同じとする。 (Example 2) FIG. 9 shows the shaping | molding convex part 2 which concerns on Example 2. FIG. In Example 2, the forming convex portion 2 is formed by the first electroformed layer 21 of the first layer, the second electroformed layer 22 of the second layer, and the third electroformed layer (metal layer) 23 of the third layer. It was formed in a multistage shape. Specifically, the second electroformed layer 22 is formed only around the upper surface of the first electroformed layer 21, and the third electroformed layer 23 is formed only around the upper surface of the second electroformed layer 22, A recess 48 that is recessed stepwise toward the center of the first electroformed layer 21 was formed. The third electroformed layer 23 was formed through a third electroforming process after a third resist pattern was formed by photolithography. In this embodiment, the copper plating layer 27 formed on the upper surface of the second electroforming layer 22 is an electroforming object when performing the third electroforming process. Reference numeral 28 denotes a copper plating layer (intervening layer) formed on the upper surface of the third electroformed layer 23. As described above, in this example, the patterning step and the electroforming step were performed three times to form the forming convex portion 2 in a multistage shape. Although not shown, like the forming convex part 2 described above, copper is plated on the upper surface of each electroformed layer 21 to 23 to form a copper plating layer. Also, a similar copper plating layer is formed. The other parts are the same as in the previous embodiment, so the same reference numerals are assigned to the same members, and the description is omitted. The same applies to the following embodiments.

(実施例3) 図10は実施例3に係る成形凸部2を示す。実施例3においては、成形凸部2を1層目の第1電鋳層21と、2層目の第2電鋳層22と、3層目の第3電鋳層23で多段状に形成した。詳しくは、第1電鋳層21の上面の中央に限って第2電鋳層22を形成し、第2電鋳層22の上面の中央に限って第3電鋳層23を形成して、第3電鋳層23の上面が頂部となる成形凸部2を階段状に形成した。第3電鋳層23は、上記の実施例と同様に、3層目のレジストパターンをフォトリソグラフィ法で形成したのち、3回目の電鋳工程を経て形成することができ、以下の実施例においても、同様にして第3電鋳層23を形成することができる。 (Example 3) FIG. 10 shows the shaping | molding convex part 2 which concerns on Example 3. FIG. In Example 3, the forming convex portion 2 is formed in a multi-stage shape with the first electroformed layer 21 of the first layer, the second electroformed layer 22 of the second layer, and the third electroformed layer 23 of the third layer. did. Specifically, the second electroformed layer 22 is formed only at the center of the upper surface of the first electroformed layer 21, and the third electroformed layer 23 is formed only at the center of the upper surface of the second electroformed layer 22, The forming convex portion 2 having the top surface of the third electroformed layer 23 as a top portion was formed in a step shape. The third electroformed layer 23 can be formed through a third electroforming process after the third resist pattern is formed by photolithography, as in the above embodiment. Similarly, the third electroformed layer 23 can be formed.

(実施例4) 図11は実施例4に係る成形凸部2を示す。実施例4においては、成形凸部2を1層目の第1電鋳層21と、2層目の第2電鋳層22と、3層目の第3電鋳層23で多段状に形成した。詳しくは、第1電鋳層21の上面の中央寄りに第2電鋳層22を形成し、第1電鋳層21の上面の周囲と、第1電鋳層21の上面の中央に、第2電鋳層22より分厚い第3電鋳層23を形成して、凹部と高さが異なる2種の凸部を備えた成形凸部2を多段状に形成した。 (Example 4) FIG. 11 shows the shaping | molding convex part 2 which concerns on Example 4. FIG. In Example 4, the forming convex portion 2 is formed in a multi-stage shape with the first electroformed layer 21 of the first layer, the second electroformed layer 22 of the second layer, and the third electroformed layer 23 of the third layer. did. Specifically, the second electroformed layer 22 is formed near the center of the upper surface of the first electroformed layer 21, and the second electroformed layer 21 is formed around the upper surface of the first electroformed layer 21 and at the center of the upper surface of the first electroformed layer 21. A third electroformed layer 23 thicker than the two electroformed layers 22 was formed, and the forming convex portion 2 provided with two types of convex portions having different heights from the concave portions was formed in a multistage shape.

(実施例5) 図12は実施例5に係る成形凸部2を示す。実施例5においては、上記の実施例1において、第1電鋳層21および第2電鋳層22の上面側に形成した銅メッキ層26・27を省略して、1層目の第1電鋳層21の上面に第2電鋳層22を形成し、両電鋳層21・22の上面側にニッケル―コバルトのメッキ処理を施して、カバーメッキ層29を形成した。この実施例においては、第1電鋳層21が第2電鋳層22を形成する際の電鋳対象となる。 (Example 5) FIG. 12 shows the shaping | molding convex part 2 which concerns on Example 5. FIG. In the fifth embodiment, the copper plating layers 26 and 27 formed on the upper surfaces of the first electroformed layer 21 and the second electroformed layer 22 in the first embodiment are omitted, and the first electroforming layer of the first electroforming layer 21 is omitted. A second electroformed layer 22 was formed on the upper surface of the cast layer 21, and a nickel-cobalt plating process was performed on the upper surfaces of both the electroformed layers 21 and 22 to form a cover plated layer 29. In this embodiment, the first electroformed layer 21 is an electroformed object when the second electroformed layer 22 is formed.

(実施例6) 図13および図14は実施例6に係るスタンプ金型の製造過程を示す工程説明図である。そこでは、パターニング工程と、メッキ工程と、パターン除去工程と、メッキ工程の後に行われる研削工程などを経てスタンプ金型を製造する。なお、メッキ工程におけるメッキ処理としては、蒸着やスパッタリングなど多様な処理方法があるが、以下では、無電解メッキでメッキ処理を行う場合について説明する。 Example 6 FIG. 13 and FIG. 14 are process explanatory views showing a manufacturing process of a stamp mold according to Example 6. FIG. There, the stamp mold is manufactured through a patterning step, a plating step, a pattern removing step, a grinding step performed after the plating step, and the like. In addition, although there exist various processing methods, such as vapor deposition and sputtering, as a plating process in a plating process, the case where a plating process is performed by electroless plating is demonstrated below.

(パターニング工程)
1回目のパターニング工程においては、図13(a)および図13(b)に示すように、基板1の上面にフォトレジスト層33を形成し、その上面にフォトマスク34を密着した状態で露光し、現像および乾燥を行い、未露光部を溶解除去して、レジスト開口35を備えたレジストパターン36を形成する。このように1回目のパターニング工程においては、1層目のレジストパターン36をフォトリソグラフィ法で形成する。
(Patterning process)
In the first patterning step, as shown in FIGS. 13A and 13B, a photoresist layer 33 is formed on the upper surface of the substrate 1, and exposure is performed with the photomask 34 in close contact with the upper surface. Then, development and drying are performed, and the unexposed portion is dissolved and removed to form a resist pattern 36 having a resist opening 35. Thus, in the first patterning step, the first resist pattern 36 is formed by photolithography.

(メッキ工程、および研削工程)
1回目のメッキ工程においては、図13(c)に示すように、レジストパターン36が形成された基板1を無電解メッキ用のメッキ槽に浸漬して、レジスト開口35に露出している基板(メッキ対象)1にメッキ層を成長させて、第1メッキ層(金属層)51を形成する。図13(d)に示すように、得られた基板1の第1メッキ層51の上面側に研削加工を施して、第1メッキ層51の厚みを所定の厚みに調整する。
(Plating process and grinding process)
In the first plating step, as shown in FIG. 13C, the substrate 1 on which the resist pattern 36 is formed is immersed in a plating bath for electroless plating, and is exposed to the resist opening 35 ( A plating layer is grown on the object to be plated 1 to form a first plating layer (metal layer) 51. As shown in FIG. 13D, the upper surface side of the first plating layer 51 of the obtained substrate 1 is ground to adjust the thickness of the first plating layer 51 to a predetermined thickness.

(パターニング工程)
2回目のパターニング工程においては、図14(a)および図14(b)に示すように、第1メッキ層51の上面にフォトレジスト層37を形成し、その上面にフォトマスク38を密着した状態で露光し、現像および乾燥を行い、未露光部を溶解除去して、レジスト開口39を備えたレジストパターン40を第1メッキ層51の上面側に形成する。このように2層目のレジストパターン40はフォトリソグラフィ法で形成する。
(Patterning process)
In the second patterning step, as shown in FIGS. 14A and 14B, a photoresist layer 37 is formed on the upper surface of the first plating layer 51, and the photomask 38 is in close contact with the upper surface. The resist pattern 40 having the resist openings 39 is formed on the upper surface side of the first plating layer 51 by performing exposure, developing and drying to dissolve and remove the unexposed portions. Thus, the second-layer resist pattern 40 is formed by a photolithography method.

(メッキ工程および研削工程)
2回目のメッキ工程においては、図14(c)に示すように、レジストパターン40が形成された基板1を無電解メッキ用のメッキ槽に浸漬して、レジスト開口39に露出している第1メッキ層(メッキ対象)51の上面にメッキ層を成長させて第2メッキ層52を形成する。図14(d)に示すように、第2メッキ層52の上面側に研削加工を施して、第2メッキ層52の厚みを所定の厚みに調整する。
(Plating process and grinding process)
In the second plating step, as shown in FIG. 14C, the substrate 1 on which the resist pattern 40 is formed is immersed in a plating bath for electroless plating and exposed to the resist opening 39. A second plating layer 52 is formed by growing a plating layer on the upper surface of the plating layer (target to be plated) 51. As shown in FIG. 14D, the upper surface side of the second plating layer 52 is ground to adjust the thickness of the second plating layer 52 to a predetermined thickness.

(パターン除去工程)
パターン除去工程においては、レジストパターン36・40を溶解除去して、第1メッキ層51および第2メッキ層52を露出させたのち、一群の成形凸部2を含む基板1の上面に金属カバー層29を形成してスタンプ金型を完成する。以上のように、この実施例ではパターニング工程とメッキ工程を2回ずつ行って、成形凸部2を多段状に形成した。必要があれば第3のメッキ層を形成して、成形凸部2を多段状に形成することができる。なお、第1メッキ層51および第2メッキ層52の上面は、介在層(26・27・28)で覆われていてもよい。
(Pattern removal process)
In the pattern removal step, the resist patterns 36 and 40 are dissolved and removed to expose the first plating layer 51 and the second plating layer 52, and then the metal cover layer is formed on the upper surface of the substrate 1 including the group of molding protrusions 2. 29 is formed to complete the stamping die. As described above, in this example, the patterning step and the plating step were performed twice to form the forming convex portion 2 in a multistage shape. If necessary, a third plating layer can be formed to form the forming convex portion 2 in a multi-stage shape. The upper surfaces of the first plating layer 51 and the second plating layer 52 may be covered with intervening layers (26, 27, 28).

以上のようにメッキ法で形成した塑性加工用の金型によれば、実施例1の金型と同様に、従来構造の金型に比べて、寸法精度や位置精度に優れた高精度の成形凸部2を精確に形成できる。従って、一群の成形凸部2を備えた金型を使用して加工対象3に塑性加工を施すことにより、内部に凸部や凹部を備えている複雑で微細な構造の装填凹部4を高精度に、しかも1回の塑性加工のみで確実に成形できる。また、成形凸部2を複数の電鋳層21・22・23で形成する場合に比べて、塑性加工用の金型をより低コストで提供できる。   As described above, according to the metal mold for plastic working formed by the plating method, as with the metal mold of the first embodiment, high-precision molding superior in dimensional accuracy and position accuracy compared to the conventional mold. The convex part 2 can be accurately formed. Therefore, by applying a plastic working to the workpiece 3 using a mold having a group of molding convex portions 2, a complicated and fine structure loading concave portion 4 having a convex portion and a concave portion inside can be obtained with high accuracy. Moreover, it can be reliably formed by only one plastic working. Moreover, the metal mold | die for plastic working can be provided at low cost compared with the case where the shaping | molding convex part 2 is formed with the some electroforming layer 21,22,23.

実施例1においては、図6(a)〜(d)に示すように、銅メッキ層26の上面にフォトレジスト層37を形成し、フォトマスク38を介して露光し、現像および乾燥を行い、未露光部を溶解除去して、2層目のレジストパターン40を形成した。さらに、基板1を電鋳液に浸漬して第2電鋳層22を形成した。上記のように、2層目のレジストパターン40は、フォトレジスト層37の未露光部を溶解除去して形成するが、未露光部の溶解除去時に、第1電鋳層21の上面にレジスト残渣が発生することがある。このように、レジスト残渣が存在すると、第1電鋳層21と第2電鋳層22の密着強度が低下してしまう。   In Example 1, as shown in FIGS. 6A to 6D, a photoresist layer 37 is formed on the upper surface of the copper plating layer 26, exposed through a photomask 38, developed and dried, The unexposed portion was dissolved and removed to form a second layer resist pattern 40. Furthermore, the board | substrate 1 was immersed in the electroforming liquid, and the 2nd electroforming layer 22 was formed. As described above, the second-layer resist pattern 40 is formed by dissolving and removing the unexposed portion of the photoresist layer 37. When the unexposed portion is dissolved and removed, a resist residue is formed on the upper surface of the first electroformed layer 21. May occur. Thus, when a resist residue exists, the adhesive strength of the 1st electroformed layer 21 and the 2nd electroformed layer 22 will fall.

上記のような密着強度の低下を防ぐために、レジストパターン40を形成した後に、エッチング処理を行って、レジスト開口39に露出する銅メッキ層26を除去すると、レジスト残渣を確実に除去できる。従って、エッチング処理を行ったのち、第2電鋳層22を形成することで、レジスト残渣の影響を排除して、第2電鋳層22の第1電鋳層21に対する密着強度を向上できる。さらに、レジストパターン36・40を溶解除去したのち、カバーメッキ層29を形成する。なお、レジストパターン36・40を溶解除去した状態においては、レジストパターン40の直下の銅メッキ層26が第1電鋳層21の上面に露出するが、露出した銅メッキ層26を除去したのちカバーメッキ層29を形成してもよく、銅メッキ層26を除去せずにカバーメッキ層29を形成してもよい。   In order to prevent a decrease in the adhesion strength as described above, the resist residue can be reliably removed by performing an etching process after forming the resist pattern 40 to remove the copper plating layer 26 exposed in the resist opening 39. Therefore, after the etching process is performed, the second electroformed layer 22 is formed, thereby eliminating the influence of the resist residue and improving the adhesion strength of the second electroformed layer 22 to the first electroformed layer 21. Further, after the resist patterns 36 and 40 are dissolved and removed, a cover plating layer 29 is formed. In the state in which the resist patterns 36 and 40 are dissolved and removed, the copper plating layer 26 immediately below the resist pattern 40 is exposed on the upper surface of the first electroformed layer 21, but the cover is formed after the exposed copper plating layer 26 is removed. The plating layer 29 may be formed, or the cover plating layer 29 may be formed without removing the copper plating layer 26.

実施例5において説明したスタンプ金型においても、上記と同様のエッチング処理を行うことにより、第1電鋳層21と第2電鋳層22の密着強度を向上できる。実施例5においては、図12に示すように、第1電鋳層21と第2電鋳層22の層間、および第2電鋳層22とカバーメッキ層29の層間に銅メッキ層(介在層)が存在しない金型の形態であるが、係る形態の金型を製造する過程では、銅メッキ層を形成してもよい。詳しくは、実施例1の図5(a)〜(c)に示すように、1回目のパターニング工程と電鋳工程を行ったのちに、図5(d)に示すように、第1電鋳層21の上面に銅メッキ層26を形成する。これが、先に述べた密着強度の低下を防ぐ役割となる。このように、第1電鋳層21の上面に銅メッキ層26を形成したのち、図6(a)、(b)に示すように2回目のパターニング工程を行う。2回目のパターニング工程におけるレジスト現像時に、レジスト残渣が発生し、レジスト開口39内に存在することがあるが、その場合には、レジスト開口39に露出する銅メッキ層26を除去することで、レジスト残渣を一緒に除去できる。こののち、2回目の電鋳工程を行うことで、第1電鋳層21と第2電鋳層22の密着強度を向上できる。この後、レジストパターン除去工程を行い、レジストパターン40の直下の銅メッキ層26を除去して、カバーメッキ層29を形成することにより、図12に示す金型が得られる。   Also in the stamp mold described in the fifth embodiment, the adhesion strength between the first electroformed layer 21 and the second electroformed layer 22 can be improved by performing the same etching treatment as described above. In Example 5, as shown in FIG. 12, a copper plating layer (intervening layer) is provided between the first electroformed layer 21 and the second electroformed layer 22 and between the second electroformed layer 22 and the cover plated layer 29. ) Does not exist, a copper plating layer may be formed in the process of manufacturing such a mold. Specifically, as shown in FIGS. 5A to 5C of Example 1, after performing the first patterning step and the electroforming step, as shown in FIG. 5D, the first electroforming is performed. A copper plating layer 26 is formed on the upper surface of the layer 21. This serves to prevent the decrease in adhesion strength described above. Thus, after forming the copper plating layer 26 on the upper surface of the first electroformed layer 21, a second patterning step is performed as shown in FIGS. 6 (a) and 6 (b). At the time of resist development in the second patterning process, a resist residue may be generated and may exist in the resist opening 39. In this case, the copper plating layer 26 exposed in the resist opening 39 is removed to remove the resist. Residues can be removed together. Thereafter, the adhesion strength between the first electroformed layer 21 and the second electroformed layer 22 can be improved by performing the second electroforming process. Thereafter, a resist pattern removing step is performed to remove the copper plating layer 26 immediately below the resist pattern 40 and form a cover plating layer 29, whereby the mold shown in FIG. 12 is obtained.

上記の各実施例では、各金属層の形成素材としては、ニッケル−コバルト以外に、ニッケル、あるいはコバルト以外の金属を含むニッケル合金、さらに銅、銅合金を適用できる。基板1はステンレス材以外に、銅合金材であってもよい。また、上記の実施例の下地調整工程においては、ステンレス製の基板1の上面にストライクメッキ層20を形成して、その上面に第1電鋳層21または第1メッキ層51を形成したが、ストライクメッキ層20を形成する代わりに、ステンレス製の基板1の上面に化学エッチング処理を施して下地とすることができる。成形エリア11は、ダミーエリア13を囲む状態で形成してあってもよい。本発明における凹状構造4は、底壁で塞がれている凹部である必要はなく、凹部の底壁に開口が形成してある形態を含むこととする。成形凸部2は、電鋳法やメッキ法で形成する必要はなく、ニッケル、銅、鉄などの金属母材にレーザー加工を施して形成でき、あるいは先の金属母材にエッチング加工を施して形成することができる。   In each of the above embodiments, as a material for forming each metal layer, nickel or nickel alloy containing metal other than cobalt, copper, or copper alloy can be applied in addition to nickel-cobalt. The substrate 1 may be a copper alloy material in addition to the stainless steel material. Moreover, in the foundation | substrate adjustment process of said Example, although the strike plating layer 20 was formed in the upper surface of the board | substrate 1 made from stainless steel, the 1st electroforming layer 21 or the 1st plating layer 51 was formed in the upper surface, Instead of forming the strike plating layer 20, the upper surface of the stainless steel substrate 1 can be subjected to a chemical etching process as a base. The molding area 11 may be formed so as to surround the dummy area 13. The concave structure 4 in the present invention does not need to be a concave portion closed by the bottom wall, and includes a form in which an opening is formed in the bottom wall of the concave portion. The forming convex portion 2 does not need to be formed by electroforming or plating, and can be formed by applying laser processing to a metal base material such as nickel, copper, or iron, or by etching the previous metal base material. Can be formed.

本発明に係る金型は、セラミックシート以外の加工対象の塑性加工にも適用できる。   The metal mold | die which concerns on this invention is applicable also to the plastic processing of workpieces other than a ceramic sheet.

1 基板
2 成形凸部
3 セラミックシート(加工対象)
4 装填凹部(凹状構造)
11 成形エリア
13 ダミーエリア
14 外周エリア
15 ダミー成形凸部
20 ストライクメッキ層
21 第1電鋳層(金属層)
22 第2電鋳層(金属層)
23 第3電鋳層(金属層)
26・27・28 銅メッキ層(介在層)
29 カバーメッキ層(金属カバー層)
33・37 フォトレジスト層
34・38 フォトマスク
35・39 レジスト開口
36・40 レジストパターン
51 第1メッキ層(金属層)
52 第2メッキ層(金属層)
1 Substrate 2 Molding convex part 3 Ceramic sheet (processing object)
4 Loading recess (concave structure)
DESCRIPTION OF SYMBOLS 11 Molding area 13 Dummy area 14 Outer peripheral area 15 Dummy molding convex part 20 Strike plating layer 21 1st electroforming layer (metal layer)
22 Second electroformed layer (metal layer)
23 Third electroformed layer (metal layer)
26, 27, 28 Copper plating layer (intervening layer)
29 Cover plating layer (metal cover layer)
33/37 Photoresist layer 34/38 Photomask 35/39 Resist opening 36/40 Resist pattern 51 First plating layer (metal layer)
52 Second plating layer (metal layer)

Claims (10)

加工対象(3)に凸部や凹部を備えた凹状構造(4)の一群を成形する塑性加工用の金型であって、
塑性加工用の金型は、金属製の基板(1)の上面に、凹状構造(4)を形成するための一群の成形凸部(2)が設けられて、一群の成形凸部(2)の表面が金属カバー層(29)で覆われており、
成形凸部(2)が、多段状に積層した複数の金属層で構成されていることを特徴とする塑性加工用の金型。
A mold for plastic working that molds a group of concave structures (4) having convex portions and concave portions on a processing target (3),
The mold for plastic working is provided with a group of molding convex portions (2) for forming a concave structure (4) on the upper surface of a metal substrate (1), and a group of molding convex portions (2). Is covered with a metal cover layer (29),
A mold for plastic working, wherein the molding convex part (2) is composed of a plurality of metal layers laminated in a multi-stage shape.
複数の金属層が電鋳層(21・22・23)からなる請求項1に記載の塑性加工用の金型。   The metal mold for plastic working according to claim 1, wherein the plurality of metal layers are composed of electroformed layers (21, 22, 23). 複数の金属層がメッキ層(51・52)からなる請求項1に記載の塑性加工用の金型。   The metal mold for plastic working according to claim 1, wherein the plurality of metal layers are made of plated layers (51, 52). 基板(1)の上面に一群の成形凸部(2)を備えた成形エリア(11)が形成されており、
成形エリア(11)を囲む状態でダミーエリア(13)が形成されており、
ダミーエリア(13)に、成形凸部(2)と同じ構造の一群のダミー成形凸部(15)が形成されている請求項1から3のいずれかひとつに記載の塑性加工用の金型。
A molding area (11) having a group of molding projections (2) is formed on the upper surface of the substrate (1),
A dummy area (13) is formed in a state surrounding the molding area (11),
The metal mold for plastic working according to any one of claims 1 to 3, wherein a group of dummy molding convex portions (15) having the same structure as the molding convex portion (2) is formed in the dummy area (13).
基板(1)の周縁にダミーエリア(13)を囲む外周エリア(14)が形成されており、
外周エリア(14)において金属カバー層(29)が露出している請求項1から4のいずれかひとつに記載の塑性加工用の金型。
An outer peripheral area (14) surrounding the dummy area (13) is formed on the periphery of the substrate (1),
The metal mold for plastic working according to any one of claims 1 to 4, wherein the metal cover layer (29) is exposed in the outer peripheral area (14).
各金属層の上面が介在層(26・27・28)で覆われている請求項1から5のいずれかひとつに記載の塑性加工用の金型。   The metal mold for plastic working according to any one of claims 1 to 5, wherein an upper surface of each metal layer is covered with an intervening layer (26, 27, 28). 金属製の基板(1)の上面に多段状の成形凸部(2)の一群が形成されている塑性加工用の金型の製造方法であって、
電鋳対象に、レジスト開口(35・39)を備えたレジストパターン(36・40)をフォトリソグラフィ法で形成するパターニング工程と、レジスト開口(35・39)に臨む電鋳対象の表面に電鋳層(21・22・23)を形成する電鋳工程と、レジストパターン(36・40)を除去するパターン除去工程を含み、
パターニング工程と電鋳工程を2回以上交互に行い、最終の電鋳工程ののちパターン除去工程を行い、基板(1)の上面に複数の電鋳層(21・22・23)を積層形成して成形凸部(2)を多段状に形成し、
一群の成形凸部(2)を含む基板(1)の上面にメッキ処理を施して金属カバー層(29)を形成することを特徴とする塑性加工用の金型の製造方法。
A method of manufacturing a metal mold for plastic working in which a group of multi-stage shaped convex portions (2) is formed on the upper surface of a metal substrate (1),
A patterning process for forming a resist pattern (36, 40) having resist openings (35, 39) on an electroforming object by photolithography, and electroforming on the surface of the electroforming object facing the resist openings (35, 39) An electroforming process for forming the layers (21, 22, 23) and a pattern removing process for removing the resist pattern (36, 40),
The patterning process and the electroforming process are alternately performed twice or more, the pattern removal process is performed after the final electroforming process, and a plurality of electroformed layers (21, 22, 23) are formed on the upper surface of the substrate (1). Forming the convex part (2) in a multi-stage shape,
A method for producing a metal mold for plastic working, characterized in that a metal cover layer (29) is formed by performing a plating process on the upper surface of a substrate (1) including a group of molded convex portions (2).
金属製の基板(1)の上面に多段状の成形凸部(2)の一群が形成されている塑性加工用の金型の製造方法であって、
メッキ対象に、レジスト開口(35・39)を備えたレジストパターン(36・40)をフォトリソグラフィ法で形成するパターニング工程と、レジスト開口(35・39)に臨むメッキ対象の表面にメッキ層(51・52)を形成するメッキ工程と、レジストパターン(36・40)を除去するパターン除去工程を含み、
パターニング工程とメッキ工程を2回以上交互に行い、最終のメッキ工程ののちパターン除去工程を行い、基板(1)の上面に複数のメッキ層(51・52)を積層形成して成形凸部(2)を多段状に形成し、
一群の成形凸部(2)を含む基板(1)の上面にメッキ処理を施して金属カバー層(29)を形成することを特徴とする塑性加工用の金型の製造方法。
A method of manufacturing a metal mold for plastic working in which a group of multi-stage shaped convex portions (2) is formed on the upper surface of a metal substrate (1),
A patterning step for forming a resist pattern (36, 40) having a resist opening (35, 39) on the object to be plated by photolithography, and a plating layer (51 on the surface of the plating object facing the resist opening (35, 39)) A plating process for forming 52) and a pattern removing process for removing the resist pattern (36, 40),
The patterning step and the plating step are alternately performed twice or more, the pattern removal step is performed after the final plating step, and a plurality of plating layers (51, 52) are formed on the upper surface of the substrate (1) to form a convex portion ( 2) is formed in multiple stages,
A method for producing a metal mold for plastic working, characterized in that a metal cover layer (29) is formed by performing a plating process on the upper surface of a substrate (1) including a group of molded convex portions (2).
基板(1)の上面にメッキ処理を施してストライクメッキ層(20)を形成する下地調整工程を備えており、
下地調整工程を行ったのち、パターニング工程と電鋳工程またはメッキ工程を行って1層目の電鋳層(21)、または1層目のメッキ層(51)を形成する請求項7、または8に記載の塑性加工用の金型の製造方法。
A base adjustment step of forming a strike plating layer (20) by plating the upper surface of the substrate (1);
9. The first electroforming layer (21) or the first plating layer (51) is formed by performing a patterning step and an electroforming step or a plating step after performing the base preparation step. The manufacturing method of the metal mold | die for plastic working as described in 2.
金属製の原板(44)に複数の基板(1)が同時に形成されており、
原板(44)を複数の基板(1)の集合外郭線(L)に沿ってレーザーカッターで切断して、基板集合体(45)を形成し、
基板集合体(45)を個々の基板(1)の外郭線に沿ってワイヤーカット放電加工機で切断して、複数の塑性加工用の金型を形成する請求項7から9のいずれかひとつに記載の塑性加工用の金型の製造方法。
A plurality of substrates (1) are simultaneously formed on a metal original plate (44),
A substrate assembly (45) is formed by cutting the original plate (44) with a laser cutter along the assembly outline (L) of the plurality of substrates (1),
The substrate assembly (45) is cut by a wire-cut electric discharge machine along an outline of each substrate (1) to form a plurality of plastic working dies. The manufacturing method of the metal mold | die for plastic working of description.
JP2016177556A 2016-09-12 2016-09-12 Mold for plastic working and manufacturing method thereof Active JP7175077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016177556A JP7175077B2 (en) 2016-09-12 2016-09-12 Mold for plastic working and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016177556A JP7175077B2 (en) 2016-09-12 2016-09-12 Mold for plastic working and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020122598A Division JP7049409B2 (en) 2020-07-17 2020-07-17 Manufacturing method of mold for plastic working

Publications (2)

Publication Number Publication Date
JP2018044186A true JP2018044186A (en) 2018-03-22
JP7175077B2 JP7175077B2 (en) 2022-11-18

Family

ID=61693606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016177556A Active JP7175077B2 (en) 2016-09-12 2016-09-12 Mold for plastic working and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP7175077B2 (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4853540A (en) * 1971-11-05 1973-07-27
JPS4953540A (en) * 1972-09-28 1974-05-24
JPH11333856A (en) * 1998-03-27 1999-12-07 Nikon Corp Manufacture of molding tool for resin board
JP2000275405A (en) * 1999-03-29 2000-10-06 Canon Inc Manufacture of microstructure array, manufacture of die for micro-lens array, and manufacture of micro-lens array with use thereof
JP2001347529A (en) * 2000-06-06 2001-12-18 Mitsui Chemicals Inc Stamper for manufacturing circuit board and method for manufacturing stamper
JP2002025573A (en) * 2000-07-10 2002-01-25 Suncall Corp Manufacturing method of electrode for fuel cell
JP2002180282A (en) * 2000-12-20 2002-06-26 Kyushu Hitachi Maxell Ltd Electroformed metal and its manufacturing method
JP2005026412A (en) * 2003-07-01 2005-01-27 Shinko Electric Ind Co Ltd Mold for coining manufacture of circuit board and its manufacturing method
US20050167272A1 (en) * 2004-01-29 2005-08-04 Irene Chen Method of fabricating a stamper with microstructure patterns
JP2008001044A (en) * 2006-06-26 2008-01-10 Towa Corp Microstructured article and its manufacturing method
JP2008021959A (en) * 2006-04-13 2008-01-31 Alps Electric Co Ltd Through-hole machining apparatus of green sheet, and through-hole machining method of the same
JP2008265244A (en) * 2007-04-24 2008-11-06 Process Lab Micron:Kk Micro-mold, its manufacturing method, and plating matrix for manufacturing micro-mold
JP2011231369A (en) * 2010-04-27 2011-11-17 Dowa Metaltech Kk Plated member and method of manufacturing the same
JP2016125072A (en) * 2014-12-26 2016-07-11 Towa株式会社 Method for producing metal product

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4853540A (en) * 1971-11-05 1973-07-27
JPS4953540A (en) * 1972-09-28 1974-05-24
JPH11333856A (en) * 1998-03-27 1999-12-07 Nikon Corp Manufacture of molding tool for resin board
JP2000275405A (en) * 1999-03-29 2000-10-06 Canon Inc Manufacture of microstructure array, manufacture of die for micro-lens array, and manufacture of micro-lens array with use thereof
JP2001347529A (en) * 2000-06-06 2001-12-18 Mitsui Chemicals Inc Stamper for manufacturing circuit board and method for manufacturing stamper
JP2002025573A (en) * 2000-07-10 2002-01-25 Suncall Corp Manufacturing method of electrode for fuel cell
JP2002180282A (en) * 2000-12-20 2002-06-26 Kyushu Hitachi Maxell Ltd Electroformed metal and its manufacturing method
JP2005026412A (en) * 2003-07-01 2005-01-27 Shinko Electric Ind Co Ltd Mold for coining manufacture of circuit board and its manufacturing method
US20050167272A1 (en) * 2004-01-29 2005-08-04 Irene Chen Method of fabricating a stamper with microstructure patterns
JP2008021959A (en) * 2006-04-13 2008-01-31 Alps Electric Co Ltd Through-hole machining apparatus of green sheet, and through-hole machining method of the same
JP2008001044A (en) * 2006-06-26 2008-01-10 Towa Corp Microstructured article and its manufacturing method
JP2008265244A (en) * 2007-04-24 2008-11-06 Process Lab Micron:Kk Micro-mold, its manufacturing method, and plating matrix for manufacturing micro-mold
JP2011231369A (en) * 2010-04-27 2011-11-17 Dowa Metaltech Kk Plated member and method of manufacturing the same
JP2016125072A (en) * 2014-12-26 2016-07-11 Towa株式会社 Method for producing metal product

Also Published As

Publication number Publication date
JP7175077B2 (en) 2022-11-18

Similar Documents

Publication Publication Date Title
JP4243129B2 (en) Processing method of light guide plate mold
JP7049409B2 (en) Manufacturing method of mold for plastic working
JP7175077B2 (en) Mold for plastic working and manufacturing method thereof
JP5030618B2 (en) Electroforming mold and manufacturing method thereof
US6881369B2 (en) Microelectroforming mold using a preformed metal as the substrate and the fabrication method of the same
JP4848494B2 (en) Mold manufacturing method and mold
JP2008265244A (en) Micro-mold, its manufacturing method, and plating matrix for manufacturing micro-mold
JP5070563B2 (en) Manufacturing method of fine mold and fine mold
TWI233423B (en) Method of fabricating a stamper with microstructure patterns
JP6526748B2 (en) Method of manufacturing a timepiece comprising a multilevel outer element
KR102007920B1 (en) Method of manufacturing mold core using electro-forming
KR100727371B1 (en) Method for manufacturing a metal mask using multilayer photoresist film and a metal mask using the same
TWI703301B (en) The manufacture method of the heat dissipation component
CN109680306B (en) FMM electroforming mother board manufacturing method based on mechanical punching
JPH10275971A (en) Mother substrate and manufacture of electronic component
JP2005285841A (en) Process for producing three-dimensional microwave transmission circuit, and three-dimensional microwave transmission circuit board produced using process
JP6345957B2 (en) Metal-ceramic circuit board and manufacturing method thereof
JP2006144067A (en) Plate body having lattice-shaped opening and production method therefor
JP6566586B2 (en) Metal-ceramic circuit board and manufacturing method thereof
JP2003183811A (en) Metal mask and manufacturing method therefor
JP5098452B2 (en) Manufacturing method of semiconductor device
JP2020125530A (en) Manufacturing method of stamper
TW201729969A (en) Method for manufacturing tridimensional structure, die used in the same and electrical contact
US20090277795A1 (en) Process for fabricating molding stamp
JP4786464B2 (en) Translucent cap member and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200401

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210528

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210528

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210607

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210608

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20210702

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20210707

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20211201

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20220309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220427

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20220607

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220729

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220823

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220909

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20221012

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20221012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221108

R150 Certificate of patent or registration of utility model

Ref document number: 7175077

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150