JP7140859B2 - Joint structure and joining method of floor slab and steel girder - Google Patents

Joint structure and joining method of floor slab and steel girder Download PDF

Info

Publication number
JP7140859B2
JP7140859B2 JP2021015140A JP2021015140A JP7140859B2 JP 7140859 B2 JP7140859 B2 JP 7140859B2 JP 2021015140 A JP2021015140 A JP 2021015140A JP 2021015140 A JP2021015140 A JP 2021015140A JP 7140859 B2 JP7140859 B2 JP 7140859B2
Authority
JP
Japan
Prior art keywords
floor slab
girder
joining
connecting portion
steel girder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021015140A
Other languages
Japanese (ja)
Other versions
JP2022118549A (en
Inventor
直樹 永元
裕之 内堀
武 狩野
チャミラ ランコス
憲一郎 芦塚
雅人 福田
雄介 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
West Nippon Expressway Co Ltd
Sumitomo Mitsui Construction Co Ltd
Original Assignee
West Nippon Expressway Co Ltd
Sumitomo Mitsui Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by West Nippon Expressway Co Ltd, Sumitomo Mitsui Construction Co Ltd filed Critical West Nippon Expressway Co Ltd
Priority to JP2021015140A priority Critical patent/JP7140859B2/en
Publication of JP2022118549A publication Critical patent/JP2022118549A/en
Application granted granted Critical
Publication of JP7140859B2 publication Critical patent/JP7140859B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Description

特許法第30条第2項適用 令和2年9月9日に藤井雄介、和田圭仙、狩野武、ランコスチャミラが、土木学会第75回年次学術講演会講演概要集に掲載した。 令和2年9月9日に藤井雄介、和田圭仙、狩野武、ランコスチャミラが、ウェブサイトのアドレス「(土木学会のアドレス)」に掲載した。 令和2年9月9日~9月11日に藤井雄介が、土木学会第75回年次学術講演会(WEB開催)で発表を行った。 令和2年10月29日にランコスチャミラが、プレストレストコンクリート工学会第29回プレストレストコンクリートの発展に関するシンポジウム講演概要集に掲載した。 令和2年10月29日にランコスチャミラが、プレストレストコンクリート工学会第29回プレストレストコンクリートの発展に関するシンポジウム(WEB開催)で発表を行った。 令和2年10月1日に三井住友建設株式会社がウェブサイトのアドレス「https://www.smcon.co.jp/service/RandD/report-2020/02.html」に掲載した。Application of Article 30, Paragraph 2 of the Patent Act On September 9, 2020, Yusuke Fujii, Keisen Wada, Takeshi Kano, and Rancoschamira published a summary of the 75th Annual Scientific Lecture of the Japan Society of Civil Engineers. On September 9, 2020, Yusuke Fujii, Keisen Wada, Takeshi Kano, and Rancoschamira posted on the website address "(Address of the Japan Society of Civil Engineers)". From September 9th to 11th, 2020, Yusuke Fujii made a presentation at the 75th Annual Academic Lecture Meeting of the Japan Society of Civil Engineers (website). On October 29, 2020, Rancoschamira published a summary of lectures at the 29th Symposium on the Development of Prestressed Concrete by the Society of Prestressed Concrete Engineers. On October 29, 2020, Rancoschamira made a presentation at the 29th Symposium on the Development of Prestressed Concrete by the Society of Prestressed Concrete Engineers (held on the web). On October 1, 2020, Sumitomo Mitsui Construction Co., Ltd. posted on the website address “https://www.smcon.co.jp/service/RandD/report-2020/02.html”.

本発明は床版と鋼桁の接合構造及び接合方法に関する。 TECHNICAL FIELD The present invention relates to a joining structure and joining method of a floor slab and a steel girder.

近年、橋梁等の床版取り換え工事が数多く実施されている。床版を鋼桁に接合する方法としては、床版に厚さ方向に貫通する貫通孔を設け、貫通孔の内部にスタッドを配置し、スタッドの下端を鋼桁の上面に接合し、その後モルタルを貫通孔に充填する方法が一般的に行われている。しかし、この方法ではモルタルが床版を厚さ方向に貫通するため、モルタルと貫通孔の側壁との隙間から水分や塩分が侵入し、床版の下面に到達する可能性がある。道路の維持管理を考慮した場合、このような現象に伴う接合部の耐久性の低下を避けることが望ましい。特許文献1にはプレキャスト床版と鋼桁の接続構造が開示されている。床版に、床版の下面に開口する凹部が設けられ、鋼桁の上面にスタッドが設けられ、スタッドが凹部に収容されるように床版が鋼桁に位置決めされる。その後、凹部に無収縮モルタルが充填される。この接続構造によれば、床版の上面と下面をつなぐ水分や塩分の経路が形成されないため、接合部の耐久性を高めることができる。 In recent years, a large number of floor slab replacement works for bridges and the like have been carried out. As a method of joining the floor slab to the steel girder, a through hole is made through the floor slab in the thickness direction, a stud is placed inside the through hole, the lower end of the stud is joined to the upper surface of the steel girder, and then mortar is applied. is generally used to fill the through holes. However, in this method, since the mortar penetrates the floor slab in the thickness direction, moisture and salt may enter through the gap between the mortar and the side wall of the through hole and reach the bottom surface of the floor slab. Considering the maintenance of roads, it is desirable to avoid deterioration in the durability of joints due to such phenomena. Patent Document 1 discloses a connection structure between a precast floor slab and a steel girder. The floor slab is provided with a recess opening to the lower surface of the floor slab, a stud is provided on the upper surface of the steel girder, and the floor slab is positioned on the steel girder such that the stud is accommodated in the recess. The recess is then filled with non-shrinkage mortar. According to this connection structure, a path for water and salt that connects the upper surface and the lower surface of the floor slab is not formed, so the durability of the joint can be enhanced.

特開2020-100966号公報Japanese Patent Application Laid-Open No. 2020-100966

一般に床版はプレキャスト製とされており、床版同士の接合は現場で行われる。床版間には接続構造体が設けられ、接合にあたっては、新たに据え付ける床版と施工済みの床版との間に接続構造体が形成される。そのためには、新たに据え付ける床版を桁行方向に動かしながら、位置調整を行う作業が必要となる。特許文献1にはこの作業について開示されておらず、この作業を可能とする接合構造の構成も開示されていない。 Floor slabs are generally made of precast, and the joining of floor slabs is done on site. A connection structure is provided between the floor slabs, and the connection structure is formed between the floor slabs to be newly installed and the floor slabs that have already been installed. For that purpose, it is necessary to adjust the position while moving the floor slab to be newly installed in the girder direction. Patent Literature 1 does not disclose this work, nor does it disclose the configuration of a joint structure that enables this work.

本発明は、床版を貫通する貫通孔が形成されず、かつ施工性に優れた、床版と鋼桁の接合構造及び接合方法を提供することを目的とする。 SUMMARY OF THE INVENTION An object of the present invention is to provide a joint structure and joining method of a floor slab and a steel girder, which does not form a through-hole penetrating the floor slab and is excellent in workability.

本発明の床版と鋼桁の接合構造は、鋼桁と、鋼桁の上に互いに隣接して設置されるプレキャスト製の第1及び第2の床版と、鋼桁の上面に設けられた突状体と、第2の床版を鋼桁に接合するモルタルと、を有している。第2の床版は下面に開口した凹部を有し、突状体は凹部に収容され、凹部にモルタルが充填されている。第1の床版は第1の接続部を有し、第2の床版は第2の接続部を有し、第1の接続部と第2の接続部が桁行方向に嵌り合うことで、第1の床版と第2の床版との間に接続構造体が形成される。桁行方向における第1の床版側で、突状体と凹部の側壁との最小間隔は、第1及び第2の接続部の嵌り合う長さより大きい。 The floor slab and steel girder joint structure of the present invention comprises a steel girder, precast first and second floor slabs installed adjacent to each other on the steel girder, and provided on the upper surface of the steel girder. It has a projecting body and mortar for joining the second floor slab to the steel girder. The second floor slab has a recess opening to the bottom surface, the projecting body is accommodated in the recess, and the recess is filled with mortar. The first floor slab has a first connection part, the second floor slab has a second connection part, and the first connection part and the second connection part are fitted in the girder direction, A connection structure is formed between the first floor slab and the second floor slab . The minimum distance between the projecting body and the side wall of the recess on the side of the first floor slab in the girder direction is larger than the fitting length of the first and second connecting portions.

本発明の床版と鋼桁の接合方法は、鋼桁の上に第1の床版を配置する第1の配置工程と、鋼桁の上に、第1の床版に隣接してプレキャスト製の第2の床版を配置する第2の配置工程と、第1の床版を鋼桁に接合する第1の接合工程と、第2の床版を鋼桁に接合する第2の接合工程と、を有している。鋼桁の上面に突状体が設けられ、第2の床版は下面に開口した凹部を有し、第1の床版は第1の接続部を有し、第2の床版は第2の接続部を有している。第2の配置工程は、突状体が凹部に収容された状態で、第2の接続部が桁行方向に第1の接続部から離間するように、第2の床版を鋼桁に対して位置決めする第1の位置決め工程と、第1の接続部と第2の接続部が桁行方向に重なることで、第1の床版と第2の床版との間に接続構造体が形成されるように、第2の床版を第1の床版に近づける第2の位置決め工程と、を有している。第2の接合工程は、凹部にモルタルを充填することを有している。第2の位置決め工程の終了時において、桁行方向における第1の床版側での、突状体と凹部の側壁との最小間隔は、第1及び第2の接続部の嵌り合う長さより大きいThe method of joining a floor slab and a steel girder according to the present invention includes a first placing step of placing a first floor slab on top of the steel girder, and a precast steel plate on the steel girder adjacent to the first floor slab. A second placement step of arranging the second floor slab, a first joining step of joining the first deck slab to the steel girder, and a second joining step of joining the second deck slab to the steel girder and have A projecting body is provided on the upper surface of the steel girder, the second floor slab has a recess opening to the lower surface, the first floor slab has a first connection portion, and the second floor slab has a second connection. In the second placement step, the second floor slab is placed on the steel girder so that the second connection portion is spaced apart from the first connection portion in the girder direction while the projecting body is accommodated in the recess. A connection structure is formed between the first floor slab and the second floor slab by the first positioning step of positioning and the overlapping of the first connection portion and the second connection portion in the girder direction. and a second positioning step of bringing the second floor slab closer to the first floor slab. A second joining step comprises filling the recesses with mortar. At the end of the second positioning step, the minimum distance between the projecting body and the side wall of the recess on the first floor slab side in the girder direction is greater than the fitting length of the first and second connecting portions .

本発明によれば、床版を貫通する貫通孔が形成されず、かつ施工性に優れた、床版と鋼桁の接合構造及び接合方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the joint structure and joining method of a floor slab and a steel girder which do not form the through-hole which penetrates a floor slab, and are excellent in workability can be provided.

本発明の床版と鋼桁の接合構造が適用される床版と鋼桁の斜視図である。1 is a perspective view of a floor slab and a steel girder to which the floor slab-steel girder joint structure of the present invention is applied; FIG. 図1に示す床版の下面を示す斜視図である。It is a perspective view which shows the lower surface of the floor slab shown in FIG. 本発明の一実施形態に係る接合構造の、図1のA-A線に沿った断面図である。2 is a cross-sectional view along line AA of FIG. 1 of a joint structure according to an embodiment of the present invention; FIG. 本発明の一実施形態に係る接合構造の、図1のB-B線に沿った断面図である。FIG. 2 is a cross-sectional view along line BB of FIG. 1 of a joint structure according to one embodiment of the present invention; 本発明の一実施形態に係る接合構造の施工手順(施工前)を示す図である。It is a figure which shows the construction procedure (before construction) of the joining structure which concerns on one Embodiment of this invention. 本発明の一実施形態に係る接合構造の施工手順(配置工程)を示す図である。It is a figure which shows the construction procedure (arrangement process) of the joining structure which concerns on one Embodiment of this invention. 本発明の一実施形態に係る接合構造の施工手順(接合工程)を示す図である。It is a figure which shows the construction procedure (joining process) of the joining structure which concerns on one Embodiment of this invention. 本発明の一実施形態に係る接合構造の施工手順(緊張工程)を示す図である。It is a figure which shows the construction procedure (tensing process) of the joining structure which concerns on one Embodiment of this invention. 本発明の一実施形態に係る接合構造の施工手順(接合工程)を示す図である。It is a figure which shows the construction procedure (joining process) of the joining structure which concerns on one Embodiment of this invention.

以下、図面を参照して、本発明の床版2と鋼桁3の接合構造1及び床版2と鋼桁3の接続方法の実施形態について説明する。以下の説明で、鋼桁3の延在する方向、すなわち鋼桁3の長手方向を桁行方向Xといい、鋼桁3の幅方向の寸法を桁幅方向Yという。桁行方向Xと桁幅方向Yは直交しており、通常は、桁行方向X及び桁幅方向Yは鉛直方向Zと直交している。図1は床版2と鋼桁3の斜視図、図2は図1に示す床版2の下面21を示す斜視図である。図3は図1のA-A線に沿った鋼桁3と床版2の断面図であり、図3(a)は4つの床版2を示す図、図3(b)は1つの床版2の拡大図である。図4は図1のB-B線に沿った鋼桁3と床版2の断面図であり、特に接合構造1の詳細な断面を示している。床版2は桁行方向Xに一つずつ順番に取り付けられるため、先行して鋼桁3に設置される床版2を第1の床版2A、第1の床版2Aの直後に第1の床版2Aに隣接して鋼桁3に設置される床版2を第2の床版2Bと称する場合がある。 Hereinafter, embodiments of a joint structure 1 between a floor slab 2 and a steel girder 3 and a method for connecting the floor slab 2 and a steel girder 3 according to the present invention will be described with reference to the drawings. In the following description, the direction in which the steel girder 3 extends, that is, the longitudinal direction of the steel girder 3 is called the girder row direction X, and the width direction of the steel girder 3 is called the girder width direction Y. The girder row direction X and the girder width direction Y are orthogonal to each other, and the girder row direction X and the girder width direction Y are orthogonal to the vertical direction Z in general. 1 is a perspective view of the floor slab 2 and the steel girder 3, and FIG. 2 is a perspective view showing the lower surface 21 of the floor slab 2 shown in FIG. FIG. 3 is a cross-sectional view of the steel girder 3 and the floor slab 2 along line AA in FIG. 2 is an enlarged view of version 2. FIG. FIG. 4 is a cross-sectional view of the steel girder 3 and floor slab 2 taken along line BB in FIG. Since the floor slabs 2 are installed in order one by one in the girder direction X, the floor slabs 2 installed on the steel girders 3 in advance are called the first floor slab 2A, and immediately after the first floor slab 2A, the first floor slab 2A. The floor slab 2 installed on the steel girder 3 adjacent to the floor slab 2A may be called a second floor slab 2B.

鋼桁3は、一例として4本の鋼製梁31からなり、その上に多数のプレキャスト製の床版2が桁行方向Xに配置されている。各床版2の桁行方向Xの長さは1.5~3mであり、桁幅方向Yの長さは鋼桁3の全幅とほぼ等しい。床版2間にはモルタルからなる間詰材4が充填され、後述するように床版2にはプレストレスが掛けられる。床版2は、平板状の本体22と、本体22の下面に設けられた複数のリブ23と、を有している。リブ23は桁行方向Xに延びる縦リブ23Xと、桁幅方向Yに延びる横リブ23Yで構成され、縦リブ23Xは鋼製梁31と対向する位置に設けられている。すなわち、床版2は縦リブ23Xの位置で鋼桁3に固定される。 The steel girder 3 consists of, for example, four steel beams 31, and a large number of precast floor slabs 2 are arranged in the girder row direction X thereon. The length of each floor slab 2 in the girder direction X is 1.5 to 3 m, and the length in the girder width direction Y is approximately equal to the full width of the steel girder 3 . A filling material 4 made of mortar is filled between the floor slabs 2, and prestress is applied to the floor slabs 2 as described later. The floor slab 2 has a flat plate-like main body 22 and a plurality of ribs 23 provided on the lower surface of the main body 22 . The ribs 23 are composed of vertical ribs 23X extending in the girder direction X and horizontal ribs 23Y extending in the girder width direction Y. The vertical ribs 23X are provided at positions facing the steel beams 31 . That is, the floor slab 2 is fixed to the steel girder 3 at the positions of the longitudinal ribs 23X.

床版2は、鉄筋やPC鋼材など、腐食する可能性のある材料を含んでいない。このため、将来の維持管理の負担が軽減される。具体的には、床版2は設計基準強度80N/mmの高強度繊維補強コンクリートで形成され、緊張材5としてアラミドFRPロッドが用いられている。床版2は下面21に開口した凹部24を有している。凹部24は縦リブ23Xに設けられている。凹部24にはモルタル7が充填される。凹部24は縦リブ23Xの厚さ方向の少なくとも一部に設けられていればよく、縦リブ23Xを貫通し、さらに本体22の厚さ方向の一部に設けられてもよい。凹部24の周辺に補強筋は設置されていない。凹部24は桁行方向Xに長く桁幅方向Yに短い長方形断面を有しているが、後述するように、重要なのは桁行方向Xの寸法であり、桁幅方向Yの寸法は施工上必要な最小寸法が確保されていればよい。従って、凹部24の断面形状は長方形である必要はなく、正方形、円、楕円等であってもよい。凹部24の深さは床版2の強度、モルタルの突状体6(後述)との付着長さ、後述する上部空気排出部9の配置スペースなどを考慮して決定することができる。なお、床版2の構成は特に限定されるものではなく、例えば鉄筋コンクリート造のプレキャスト床版を用いることもできる。また、緊張材5もアラミドFRPに限定されるものではなく、例えば、PC鋼材や、CFPC(Carbon Fiber Reinforced Polymer)などの他のFRP緊張材を用いることができる。 The floor slab 2 does not contain materials that may corrode, such as reinforcing bars and PC steel materials. Therefore, the burden of future maintenance will be reduced. Specifically, the floor slab 2 is made of high-strength fiber-reinforced concrete with a design standard strength of 80 N/mm 2 , and aramid FRP rods are used as tendons 5 . The floor slab 2 has a recessed portion 24 that opens to the lower surface 21 . The recess 24 is provided in the vertical rib 23X. The recesses 24 are filled with mortar 7 . The recesses 24 need only be provided at least partly in the thickness direction of the vertical ribs 23X, and may penetrate through the vertical ribs 23X and may be provided partly in the thickness direction of the main body 22 . No reinforcement is installed around the recess 24 . The concave portion 24 has a rectangular cross section that is long in the girder direction X and short in the girder width direction Y, but as will be described later, what is important is the dimension in the girder direction X, and the dimension in the girder width direction Y is the minimum required for construction. As long as the dimensions are secured. Therefore, the cross-sectional shape of the recess 24 need not be rectangular, but may be square, circular, elliptical, or the like. The depth of the recess 24 can be determined by considering the strength of the floor slab 2, the length of attachment of the mortar to the projecting body 6 (described later), the arrangement space of the upper air discharge section 9 described later, and the like. The structure of the floor slab 2 is not particularly limited, and for example, a precast floor slab made of reinforced concrete can be used. Also, the tendon 5 is not limited to aramid FRP, and other FRP tendons such as PC steel and CFPC (Carbon Fiber Reinforced Polymer) can be used.

鋼桁3の上面に突状体6が設けられている、本実施形態の突状体6は、鋼桁3の上面32に溶接されたスタッドである。突状体6は凹部24に収容され、凹部24に充填されたモルタル7に埋め込まれている。突状体6は、床版2からモルタル7を介して伝達される水平力を、鋼桁3に伝達する。水平力によって生じるせん断力を鋼桁3に伝達することができる限り、突状体6の形状は限定されず、スタッド以外の棒状体や箱状体などであってもよい。 The projecting body 6 of this embodiment, which is provided on the upper surface of the steel girder 3, is a stud welded to the upper surface 32 of the steel girder 3. The protrusion 6 is accommodated in the recess 24 and embedded in the mortar 7 filled in the recess 24 . The projecting body 6 transmits the horizontal force transmitted from the floor slab 2 through the mortar 7 to the steel girder 3 . As long as the shear force generated by the horizontal force can be transmitted to the steel girder 3, the shape of the protruding body 6 is not limited, and it may be a rod-shaped body or a box-shaped body other than the stud.

モルタル7は床版2を鋼桁3に接合する。モルタル7としては好ましくは無収縮モルタルが用いられる。モルタル7は上述のように凹部24に充填されるほか、床版2と鋼桁3との間に、桁行方向Xに連続的に設けられる。凹部24にモルタル7が充填されたことを確認するために、凹部24の上部に上部空気排出部9が接続されている。上部空気排出部9は凹部24の上面25に接続されているため、凹部24がモルタル7で充填されたことを確実に確認することができる。上部空気排出部9は凹部24の上面25以外の位置に接続してもよいが、その場合も、できる限り凹部24の上面25の近傍の位置に接続することが好ましい。上部空気排出部9は例えば床版2に埋め込まれた樹脂や木の型枠、ビニールチューブ等で形成することができる。床版2を鋼桁3に取り付ける前に、上部空気排出部9の一端から他端まで連続した流路が形成されていることを確認することが好ましい。上部空気排出部9は凹部24の上面25から上方に立ち上がり、途中で下方に曲がり床版2の下面21側に開口する。これによって、上部空気排出部9の端部開口と後述する下部空気排出部9の端部開口がともに床版2の下面21側に位置するため、モルタル7の充填の確認を容易に行うことができる。また、上部空気排出部9が床版2を厚さ方向に貫通しないため、床版2を貫通する水分や塩分の経路が形成されることがない。 Mortar 7 joins floor slab 2 to steel girder 3 . A non-shrinking mortar is preferably used as the mortar 7 . The mortar 7 is filled in the recesses 24 as described above, and is continuously provided in the girder direction X between the floor slab 2 and the steel girder 3 . An upper air discharge part 9 is connected to the upper part of the recess 24 in order to confirm that the recess 24 is filled with the mortar 7 . Since the upper air discharge part 9 is connected to the upper surface 25 of the recess 24 , it can be reliably confirmed that the recess 24 is filled with the mortar 7 . The upper air discharge part 9 may be connected to a position other than the upper surface 25 of the recess 24, but in that case as well, it is preferably connected to a position near the upper surface 25 of the recess 24 as much as possible. The upper air discharge part 9 can be formed of, for example, a resin embedded in the floor slab 2, a wooden frame, a vinyl tube, or the like. Before attaching the floor slab 2 to the steel girder 3, it is preferable to confirm that a continuous flow path is formed from one end of the upper air discharge section 9 to the other end. The upper air discharge part 9 rises upward from the upper surface 25 of the recess 24 , bends downward in the middle, and opens toward the lower surface 21 of the floor slab 2 . As a result, both the end opening of the upper air discharge portion 9 and the end opening of the lower air discharge portion 9, which will be described later, are positioned on the side of the lower surface 21 of the floor slab 2, so that the filling of the mortar 7 can be easily confirmed. can. Further, since the upper air discharge part 9 does not penetrate the floor slab 2 in the thickness direction, a path for moisture or salt passing through the floor slab 2 is not formed.

床版2には緊張材5を挿通するための、桁行方向Xに延びる貫通孔26が形成されている。具体的には、第1の床版2Aは、桁行方向Xに延びる複数の第1の貫通孔26Aを有し、第2の床版2Bは、桁行方向Xに延びる複数の第2の貫通孔26Bを有している(図6~9参照)。第1の貫通孔26Aの第2の貫通孔26Bと対向する一端に第1の接続部(カプラー)27Aが設けられ、第2の貫通孔26Bの第1の貫通孔26Aと対向する一端に第2の接続部(カプラー)27Bが設けられている。第1の接続部27Aは、第1の床版2Aの第2の床版2Bと対向する端面から突き出した管であり、第2の接続部27Bは、第2の床版2Bの第1の床版2Aと対向する端面から突き出した管である。第1及び第2の接続部27A、27Bは第1及び第2の床版2Bが取り付けられた状態で、対応する第1及び第2の貫通孔26A,26Bと同心であり、且つ一方に他方が嵌るように若干外径を異ならせている。第1の接続部27Aと第2の接続部27Bの構成はこれに限定されず、例えば第1の接続部27Aを第1の床版2Aの第2の床版2Bと対向する端面の開口とし、第2の接続部27Bを第2の床版2Bの第1の床版2Aと対向する端面から突き出し、上記開口に嵌る管としてもよい。いずれにしても、第1の接続部27Aと第2の接続部27Bが桁行方向Xに重なることで、第1の床版2Aと第2の床版2Bとの間に接続構造体28が形成される(図6(b)参照)。そしてこの接続構造体28によって、第1の貫通孔26Aと第2の貫通孔26Bが連結され、周囲に対して仕切られた連続した空間29が形成され、空間29に、第1及び第2の床版2A,2Bに圧縮力を付与する緊張材5が挿入される。これによって、第1の床版2Aと第2の床版2Bとの間の間詰材4を充填する際に、間詰材4が第1の貫通孔26Aと第2の貫通孔26Bに流入することを防止することができる。また、緊張材5を緊張することで、第1及び第2の床版2A,2Bの強度を高めることができる。 The floor slab 2 is formed with a through hole 26 extending in the girder direction X for inserting the tendon 5 . Specifically, the first floor slab 2A has a plurality of first through holes 26A extending in the girder direction X, and the second floor slab 2B has a plurality of second through holes 26A extending in the girder direction X. 26B (see FIGS. 6-9). A first connecting portion (coupler) 27A is provided at one end of the first through hole 26A facing the second through hole 26B, and a first connecting portion (coupler) 27A is provided at one end of the second through hole 26B facing the first through hole 26A. 2 connecting portions (couplers) 27B are provided. The first connecting portion 27A is a pipe protruding from the end face of the first floor slab 2A facing the second floor slab 2B, and the second connecting portion 27B is the first connecting portion of the second floor slab 2B. It is a tube protruding from the end face facing the floor slab 2A. The first and second connection portions 27A, 27B are concentric with the corresponding first and second through holes 26A, 26B in a state where the first and second floor slabs 2B are attached, and one side is connected to the other side. The outer diameter is slightly different so that it fits. The configuration of the first connection portion 27A and the second connection portion 27B is not limited to this. Alternatively, the second connecting portion 27B may be a pipe that protrudes from the end face of the second floor slab 2B facing the first floor slab 2A and fits into the opening. In any case, the first connection portion 27A and the second connection portion 27B are overlapped in the column direction X to form the connection structure 28 between the first floor slab 2A and the second floor slab 2B. (See FIG. 6(b)). The connection structure 28 connects the first through-hole 26A and the second through-hole 26B to form a continuous space 29 partitioned from the surroundings. A tendon 5 is inserted to apply a compressive force to the floor slabs 2A, 2B. As a result, when filling the filler 4 between the first floor slab 2A and the second floor slab 2B, the filler 4 flows into the first through-hole 26A and the second through-hole 26B. can be prevented. Moreover, by tensioning the tendons 5, the strength of the first and second floor slabs 2A and 2B can be increased.

次に、以上説明した床版2と鋼桁3の接合構造1の形成方法、ないし床版2と鋼桁3の接合方法について説明する。以下の説明では、第1の床版2Aはすでに鋼桁3に配置され、第2の床版2Bを第1の床版2Aに隣接して、鋼桁3に配置するものとする。図5には第1の床版2Aとその直前に設置された床版2A’を示している。鋼桁3の上面32の所定の位置には、予め突状体6(スタッド)が設置されている。接合方法は第1の床版2Aが固定された鋼桁3の上に、第1の床版2Aに隣接して第2の床版2Bを配置する配置工程と、配置工程に続き、第2の床版2Bを鋼桁3に接合する接合工程と、を有している。 Next, a method for forming the joint structure 1 between the floor slab 2 and the steel girder 3 explained above, or a method for joining the floor slab 2 and the steel girder 3 will be explained. In the following description, the first floor slab 2A is already placed on the steel girder 3, and the second floor slab 2B is placed on the steel girder 3 adjacent to the first deck 2A. FIG. 5 shows the first floor slab 2A and the floor slab 2A' installed just before it. A projecting body 6 (stud) is installed in advance at a predetermined position on the upper surface 32 of the steel girder 3 . The joining method is an arrangement step of arranging the second floor slab 2B adjacent to the first floor slab 2A on the steel girder 3 to which the first floor slab 2A is fixed. and a joining step of joining the floor slab 2B to the steel girder 3.

配置工程は、第1の位置決め工程(図6(a)参照)と、第2の位置決め工程(図6(b)参照)と、を有している。第1の位置決め工程では、クレーンなどの揚重機で第2の床版2Bを吊り上げ、突状体6が凹部24に収容されるように鋼桁3の所定の位置に配置する。第2の床版2Bの鋼桁3との上下方向の間隔は、スペーサ(図示せず)によって調整される。この際、図6(a)に示すように、第2の接続部27Bが第1の接続部27Aから桁行方向Xに離間するように、第2の床版2Bを鋼桁3に対して位置決めする。凹部24は突状体6に対して相対的に右側に寄るが、凹部24の寸法に余裕を持たせてあるため、凹部24の側壁241と干渉することはない。その後、第2の位置決め工程では、図6(b)に示すように、第2の床版2Bを左側に動かす。すなわち、第2の床版2Bを第1の床版2Aに近づける。第1の接続部27Aと第2の接続部27Bが桁行方向Xに重なることで、第2の接続部27Bが第1の接続部27Aに接続され、第1の床版2Aと第2の床版2Bとの間に接続構造体28が形成される。このとき、突状体6は桁行方向Xにおいて凹部24のほぼ中央に位置していることが好ましい。以上の工程が実施可能であるためには、図6(b)から分かるように、突状体6と凹部24の側壁241との間隔d2(間隔d2は、桁行方向Xにおける第1の床版2A側の寸法)が、第1及び第2の接続部27A,27Bの重なり長さd1より大きければよい。現実的には、図6(c)に示すように、第1の接続部27Aと第2の接続部27Bの間に施工上の余裕代G1を確保し、突状体6と凹部24の側壁241との間に施工上の余裕代G2を確保することが好ましい。施工上の余裕代G2には、緊張材5の緊張力で床版2に生じる弾性変形(圧縮変形)の吸収代を含む。余裕代G1,G2は施工条件に応じて適宜設定することができる。d2=d1+G1+G2であるから、d2-d1=G1+G2となる。つまり、間隔d2は接続部の重なり長さd1よりも大きければいいが、現実的には余裕代G1、G2の合計だけ、重なり長さd1より大きいことが好ましい。 The placement process includes a first positioning process (see FIG. 6(a)) and a second positioning process (see FIG. 6(b)). In the first positioning step, the second floor slab 2B is lifted by a lifting machine such as a crane, and placed at a predetermined position on the steel girder 3 so that the protrusions 6 are accommodated in the recesses 24 . The vertical distance between the second floor slab 2B and the steel girder 3 is adjusted by a spacer (not shown). At this time, as shown in FIG. 6(a), the second floor slab 2B is positioned with respect to the steel girder 3 so that the second connection portion 27B is separated from the first connection portion 27A in the girder direction X. do. Although the recessed portion 24 is shifted to the right side relative to the protruding body 6, it does not interfere with the side wall 241 of the recessed portion 24 because the dimension of the recessed portion 24 is given a margin. After that, in the second positioning step, as shown in FIG. 6(b), the second floor slab 2B is moved to the left. That is, the second floor slab 2B is brought closer to the first floor slab 2A. By overlapping the first connection portion 27A and the second connection portion 27B in the girder direction X, the second connection portion 27B is connected to the first connection portion 27A, and the first floor slab 2A and the second floor are connected. A connection structure 28 is formed between the plate 2B. At this time, it is preferable that the protruding body 6 is positioned substantially in the center of the concave portion 24 in the girder direction X. As shown in FIG. As can be seen from FIG. 6(b), the distance d2 between the projecting body 6 and the side wall 241 of the recess 24 (the distance d2 is the first floor slab 2A side) is larger than the overlapping length d1 of the first and second connecting portions 27A and 27B. In practice, as shown in FIG. 6(c), a margin G1 for construction is secured between the first connection portion 27A and the second connection portion 27B, and the sidewalls of the protrusion 6 and the recess 24 are provided. 241, it is preferable to secure a construction allowance G2. The construction allowance G2 includes an allowance for absorbing elastic deformation (compressive deformation) that occurs in the floor slab 2 due to the tension of the tendon 5 . The allowances G1 and G2 can be appropriately set according to construction conditions. Since d2=d1+G1+G2, d2-d1=G1+G2. In other words, the interval d2 should be larger than the overlapping length d1 of the connecting portion, but in reality it is preferable that the overlapping length d1 is larger than the total of the margins G1 and G2.

次に接合工程を行う。まず、図7に示すように、第1の床版2Aと第2の床版2Bとのギャップ12にモルタルが充填され、間詰材4が形成される。その後必要な体数の床版2を設置したら、図8に示すように貫通孔26に緊張材5を挿入し、緊張材5を緊張して各床版2に桁行方向Xの圧縮力を掛ける。 Next, a joining process is performed. First, as shown in FIG. 7, the gap 12 between the first floor slab 2A and the second floor slab 2B is filled with mortar to form the filling material 4. As shown in FIG. After that, after installing the required number of floor slabs 2, the tendons 5 are inserted into the through holes 26 as shown in FIG. .

次に、図9に示すように、モルタル7を各床版2と鋼桁3との間に連続的に設ける。モルタル7は凹部24にも充填される。以下、第2の床版2Bを例に説明する。図9(a)は図1のA-A線に沿った断面図であり、図9(b)は図1のB-B線に沿った断面図である。図9(b)では、モルタル充填部8と上部空気排出部9と下部空気排出部10を示しているが、これらは桁行方向Xの互いに異なる位置にあってもよい。鋼桁3と第2の床版2Bの間には型枠11が設けられ、モルタル7は第2の床版2Bと鋼桁3との間に設置されたモルタル充填部8から充填される。モルタル充填部8は例えば、型枠11を貫通するビニールホースである。第2の床版2Bと鋼桁3との間にはさらに下部空気排出部10が設けられている。下部空気排出部10は例えば、型枠11を貫通するビニールホースである。上部空気排出部9と下部空気排出部10からモルタル7が流出するまで、凹部24にモルタル7が充填される。これによって、第2の床版2Bと鋼桁3との間の空間及び凹部24にモルタル7が充填されたことが確認できる。下部空気排出部10は充填される空間の端部に設けられることが好ましく、例えば第2の床版2Bの桁行方向Xにおける両側端部(図9(a)のA部及びその反対側の端部(図示せず))に設けられる。上部空気排出部9は接合工程の後も第2の床版2Bの内部に残存し、上部空気排出部9の内部にはモルタルが充填される。モルタル充填部8と下部空気排出部10は接合工程の後に除去してもよいし残存させてもよい。 Next, as shown in FIG. 9, mortar 7 is continuously provided between each floor slab 2 and steel girder 3 . The mortar 7 also fills the recesses 24 . The second floor slab 2B will be described below as an example. 9(a) is a cross-sectional view taken along line AA of FIG. 1, and FIG. 9(b) is a cross-sectional view taken along line BB of FIG. Although FIG. 9(b) shows the mortar filling section 8, the upper air discharge section 9, and the lower air discharge section 10, they may be positioned at different positions in the girder direction X. As shown in FIG. A formwork 11 is provided between the steel girder 3 and the second floor slab 2B, and the mortar 7 is filled from a mortar filling section 8 installed between the second floor slab 2B and the steel girder 3. The mortar filling part 8 is, for example, a vinyl hose that penetrates the mold 11 . A lower air discharge section 10 is further provided between the second floor slab 2B and the steel girder 3. As shown in FIG. The lower air discharge part 10 is, for example, a vinyl hose passing through the mold 11 . The recesses 24 are filled with the mortar 7 until the mortar 7 flows out from the upper air discharge part 9 and the lower air discharge part 10 . As a result, it can be confirmed that the space between the second floor slab 2B and the steel girder 3 and the recesses 24 are filled with the mortar 7 . The lower air discharge section 10 is preferably provided at the end of the space to be filled. (not shown)). The upper air discharge part 9 remains inside the second floor slab 2B even after the joining process, and the inside of the upper air discharge part 9 is filled with mortar. The mortar filling portion 8 and the lower air discharge portion 10 may be removed or left after the joining process.

上述の接合工程では、まずギャップ12に間詰材4を形成し、次に緊張材5を緊張させ、その後モルタル7を充填しているが、先にモルタル7を充填し、その後間詰材4を形成し、さらに緊張材5を緊張させることもできる。 In the above-described joining process, the filling material 4 is first formed in the gap 12, then the tendon 5 is tensioned, and then the mortar 7 is filled. can be formed and the prestressing tendon 5 can also be tensioned.

以上、本発明を一実施形態によって説明したが、本発明はこの実施形態に限定されない。例えば、床版間に鉄筋の継手を設けることができる。鉄筋の継手は、両側の床版の互いに対向する側面から張り出すループ鉄筋を、桁行方向Xに重ね合わせることによって形成される。従って、ループ鉄筋が第1及び第2の接続部27A,27Bとなり、継手が接続構造体28となる。この場合も継手の形成のために床版を桁行方向Xに移動する作業が必要となり、本発明を好適に適用することができる。 Although the present invention has been described by way of one embodiment, the present invention is not limited to this embodiment. For example, rebar joints can be provided between floor slabs. Joints of reinforcing bars are formed by overlapping looped reinforcing bars projecting from opposite side surfaces of floor slabs on both sides in the girder direction X. As shown in FIG. Therefore, the loop reinforcement serves as the first and second connection portions 27A and 27B, and the joint serves as the connection structure 28 . In this case also, it is necessary to move the floor slab in the girder direction X to form the joint, and the present invention can be suitably applied.

また、上記の実施形態では、第1の床版2Aが予めモルタル7で鋼桁3に固定され、その後第2の床版2Bが鋼桁3に配置され、間詰材4で第1の床版2Aに接合され、最後にモルタル7で鋼桁3に固定される。しかし、第1の床版2Aと第2の床版2B(及び場合によっては後続の床版)を鋼桁3に配置し、これらを間詰材4で相互に接合し、その後モルタル7を充填して、第1の床版2Aと第2の床版2B(及び場合によっては後続の床版)をまとめて鋼桁3に固定してもよい。つまり、本発明の床版と鋼桁の接合方法は、鋼桁の上に第1の床版を配置する第1の配置工程と、鋼桁の上に、第1の床版に隣接してプレキャスト製の第2の床版を配置する第2の配置工程と、第1の床版を鋼桁に接合する第1の接合工程と、第2の床版を鋼桁に接合する第2の接合工程と、を有している。上記実施形態では、第1の配置工程、第1の接合工程、第2の配置工程、第2の接合工程の順に実施したが、変形例では、第1の配置工程、第2の配置工程、第1及び第2の接合工程の順に実施される。 Further, in the above embodiment, the first floor slab 2A is fixed in advance to the steel girder 3 with mortar 7, then the second floor slab 2B is placed on the steel girder 3, and the filler 4 is used to secure the first floor slab 2B to the steel girder 3. It is joined to the plate 2A and finally fixed to the steel girder 3 with mortar 7. However, the first floor slab 2A and the second floor slab 2B (and the subsequent floor slabs in some cases) are placed on the steel girder 3, joined to each other with the filling material 4, and then filled with the mortar 7. Then, the first floor slab 2A and the second floor slab 2B (and the subsequent floor slabs in some cases) may be fixed together to the steel girder 3. That is, the method of joining a floor slab and a steel girder according to the present invention includes a first placement step of placing the first floor slab on the steel girder, and A second arranging step of arranging a second precast floor slab, a first joining step of joining the first floor slab to the steel girder, and a second joining step of joining the second floor slab to the steel girder. and a joining step. In the above embodiment, the first placement step, the first bonding step, the second placement step, and the second bonding step are performed in this order, but in the modified example, the first placement step, the second placement step, The first and second bonding steps are performed in order.

1 床版と鋼桁の接合構造
2 床版
2A 第1の床版
2B 第2の床版
3 鋼桁
5 緊張材
6 突状体
7 モルタル
8 モルタル充填部
9 上部空気排出部
10 下部空気排出部
22 本体
23 リブ
24 凹部
26A 第1の貫通孔
26B 第2の貫通孔
27A 第1の接続部
27B 第2の接続部
28 接続構造体
X 桁行方向
1 Joint structure of floor slab and steel girder 2 Floor slab 2A First floor slab 2B Second floor slab 3 Steel girder 5 Tendon 6 Projected body 7 Mortar 8 Mortar filling section 9 Upper air discharge section 10 Lower air discharge section 22 Main body 23 Rib 24 Recess 26A First through hole 26B Second through hole 27A First connection part 27B Second connection part 28 Connection structure X Column direction

Claims (21)

鋼桁と、前記鋼桁の上に互いに隣接して設置されるプレキャスト製の第1及び第2の床版と、前記鋼桁の上面に設けられた突状体と、前記第2の床版を前記鋼桁に接合するモルタルと、を有し、
前記第2の床版は下面に開口した凹部を有し、前記突状体は前記凹部に収容され、前記凹部に前記モルタルが充填され、
前記第1の床版は第1の接続部を有し、前記第2の床版は第2の接続部を有し、前記第1の接続部と前記第2の接続部が桁行方向に嵌り合うことで、前記第1の床版と前記第2の床版との間に接続構造体が形成され、
記桁行方向における前記第1の床版側で、前記突状体と前記凹部の側壁との最小間隔は、前記第1及び第2の接続部の嵌り合う長さより大きい、床版と鋼桁の接合構造。
A steel girder, precast first and second floor slabs installed adjacent to each other on the steel girder, projecting bodies provided on the upper surface of the steel girder, and the second floor slab. a mortar for joining to the steel girder,
The second floor slab has a recess opening to the bottom surface, the projecting body is accommodated in the recess, and the recess is filled with the mortar,
The first floor slab has a first connecting portion, the second floor slab has a second connecting portion, and the first connecting portion and the second connecting portion fit in the girder direction. A connection structure is formed between the first floor slab and the second floor slab by mating,
The floor slab and the steel, wherein the minimum distance between the projecting body and the side wall of the recess on the side of the first floor slab in the girder direction is greater than the fitting length of the first and second connecting portions. Girder joint structure.
前記第1の接続部は、前記第1の床版の前記第2の床版と対向する端面に設けられた開口である、請求項1に記載の接合構造。2. The joining structure according to claim 1, wherein said first connecting portion is an opening provided in an end surface of said first floor slab facing said second floor slab. 前記第1の接続部は、前記第1の床版の前記第2の床版と対向する端面から突き出した管である、請求項1に記載の接合構造。2. The joining structure according to claim 1, wherein said first connecting portion is a pipe protruding from an end face of said first floor slab facing said second floor slab. 前記第2の床版を前記第1の床版に向けてスライドさせることによって、前記第2の接続部が前記第1の接続部の前記開口に嵌り合う、請求項1から3のいずれか1項に記載の接合構造。4. Any one of claims 1 to 3, wherein the second connecting portion fits into the opening of the first connecting portion by sliding the second floor slab toward the first floor slab. The joint structure described in the paragraph. 前記突状体が、前記桁行方向において前記接続構造体と異なる位置に設けられている、請求項1から4のいずれか1項に記載の接合構造。5. The joining structure according to claim 1, wherein said protruding body is provided at a different position from said connection structure in said girder direction. 前記第1の床版と前記第2の床版のそれぞれを厚さ方向に貫通する貫通路がない、請求項1から5のいずれか1項に記載の接合構造。6. The joining structure according to any one of claims 1 to 5, wherein there is no through passage that penetrates each of the first floor slab and the second floor slab in the thickness direction. 前記第1の床版は、前記桁行方向に延び一端に前記第1の接続部が設けられた第1の貫通孔を有し、前記第2の床版は、前記桁行方向に延び一端に前記第2の接続部が設けられた第2の貫通孔を有し、前記第1及び第2の貫通孔と前記接続構造体は周囲に対して仕切られた連続した空間を形成し、
前記空間に、前記第1及び第2の床版に圧縮力を付与する緊張材が挿入されている、請求項1から6のいずれか1項に記載の接合構造。
The first floor slab extends in the girder direction and has a first through hole provided with the first connecting portion at one end thereof. The second floor slab extends in the girder direction at one end of the a second through-hole provided with a second connecting portion, wherein the first and second through-holes and the connection structure form a continuous space partitioned from the surroundings;
The joint structure according to any one of claims 1 to 6 , wherein a tendon is inserted into the space to apply a compressive force to the first and second floor slabs.
前記凹部の上部に接続された上部空気排出部を有する、請求項1から7のいずれか1項に記載の接合構造。 8. The joining structure according to any one of claims 1 to 7 , comprising an upper air exhaust connected to the upper part of said recess. 前記上部空気排出部は前記凹部の上面に接続されている、請求項に記載の接合構造。 9. The joining structure according to claim 8 , wherein said upper air discharge part is connected to the upper surface of said recess. 前記上部空気排出部は前記第2の床版の下面側に開口する、請求項またはに記載の接合構造。 The joint structure according to claim 8 or 9 , wherein said upper air discharge part opens to the lower surface side of said second floor slab. 前記モルタルは前記第2の床版と前記鋼桁との間に、前記桁行方向に連続的に設けられ、前記第2の床版と前記鋼桁との間にモルタル充填部と下部空気排出部が設けられている、請求項から10のいずれか1項に記載の接合構造。 The mortar is provided continuously in the girder row direction between the second floor slab and the steel girder, and a mortar filling section and a lower air discharge section are provided between the second floor slab and the steel girder. The joint structure according to any one of claims 8 to 10 , wherein a is provided. 前記下部空気排出部は、前記第2の床版の前記桁行方向における端部に設けられている、請求項11に記載の接合構造。 The joint structure according to claim 11 , wherein the lower air discharge portion is provided at an end portion of the second floor slab in the girder direction. 前記第2の床版は、平板状の本体と、前記本体の下面に設けられ、少なくとも桁行方向に延びる複数のリブと、を有し、前記凹部は少なくとも前記リブの厚さ方向の一部に設けられる、請求項1から12のいずれか1項に記載の接合構造。 The second floor slab has a flat plate-like main body and a plurality of ribs provided on the lower surface of the main body and extending at least in the girder direction. A joint structure according to any one of claims 1 to 12 , provided. 鋼桁の上に第1の床版を配置する第1の配置工程と、
前記鋼桁の上に、前記第1の床版に隣接してプレキャスト製の第2の床版を配置する第2の配置工程と、
前記第1の床版を前記鋼桁に接合する第1の接合工程と、
前記第2の床版を前記鋼桁に接合する第2の接合工程と、を有し、
前記鋼桁の上面に突状体が設けられ、前記第2の床版は下面に開口した凹部を有し、前記第1の床版は第1の接続部を有し、前記第2の床版は第2の接続部を有し、
前記第2の配置工程は、
前記突状体が前記凹部に収容された状態で、前記第2の接続部が桁行方向に前記第1の接続部から離間するように、前記第2の床版を前記鋼桁に対して位置決めする第1の位置決め工程と、
前記第1の接続部と前記第2の接続部が桁行方向に嵌り合うことで、前記第1の床版と前記第2の床版との間に接続構造体が形成されるように、前記第2の床版を前記第1の床版に近づける第2の位置決め工程と、を有し、
前記第2の接合工程は、前記凹部にモルタルを充填することを有し、
前記第2の位置決め工程の終了時において、前記桁行方向における前記第1の床版側での、前記突状体と前記凹部の側壁との最小間隔は、前記第1及び第2の接続部の嵌り合う長さより大きい、床版と鋼桁の接合方法。
A first placement step of placing the first floor slab on the steel girder;
a second arranging step of arranging a precast second floor slab on the steel girder adjacent to the first floor slab;
a first joining step of joining the first floor slab to the steel girder;
a second joining step of joining the second floor slab to the steel girder;
A projecting body is provided on the upper surface of the steel girder, the second floor slab has a recess opening to the lower surface, the first floor slab has a first connection portion, and the second floor slab has a first connecting portion. the plate has a second connection,
The second arranging step includes:
The second floor slab is positioned with respect to the steel girder so that the second connecting portion is separated from the first connecting portion in the girder direction while the projecting body is accommodated in the recess. a first positioning step to
The connecting structure is formed between the first floor slab and the second floor slab by fitting the first connection portion and the second connection portion in the girder direction. a second positioning step of bringing the second floor slab closer to the first floor slab;
The second bonding step includes filling the recess with mortar,
At the end of the second positioning step, the minimum distance between the projecting body and the sidewall of the recess on the side of the first floor slab in the girder direction is the distance between the first and second connecting portions. A method of joining deck slabs and steel girders that is larger than the fitting length .
前記第1の接続部は、前記第1の床版の前記第2の床版と対向する端面に設けられた開口である、請求項14に記載の接合方法。15. The joining method according to claim 14, wherein said first connecting portion is an opening provided in an end face of said first floor slab facing said second floor slab. 前記第1の接続部は、前記第1の床版の前記第2の床版と対向する端面から突き出した管である、請求項14に記載の接合方法。15. The joining method according to claim 14, wherein said first connecting portion is a pipe projecting from an end face of said first floor slab facing said second floor slab. 前記第2の床版を前記第1の床版に向けてスライドさせることによって、前記第2の接続部が前記第1の接続部の前記開口に嵌り合う、請求項14から16のいずれか1項に記載の接合方法。17. Any one of claims 14 to 16, wherein the second connecting portion fits into the opening of the first connecting portion by sliding the second floor slab toward the first floor slab. The joining method described in the item. 前記突状体が、前記桁行方向において前記接続構造体と異なる位置に設けられている、請求項14から17のいずれか1項に記載の接合方法。The joining method according to any one of claims 14 to 17, wherein the protruding body is provided at a different position from the connection structure in the girder direction. 前記第1の床版と前記第2の床版のそれぞれを厚さ方向に貫通する貫通路がない、請求項14から18のいずれか1項に記載の接合方法。19. The joining method according to any one of claims 14 to 18, wherein there is no through-path that penetrates each of the first floor slab and the second floor slab in the thickness direction. 前記凹部の上部に接続された上部空気排出部を有し、前記接合工程では、前記上部空気排出部から前記モルタルが流出するまで、前記凹部に前記モルタルが充填される、請求項14から19のいずれか1項に記載の接合方法。 20. The method according to any one of claims 14 to 19, further comprising an upper air discharge connected to the upper part of said recess, wherein said bonding step fills said recess with said mortar until said mortar flows out from said upper air discharge. The joining method according to any one of the items . 前記モルタルは前記第2の床版と前記鋼桁との間に連続的に設けられ、前記第2の床版と前記鋼桁との間に下部空気排出部が設けられ、前記接合工程では、前記下部空気排出部から前記モルタルが流出するまで前記モルタルが充填される、請求項0に記載の接合方法。 The mortar is continuously provided between the second floor slab and the steel girder, a lower air discharge section is provided between the second floor slab and the steel girder, and in the joining step, The joining method according to claim 20 , wherein the mortar is filled until the mortar flows out from the lower air discharge part.
JP2021015140A 2021-02-02 2021-02-02 Joint structure and joining method of floor slab and steel girder Active JP7140859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021015140A JP7140859B2 (en) 2021-02-02 2021-02-02 Joint structure and joining method of floor slab and steel girder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021015140A JP7140859B2 (en) 2021-02-02 2021-02-02 Joint structure and joining method of floor slab and steel girder

Publications (2)

Publication Number Publication Date
JP2022118549A JP2022118549A (en) 2022-08-15
JP7140859B2 true JP7140859B2 (en) 2022-09-21

Family

ID=82840112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021015140A Active JP7140859B2 (en) 2021-02-02 2021-02-02 Joint structure and joining method of floor slab and steel girder

Country Status (1)

Country Link
JP (1) JP7140859B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100336A (en) 2005-10-03 2007-04-19 Ps Mitsubishi Construction Co Ltd Construction method for steel/concrete composite floor slab by use of precast concrete board
JP2015229818A (en) 2014-06-03 2015-12-21 オリエンタル白石株式会社 Composite structure of steel girder and precast floor slab, and construction method therefor
JP2016017269A (en) 2014-07-04 2016-02-01 大成建設株式会社 Precast structure and joint structure for the precast structure
JP2018040168A (en) 2016-09-07 2018-03-15 株式会社横河ブリッジ Precast floor slab, compositional structure of steel beam and precast floor slab, and composition method of steel beam and precast floor slab

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513767Y2 (en) * 1988-03-31 1993-04-13
JPH11264115A (en) * 1998-03-19 1999-09-28 Hitachi Zosen Corp Bridge

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100336A (en) 2005-10-03 2007-04-19 Ps Mitsubishi Construction Co Ltd Construction method for steel/concrete composite floor slab by use of precast concrete board
JP2015229818A (en) 2014-06-03 2015-12-21 オリエンタル白石株式会社 Composite structure of steel girder and precast floor slab, and construction method therefor
JP2016017269A (en) 2014-07-04 2016-02-01 大成建設株式会社 Precast structure and joint structure for the precast structure
JP2018040168A (en) 2016-09-07 2018-03-15 株式会社横河ブリッジ Precast floor slab, compositional structure of steel beam and precast floor slab, and composition method of steel beam and precast floor slab

Also Published As

Publication number Publication date
JP2022118549A (en) 2022-08-15

Similar Documents

Publication Publication Date Title
JP5667546B2 (en) Precast floor slab and its joint structure and connection method
KR101505579B1 (en) Prestressed precast concrete using pipe rack or beam column joint structure and construction method of the same
JP2009041227A (en) Structure and method for joining precast floor slabs together
JP2007239301A (en) Method of integrating precast concrete members interposed by filling concrete
JP5718133B2 (en) Precast floor slab and its joint structure
JP6375079B1 (en) Joint structure of precast composite floor slab perpendicular to the bridge axis and its construction method
KR101339464B1 (en) Prestressed composite girder using shape steel with anchorage fixing plate
KR101104212B1 (en) Prestressed Tendon Anchoring Apparatus
KR101913069B1 (en) Prestressed Steel-Concrete Composite Girder and Method for Fabricating thereof
JP5061804B2 (en) Joint structure of a pair of full PC members
JP6491034B2 (en) Concrete floor slab
JP7140859B2 (en) Joint structure and joining method of floor slab and steel girder
JP2008266960A (en) Precast floor slab and method of installing the same
JP2013053413A (en) Construction method for slab, shear reinforcement, and concrete beam structure
KR101639592B1 (en) Prefabricated lightweight girder and the bridge construction method using the same
JP4447632B2 (en) Beam and beam-column joint structure and method of joining the same
JP2008063804A (en) Full precast concrete beam member and joint structure using the same
JP6302503B2 (en) Pca floor slab and its installation method, Pca support and its installation method
KR102327700B1 (en) Girder structure and construction method for continuity of supporting portion of girder using the same
KR20090006512A (en) Shear reinforcement device for junctional region of slab and column
CN110029729B (en) Splicing joint of prefabricated reinforced concrete main beam and secondary beam and construction method
JP2003041516A (en) Integral structure of upper and lower parts of continuous girder bridge and method of constructing it
JP2021066999A (en) Junction structure for precast steel concrete composite floor slab, and floor slab replacing method
JP6978895B2 (en) Column-beam joint structure and its construction method
JP2018141284A (en) Joint structure for shear reinforcement steel member of steel concrete composite structure and joint method for shear reinforcement member of steel concrete composition structure

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20210301

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220401

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220908

R150 Certificate of patent or registration of utility model

Ref document number: 7140859

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150