JP2002025573A - Manufacturing method of electrode for fuel cell - Google Patents

Manufacturing method of electrode for fuel cell

Info

Publication number
JP2002025573A
JP2002025573A JP2000208754A JP2000208754A JP2002025573A JP 2002025573 A JP2002025573 A JP 2002025573A JP 2000208754 A JP2000208754 A JP 2000208754A JP 2000208754 A JP2000208754 A JP 2000208754A JP 2002025573 A JP2002025573 A JP 2002025573A
Authority
JP
Japan
Prior art keywords
electrode
mold
fuel cell
electroforming
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000208754A
Other languages
Japanese (ja)
Inventor
Sadaaki Mitsuo
貞昭 満尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suncall Corp
Original Assignee
Suncall Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suncall Corp filed Critical Suncall Corp
Priority to JP2000208754A priority Critical patent/JP2002025573A/en
Publication of JP2002025573A publication Critical patent/JP2002025573A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To manufacture a quality electrode for fuel cell economically. SOLUTION: A 1st electrode mold 10 (positive electrode mold) is manufactured by photo-forming, a 2nd electrode mold 20 (negative electrode mold) is manufactured by electric casting using the 1st electrode mold 10, a 3rd electrode mold (positive electrode mold) is manufactured by using the 2nd electrode mold 20, and the electrodes for fuel cells are economically manufactured by electric casting using the 3rd electrode mold.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】 本発明は燃料電池用電極の
製造方法に関し、特にフォトフォーミングにより第1電
極型を製作し、その後電気鋳造により第2電極型、第3
電極型を順次製作し、この第3電極型を用いて高品質の
燃料電池用電極を製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an electrode for a fuel cell, and more particularly, to a method for manufacturing a first electrode type by photoforming and then forming the second electrode type and a third electrode type by electroforming.
The present invention relates to a method for sequentially manufacturing an electrode type and manufacturing a high-quality fuel cell electrode using the third electrode type.

【0002】[0002]

【従来の技術】 従来、フォトレジストのパターン形成
技術と電気鋳造の技術とを組み合わせたフォトフォーミ
ングは、電気メッキの電極を電極型に形成しておき、こ
の電極型に電気メッキにより金属層を電着させ、この金
属層を剥離することで、数10〜数100μmの厚さの
種々の金属製シート体を製作する技術である。このフォ
トフォーミングは従来より広く実用化されており、この
フォトフォーミングによれば、フォトエッチングのよう
にアッダーカットが発生しないため、一層細かいシャー
プな種々の形状の凹部や凹凸や微細な穴などのフォーミ
ングを行うことができる。例えば、従来から、種々の化
学蒸着用マスク、電気カミソリの外刃、微細スクリー
ン、微細メッシュ、微細フィルタなどは、フォトフォー
ミングの技術で製作されている。
2. Description of the Related Art Conventionally, in photoforming which combines a photoresist pattern forming technique and an electroforming technique, an electrode for electroplating is formed in an electrode form, and a metal layer is formed on the electrode form by electroplating. This is a technique for producing various metal sheet bodies having a thickness of several tens to several hundreds of micrometers by attaching the metal layer and peeling the metal layer. This photoforming has been widely used in the past, and according to this photoforming, since the adder cut does not occur unlike the photoetching, it is possible to form finer concaves and concaves of various shapes, irregularities, and fine holes. It can be carried out. For example, conventionally, various chemical vapor deposition masks, outer blades of electric razors, fine screens, fine meshes, fine filters, and the like have been manufactured by photoforming technology.

【0003】一方、最近自動車メーカーは自動車用燃料
電池の実用化に向けてその要素技術を鋭意開発中であ
る。例えば、水素と酸素を燃料とする燃料電池では、電
解液に水酸化カリウム溶液を用い、この正極の表面に正
極活物質としてのO2 ガスを供給し、負極の表面に負極
活物質としてのH2 ガスを供給し、正極と負極間に発生
する電流と電解液を介して、H2 ガスとO2 ガスを反応
させて発電する。この種の燃料電池用電極としては、例
えばニッケルの薄金属板が適用され、電極の表面におい
てH2 やO2 などの活物質と電解液と固体電極との電気
化学反応が生じる。そこで、電極と活物質との接触を促
進する為に、電極には直径約1mm程度の微小凹部が微
細ピッチ(約1〜2mm)で縦横に多数形成される。
On the other hand, recently, automakers are keenly developing elemental technologies for the practical use of automobile fuel cells. For example, in a fuel cell using hydrogen and oxygen as fuel, a potassium hydroxide solution is used as an electrolytic solution, O 2 gas as a positive electrode active material is supplied to the surface of the positive electrode, and H 2 as a negative electrode active material is supplied to the surface of the negative electrode. 2 gas supplies, via current and electrolyte solution which occurs between the positive electrode and the negative electrode, to generate electricity by reacting H 2 gas and O 2 gas. As this type of fuel cell electrode, for example, a thin metal plate of nickel is applied, and an electrochemical reaction occurs between an active material such as H 2 or O 2 , an electrolytic solution, and a solid electrode on the surface of the electrode. Therefore, in order to promote the contact between the electrode and the active material, a large number of fine concave portions having a diameter of about 1 mm are formed in the electrode at a fine pitch (about 1 to 2 mm) in the vertical and horizontal directions.

【0004】[0004]

【発明が解決しようとする課題】 前記燃料電池用電極
など薄い金属板に多数の凹部や凹凸を形成する場合は、
通常プレス成形により形成する。しかし、直径約1mm
程度の微小の凹部を多数形成する金型を製作することは
可能ではあるが、金型の製作費が非常に高価になり、実
用的でない。そこで、フォトフォーミングにより燃料電
池用電極を製作することが考えられる。しかし、フォト
フォーミングにより電極型を製作し、電極型を用いて電
気鋳造により燃料電池用電極を形成するだけでは、微小
凹部の角がシャープになり過ぎ、バリ状の微小突起が生
じやすく、比較的大きな燃料電池用電極を製作する際に
は電極を離型する際に円滑に離型しにくく、微小なクラ
ックなどの欠陥が生じやすい、という問題がある。本発
明の目的は、前記の課題を解決できるような燃料電池用
電極の製造方法を提供することである。
When a large number of recesses and irregularities are formed in a thin metal plate such as the fuel cell electrode,
Usually, it is formed by press molding. However, about 1mm in diameter
Although it is possible to manufacture a metal mold having a large number of minute concave portions, the manufacturing cost of the metal mold is extremely high, which is not practical. Therefore, it is conceivable to manufacture a fuel cell electrode by photoforming. However, if the electrode mold is manufactured by photoforming, and the electrode for the fuel cell is simply formed by electroforming using the electrode mold, the corners of the minute recesses are too sharp, and the burr-like minute projections are likely to occur. When manufacturing a large fuel cell electrode, there is a problem that it is difficult to release the electrode smoothly when releasing the electrode, and defects such as minute cracks are likely to occur. An object of the present invention is to provide a method for manufacturing a fuel cell electrode that can solve the above-mentioned problems.

【0005】[0005]

【課題を解決するための手段】 請求項1の燃料電池用
電極の製造方法は、金属製の薄いシートに細かい多数の
微小凹部を形成してなる燃料電池用電極を形成する方法
において、フォトフォーミングにより導電性の第1電極
型を製作する第1の工程と、次に第1電極型の型表面に
金属を電気鋳造で電着させその後剥離して燃料電池用電
極と同様の構造のシート状の第2電極型を製作する第2
の工程と、次に第2電極型の型表面に金属を電気鋳造で
電着させその後剥離して多数の微小凹部のあるシート状
の第3電極型を製作する第3の工程と、次に第3電極型
の型表面に金属を電気鋳造で電着させその後剥離してシ
ート状の燃料電池用電極を製作する第4の工程とを備え
たことを特徴とするものである。
According to a first aspect of the present invention, there is provided a method of manufacturing an electrode for a fuel cell, comprising forming a large number of fine concave portions on a thin metal sheet. A first step of manufacturing a conductive first electrode mold by electroforming a metal on the surface of the first electrode mold by electroforming, and then peeling the sheet to form a sheet having the same structure as the fuel cell electrode. Of the second electrode type
And a third step of electrodepositing a metal on the surface of the mold of the second electrode mold by electroforming and then peeling to produce a sheet-shaped third electrode mold having a large number of minute recesses. A fourth step of producing a sheet-shaped fuel cell electrode by electrodepositing a metal on the surface of the third electrode by electroforming and then peeling the metal.

【0006】第1工程では、フォトフォーミングにより
導電性の第1電極型を製作する。この場合、金属製のベ
ース板又は表面に導電被膜を形成した非金属製のベース
板を用い、そのベース板に例えばポジ型のフォトレジス
トを塗布し、このフォトレジストに所定のパターンを形
成したマスキング原板を重ねた状態で露光することで、
所定のパターンのフォトレジスト以外のフォトレジスト
を除去し、その所定のパターンのフォトレジストを残し
たまま、ベース部材を所定の電気メッキ浴(例えば、硫
酸ニッケルメッキ浴)に浸漬し、ニッケル製の陽極を用
い、ベース板を陰極とした状態でベース板に電気鋳造を
施して金属を電着させ、その後露光してから全てのフォ
トレジストを除去すると、第1電極型が得られる。
In a first step, a conductive first electrode type is manufactured by photoforming. In this case, a metal base plate or a non-metal base plate having a conductive film formed on the surface is used, for example, a positive photoresist is applied to the base plate, and a mask is formed by forming a predetermined pattern on the photoresist. By exposing with the originals stacked,
The base member is immersed in a predetermined electroplating bath (for example, a nickel sulfate plating bath) while removing the photoresist other than the predetermined pattern of the photoresist and leaving the predetermined pattern of the photoresist. When the base plate is used as a cathode and the base plate is subjected to electroforming to electrodeposit a metal and then exposed, and then all the photoresist is removed, a first electrode type is obtained.

【0007】次に、第2の工程では、第1電極型の型表
面に所定の離型剤(例えば、ベンガラ)を塗布してから
それを前記同様の電気メッキ浴に浸漬し、ニッケル製の
陽極を用い、第1電極型を陰極とした状態で、第1電極
型の型表面に金属(例えば、ニッケル)を電気鋳造で電
着させその後剥離して燃料電池用電極と同様の構造のシ
ート状の第2電極型を製作する。
Next, in a second step, a predetermined release agent (for example, bengara) is applied to the surface of the mold of the first electrode type, and then is immersed in an electroplating bath similar to the above, to form a nickel-made material. A sheet having a structure similar to that of a fuel cell electrode, in which a metal (for example, nickel) is electrodeposited on the surface of the first electrode type by electroforming with the anode being used as a cathode while the first electrode type is used as a cathode. A second electrode mold having a shape of is formed.

【0008】次に、第3の工程では、第2電極型の型表
面と反対側の面には絶縁膜を形成し、第2電極型の型表
面には前記同様の所定の離型剤を塗布した状態で、第2
電極型を前記同様の電気メッキ浴に浸漬した状態で、第
2電極型の型表面に金属(例えば、ニッケル)を電気鋳
造で電着させその後剥離して多数の微小凹部のあるシー
ト状の第3電極型を製作する。
Next, in a third step, an insulating film is formed on the surface opposite to the mold surface of the second electrode type, and a predetermined release agent similar to the above is applied to the mold surface of the second electrode type. In the state of application, the second
In a state where the electrode mold is immersed in the same electroplating bath as described above, a metal (for example, nickel) is electrodeposited by electroforming on the mold surface of the second electrode mold and then peeled off to form a sheet-like sheet having a number of minute recesses. A three-electrode type is manufactured.

【0009】次に、第4の工程では、第3電極型の型表
面と反対側の面には絶縁膜を形成し、第2電極型の型表
面には前記同様の所定の離型剤を塗布した状態で、第3
電極型を前記同様の電気メッキ浴に浸漬した状態で、第
3電極型の型表面に金属(例えば、ニッケル)を電気鋳
造で電着させその後剥離してシート状の燃料電池用電極
を製作する。
Next, in a fourth step, an insulating film is formed on the surface opposite to the surface of the mold of the third electrode type, and a predetermined release agent similar to the above is applied to the surface of the mold of the second electrode type. In the state of application, the third
In a state where the electrode mold is immersed in the same electroplating bath as described above, a metal (for example, nickel) is electrodeposited by electroforming on the mold surface of the third electrode mold and then peeled off to produce a sheet-shaped fuel cell electrode. .

【0010】[0010]

【発明の実施の形態】 以下、本発明の実施の形態につ
いて図面を参照して説明する。最初に、自動車の燃料電
池用電極の構造について説明する。自動車の燃料電池用
電極(以下、電池用電極という)は、燃料電池の正極又
は負極に適用されるもので、本実施形態の場合ニッケル
製のものである。
Embodiments of the present invention will be described below with reference to the drawings. First, the structure of an electrode for a fuel cell of an automobile will be described. An electrode for a fuel cell of an automobile (hereinafter, referred to as a battery electrode) is applied to a positive electrode or a negative electrode of a fuel cell, and in the present embodiment, is made of nickel.

【0011】図1〜図3に示すように、電池用電極1
は、例えばA4判サイズの矩形状のシート状のもので、
厚さtは例えば200〜300μmであり、多数の微小
凹部2(外径d=約1.0mm、深さh=0.4〜0.
8mm)が縦横方向に微小ピッチa(例えば、a=1.
5〜2.5mm)でマトリックス状に形成されている。
但し、微小凹部2が全面に形成されるとは限らず、所定
のパターンとなるように形成する場合もある。
As shown in FIG. 1 to FIG.
Is a rectangular sheet of A4 size, for example.
The thickness t is, for example, 200 to 300 μm, and a large number of minute concave portions 2 (outer diameter d = approximately 1.0 mm, depth h = 0.4 to 0.2 μm).
8 mm) is a small pitch a (for example, a = 1.
5 to 2.5 mm).
However, the minute concave portion 2 is not always formed on the entire surface, and may be formed to have a predetermined pattern.

【0012】次に、前記の電池用電極の製造方法につい
て説明する。 第1工程(第1電極型の製作):図4に示すように、微
小凹部2に対応する部分を黒丸3にし、その他の部分を
透明にしたポジ原版4を透明ガラス板を用いて作成す
る。このポジ原版4における黒丸3の直径は、図3にお
ける微小凹部2の外径dに等しく、黒丸3の縦横のピッ
チは微小凹部2のピッチaに等しい。
Next, a method for manufacturing the battery electrode will be described. First Step (Production of First Electrode Type): As shown in FIG. 4, a positive original plate 4 in which a portion corresponding to the minute concave portion 2 is made a black circle 3 and other portions are made transparent using a transparent glass plate. . The diameter of the black circle 3 in the positive master 4 is equal to the outer diameter d of the minute concave portion 2 in FIG. 3, and the vertical and horizontal pitch of the black circle 3 is equal to the pitch a of the minute concave portion 2.

【0013】次に、図5〜図8に示すように、フォトフ
ォーミングにより導電性の第1電極型10を製作する。
この場合、まず、図5に示すように、A4判サイズの金
属製(例えばリン青銅製又はステンレス製)のベース板
11の上面に適当な厚さのポジ型フォトレジストからな
るフォトレジスト層12を形成するとともに、そのフォ
トレジスト層12の上面にポジ原版4を重ね合わせた状
態で、上方から紫外線やエキシマレーザを照射して露光
する。この露光により、前記黒丸3に対応する部分以外
のフォトレジスト層12が破壊されるので、適当な濃度
のフッ酸溶液等で洗浄すると、図6に示すようにポジ原
版4に相当するパターンを現像することができる。
Next, as shown in FIGS. 5 to 8, a conductive first electrode mold 10 is manufactured by photoforming.
In this case, first, as shown in FIG. 5, a photoresist layer 12 made of a positive photoresist having an appropriate thickness is formed on the upper surface of a base plate 11 made of A4 size metal (for example, phosphor bronze or stainless steel). At the same time as forming, the positive master 4 is superimposed on the upper surface of the photoresist layer 12, and is exposed by irradiating ultraviolet rays or excimer laser from above. As a result of this exposure, the photoresist layer 12 other than the portions corresponding to the black circles 3 is destroyed. Therefore, when the photoresist layer 12 is washed with a hydrofluoric acid solution or the like having an appropriate concentration, the pattern corresponding to the positive master 4 is developed as shown in FIG. can do.

【0014】次に、図7に示すように、前記ポジ原版4
と同様のフォトレジストパターンのあるベース板11を
ニッケルメッキ浴槽に浸漬し、フォトレジスト層12と
同厚になるまで電気鋳造としてのニッケルメッキを施
す。この場合、ニッケルメッキ浴槽のメッキ液としては
例えば硫酸ニッケル溶液を主成分とする液を適用し、ベ
ース板11を陰極とし、ニッケル製の陽極を用いてメッ
キ処理(電気鋳造)を行う。このメッキ処理により、陽
極のニッケルが陰極のペース板11に電着することにな
る。
Next, as shown in FIG.
The base plate 11 having the same photoresist pattern as described above is immersed in a nickel plating bath, and nickel plating is applied as electroforming until the thickness becomes equal to that of the photoresist layer 12. In this case, as a plating solution for the nickel plating bath, for example, a solution containing a nickel sulfate solution as a main component is applied, and a plating process (electroforming) is performed using the base plate 11 as a cathode and a nickel anode. By this plating process, nickel of the anode is electrodeposited on the pace plate 11 of the cathode.

【0015】その後、ベース板11をニッケルメッキ浴
槽から取り出して乾燥後、ベース板11の上面に紫外線
やエキシマレーザを照射することにより、マトリックス
状の黒丸3に対応するフォトレジスト層12aを破壊
し、その後適当な洗浄液で洗浄すると、図8に示すよう
な第1電極型10が得られる。この第1電極型10はポ
ジ電極型とも言うべきものである。
Thereafter, the base plate 11 is taken out of the nickel plating bath and dried, and then the upper surface of the base plate 11 is irradiated with an ultraviolet ray or an excimer laser to destroy the photoresist layer 12a corresponding to the matrix-shaped black circle 3. Thereafter, by washing with an appropriate washing liquid, the first electrode type 10 as shown in FIG. 8 is obtained. The first electrode type 10 can be called a positive electrode type.

【0016】第2工程(第2電極型の製作):この第2
工程では、前記の第1電極型10の型表面にニッケルを
電着させその後剥離して多数の微小凹部のあるシート状
の第2電極型20であって、燃料電池用電極型1と同様
の構造の第2電極型20を製作する。
Second step (production of second electrode type):
In the step, nickel is electrodeposited on the mold surface of the first electrode mold 10 and then peeled off to form a sheet-like second electrode mold 20 having a large number of minute recesses, which is the same as the fuel cell electrode mold 1. A second electrode mold 20 having a structure is manufactured.

【0017】この場合、まず、第1電極型10の型表面
に適当な離型剤(例えば、ベンガラ)を薄膜状に塗布し
てから、第1電極型10を前記と同様のニッケルメッキ
浴槽に浸漬し、前記と同様のメッキ液とニッケル製の陽
極を用い、第1電極型10を陰極として十分な時間だけ
メッキ処理(電気鋳造)して第1電極型10の型表面に
約200〜300μmの厚さのニッケルの電着層20a
を形成する。
In this case, first, an appropriate release agent (for example, bengara) is applied in a thin film shape on the mold surface of the first electrode mold 10, and then the first electrode mold 10 is placed in a nickel plating bath similar to the above. Immersion, using the same plating solution and nickel anode as described above, and plating (electroforming) for a sufficient time using the first electrode mold 10 as a cathode to form a surface of about 200 to 300 μm on the mold surface of the first electrode mold 10. Electrodeposited layer 20a of nickel
To form

【0018】その後、第1電極型10をニッケルメッキ
浴槽から取り出して、電着層20aを剥離すると燃料電
池用電極1と同様の構造の多数の微小凹部のあるシート
状の第2電極型20が得られる。尚、この第2電極型2
0は、ネガ電極型に相当するものであり、この第2電極
型20の下面側が型表面となる関係上、図10に示すよ
うに、第2電極型20の型表面と反対側の上面には合成
樹脂材料からなる絶縁膜21を形成しておく。
Thereafter, the first electrode mold 10 is taken out of the nickel plating bath, and the electrodeposition layer 20a is peeled off. Then, the sheet-like second electrode mold 20 having the same structure as the fuel cell electrode 1 and having a large number of minute recesses is obtained. can get. In addition, the second electrode type 2
0 corresponds to a negative electrode type, and since the lower surface side of the second electrode type 20 is a mold surface, as shown in FIG. Form an insulating film 21 made of a synthetic resin material.

【0019】第3工程(第3電極型の製作):この第3
工程では、第2電極型20の型表面にニッケルを電着さ
せその後剥離して多数の微小凹部のあるシート状の第3
電極型を製作する。この場合、まず、第2電極型20の
下面側の型表面に前記同様の離型剤を塗布してから、第
2電極型20を前記と同様のニッケルメッキ浴槽に浸漬
し、前記と同様のメッキ液とニッケル製の陽極を用い、
第2電極型20を陰極として十分な時間だけメッキ処理
(電鋳処理)して、図11に示すように、第2電極型2
0の型表面に約300〜400μmの厚さのニッケルの
電着層30aを形成する。
Third step (production of third electrode type): This third step
In the step, nickel is electrodeposited on the mold surface of the second electrode mold 20 and then peeled off to form a third sheet-like sheet having a number of minute recesses.
Fabricate an electrode mold. In this case, first, the same mold release agent as described above is applied to the mold surface on the lower surface side of the second electrode mold 20, and then the second electrode mold 20 is immersed in the same nickel plating bath as above, and the same as above. Using a plating solution and a nickel anode,
Plating (electroforming) for a sufficient time using the second electrode type 20 as a cathode, as shown in FIG.
An electrodeposition layer 30a of nickel having a thickness of about 300 to 400 μm is formed on the surface of the mold 0.

【0020】その後、第2電極型20をニッケルメッキ
浴槽から取り出して、電着層30aを剥離すると、図1
2に示すような多数の微小凹部のあるシート状の第3電
極型30が得られる。尚、この第3電極型30は、ポジ
電極型とも言うべきものであり、この第3電極型30の
上面側が型表面となる関係上、図12に示すように、第
3電極型30の型表面と反対側の下面には合成樹脂材料
からなる絶縁膜31を形成しておく。
Thereafter, the second electrode type 20 is taken out from the nickel plating bath, and the electrodeposition layer 30a is peeled off.
As shown in FIG. 2, a sheet-shaped third electrode mold 30 having a large number of minute concave portions is obtained. Note that the third electrode type 30 is a positive electrode type, and since the upper surface of the third electrode type 30 is a mold surface, as shown in FIG. An insulating film 31 made of a synthetic resin material is formed on the lower surface opposite to the surface.

【0021】第4工程(燃料電池用電極の製作):この
第4工程では、第3電極型30の型表面にニッケルを電
着させその後剥離してシート状の燃料電池用電極1を製
作する。この場合、まず、第3電極型30の型表面に前
記同様の離型剤を塗布してから、第3電極型30を前記
と同様のニッケルメッキ浴槽に浸漬し、前記と同様のメ
ッキ液とニッケル製の陽極を用い、第3電極型30を陰
極として十分な時間だけメッキ処理(電鋳処理)して、
図13に示すように、第3電極型30の型表面に約20
0〜300μmの厚さのニッケルの電着層1aを形成す
る。
Fourth step (manufacture of fuel cell electrode): In this fourth step, nickel is electrodeposited on the surface of the third electrode mold 30 and then peeled off to manufacture a sheet-like fuel cell electrode 1. . In this case, first, the same release agent as described above is applied to the mold surface of the third electrode mold 30, and then the third electrode mold 30 is immersed in the same nickel plating bath as above, and the same plating solution as above is applied. Using a nickel anode, plating (electroforming) for a sufficient time using the third electrode mold 30 as a cathode,
As shown in FIG. 13, about 20
An electrodeposition layer 1a of nickel having a thickness of 0 to 300 μm is formed.

【0022】その後、第3電極型30をニッケルメッキ
浴槽から取り出して、電着層1aを剥離すると、図14
に示すような多数の微小凹部のあるシート状の燃料電池
用電極1が得られる。
Thereafter, the third electrode mold 30 is taken out of the nickel plating bath, and the electrodeposition layer 1a is peeled off.
Thus, a sheet-like fuel cell electrode 1 having a large number of minute concave portions as shown in FIG.

【0023】以上説明した電池用電極の製造方法によれ
ば、フォトフォーミングにより導電性の第1電極型10
を製作し、次にこの第1電極型10を用いて電気鋳造に
よりニッケルを電着させて第2電極型20を製作し、次
にこの第2電極型20を用いて電気鋳造によりニッケル
を電着させて第3電極型30を製作し、次にこの第3電
極型30を用いて電気鋳造によりニッケルを電着させて
燃料電池用電極を製作するので、微小凹部の角がシャー
プになり過ぎることがなく、バリ状の微小突起が生じる
こともなく、比較的大きな燃料電池用電極1であって
も、その燃料電池用電極1を離型する際に円滑に離型し
やすくなり、微小なクラックなどの欠陥も生じにくくな
り、高品質の燃料電池用電極を経済的に量産できるよう
になる。
According to the above-described method for manufacturing a battery electrode, the conductive first electrode type 10 is formed by photoforming.
Then, nickel is electrodeposited by electroforming using the first electrode mold 10 to produce a second electrode mold 20, and then nickel is electroformed by electroforming using the second electrode mold 20. Then, the third electrode mold 30 is manufactured, and then nickel is electrodeposited by electroforming using the third electrode mold 30 to manufacture the fuel cell electrode. Therefore, the corners of the minute concave portions become too sharp. There is no burr-like microprojection, and even if the fuel cell electrode 1 is relatively large, the fuel cell electrode 1 is easily released smoothly when the fuel cell electrode 1 is released. Defects such as cracks are less likely to occur, and high-quality fuel cell electrodes can be economically mass-produced.

【0024】次に、前記実施形態を部分的に変更する変
形例について説明する。ベース板1は必ずしも金属製で
なくともよく、非金属製のベース板の表面に導電膜を形
成したものでもよい。また、前記実施形態では、ニッケ
ル製の燃料電池用電極1を製造する場合を例として説明
したが、燃料電池用電極1はニッケル製に限るものでは
なく、アルミニウム製やクロム製や銅製の電極でもよ
い。この場合、第4工程において、夫々適切なメッキ液
を用い、アルミニウム、クロム、銅などの何れかの陽極
を用いて電気鋳造を行えばよい。その他、本発明の趣旨
を逸脱することなく、前記実施形態に種々の変更を付加
した形態で実施可能であることは言うまでもない。
Next, a modified example in which the above-described embodiment is partially changed will be described. The base plate 1 is not necessarily made of metal, and may be a non-metallic base plate having a surface on which a conductive film is formed. Further, in the above-described embodiment, the case where the fuel cell electrode 1 made of nickel is manufactured is described as an example. However, the electrode 1 for fuel cell is not limited to nickel, and may be made of aluminum, chromium, or copper. Good. In this case, in the fourth step, the electroforming may be performed using an appropriate plating solution and using any anode such as aluminum, chromium, or copper. In addition, it goes without saying that the present embodiment can be implemented in a form in which various changes are added to the embodiment without departing from the spirit of the present invention.

【0025】[0025]

【発明の効果】 請求項1の燃料電池用電極の製造方法
によれば、フォトフォーミングにより導電性の第1電極
型(ポジ電極型に相当)を製作し、次にこの第1電極型
を用いて電気鋳造により金属を電着させて第2電極型
(ネガ電極型に相当)を製作し、次にこの第2電極型を
用いて電気鋳造により金属を電着させて第3電極型(ポ
ジ電極型に相当)を製作し、次にこの第3電極型を用い
て電気鋳造により金属を電着させて燃料電池用電極を製
作するようにしたので、微小凹部の角がシャープになり
過ぎることがなく、バリ状の微小突起が生じることもな
く、比較的大きな燃料電池用電極であっても、電極を離
型する際に円滑に離型しやすくなり、微小なクラックな
どの欠陥も生じにくくなり、高品質の燃料電池用電極を
経済的に量産できるようになる。
According to the method for manufacturing an electrode for a fuel cell of the first aspect, a conductive first electrode type (corresponding to a positive electrode type) is manufactured by photoforming, and then the first electrode type is used. A metal is electrodeposited by electroforming to produce a second electrode type (corresponding to a negative electrode type), and then a metal is electrodeposited by electroforming using the second electrode type to form a third electrode type (positive electrode type). Electrode type), and then, using the third electrode type, a metal is electrodeposited by electroforming to manufacture an electrode for a fuel cell. There is no burr-like microprojection, and even for relatively large fuel cell electrodes, it is easy to release smoothly when releasing the electrode, and defects such as minute cracks are unlikely to occur High-quality fuel cell electrodes can be mass-produced economically. Swell.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に係る燃料電池用電極の平面
図である。
FIG. 1 is a plan view of a fuel cell electrode according to an embodiment of the present invention.

【図2】燃料電池用電極の要部拡大図である。FIG. 2 is an enlarged view of a main part of a fuel cell electrode.

【図3】燃料電池用電極の要部拡大断面図である。FIG. 3 is an enlarged sectional view of a main part of a fuel cell electrode.

【図4】ポジ原版の要部拡大平面図である。FIG. 4 is an enlarged plan view of a main part of a positive master.

【図5】ベース板とフォトレジスト層とポジ原版の要部
拡大断面図である。
FIG. 5 is an enlarged sectional view of an essential part of a base plate, a photoresist layer, and a positive master.

【図6】ベース板とフォトレジスト層の要部拡大断面図
である。
FIG. 6 is an enlarged sectional view of a main part of a base plate and a photoresist layer.

【図7】ベース板とフォトレジスト層と電着層の要部拡
大断面図である。
FIG. 7 is an enlarged sectional view of a main part of a base plate, a photoresist layer, and an electrodeposition layer.

【図8】第1電極型の要部拡大断面図である。FIG. 8 is an enlarged sectional view of a main part of a first electrode type.

【図9】第1電極型と電着層の要部拡大断面図である。FIG. 9 is an enlarged sectional view of a main part of a first electrode type and an electrodeposition layer.

【図10】第2電極型の要部拡大断面図である。FIG. 10 is an enlarged sectional view of a main part of a second electrode type.

【図11】第2電極型と電着層の要部拡大断面図であ
る。
FIG. 11 is an enlarged sectional view of a main part of a second electrode type and an electrodeposition layer.

【図12】第3電極型の要部拡大断面図である。FIG. 12 is an enlarged sectional view of a main part of a third electrode type.

【図13】第3電極型と電着層の要部拡大断面図であ
る。
FIG. 13 is an enlarged sectional view of a main part of a third electrode type and an electrodeposition layer.

【図14】第3電極型から剥離した燃料電池用電極の要
部拡大断面図である。
FIG. 14 is an enlarged sectional view of a main part of a fuel cell electrode separated from a third electrode type.

【符号の説明】[Explanation of symbols]

1 燃料電池用電極 2 微小凹部 10 第1電極型 20 第2電極型 30 第3電極型 DESCRIPTION OF SYMBOLS 1 Electrode for fuel cells 2 Micro recess 10 First electrode type 20 Second electrode type 30 Third electrode type

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 金属製の薄いシートに細かい多数の微小
凹部を形成してなる燃料電池用電極を形成する方法にお
いて、 フォトフォーミングにより導電性の第1電極型を製作す
る第1の工程と、 次に第1電極型の型表面に金属を電気鋳造で電着させそ
の後剥離して燃料電池用電極と同様の構造のシート状の
第2電極型を製作する第2の工程と、 次に第2電極型の型表面に金属を電気鋳造で電着させそ
の後剥離して多数の微小凹部のあるシート状の第3電極
型を製作する第3の工程と、 次に第3電極型の型表面に金属を電気鋳造で電着させそ
の後剥離してシート状の燃料電池用電極を製作する第4
の工程と、 を備えたことを特徴とする燃料電池用電極の製造方法。
1. A method for forming an electrode for a fuel cell, wherein a large number of fine concave portions are formed in a thin metal sheet, comprising: a first step of producing a conductive first electrode type by photoforming; Next, a metal is electrodeposited by electroforming on the mold surface of the first electrode mold and then peeled off to produce a sheet-like second electrode mold having the same structure as the fuel cell electrode. A third step in which a metal is electrodeposited on the surface of the two-electrode mold by electroforming and then peeled to produce a sheet-shaped third electrode mold having a large number of minute recesses; A metal is electrodeposited by electroforming and then peeled off to produce a sheet-like fuel cell electrode.
A process for producing an electrode for a fuel cell, comprising the steps of:
JP2000208754A 2000-07-10 2000-07-10 Manufacturing method of electrode for fuel cell Pending JP2002025573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000208754A JP2002025573A (en) 2000-07-10 2000-07-10 Manufacturing method of electrode for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000208754A JP2002025573A (en) 2000-07-10 2000-07-10 Manufacturing method of electrode for fuel cell

Publications (1)

Publication Number Publication Date
JP2002025573A true JP2002025573A (en) 2002-01-25

Family

ID=18705280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000208754A Pending JP2002025573A (en) 2000-07-10 2000-07-10 Manufacturing method of electrode for fuel cell

Country Status (1)

Country Link
JP (1) JP2002025573A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2857163A1 (en) * 2003-07-01 2005-01-07 Commissariat Energie Atomique Fuel cell with electrodes and catalytic elements with the circulation of a fluid essentially parallel to its electrolytic membrane, notable for micro-fuel cells
JP2009533797A (en) * 2005-04-14 2009-09-17 ベーアーエスエフ フューエル セル ゲゼルシャフト ミット ベシュレンクテル ハフトング Gas diffusion electrode, membrane-electrode assembly, and manufacturing method thereof
JP2011089169A (en) * 2009-10-22 2011-05-06 Seiko Instruments Inc Electroformed body and method for producing the same
KR101482308B1 (en) * 2012-07-27 2015-01-13 주식회사 포스코 Method for preparing porous metal thin film for solid oxide fuel cell using electro-forming and porous metal thin film for solid oxide fuel cell prepared by the same
JP2018044186A (en) * 2016-09-12 2018-03-22 マクセルホールディングス株式会社 Metal mold for plastic working, and production method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2857163A1 (en) * 2003-07-01 2005-01-07 Commissariat Energie Atomique Fuel cell with electrodes and catalytic elements with the circulation of a fluid essentially parallel to its electrolytic membrane, notable for micro-fuel cells
JP2009533797A (en) * 2005-04-14 2009-09-17 ベーアーエスエフ フューエル セル ゲゼルシャフト ミット ベシュレンクテル ハフトング Gas diffusion electrode, membrane-electrode assembly, and manufacturing method thereof
JP2011089169A (en) * 2009-10-22 2011-05-06 Seiko Instruments Inc Electroformed body and method for producing the same
KR101482308B1 (en) * 2012-07-27 2015-01-13 주식회사 포스코 Method for preparing porous metal thin film for solid oxide fuel cell using electro-forming and porous metal thin film for solid oxide fuel cell prepared by the same
JP2018044186A (en) * 2016-09-12 2018-03-22 マクセルホールディングス株式会社 Metal mold for plastic working, and production method thereof
JP7175077B2 (en) 2016-09-12 2022-11-18 マクセル株式会社 Mold for plastic working and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US3419901A (en) Method for producing flakes of nickel
JP2004006371A (en) Mask for evaporation, mask frame assembly for evaporation, and manufacturing methods therefor
KR20180060312A (en) Mother plate and producing method of the same, and producing method of the same
JPH08183151A (en) Manufacture of mesh-integrated metal mask
NL1017213C2 (en) Methods for manufacturing electrical conductors, and using conductors thus manufactured.
US9636639B2 (en) Porous metallic membrane
JP2002025573A (en) Manufacturing method of electrode for fuel cell
JPH10195689A (en) Manufacture of finely perforated metallic foil
US7922887B2 (en) Metal structure and method of its production
US2225733A (en) Process for the electrolytic production of metal screens
TWI703238B (en) Microporous copper foil manufacturing method and microporous copper foil
JP4863244B2 (en) Metal mask for printing
US3434938A (en) Method and apparatus for producing metal screen sheet
CN113089032A (en) Micron-sized porous copper foil and preparation method and application thereof
WO2006077676A1 (en) Method for manufacturing negative electrode for non-aqueous electrolyte secondary cell
JP3245837B2 (en) Method for producing porous metal foil
KR102021428B1 (en) A nickel electroforming method for producing a micro-mesh sheet and a nickel micro-mesh sheet produced by the method
JP2014105374A (en) Stretchable metal mesh and method for manufacturing the same
US20210047745A1 (en) Electrochemical additive manufacturing of articles
JP2004285405A (en) Microelectrode array and manufacturing method therefor
JP2007277641A (en) Method for manufacturing perforated metallic foil and perforated metallic foil
JP2003346828A (en) Fuel cell separator
JP6434280B2 (en) Electrode for water electrolysis and method for producing the same
JP2000301727A (en) Production of nozzle substrate for ink jet nozzle
JP2008088530A (en) Electroformed mold and manufacturing method for the same