JP2018040168A - Precast floor slab, compositional structure of steel beam and precast floor slab, and composition method of steel beam and precast floor slab - Google Patents

Precast floor slab, compositional structure of steel beam and precast floor slab, and composition method of steel beam and precast floor slab Download PDF

Info

Publication number
JP2018040168A
JP2018040168A JP2016175063A JP2016175063A JP2018040168A JP 2018040168 A JP2018040168 A JP 2018040168A JP 2016175063 A JP2016175063 A JP 2016175063A JP 2016175063 A JP2016175063 A JP 2016175063A JP 2018040168 A JP2018040168 A JP 2018040168A
Authority
JP
Japan
Prior art keywords
steel girder
floor slab
steel
precast
precast floor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016175063A
Other languages
Japanese (ja)
Other versions
JP6609815B2 (en
Inventor
晃生 白水
Akio Shiromizu
晃生 白水
明洋 山浦
Akihiro Yamaura
明洋 山浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Bridge Corp
Original Assignee
Yokogawa Bridge Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Bridge Corp filed Critical Yokogawa Bridge Corp
Priority to JP2016175063A priority Critical patent/JP6609815B2/en
Publication of JP2018040168A publication Critical patent/JP2018040168A/en
Application granted granted Critical
Publication of JP6609815B2 publication Critical patent/JP6609815B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a precast floor slab, which enables free PC steel layout planning and can prevent immersion from a box out part and resists against shear force generated at the box out part, a compositional structure of the precast floor slab with a steel beam, and a composition method thereof.SOLUTION: A precast floor slab according to this invention is installed on a steel beam and has a steel beam installation part on a part of the slab. The steel beam installation part is formed at a position facing the steel beam top face along a steel beam direction, and has a box out part with a hollow cross section, which includes a storage part, and a loading part with solid cross section, which includes no storage part. The storage part is a space to store stud fixed on the steel beam top face and formed along the steel beam direction so as to have a top plate part on upper side. A shear reinforcement bar, which penetrates the storage part in a direction perpendicular to the steel beam and exposes in the storage part, is buried in the precast floor slab.SELECTED DRAWING: Figure 5

Description

本願発明は、鋼桁上に設置されるプレキャスト床版に関する技術であり、より具体的には、鋼桁との合成に適したプレキャスト床版と、このプレキャスト床版を使用した鋼桁との合成構造、及び合成方法に関する技術である。   The present invention relates to a technique related to a precast floor slab installed on a steel girder, and more specifically, a precast floor slab suitable for synthesis with a steel girder and a steel girder using the precast floor slab. This is a technique related to a structure and a synthesis method.

近年、鋼桁橋のRC(Reinforced Concrete)床版の取替え工事が行われている。これは、車両の通過による繰り返し荷重を長年にわたって受け続け、あるいは凍結防止剤などの影響による塩害が生じ、その他コンクリートの中性化やアルカリ骨材反応などが生じた結果、RC床版に著しい劣化現象がみられたことが主な理由である。RC床版に代わる床版としては、軽量で長期耐久性に優れ、現場施工の短縮化が可能であり、しかも近年では高強度コンクリート(σ=50N/mm)の使用など高品質であるといった点から、プレキャスト床版が好んで用いられる。ここで「プレキャスト」とは、工場や製造ヤードなど現場とは異なる場所で、あらかじめ製品や部材を製作しておくことであり、このプレキャストによって製作されたコンクリート床版は「プレキャストコンクリート床版」と呼ばれることもあるが、ここでは便宜上、単に「プレキャスト床版」ということとする。 In recent years, replacement work of RC (Reinforced Concrete) floor slabs of steel girder bridges has been performed. This is because the RC floor slabs are significantly deteriorated as a result of repeated repeated loads due to the passing of vehicles over the years, or salt damage caused by the effects of anti-freezing agents, etc., as well as neutralization of concrete and alkali aggregate reaction. The main reason was the phenomenon. As a floor slab that replaces the RC floor slab, it is lightweight, has excellent long-term durability, can be shortened on site construction, and has recently been of high quality such as the use of high-strength concrete (σ = 50 N / mm 2 ). From the viewpoint, a precast floor slab is preferably used. Here, “precast” means that products and parts are manufactured in advance in a place different from the site, such as a factory or a manufacturing yard. The concrete slab produced by this precast is called “precast concrete slab”. Although it is sometimes called, here it is simply referred to as “precast floor slab” for convenience.

既設の鋼桁にプレキャスト床版を設置する場合、鋼桁とプレキャスト床版を一体化した合成桁と、鋼桁とプレキャスト床版を一体化しない非合成桁が考えられる。非合成桁は、鋼桁とプレキャスト床版が独立していることからそれぞれ別の挙動を示し、したがって同じ荷重でも合成桁に比べてプレキャスト床版に大きなたわみが生ずる。そのため、合成桁を非合成桁として床版を取替えたケースでは、たわみや鋼桁の応力に対する補強対策が施されるのが一般的である。   When a precast floor slab is installed on an existing steel girder, a composite girder in which the steel girder and the precast floor slab are integrated, and a non-synthetic girder in which the steel girder and the precast floor slab are not integrated are conceivable. Non-synthetic girders behave differently because the steel girders and precast slabs are independent of each other. Therefore, even if the load is the same, the precast slabs will bend more greatly than the synthetic girders. For this reason, in cases where the composite slab is replaced with a non-synthetic girder and the floor slab is replaced, measures for reinforcement against deflection and stress of the steel girder are generally taken.

一方、合成桁は、鋼桁とプレキャスト床版が一体となって挙動することから比較的大きな剛性を有し、非合成桁に比べてたわみが小さく、非合成桁(又は合成桁)から合成桁に床版を取替えた場合、非合成桁に取替えた場合に比べ鋼桁を補強する必要がなく、もしくは鋼桁の補強量がかなり減ることが知られている。鋼桁とプレキャスト床版による合成桁を形成するには、頭付きスタッドをはじめとするスタッドを利用する手法が主流である。具体的には、鋼桁の上面(つまり、上フランジの上部)に頭付きスタッドを溶接し、この頭付きスタッドをプレキャスト床版に設けた箱抜き部に収め、そして箱抜き部に無収縮モルタルや高流動コンクリート等の充填材を注入して固化することで、鋼桁とプレキャスト床版を一体化する。   On the other hand, the composite girder has a relatively large rigidity because the steel girder and the precast slab work together, and has a smaller deflection than the non-synthetic girder. It is known that when the floor slab is replaced, it is not necessary to reinforce the steel girder, or the amount of reinforcement of the steel girder is considerably reduced as compared with the case of replacing the non-synthetic girder. In order to form a composite girder using steel girders and precast slabs, a technique using studs including headed studs is the mainstream. Specifically, a headed stud is welded to the upper surface of the steel girder (that is, the upper part of the upper flange), this headed stud is placed in a box opening provided in a precast floor slab, and a non-shrink mortar is placed in the box opening. Steel girders and precast slabs are integrated by injecting and solidifying fillers such as high-fluidity concrete.

通常、鋼桁とプレキャスト床版を一体化するためには相当数のスタッドが必要となる。そのため、プレキャスト床版のうち鋼桁上面と対向する部分(つまりスタッド上方に位置する部分)には、多数の箱抜き部を設けなければならない。一方、プレキャスト床版には、鋼桁方向と直交する方向(以下、「鋼桁直交方向」という。)にプレストレスを導入するためのPC(Prestressed Concrete)鋼材が埋設されることが多い。   Usually, a considerable number of studs are required to integrate the steel girder and the precast slab. Therefore, many box opening parts must be provided in the part (namely, part located above a stud) facing a steel girder upper surface among precast slabs. On the other hand, PC (Pressed Concrete) steel for introducing prestress in a direction orthogonal to the steel girder direction (hereinafter referred to as “steel girder orthogonal direction”) is often embedded in the precast slab.

図9は、従来の鋼桁とプレキャスト床版の合成構造を示す模式図であり、(a)はその横断面図、(b)はその平面図、(c)はその縦断面図である。この図に示すように、鋼桁G(主桁)の上フランジ面には頭付きスタッドSが溶接固定されており、プレキャスト床版Bを鋼桁G上に設置したときに頭付きスタッドSを収容できるようプレキャスト床版Bには箱抜き部Eが設けられている。図9(c)に示すように、多数の頭付きスタッドSが鋼桁方向(橋軸方向)に並べて配置されることから、図9(b)に示すように、1つのプレキャスト床版Bには複数箇所(図では4箇所)の箱抜き部Eが必要となる。したがって、鋼桁直交方向にプレストレスを導入するためのPC鋼材Pは、図9(b)や図9(c)に示すように、箱抜き部Eと箱抜き部Eの間隙をぬって埋設しなければならない。つまり、従来の鋼桁とプレキャスト床版の合成構造では、PC鋼材Pの配置計画(設置位置の他、設置本数や鋼材径など)において自由な設計が制限されていたわけである。   FIG. 9 is a schematic view showing a composite structure of a conventional steel girder and a precast slab, in which (a) is a transverse sectional view, (b) is a plan view thereof, and (c) is a longitudinal sectional view thereof. As shown in this figure, a headed stud S is welded and fixed to the upper flange surface of the steel girder G (main girder), and the headed stud S is mounted when the precast floor slab B is installed on the steel girder G. The precast floor slab B is provided with a box opening E so that it can be accommodated. As shown in FIG. 9C, a large number of headed studs S are arranged side by side in the steel girder direction (bridge axis direction), so as shown in FIG. Requires a plurality of (four places in the figure) box opening portions E. Therefore, the PC steel P for introducing prestress in the direction orthogonal to the steel girder is buried with the gap between the box opening E and the box opening E as shown in FIGS. 9B and 9C. Must. That is, in the conventional composite structure of steel girders and precast slabs, free design is limited in the arrangement plan of the PC steel material P (in addition to the installation position, the number of installations, the diameter of the steel material, etc.).

そこで特許文献1では、箱抜き穴の数を低減することを目的として、床版を貫通する「貫通すれ止め」と床版を貫通しない「ずれ止めコッター」の2種類の箱抜き部を設けた鋼桁とプレキャスト床版の合成構造を提案している。   Therefore, in Patent Document 1, for the purpose of reducing the number of boxing holes, two types of boxing portions of “through slip prevention” that penetrates the floor slab and “slip prevention cotter” that does not penetrate the floor slab are provided. A composite structure of steel girders and precast slabs is proposed.

特開2015−229818号公報JP2015-229818A

特許文献1で提案される技術は、「貫通すれ止め」位置にはPC鋼材を設置できないものの、「ずれ止めコッター」の上部にはPC鋼材を設置できることから、従来に比べ比較的自由にPC鋼材の配置計画を行うことができる。   Although the technique proposed in Patent Document 1 does not allow PC steel to be installed at the “through slip prevention” position, PC steel can be installed on the upper part of the “non-slip cotter”. Can be arranged.

ところで、特許文献1が示す「貫通すれ止め」を含む従来の箱抜き部は、床版を貫通することから、供用後に箱抜き部を通じて雨水等が浸水するという問題があった。箱抜き部を無収縮モルタルで十分に充填したとしても、やはり若干の隙間が生じてしまい、そこから浸水が生ずるわけである。この浸水によって鋼桁や頭付きスタッドに腐食が生じることもあり、ひいては構造上大きな損傷に達することもある。   By the way, since the conventional box opening part including the “penetration slip prevention” shown in Patent Document 1 penetrates the floor slab, there is a problem that rainwater or the like is submerged through the box opening part after use. Even if the boxed portion is sufficiently filled with non-shrink mortar, a slight gap still occurs, and water is generated from there. This flooding can cause corrosion in steel girders and headed studs, which in turn can cause significant structural damage.

また、特許文献1を含む従来の鋼桁とプレキャスト床版の合成構造には、別の問題を指摘することもできる。既述のとおり、鋼桁とプレキャスト床版を一体化するためには多数のスタッドが設置されるが、スタッドが集中して設置される箇所にはせん断力が集中することになる。つまり、無収縮モルタル等の充填材(硬化後)に大きなせん断力が生じ、場合によってはこの充填材にせん断ひび割れが発生した結果、鋼桁とプレキャスト床版の合成構造が機能しなくなることも考えられる。   Further, another problem can be pointed out in the conventional steel girder and precast slab composite structure including Patent Document 1. As described above, in order to integrate the steel girder and the precast floor slab, a large number of studs are installed, but the shearing force is concentrated at the places where the studs are concentrated. In other words, a large shearing force is generated in the filler (after curing) such as non-shrink mortar, and in some cases, shear cracks occur in this filler, which may cause the composite structure of the steel girder and precast slab to stop functioning. It is done.

本願発明の課題は、従来の問題を解決することであり、すなわち、分散配置するなど自由なPC鋼材の配置計画を可能とし、さらに箱抜き部からの浸水を防止し、しかも箱抜き部に生ずるせん断力に抵抗することのできるプレキャスト床版と、このプレキャスト床版を使用した鋼桁との合成構造、及び合成方法を提供することである。   The object of the present invention is to solve the conventional problem, that is, it is possible to arrange PC steel materials freely such as dispersed arrangement, and further prevent water from entering from the box-opening portion, and also occur in the box-opening portion. To provide a composite structure of a precast slab capable of resisting a shearing force and a steel girder using the precast slab, and a synthesis method.

本願発明は、床版を貫通しない収容部(スタッドを収容するための空間)を設けるとともに、収容部内に露出するせん断補強筋を設置する、というこれまでにない発想に基づいて行われたものである。   The present invention was made based on an unprecedented idea of providing a housing portion (a space for housing a stud) that does not penetrate the floor slab and installing a shear reinforcement bar that is exposed in the housing portion. is there.

本願発明のプレキャスト床版は、鋼桁の上に設置されるものであり、その一部に鋼桁設置部が形成されたものである。鋼桁設置部は、鋼桁上面に対向する位置に、鋼桁方向に沿って形成され、収容部を含む断面中空の「箱抜き部」と、収容部を含まない断面中実の「載置部」を有している。この収容部は、鋼桁上面に固定されたスタッドを収容する空間であり、上方に頂板部を残すように形成されるとともに、鋼桁方向に沿って形成される。また、本願発明のプレキャスト床版には、鋼桁直交方向に収容部を貫通し、かつ収容部内に露出する「せん断補強筋」が埋設される。
また本願発明のプレキャスト床版は、箱抜き部のみからなる鋼桁設置部が形成されたものとすることもできる。
The precast slab of the present invention is installed on a steel girder, and a steel girder installation part is formed in a part thereof. The steel girder installation part is formed along the steel girder direction at a position facing the upper surface of the steel girder and has a hollow cross-section "boxing part" including the accommodation part and a solid section "mounting part not including the accommodation part" Part ". This accommodating portion is a space for accommodating a stud fixed to the upper surface of the steel girder, and is formed so as to leave the top plate portion above, and is formed along the direction of the steel girder. Further, in the precast floor slab of the present invention, a “shear reinforcement” that pierces the accommodating portion in the direction orthogonal to the steel beam and is exposed in the accommodating portion is embedded.
Moreover, the precast floor slab of this invention can also be formed with the steel girder installation part which consists only of a box opening part.

本願発明のプレキャスト床版は、鋼桁直交方向に複数の緊張材が埋設されたものとすることもできる。この場合、頂板部に埋設される緊張材の段数よりも、多段の緊張材が載置部に埋設される。   The precast floor slab of the present invention may be one in which a plurality of tendons are embedded in the steel girder orthogonal direction. In this case, a multi-stage tension material is embedded in the mounting portion rather than the number of stages of the tension material embedded in the top plate portion.

本願発明のプレキャスト床版は、頂板部を肉厚方向に貫通する貫通孔が設けられたものとすることもできる。   The precast floor slab of the present invention may be provided with a through hole penetrating the top plate portion in the thickness direction.

本願発明の鋼桁とプレキャスト床版の合成構造は、鋼桁と、鋼桁設置部が形成されたプレキャスト床版からなる合成構造である。なお鋼桁設置部は、鋼桁方向に沿って形成されるものであって、収容部を含む断面中空の「箱抜き部」と収容部を含まない断面中実の「載置部」を有しており、またこの収容部は、上方に頂板部を残すように形成されるとともに、鋼桁方向に沿って形成される。さらにプレキャスト床版には、鋼桁直交方向に収容部を貫通し、かつ収容部内に露出する「せん断補強筋」が埋設される。鋼桁上面のうち収容部が配置される範囲であってせん断補強筋を避ける位置には、鋼桁方向に並ぶ複数のスタッドが固定されており、鋼桁上に設置された状態のプレキャスト床版の収容部はスタッドを収容する。そして、スタッド及びせん断補強筋を含む収容部内を充填材で固化することによって、鋼桁とプレキャスト床版が一体化され、せん断補強筋が鋼桁とプレキャスト床版の間で生ずるせん断力に抵抗する。
また本願発明の鋼桁とプレキャスト床版の合成構造は、鋼桁と、箱抜き部のみからなる鋼桁設置部が形成されたプレキャスト床版との合成構造とすることもできる。
The composite structure of the steel girder and the precast slab of the present invention is a synthetic structure consisting of a steel girder and a precast slab in which a steel girder installation portion is formed. The steel girder installation part is formed along the direction of the steel girder and has a hollow section with a hollow section including the accommodating part and a solid mounting part with a solid section not including the accommodating part. In addition, the accommodating portion is formed so as to leave the top plate portion above, and is formed along the steel beam direction. Furthermore, a “shear reinforcing bar” is embedded in the precast floor slab so as to penetrate the accommodating portion in the direction perpendicular to the steel beam and to be exposed in the accommodating portion. A plurality of studs lined up in the steel girder direction are fixed to the steel girder upper surface within the range where the housing part is arranged and avoiding the shear reinforcement, and the precast floor slab is installed on the steel girder. The accommodating portion accommodates the stud. And by solidifying the inside of the accommodating part including the stud and the shear reinforcement bar with the filler, the steel girder and the precast slab are integrated, and the shear reinforcement bar resists the shearing force generated between the steel girder and the precast slab. .
Moreover, the composite structure of the steel girder and the precast floor slab of the present invention may be a synthetic structure of a steel girder and a precast floor slab in which a steel girder installation portion consisting only of a box opening portion is formed.

本願発明の鋼桁とプレキャスト床版の合成方法は、鋼桁と、鋼桁設置部が形成されたプレキャスト床版を合成する方法であり、スタッド固定工程と、床版設置工程、充填材注入工程を備えている。なお鋼桁設置部は、鋼桁方向に沿って形成されるものであって、収容部を含む断面中空の「箱抜き部」と収容部を含まない断面中実の「載置部」を有しており、またこの収容部は、上方に頂板部を残すように形成されるとともに、鋼桁方向に沿って形成される。さらにプレキャスト床版には、鋼桁直交方向に収容部を貫通し、かつ収容部内に露出する「せん断補強筋」が埋設される。スタッド固定工程では、鋼桁上面のうち収容部が配置される範囲であってせん断補強筋を避ける位置に、鋼桁方向に並ぶ複数のスタッドを固定する。プレキャスト床版設置工程では、鋼桁設置部が鋼桁の上に配置されるように鋼桁にプレキャスト床版を設置し、充填材注入工程では、スタッド及びせん断補強筋が収容された収容部内に、充填材を注入する。
また本願発明の鋼桁とプレキャスト床版の合成方法は、鋼桁と、箱抜き部のみからなる鋼桁設置部が形成されたプレキャスト床版とを合成する方法とすることもできる。
The method for synthesizing a steel girder and a precast slab of the present invention is a method of synthesizing a steel girder and a precast slab in which a steel girder installation part is formed, a stud fixing step, a floor slab installation step, and a filler injection step. It has. The steel girder installation part is formed along the direction of the steel girder and has a hollow section with a hollow section including the accommodating part and a solid mounting part with a solid section not including the accommodating part. In addition, the accommodating portion is formed so as to leave the top plate portion above, and is formed along the steel beam direction. Furthermore, a “shear reinforcing bar” is embedded in the precast floor slab so as to penetrate the accommodating portion in the direction perpendicular to the steel girder and to be exposed in the accommodating portion. In the stud fixing step, a plurality of studs arranged in the steel girder direction are fixed to a position where the housing portion is disposed on the upper surface of the steel girder and avoids the shear reinforcement. In the precast floor slab installation process, the precast floor slab is installed on the steel girder so that the steel girder installation part is placed on the steel girder. In the filling material injection process, the stud and shear reinforcement are contained in the accommodating part. Inject the filler.
Further, the method for synthesizing the steel girder and the precast slab of the present invention may be a method of synthesizing the steel girder and the precast slab in which the steel girder installation portion consisting only of the box opening portion is formed.

本願発明のプレキャスト床版、鋼桁とプレキャスト床版の合成構造、及び鋼桁とプレキャスト床版の合成方法には、次のような効果がある。
(1)プレキャスト床版と鋼桁との合成による接合が容易でなかったため、従来、プレキャスト床版による取替えは非合成で行われてきた。その結果、鋼桁のたわみや応力が増加し、それを許容値に入れるために相当量の鋼桁補強が必要であった。これに対し本願発明は、その補強量を大幅に削減することができる。
(2)「載置部」はスタッドを収容しない断面中実であることからPC鋼材を設置することができるうえ、スタッドを収容する「箱抜き部」も上部の頂板部にPC鋼材を設置することができる。したがって、スタッド位置に制限されることなく、自由にPC鋼材の配置を設計することができる。
(3)スタッドを収容する「箱抜き部」は床版を貫通しないため、供用後の雨水等の浸水のおそれがなく、浸水による鋼桁等の腐食を防止することができる。
(4)露出した状態のせん断補強筋とスタッドを合わせて収容部内が固化されるため、鋼桁とプレキャスト床版の間で生ずるせん断力に抵抗することができ、収容部のせん断ひび割れ等を防止することができる。
(5)スタッドを分散配置することができるため、せん断力の集中を回避することができる。
(6)せん断補強筋の位置を把握したうえでスタッドを鋼桁上に固定することができるため、せん断補強筋を設けたプレキャスト床版であってもスタッドが支障となることなく鋼桁上に設置することができる。
The precast slab, the composite structure of the steel girder and the precast slab, and the method of synthesizing the steel girder and the precast slab have the following effects.
(1) Since it was not easy to join the precast floor slab and the steel girder by synthesis, the replacement by the precast floor slab has been performed non-synthetically. As a result, the deflection and stress of the steel girder increased, and a considerable amount of steel girder reinforcement was necessary to bring it into an acceptable value. In contrast, the present invention can significantly reduce the amount of reinforcement.
(2) Since the “mounting part” has a solid cross-section that does not accommodate studs, PC steel can be installed, and the “boxing part” that accommodates studs also installs PC steel on the upper top plate part. be able to. Therefore, the arrangement of the PC steel material can be freely designed without being limited to the stud position.
(3) Since the “box opening portion” that accommodates the stud does not penetrate the floor slab, there is no risk of inundation such as rainwater after use, and corrosion of steel girders and the like due to infiltration can be prevented.
(4) Since the inside of the housing part is solidified by combining the exposed shear reinforcement and the stud, it can resist the shearing force generated between the steel girder and the precast slab, and prevents shear cracks in the housing part. can do.
(5) Since studs can be dispersedly arranged, concentration of shearing force can be avoided.
(6) Since the stud can be fixed on the steel girder after grasping the position of the shear reinforcing bar, even if it is a precast floor slab provided with the shear reinforcing bar, the stud is not hindered on the steel girder. Can be installed.

本願発明のプレキャスト床版と鋼桁を合成した合成桁の一部を示す斜視図。The perspective view which shows a part of synthetic | combination girder which synthesize | combined the precast floor slab of this invention and the steel girder. (a)は鋼桁設置部を模式的に示す断面図、(b)は下方から見た鋼桁設置部を模式的に示す平面図。(A) is sectional drawing which shows a steel girder installation part typically, (b) is a top view which shows typically the steel girder installation part seen from the downward direction. (a)は箱抜き部を模式的に示す断面図、(b)は載置部を模式的に示す断面図。(A) is sectional drawing which shows a box extraction part typically, (b) is sectional drawing which shows a mounting part typically. 箱抜き部のみからなる鋼桁設置部を模式的に示す平面図。The top view which shows typically the steel girder installation part which consists only of a box extraction part. プレキャスト床版に埋設されたせん断補強筋を示す部分断面図。The fragmentary sectional view which shows the shear reinforcement reinforcement embed | buried under the precast floor slab. 箱抜き部と載置部を有する鋼桁設置部が形成されたプレキャスト床版と、鋼桁を合成した合成構造を示す部分縦断面図。The fragmentary longitudinal cross-section which shows the synthetic | combination structure which synthesize | combined the precast floor slab in which the steel girder installation part which has a box extraction part and a mounting part was formed, and the steel girder. 箱抜き部のみを有する鋼桁設置部が形成された本願発明のプレキャスト床版と鋼桁を合成した合成構造を示す部分縦断面図。The fragmentary longitudinal cross-section which shows the synthetic | combination structure which synthesize | combined the precast floor slab of this invention in which the steel girder installation part which has only a boxing part was formed, and the steel girder. 既設のRC床版を撤去してプレキャスト床版と鋼桁との合成構造を形成する方法における主な工程の流れを示すフロー図。The flowchart which shows the flow of the main processes in the method of removing the existing RC floor slab and forming the composite structure of a precast floor slab and a steel girder. (a)は従来の鋼桁とプレキャスト床版の合成構造を示す横断面図、(b)は従来の鋼桁とプレキャスト床版の合成構造を示す平面図、(c)は従来の鋼桁とプレキャスト床版の合成構造を示す縦断面図。(A) is a cross-sectional view showing a composite structure of a conventional steel girder and a precast slab, (b) is a plan view showing a composite structure of a conventional steel girder and a precast slab, and (c) is a conventional steel girder and The longitudinal cross-sectional view which shows the synthetic structure of a precast floor slab.

本願発明のプレキャスト床版、鋼桁とプレキャスト床版の合成構造、及び鋼桁とプレキャスト床版の合成方法の一例を、図に基づいて説明する。   An example of the precast floor slab of the present invention, a composite structure of a steel girder and a precast floor slab, and a method of synthesizing a steel girder and a precast floor slab will be described with reference to the drawings.

1.プレキャスト床版
はじめに、本願発明のプレキャスト床版について説明する。図1は、橋梁の合成桁を示すものであり、本願発明のプレキャスト床版100と鋼桁200を合成した合成桁の一部を示す斜視図である。この図では、1つのプレキャスト床版100のみを示しているが、もちろん橋梁全体としては複数の鋼桁200(この場合は主桁)が橋軸方向に並べられており、この鋼桁200間にプレキャスト床版100が橋軸直角方向に架け渡され、さらに橋軸直角方向に架け渡されたプレキャスト床版100が橋軸方向に並べられて、橋梁全体の床版は形成される。なおここでは便宜上、設置された鋼桁200の軸線方向(つまり橋軸方向)を「鋼桁方向」と呼び、鋼桁方向に直交する方向(つまり橋軸直角方向)を「鋼桁直交方向」と呼ぶこととする。
1. Precast floor slab First, the precast floor slab of the present invention will be described. FIG. 1 shows a composite girder of a bridge, and is a perspective view showing a part of a synthetic girder obtained by synthesizing a precast floor slab 100 and a steel girder 200 of the present invention. In this figure, only one precast floor slab 100 is shown. Of course, as a whole bridge, a plurality of steel girders 200 (in this case, main girders) are arranged in the direction of the bridge axis. The precast floor slab 100 is bridged in a direction perpendicular to the bridge axis, and the precast floor slabs 100 that are bridged in the direction perpendicular to the bridge axis are arranged in the bridge axis direction to form a floor slab of the entire bridge. Here, for convenience, the axial direction of the installed steel girder 200 (that is, the direction of the bridge axis) is referred to as “steel girder direction”, and the direction orthogonal to the direction of the steel girder (that is, the direction perpendicular to the bridge axis) is referred to as “the direction perpendicular to the steel girder” I will call it.

プレキャスト床版100を鋼桁200上に設置した姿勢(以下、「設置姿勢」という。)で見ると、図1にも示すように、その下面側には「収容部111a」が設けられており、この収容部111aを鋼桁直交方向に貫通し収容部111a内に露出する「せん断補強筋120」が埋設されている。この収容部111aは、鋼桁200の上面(上フランジ)に固定されたスタッド300を収容するよう箱抜きされた空間である。またプレキャスト床版100は、PC鋼材(以下、「緊張材130」という。)により鋼桁直交方向にプレストレスが導入されたものとすることもできるし、収容部111a内に無収縮モルタル等の充填材を注入するためにも利用できる「貫通孔140」が設けられたものとすることもできる。   When the precast floor slab 100 is installed on the steel girder 200 (hereinafter referred to as “installation attitude”), as shown in FIG. 1, an “accommodating portion 111a” is provided on the lower surface side. A “shear reinforcing bar 120” is embedded in the housing portion 111a so as to penetrate in the direction perpendicular to the steel girder and exposed in the housing portion 111a. The accommodating portion 111a is a space that is boxed to accommodate the stud 300 that is fixed to the upper surface (upper flange) of the steel beam 200. The precast floor slab 100 may be prestressed in the direction orthogonal to the steel girder by a PC steel material (hereinafter referred to as “tension material 130”), or may be a non-shrink mortar or the like in the accommodating portion 111a. A “through hole 140” that can also be used for injecting the filler may be provided.

(鋼桁設置部)
既述のとおり、プレキャスト床版100は鋼桁200間に架け渡されて設置される。つまり、プレキャスト床版100のうち一部だけが鋼桁200に載せられるわけである。本願発明はこの「鋼桁200に載せられる部分」に1つの技術的特徴を備えており、ここでは便宜上、「鋼桁設置部」ということとする。なお鋼桁設置部は、鋼桁200上に直接載置されることもあるが、高さ調整台(ゴム製やプラスチック製)を介して鋼桁200上に間接的に載置されることもある。いずれにしろ鋼桁設置部は、鋼桁200からの反力を直接受ける部分であり、大きなせん断力を負担することから、図1にも示すようにハンチ状として他よりも部材厚を大きくするのが一般的である。本願発明の鋼桁設置部も、同様にハンチ状とすることもできるし、ハンチ状とすることなく他と同じ部材厚としてもよい。
(Steel girder installation)
As described above, the precast floor slab 100 is installed across the steel beam 200. That is, only a part of the precast floor slab 100 is placed on the steel beam 200. The present invention has one technical feature in the “part placed on the steel girder 200”, and here it is referred to as a “steel girder installation part” for convenience. In addition, although the steel girder installation part may be directly mounted on the steel girder 200, it may be indirectly mounted on the steel girder 200 via a height adjustment stand (made of rubber or plastic). is there. In any case, the steel girder installation part is a part that directly receives the reaction force from the steel girder 200, and bears a large shearing force. Therefore, as shown in FIG. It is common. Similarly, the steel girder installation portion of the present invention may be formed in a haunch shape, or may have the same member thickness as the other without being formed in a haunch shape.

図2は、鋼桁設置部110を模式的に示す図であり、(a)は断面図、(b)は下方から見た平面図である。図2(a)に示すように鋼桁設置部110は、設置姿勢のプレキャスト床版100のうち、鋼桁200上面に対向する部分に形成される。したがって図2(b)からも分かるように、鋼桁設置部110は鋼桁方向にわたって形成される。なお1つのプレキャスト床版100は、通常、2つ以上の鋼桁200に架け渡される。図2ではプレキャスト床版100が2つの鋼桁200に架け渡された場合を例示しており、そのため2箇所の鋼桁設置部110が形成されているが、3以上の鋼桁200に架け渡される場合は、鋼桁200の数(つまり3以上)だけ鋼桁設置部110を形成するとよい。   FIGS. 2A and 2B are diagrams schematically showing the steel girder installation portion 110, where FIG. 2A is a cross-sectional view and FIG. 2B is a plan view seen from below. As shown in FIG. 2 (a), the steel girder installation part 110 is formed in the part facing the upper surface of the steel girder 200 in the precast floor slab 100 in the installation posture. Therefore, as can be seen from FIG. 2B, the steel girder installation part 110 is formed over the steel girder direction. Note that one precast floor slab 100 is usually spanned between two or more steel girders 200. FIG. 2 illustrates a case where the precast floor slab 100 is bridged over two steel girders 200, and thus two steel girder installation portions 110 are formed. In this case, the steel girder installation portions 110 may be formed by the number of steel girders 200 (that is, three or more).

また鋼桁設置部110は、図2(b)に示す「箱抜き部111」と「載置部112」によって形成される。図3(a)は箱抜き部111を模式的に示す断面図であり、図3(b)は載置部112を模式的に示す断面図である。図3(a)に示すように、箱抜き部111には収容部111aが設けられており、プレキャスト床版100を鋼桁200上に設置したとき、鋼桁200上面のスタッド300はこの収容部111aに収容される。   Moreover, the steel girder installation part 110 is formed by the "box removal part 111" and the "mounting part 112" shown in FIG.2 (b). FIG. 3A is a cross-sectional view schematically showing the box opening portion 111, and FIG. 3B is a cross-sectional view schematically showing the placement portion 112. As shown in FIG. 3 (a), the box opening portion 111 is provided with a storage portion 111 a, and when the precast floor slab 100 is installed on the steel girder 200, the stud 300 on the upper surface of the steel girder 200 has the storage portion 111. 111a.

収容部111aは、プレキャスト床版100の製作時に箱抜き部111の一部を箱抜きすることで形成される。もちろん、スタッド300を収容できるように、収容部111aの高さがスタッド300の高さ以上となるよう箱抜きされる。ただしこの箱抜きは、プレキャスト床版100(つまり箱抜き部111)を貫通するものではなく、部材のうち上方の一部を残したものであり、これによって収容部111aの上方に「頂板部111b」が形成される。換言すれば、箱抜き部111は、その断面が中空となっており、断面上方の頂板部111bと断面下方の収容部111aで形成される。このように収容部111a上方に頂板部111bを設けた結果、供用後の浸水を防ぐことができ、浸水による鋼桁200やスタッド300の腐食を防ぐことができる。   The accommodating part 111a is formed by boxing a part of the box opening part 111 when the precast floor slab 100 is manufactured. Of course, the housing portion 111a is boxed so that the height of the housing portion 111a is equal to or higher than the height of the stud 300 so that the stud 300 can be housed. However, this boxing does not pass through the precast floor slab 100 (that is, the boxing part 111) but leaves a part of the upper part of the member. Is formed. In other words, the box opening portion 111 has a hollow cross section, and is formed by the top plate portion 111b above the cross section and the accommodating portion 111a below the cross section. As a result of providing the top plate portion 111b above the housing portion 111a as described above, it is possible to prevent inundation after use, and to prevent the steel beam 200 and the stud 300 from being corroded by the inundation.

一方の載置部112は、プレキャスト床版100の製作時に箱抜きされることなく形成される断面、すなわち収容部111aが設けられない断面であり、図3(b)に示すように断面内がすべて材料(コンクリート)で充填された中実の断面となっている。   One mounting portion 112 is a cross section formed without being boxed when the precast floor slab 100 is manufactured, that is, a cross section in which the accommodating portion 111a is not provided, and the inside of the cross section is as shown in FIG. All are solid sections filled with material (concrete).

図2(b)にも示すように帯状の鋼桁設置部110は、箱抜き部111(図では白抜き部分)と載置部112(図では網がけ部分)が鋼桁方向に交互に連続して配置されることで形成される。例えばこの図では、両端と中央に計3箇所の載置部112が設けられ、載置部112に挟まれるように2箇所の箱抜き部111が設けられている。なお、鋼桁方向に多数のスタッド300が配置されることもあり、収容部111aはできるだけ鋼桁方向に長い寸法で形成するとよい。したがって箱抜き部111は、鋼桁方向に沿って載置部112よりも長い寸法で形成される。箱抜き部111と載置部112の配置及び数や、箱抜き部111の鋼桁方向寸法は、プレキャスト床版100の形状寸法や設置されるスタッド300の数等に応じて適宜設計することができる。   As shown in FIG. 2 (b), the strip-shaped steel girder installation section 110 has box-cutting portions 111 (in the drawing, white portions) and mounting portions 112 (in the drawing, shaded portions) alternately continuous in the steel girder direction. It is formed by arranging. For example, in this figure, a total of three placement portions 112 are provided at both ends and the center, and two box opening portions 111 are provided so as to be sandwiched between the placement portions 112. In addition, many studs 300 may be arrange | positioned in a steel girder direction, and it is good to form the accommodating part 111a as long as possible in the steel girder direction. Therefore, the box opening part 111 is formed in a dimension longer than the mounting part 112 along the steel beam direction. The arrangement and number of the box-cutting portions 111 and the mounting portions 112, and the steel girder direction dimensions of the box-cutting portion 111 can be appropriately designed according to the shape dimensions of the precast floor slab 100, the number of studs 300 to be installed, and the like. it can.

またプレキャスト床版100や鋼桁200のサイズ、あるいは想定される外力など種々の条件によっては、本願発明のプレキャスト床版100を、載置部112が設けられることがない鋼桁設置部110、すなわち箱抜き部111のみを有する鋼桁設置部110が形成されたものとすることもできる。この場合、図3(a)に示す断面(箱抜き部111)がプレキャスト床版100の鋼桁方向にわたって形成され、つまり鋼桁設置部110範囲はすべて箱抜き部111となり、したがって図4に示すように下方からプレキャスト床版100を見ると鋼桁設置部110と箱抜き部111の平面位置は一致する。   Further, depending on various conditions such as the size of the precast floor slab 100 and the steel girder 200 or an assumed external force, the precast floor slab 100 of the present invention is a steel girder installation part 110 in which the placement part 112 is not provided, that is, The steel girder installation part 110 which has only the box part 111 can also be formed. In this case, the cross section (box extraction part 111) shown in FIG. 3A is formed across the steel girder direction of the precast floor slab 100, that is, the entire range of the steel girder installation part 110 becomes the box extraction part 111, and therefore shown in FIG. Thus, when the precast floor slab 100 is viewed from below, the plane positions of the steel girder installation part 110 and the box opening part 111 coincide.

(せん断補強筋)
既述のとおりプレキャスト床版100には、主筋や配力筋の他、せん断補強筋120が設けられる。図5は、プレキャスト床版100に埋設されたせん断補強筋120を示す部分断面図である。この図に示すようにせん断補強筋120は、プレキャスト床版100上部に定着部が設けられ、そこから斜方向に折り曲げられ、さらに収容部111aを鋼桁直交方向に貫通する部分が設けられている。したがって、せん断補強筋120の一部は収容部111a内に露出している。このせん断補強筋120は、異形棒鋼のほか丸鋼など種々の鉄筋を使用することができ、さらに耐久性を考慮してエポキシ樹脂塗装が施された鉄筋を使用してもよい。またせん断補強筋120の鉄筋径は、プレキャスト床版100の形状寸法や設計荷重などに応じて適宜設計することができ、例えばD16やD19、D22等とすることができる。
(Shear reinforcement)
As described above, the precast floor slab 100 is provided with the shear reinforcement 120 in addition to the main reinforcement and the distribution reinforcement. FIG. 5 is a partial cross-sectional view showing the shear reinforcing bar 120 embedded in the precast floor slab 100. As shown in this figure, the shear reinforcing bar 120 is provided with a fixing portion at the upper part of the precast floor slab 100, bent in an oblique direction therefrom, and further provided with a portion penetrating the accommodating portion 111a in the direction perpendicular to the steel girder. . Accordingly, a part of the shear reinforcing bar 120 is exposed in the housing portion 111a. As the shear reinforcing bar 120, various types of reinforcing bars such as round steel bars can be used in addition to deformed bar steel, and reinforcing bars coated with epoxy resin may be used in consideration of durability. The reinforcing bar diameter of the shear reinforcing bar 120 can be appropriately designed according to the shape and design load of the precast floor slab 100, for example, D16, D19, D22, and the like.

(緊張材)
通常、橋梁の床版として用いられるプレキャスト床版にはPC鋼材によってプレストレスが導入される。本願発明のプレキャスト床版100の場合も、緊張材130を埋設することでプレストレスを導入することができる。具体的には、プレキャスト床版100を製作する際に、緊張した状態の緊張材130(PC鋼材)を埋設したままコンクリートを打設し、さらにその状態でコンクリートが硬化した後、緊張した状態の緊張材130を床版端部で切断することによってプレストレスが導入される。この緊張材130は、設置姿勢となったプレキャスト床版100の鋼桁直交方向に設置するとよい。
(Tension material)
Usually, prestress is introduced into a precast floor slab used as a bridge slab by a PC steel material. Also in the case of the precast floor slab 100 of the present invention, prestress can be introduced by embedding the tendon 130. Specifically, when the precast floor slab 100 is manufactured, the concrete is placed with the tension material 130 (PC steel material) in a tensioned state embedded therein, and the concrete is hardened in that state, and then the tensioned state. Prestress is introduced by cutting the tendon 130 at the end of the floor slab. The tendon 130 may be installed in the direction perpendicular to the steel girder of the precast floor slab 100 in the installation posture.

従来、鋼桁上のスタッドを収容するためには、プレキャスト床版の一部に部材厚方向に貫通する箱抜き部を設けるのが一般的であり、当然ながらこの箱抜き部には緊張材が設置できず、結果的に緊張材の配置が極めて限定的とされていた。一方、本願発明のプレキャスト床版100は、スタッド300を収容する収容部111aの上方に頂板部111bを設けた効果で、図6に示すようにスタッド300の上方にも緊張材130を埋設することができ、すなわち制限されることなくプレキャスト床版100の任意の位置に緊張材130を配置することができる。さらに、緊張材130の配置に制限されることなくスタッド300を配置することができるともいえることから、スタッド300の分散配置が可能となり、この結果せん断力の集中を回避することができる。なお、中実断面の載置部112は頂板部111bに比べ部材厚寸法が大きい(厚い)ことから、載置部112に埋設する緊張材130の段数(上下方向に配列する数)は、頂板部111bに埋設する緊張材130の段数よりも多くすることが望ましい。例えば図6の場合、頂板部111bには1段の緊張材130が埋設され、載置部112には2段の緊張材130が埋設されている。   Conventionally, in order to accommodate a stud on a steel girder, it is common to provide a box opening part penetrating in a part thickness direction in a part of a precast floor slab. As a result, the arrangement of the tendon has been extremely limited. On the other hand, the precast floor slab 100 of the present invention has the effect that the top plate portion 111b is provided above the accommodating portion 111a that accommodates the stud 300, and the tension material 130 is embedded above the stud 300 as shown in FIG. That is, without limitation, the tendon 130 can be disposed at any position on the precast floor slab 100. Furthermore, since it can be said that the stud 300 can be arranged without being limited to the arrangement of the tendon 130, the stud 300 can be distributed and the concentration of shearing force can be avoided. In addition, since the mounting part 112 of a solid cross section has a member thickness dimension larger (thick) than the top plate part 111b, the number of the tension members 130 embedded in the mounting part 112 (the number arranged in the vertical direction) is the top plate. It is desirable to increase the number of the tension members 130 embedded in the portion 111b. For example, in the case of FIG. 6, the first-stage tension material 130 is embedded in the top plate portion 111 b, and the two-stage tension material 130 is embedded in the mounting portion 112.

2.鋼桁とプレキャスト床版の合成構造
次に、本願発明の鋼桁とプレキャスト床版の合成構造について説明する。図6及び図7は、ここまで説明したプレキャスト床版100と、鋼桁200を合成した合成構造を示す部分縦断面図である。なお、図6は載置部112及び箱抜き部111を有する鋼桁設置部110が形成されたケースを示し、図7は箱抜き部111のみを有する鋼桁設置部110が形成されたケースを示している。これらの図に示すように、鋼桁200の上面(上フランジ)には、鋼桁方向に多数並べられたスタッド300が、例えば溶接によって固定されている。この鋼桁200は、鋼製の部材でありI形鋼を用いるのが一般的であるが、橋梁の規模に応じてH形鋼を用いることもでき、その他箱桁などとすることもできる。また、鋼桁200に固定されるスタッド300は、頭部に他よりも太径部材を設けた頭付きスタッドを用いることが多いが、鉄筋を山形(三角形状)やコの字形(四角形状)に折り曲げたもの、あるいは単なる直立した短鉄筋のものなど、種々の形状のスタッド300を採用することができる。
2. Next, the composite structure of the steel girder and the precast slab of the present invention will be described. 6 and 7 are partial longitudinal sectional views showing a synthetic structure in which the precast floor slab 100 described so far and the steel girder 200 are synthesized. 6 shows a case in which a steel girder installation part 110 having a placement part 112 and a box opening part 111 is formed, and FIG. 7 shows a case in which a steel girder installation part 110 having only the box extraction part 111 is formed. Show. As shown in these drawings, a large number of studs 300 arranged in the steel beam direction are fixed to the upper surface (upper flange) of the steel beam 200 by, for example, welding. The steel girder 200 is a steel member and generally uses an I-shaped steel. However, an H-shaped steel can be used according to the scale of the bridge, and a box girder can also be used. The stud 300 fixed to the steel girder 200 is often a headed stud provided with a larger-diameter member on the head than the others, but the reinforcing bars are formed in a mountain shape (triangle shape) or a U-shape (square shape). It is possible to employ studs 300 of various shapes, such as those bent into two or mere upright short reinforcing bars.

スタッド300が固定された鋼桁200上には、プレキャスト床版100が設置される。このとき、スタッド300と収容部111aの平面位置が一致するように、つまりスタッド300が収容部111a内に収容されるように、プレキャスト床版100の位置を調整しながら設置される。そして、収容部111aに収められたスタッド300と、さらに収容部111aに露出するせん断補強筋120を含めた状態で、収容部111a内に無収縮モルタル等の充填材を注入し、この充填材が硬化することでプレキャスト床版100と鋼桁200の合成構造が形成される。この合成構造によれば、収容部111a内のスタッド300でプレキャスト床版100と鋼桁200を一体化させるだけでなく、収容部111a内のせん断補強筋120によってプレキャスト床版100と鋼桁200を連結することから、従来に比べプレキャスト床版100と鋼桁200の間で生ずるせん断力に対して、より抵抗することができる。   The precast floor slab 100 is installed on the steel beam 200 to which the stud 300 is fixed. At this time, the precast floor slab 100 is installed while adjusting the position so that the planar positions of the stud 300 and the accommodating portion 111a coincide, that is, the stud 300 is accommodated in the accommodating portion 111a. Then, a filler such as non-shrink mortar is injected into the accommodating portion 111a in a state including the stud 300 housed in the accommodating portion 111a and the shear reinforcement 120 exposed to the accommodating portion 111a. By hardening, a composite structure of the precast floor slab 100 and the steel beam 200 is formed. According to this composite structure, not only the precast floor slab 100 and the steel girder 200 are integrated by the stud 300 in the accommodating portion 111a, but also the precast floor slab 100 and the steel girder 200 are formed by the shear reinforcing bar 120 in the accommodating portion 111a. Since it connects, it can resist more with respect to the shear force which arises between the precast floor slab 100 and the steel beam 200 compared with the past.

3.鋼桁とプレキャスト床版の合成方法
続いて、「1.プレキャスト床版」で説明したプレキャスト床版100と、鋼桁200を合成して「2.鋼桁とプレキャスト床版の合成構造」で説明した合成構造を形成する方法について説明する。図8は、既設のRC床版を撤去して、新たにプレキャスト床版100と鋼桁200による合成構造を形成する方法における主な工程の流れを示すフロー図である。
3. Method of synthesizing steel girder and precast slab Next, we synthesized precast slab 100 and steel girder 200 described in “1. Precast slab” and explained in “2. Composite structure of steel girder and precast slab”. A method for forming the synthesized structure will be described. FIG. 8 is a flowchart showing a main process flow in the method of removing the existing RC floor slab and newly forming a composite structure of the precast floor slab 100 and the steel beam 200.

まず、既存のRC床版を撤去(Step11)し、鋼桁200の上面(上フランジ)に付着した不要物を除去するなどスタッド300固定面の清掃を行う(Step12)。そして、プレキャスト床版100を設置する位置を計測し、その位置を鋼桁200の上面に罫書く。このとき、収容部111aとせん断補強筋120の位置を考慮したうえで、スタッド300の固定位置を罫書いておく(Step13)。次に、鋼桁200の上面のうち前工程で罫書かれた固定位置(つまり、収容部111aの位置であってせん断補強筋120の位置を避ける位置)に、スタッド300を溶接等で固定していく(Step14)。スタッド300を固定すると、鋼桁200上面の所定位置にプレキャスト床版100を設置する(Step15)。プレキャスト床版100の設置高さを調整するには、ゴム製やプラスチック製などの高さ調整台や、高さ調整ボルトを利用して行うとよい。高さ調整台は、プレキャスト床版100の設置前に鋼桁200(載置部112位置)上に配置されるものであり、その寸法(高さ)を調整することでプレキャスト床版100の設置高さを調整する。高さ調整ボルトは、プレキャスト床版100に設けられた雌ネジに挿入されるものであり、プレキャスト床版100の設置後に高さ調整ボルトの突出長さを調整することでプレキャスト床版100の設置高さを調整する。プレキャスト床版100が設置できると、充填材の漏れ防止用のソウルスポンジ400(図5)を鋼桁200全長にわたって配置したうえで、収容部111a内に無収縮モルタル等の充填材を注入する(Step16)。このとき、あらかじめ頂板部111bを肉厚方向に貫通する貫通孔140を設けておくと、この貫通孔140を利用して充填材を注入することもできるし、貫通孔140を通じて収容部111a内の空気を抜くこともできる。なお、供用後の浸水を防ぐことができるよう、貫通孔140はできる限り小径とするとよい。注入された充填材が硬化すると、収容部111a内で充填材、スタッド300、せん断補強筋120が一体として固化され、この結果、プレキャスト床版100と鋼桁200が一体化された合成構造が形成される。   First, the existing RC floor slab is removed (Step 11), and the fixing surface of the stud 300 is cleaned (Step 12), such as removing unnecessary materials attached to the upper surface (upper flange) of the steel beam 200. And the position which installs the precast floor slab 100 is measured, and the position is marked on the upper surface of the steel girder 200. At this time, in consideration of the positions of the accommodating portion 111a and the shear reinforcing bar 120, the fixing position of the stud 300 is marked (Step 13). Next, the stud 300 is fixed by welding or the like to the fixing position marked in the previous step on the upper surface of the steel girder 200 (that is, the position of the accommodating portion 111a and avoiding the position of the shear reinforcing bar 120). Go (Step 14). When the stud 300 is fixed, the precast floor slab 100 is installed at a predetermined position on the upper surface of the steel girder 200 (Step 15). In order to adjust the installation height of the precast floor slab 100, it is preferable to use a height adjustment stand made of rubber or plastic or a height adjustment bolt. The height adjusting table is disposed on the steel beam 200 (the placement portion 112 position) before the precast floor slab 100 is installed, and the precast floor slab 100 is installed by adjusting the dimension (height). Adjust the height. The height adjustment bolt is inserted into a female screw provided on the precast floor slab 100. After the precast floor slab 100 is installed, the height of the height adjustment bolt is adjusted to adjust the installation of the precast floor slab 100. Adjust the height. When the precast floor slab 100 can be installed, a soul sponge 400 (FIG. 5) for preventing leakage of the filler is arranged over the entire length of the steel beam 200, and then a filler such as non-shrink mortar is injected into the accommodating portion 111a ( Step 16). At this time, if a through-hole 140 that penetrates the top plate portion 111b in the thickness direction is provided in advance, the filler can be injected using the through-hole 140, and the inside of the accommodating portion 111a can be injected through the through-hole 140. You can also evacuate the air. In addition, it is good to make the through-hole 140 as small as possible so that the inundation after service can be prevented. When the injected filler is hardened, the filler, the stud 300, and the shear reinforcement 120 are solidified integrally in the housing portion 111a. As a result, a composite structure in which the precast floor slab 100 and the steel beam 200 are integrated is formed. Is done.

本願発明のプレキャスト床版、鋼桁とプレキャスト床版の合成構造、及び鋼桁とプレキャスト床版の合成方法は、道路橋、鉄道橋といったあらゆる用途の橋梁に利用でき、河川橋、跨道橋、跨線橋など種々のものを越える橋梁に利用することができる。また本願発明は、既設橋梁の床版架け替え工事に使用する場合に限らず、新設橋梁にも採用することができる。本願発明が、安全な交通を提供し、ひいては橋梁の長寿命化を図ることができることを考えれば、産業上利用できるばかりでなく社会的にも大きな貢献を期待し得る発明といえる。   The precast slab of the present invention, the composite structure of the steel girder and the precast slab, and the synthetic method of the steel girder and the precast slab can be used for bridges of all uses such as road bridges, railway bridges, river bridges, overpass bridges, It can be used for bridges that cross over various types such as overpasses. Further, the present invention is not limited to the case where the existing bridge is used for floor slab replacement work, but can also be applied to a new bridge. Considering that the present invention can provide safe traffic and thereby extend the life of the bridge, it can be said that the invention can be used not only industrially but can also make a great social contribution.

100 プレキャスト床版
110 (プレキャストコンクリート床版の)鋼桁設置部
111 (鋼桁設置部の)箱抜き部
111a (箱抜き部の)収容部
111b (箱抜き部の)頂板部
112 (鋼桁設置部の)載置部
120 (プレキャストコンクリート床版の)せん断補強筋
130 (プレキャストコンクリート床版の)緊張材
140 (プレキャストコンクリート床版の)貫通孔
200 鋼桁
300 スタッド
400 ソウルスポンジ
B (従来の)プレキャスト床版
E (従来の)箱抜き部
G 鋼桁
P PC鋼材
S 頭付きスタッド
DESCRIPTION OF SYMBOLS 100 Precast floor slab 110 Steel girder installation part (for precast concrete slab) 111 Box opening part (for steel girder installation part) 111a (For box extraction part) Housing part 111b (For box extraction part) Top plate part 112 (Steel girder installation) Placement part 120 Shear reinforcement (of precast concrete slab) 130 Tension material (of precast concrete slab) 140 Through hole (of precast concrete slab) 200 Steel girder 300 Stud 400 Soul sponge B (Conventional) Precast floor slab E (Conventional) Box opening G Steel girder P PC steel S Headed stud

Claims (8)

鋼桁の上に設置されるプレキャスト床版において、
前記鋼桁上面に対向する位置に、鋼桁方向に沿って、鋼桁設置部が形成され、
前記鋼桁設置部は、収容部を含む断面中空の箱抜き部と、該収容部を含まない断面中実の載置部と、を有し、
前記収容部は、前記鋼桁上面に固定されたスタッドを収容する空間であって、上方に頂板部を残すように形成されるとともに、鋼桁方向に沿って形成され、
鋼桁直交方向に前記収容部を貫通し、該収容部内に露出する、せん断補強筋が埋設された、
ことを特徴とするプレキャスト床版。
In precast floor slabs installed on steel girders,
A steel girder installation part is formed along the steel girder direction at a position facing the upper surface of the steel girder,
The steel girder installation part has a hollow section with a hollow section including a storage part, and a mounting part with a solid cross section not including the storage part,
The accommodating portion is a space for accommodating a stud fixed to the upper surface of the steel girder, and is formed so as to leave a top plate portion above, and is formed along the steel girder direction,
Shear reinforcement bars embedded in the steel girder orthogonal direction, penetrating the housing part and exposed in the housing part,
Precast floor slab characterized by that.
鋼桁直交方向に、複数の緊張材が埋設され、
前記頂板部に埋設される前記緊張材の段数よりも、前記載置部に埋設される前記緊張材の段数の方が多い、
ことを特徴とする請求項1記載のプレキャスト床版。
A plurality of tendons are buried in the direction perpendicular to the steel girder,
More than the number of steps of the tension material embedded in the top plate portion than the number of steps of the tension material embedded in the mounting portion,
The precast slab according to claim 1, wherein:
鋼桁の上に設置されるプレキャスト床版において、
前記鋼桁上面に対向する位置に、鋼桁方向に沿って、鋼桁設置部が形成され、
前記鋼桁設置部は、収容部及び頂板部からなる中空の断面であり、
前記収容部は、前記鋼桁上面に固定されたスタッドを収容する空間であって、上方に前記頂板部を残すように形成され、
鋼桁直交方向に前記収容部を貫通し、該収容部内に露出する、せん断補強筋が埋設された、
ことを特徴とするプレキャスト床版。
In precast floor slabs installed on steel girders,
A steel girder installation part is formed along the steel girder direction at a position facing the upper surface of the steel girder,
The steel girder installation part is a hollow cross section consisting of an accommodation part and a top plate part,
The accommodating portion is a space for accommodating a stud fixed to the upper surface of the steel beam, and is formed so as to leave the top plate portion above.
Shear reinforcement bars embedded in the steel girder orthogonal direction, penetrating the housing part and exposed in the housing part,
Precast floor slab characterized by that.
前記頂板部に、該頂板部を肉厚方向に貫通する貫通孔が設けられた、
ことを特徴とする請求項1乃至請求項3のいずれかに記載のプレキャスト床版。
The top plate portion is provided with a through hole penetrating the top plate portion in the thickness direction.
The precast slab according to any one of claims 1 to 3, wherein:
鋼桁とプレキャスト床版からなる合成構造において、
前記プレキャスト床版には、収容部を含む断面中空の箱抜き部と、該収容部を含まない断面中実の載置部と、を有する鋼桁設置部が、鋼桁方向に沿って形成され、該収容部は、上方に頂板部を残すように形成されるとともに、鋼桁方向に沿って形成されるものであり、
さらに前記プレキャスト床版には、鋼桁直交方向に前記収容部を貫通し該収容部内に露出する、せん断補強筋が埋設され、
前記鋼桁上面のうち前記収容部が配置される範囲であって、前記せん断補強筋を避ける位置には、鋼桁方向に並ぶ複数のスタッドが固定され、
前記鋼桁上に設置された前記プレキャスト床版の前記収容部は前記スタッドを収容し、該スタッド及び前記せん断補強筋を含む前記収容部内を充填材で固化することによって、前記鋼桁と前記プレキャスト床版が一体化され、
前記せん断補強筋が、前記鋼桁と前記プレキャスト床版の間で生ずるせん断力に抵抗し得る、
ことを特徴とする鋼桁とプレキャスト床版の合成構造。
In the composite structure consisting of steel girders and precast slabs,
The precast floor slab is formed with a steel girder installation portion having a hollow cross-section boxing portion including a housing portion and a solid section mounting portion not including the housing portion along the steel girder direction. The accommodating portion is formed so as to leave the top plate portion above, and is formed along the steel girder direction.
Furthermore, the precast floor slab is embedded with a shear reinforcing bar that penetrates the housing part in the direction perpendicular to the steel girder and is exposed in the housing part,
A plurality of studs lined up in the steel girder direction are fixed in a range where the housing portion is arranged in the steel girder upper surface and avoiding the shear reinforcement bars,
The accommodating portion of the precast floor slab installed on the steel girder accommodates the stud, and the inside of the accommodating portion including the stud and the shear reinforcing bar is solidified with a filler, whereby the steel girder and the precast The floor slab is integrated,
The shear reinforcement may resist shear forces generated between the steel girders and the precast slab,
A composite structure of steel girders and precast slabs.
鋼桁とプレキャスト床版からなる合成構造において、
前記プレキャスト床版には、収容部及び頂板部からなる断面中空の鋼桁設置部が鋼桁方向に沿って形成され、該収容部は上方に該頂板部を残すように形成されるものであり、
さらに前記プレキャスト床版には、鋼桁直交方向に前記収容部を貫通し該収容部内に露出する、せん断補強筋が埋設され、
前記鋼桁上面のうち前記収容部が配置される範囲であって、前記せん断補強筋を避ける位置には、鋼桁方向に並ぶ複数のスタッドが固定され、
前記鋼桁上に設置された前記プレキャスト床版の前記収容部は前記スタッドを収容し、該スタッド及び前記せん断補強筋を含む前記収容部内を充填材で固化することによって、前記鋼桁と前記プレキャスト床版が一体化され、
前記せん断補強筋が、前記鋼桁と前記プレキャスト床版の間で生ずるせん断力に抵抗し得る、
ことを特徴とする鋼桁とプレキャスト床版の合成構造。
In the composite structure consisting of steel girders and precast slabs,
The precast floor slab is formed with a steel girder installation portion having a hollow cross section composed of a housing portion and a top plate portion along the steel girder direction, and the housing portion is formed so as to leave the top plate portion above. ,
Furthermore, the precast floor slab is embedded with a shear reinforcing bar that penetrates the housing part in the direction perpendicular to the steel girder and is exposed in the housing part,
A plurality of studs lined up in the steel girder direction are fixed in a range where the housing portion is arranged in the steel girder upper surface and avoiding the shear reinforcement bars,
The accommodating portion of the precast floor slab installed on the steel girder accommodates the stud, and the inside of the accommodating portion including the stud and the shear reinforcing bar is solidified with a filler, whereby the steel girder and the precast The floor slab is integrated,
The shear reinforcement may resist shear forces generated between the steel girders and the precast slab,
A composite structure of steel girders and precast slabs.
鋼桁とプレキャスト床版を合成する方法において、
前記プレキャスト床版には、収容部を含む断面中空の箱抜き部と、該収容部を含まない断面中実の載置部と、を有する鋼桁設置部が、鋼桁方向に沿って形成され、該収容部は、上方に頂板部を残すように形成されるとともに、鋼桁方向に沿って形成されるものであり、
さらに前記プレキャスト床版には、鋼桁直交方向に前記収容部を貫通し該収容部内に露出する、せん断補強筋が埋設され、
前記鋼桁上面のうち、前記収容部が配置される範囲であって、前記せん断補強筋を避ける位置に、鋼桁方向に並ぶ複数のスタッドを固定するスタッド固定工程と、
前記鋼桁設置部が前記鋼桁の上に配置されるように、該鋼桁に前記プレキャスト床版を設置するプレキャスト床版設置工程と、
前記収容部内に収容された前記スタッド及び前記せん断補強筋を含む前記収容部内に、充填材を注入する充填材注入工程と、
を備えたことを特徴とする鋼桁とプレキャスト床版の合成方法。
In the method of synthesizing steel girders and precast slabs,
The precast floor slab is formed with a steel girder installation portion having a hollow cross-section boxing portion including a housing portion and a solid section mounting portion not including the housing portion along the steel girder direction. The accommodating portion is formed so as to leave the top plate portion above, and is formed along the steel girder direction.
Furthermore, the precast floor slab is embedded with a shear reinforcing bar that penetrates the housing part in the direction perpendicular to the steel girder and is exposed in the housing part,
Stud fixing step of fixing a plurality of studs arranged in the steel girder direction at a position where the housing portion is arranged in the steel girder upper surface and avoiding the shear reinforcement,
A precast floor slab installation step of installing the precast floor slab on the steel girder so that the steel girder installation part is disposed on the steel girder;
A filler injecting step of injecting a filler into the accommodating part including the stud and the shear reinforcement contained in the accommodating part;
A method of synthesizing a steel girder and a precast slab characterized by comprising:
鋼桁とプレキャスト床版を合成する方法において、
前記プレキャスト床版には、収容部及び頂板部からなる断面中空の鋼桁設置部が鋼桁方向に沿って形成され、該収容部は上方に該頂板部を残すように形成されるものであり、
さらに前記プレキャスト床版には、鋼桁直交方向に前記収容部を貫通し該収容部内に露出する、せん断補強筋が埋設され、
前記鋼桁上面のうち、前記収容部が配置される範囲であって、前記せん断補強筋を避ける位置に、鋼桁方向に並ぶ複数のスタッドを固定するスタッド固定工程と、
前記鋼桁設置部が前記鋼桁の上に配置されるように、該鋼桁に前記プレキャスト床版を設置するプレキャスト床版設置工程と、
前記収容部内に収容された前記スタッド及び前記せん断補強筋を含む前記収容部内に、充填材を注入する充填材注入工程と、
を備えたことを特徴とする鋼桁とプレキャスト床版の合成方法。
In the method of synthesizing steel girders and precast slabs,
The precast floor slab is formed with a steel girder installation portion having a hollow cross section composed of a housing portion and a top plate portion along the steel girder direction, and the housing portion is formed so as to leave the top plate portion above. ,
Furthermore, the precast floor slab is embedded with a shear reinforcing bar that penetrates the housing part in the direction perpendicular to the steel girder and is exposed in the housing part,
Stud fixing step of fixing a plurality of studs arranged in the steel girder direction at a position where the housing portion is arranged in the steel girder upper surface and avoiding the shear reinforcement,
A precast floor slab installation step of installing the precast floor slab on the steel girder so that the steel girder installation part is disposed on the steel girder;
A filler injecting step of injecting a filler into the accommodating part including the stud and the shear reinforcement contained in the accommodating part;
A method of synthesizing a steel girder and a precast slab characterized by comprising:
JP2016175063A 2016-09-07 2016-09-07 Precast slab, composite structure of steel girder and precast slab, and method of synthesizing steel girder and precast slab Active JP6609815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016175063A JP6609815B2 (en) 2016-09-07 2016-09-07 Precast slab, composite structure of steel girder and precast slab, and method of synthesizing steel girder and precast slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016175063A JP6609815B2 (en) 2016-09-07 2016-09-07 Precast slab, composite structure of steel girder and precast slab, and method of synthesizing steel girder and precast slab

Publications (2)

Publication Number Publication Date
JP2018040168A true JP2018040168A (en) 2018-03-15
JP6609815B2 JP6609815B2 (en) 2019-11-27

Family

ID=61625271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016175063A Active JP6609815B2 (en) 2016-09-07 2016-09-07 Precast slab, composite structure of steel girder and precast slab, and method of synthesizing steel girder and precast slab

Country Status (1)

Country Link
JP (1) JP6609815B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109972520A (en) * 2019-03-06 2019-07-05 安徽省公路桥梁工程有限公司 The construction method of prefabricated bridge mounting structure
CN110004866A (en) * 2017-12-31 2019-07-12 邢雪梅 A kind of automobile chassis comprising accumulated snow pressure ball transmission device
JP2020100966A (en) * 2018-12-20 2020-07-02 鹿島建設株式会社 Fixed structure of main girder and precast slab and method of fixing main girder and precast slab
JP2020100967A (en) * 2018-12-20 2020-07-02 鹿島建設株式会社 Fixed structure of main girder and precast slab and method of fixing main girder and precast slab
JP2021017782A (en) * 2019-07-23 2021-02-15 日本高圧コンクリート株式会社 Manufacturing method of precast pc floor slab
JP2022118549A (en) * 2021-02-02 2022-08-15 三井住友建設株式会社 Joint structure and joint method of floor slab and steel girder
JP7326508B1 (en) 2022-01-27 2023-08-15 Jfeスチール株式会社 bridge structure

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4972537A (en) * 1989-06-05 1990-11-27 Slaw Sr Robert A Orthogonally composite prefabricated structural slabs
JPH083935A (en) * 1994-06-20 1996-01-09 Ishikawajima Constr Materials Co Ltd Joint structure between precast floor slab and bridge girder for constituting bridge subgrade
JPH11222814A (en) * 1998-02-06 1999-08-17 Fuji Ps Corp Steel composite bridge using precast prestress concrete floor slab
US5978997A (en) * 1997-07-22 1999-11-09 Grossman; Stanley J. Composite structural member with thin deck portion and method of fabricating the same
JP2007016478A (en) * 2005-07-07 2007-01-25 Taisei Corp Ribbed floor slab, ribbed floor slab producing device, and ribbed floor slab producing method
JP2007046322A (en) * 2005-08-10 2007-02-22 Sho Bond Constr Co Ltd Steel composite concrete precast floor slab
JP2007046238A (en) * 2005-08-05 2007-02-22 Sho Bond Constr Co Ltd Steel composite concrete precast floor slab
JP2007100336A (en) * 2005-10-03 2007-04-19 Ps Mitsubishi Construction Co Ltd Construction method for steel/concrete composite floor slab by use of precast concrete board

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4972537A (en) * 1989-06-05 1990-11-27 Slaw Sr Robert A Orthogonally composite prefabricated structural slabs
JPH083935A (en) * 1994-06-20 1996-01-09 Ishikawajima Constr Materials Co Ltd Joint structure between precast floor slab and bridge girder for constituting bridge subgrade
US5978997A (en) * 1997-07-22 1999-11-09 Grossman; Stanley J. Composite structural member with thin deck portion and method of fabricating the same
JPH11222814A (en) * 1998-02-06 1999-08-17 Fuji Ps Corp Steel composite bridge using precast prestress concrete floor slab
JP2007016478A (en) * 2005-07-07 2007-01-25 Taisei Corp Ribbed floor slab, ribbed floor slab producing device, and ribbed floor slab producing method
JP2007046238A (en) * 2005-08-05 2007-02-22 Sho Bond Constr Co Ltd Steel composite concrete precast floor slab
JP2007046322A (en) * 2005-08-10 2007-02-22 Sho Bond Constr Co Ltd Steel composite concrete precast floor slab
JP2007100336A (en) * 2005-10-03 2007-04-19 Ps Mitsubishi Construction Co Ltd Construction method for steel/concrete composite floor slab by use of precast concrete board

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110004866A (en) * 2017-12-31 2019-07-12 邢雪梅 A kind of automobile chassis comprising accumulated snow pressure ball transmission device
JP2020100966A (en) * 2018-12-20 2020-07-02 鹿島建設株式会社 Fixed structure of main girder and precast slab and method of fixing main girder and precast slab
JP2020100967A (en) * 2018-12-20 2020-07-02 鹿島建設株式会社 Fixed structure of main girder and precast slab and method of fixing main girder and precast slab
JP7178895B2 (en) 2018-12-20 2022-11-28 鹿島建設株式会社 Fixing structure between main girder and precast floor slab and fixing method between main girder and precast floor slab
JP7186600B2 (en) 2018-12-20 2022-12-09 鹿島建設株式会社 Fixing structure between main girder and precast floor slab and fixing method between main girder and precast floor slab
CN109972520A (en) * 2019-03-06 2019-07-05 安徽省公路桥梁工程有限公司 The construction method of prefabricated bridge mounting structure
JP2021017782A (en) * 2019-07-23 2021-02-15 日本高圧コンクリート株式会社 Manufacturing method of precast pc floor slab
JP2022118549A (en) * 2021-02-02 2022-08-15 三井住友建設株式会社 Joint structure and joint method of floor slab and steel girder
JP7140859B2 (en) 2021-02-02 2022-09-21 三井住友建設株式会社 Joint structure and joining method of floor slab and steel girder
JP7326508B1 (en) 2022-01-27 2023-08-15 Jfeスチール株式会社 bridge structure

Also Published As

Publication number Publication date
JP6609815B2 (en) 2019-11-27

Similar Documents

Publication Publication Date Title
JP6609815B2 (en) Precast slab, composite structure of steel girder and precast slab, and method of synthesizing steel girder and precast slab
KR101339464B1 (en) Prestressed composite girder using shape steel with anchorage fixing plate
JP5718133B2 (en) Precast floor slab and its joint structure
KR101347113B1 (en) Incremental launching apparatus for constructing shearing pocket-type concrete slab of composite bridge
JP4753969B2 (en) Bidirectional press stressing system and bent portion forming apparatus
KR100940550B1 (en) Reinforcing concrete structure and method using hybrid fiber composite
KR101251118B1 (en) A manufacturing method of a composite steel box girder using prestressed concrete for a positive moment area of a bridge
JP2008025221A (en) Elevated structure constructed by jointing pier stud of pc structure and steel box girder together
JP2006233498A (en) Bridge-fall prevention equipment
JP2005090115A (en) Reinforcing construction method for existing floor slab by beam
JP2007270600A (en) Prestress introducing method to filling part between precast concrete members
KR101723847B1 (en) Steel-concrete composite bridge construction method using prestress introduction during erection of bridge
JP2010265623A (en) Reinforcing structure of steel floor slab
JP4585614B1 (en) Method for constructing synthetic steel slab bridge, ribbed steel slab, and synthetic steel slab bridge
JP2008215042A (en) Method for composing rc floor slab and two main girder bridge
KR100767145B1 (en) Construction method of prestressed concrete temporary bridge that can be assembled and dismantled using lateral steel wire
KR20200043293A (en) Reinforcing method and reinforced structure of hinge portion in prestressed concrete girder bridge
KR102486675B1 (en) Precast concrete slab construction method and bridge fabricated by usinr the same
KR101698807B1 (en) Manufacturing method of the psc girder using the corrugated steel plate and the psc girder manufactured thereby
JP5508070B2 (en) Joining structure and joining method of steel member and concrete member
JP2009127316A (en) Bridge floor slab formed of steel pipes, bridge floor slab structure, and steel pipes
US20150176276A1 (en) Post-tension concrete leave out splicing system and method
KR100899713B1 (en) Bridge structure of steel composite girder using precast arch-deck, and constructing method thereof
JP2006283317A (en) Prestressed concrete floor slab formed of precast concrete plates, and method of constructing the same
KR102187182B1 (en) Rhamen bridge and construction method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191004

R150 Certificate of patent or registration of utility model

Ref document number: 6609815

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250