JP2018039679A - Fluid supply apparatus for glass synthesis - Google Patents

Fluid supply apparatus for glass synthesis Download PDF

Info

Publication number
JP2018039679A
JP2018039679A JP2016172613A JP2016172613A JP2018039679A JP 2018039679 A JP2018039679 A JP 2018039679A JP 2016172613 A JP2016172613 A JP 2016172613A JP 2016172613 A JP2016172613 A JP 2016172613A JP 2018039679 A JP2018039679 A JP 2018039679A
Authority
JP
Japan
Prior art keywords
supply line
pneumatic
line
purge gas
fluid supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016172613A
Other languages
Japanese (ja)
Other versions
JP6683077B2 (en
Inventor
充 高城
Mitsuru Takagi
充 高城
利已 幅崎
Toshimi Habasaki
利已 幅崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2016172613A priority Critical patent/JP6683077B2/en
Priority to CN201710756151.3A priority patent/CN107795546B/en
Publication of JP2018039679A publication Critical patent/JP2018039679A/en
Application granted granted Critical
Publication of JP6683077B2 publication Critical patent/JP6683077B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B20/00Safety arrangements for fluid actuator systems; Applications of safety devices in fluid actuator systems; Emergency measures for fluid actuator systems
    • F15B20/002Electrical failure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/021Valves for interconnecting the fluid chambers of an actuator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B20/00Safety arrangements for fluid actuator systems; Applications of safety devices in fluid actuator systems; Emergency measures for fluid actuator systems
    • F15B20/004Fluid pressure supply failure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/08Servomotor systems incorporating electrically operated control means
    • F15B21/087Control strategy, e.g. with block diagram

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Chemical Vapour Deposition (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fluid supply apparatus for glass synthesis capable of suppressing piping or a flow rate controller from deteriorating even when air pressure for operating an air type operation valve is lower than a proper range, for example, in a case of power recovery from an abnormal state such as a power failure.SOLUTION: A fluid supply apparatus for glass synthesis comprises a corrosive fluid supply line L1 for supplying a corrosive fluid to a reaction vessel 11, and an MFC 15 provided to the corrosive fluid supply line L1, and a corrosive fluid supply line L1 on a side upstream from the MFC 15 in a path of the corrosive fluid flowing through the MFC 15, and a corrosive fluid supply line L1 on a side downstream from the MFC 15 are provided with air type operation valves 17a, 17c which are operated by solenoid valves 16a, 16c, respectively, the air type operation valves 17a, 17c being all normal closed type, and the air type operation valve 17c provided downstream from the MFC 15 having higher working pressure than the air type operation valve 17a provided upstream from the MFC 15.SELECTED DRAWING: Figure 1

Description

本発明は、ガラス合成用流体供給装置に関する。   The present invention relates to a fluid supply apparatus for glass synthesis.

ガラスを合成する際に用いられる腐食性流体やパージガスを、ガラス合成装置に供給するガラス合成用流体供給装置が知られている(例えば、特許文献1参照)。   2. Description of the Related Art A glass synthesis fluid supply device that supplies a corrosive fluid or purge gas used when synthesizing glass to a glass synthesis device is known (see, for example, Patent Document 1).

特開2014−131946号公報JP 2014-131946 A

例えば、特許文献1に記載されたガラス合成用流体供給装置は、ガラスを合成する際に用いられる腐食性流体やパージガスをガラス合成装置に供給する経路に、空気式操作弁が設けられている。空気式操作弁は供給される空気圧で弁の開閉を行い、空気圧が作動圧以上で開き、空気圧が作動圧未満の場合は閉じる。この空気式操作弁はノーマルクローズ型(空気圧がかからないと閉じた状態を維持する)である。   For example, in the fluid supply device for glass synthesis described in Patent Document 1, a pneumatic operation valve is provided in a path for supplying a corrosive fluid or purge gas used when synthesizing glass to the glass synthesis device. The pneumatic control valve opens and closes with the supplied air pressure, opens when the air pressure is higher than the operating pressure, and closes when the air pressure is lower than the operating pressure. This pneumatic operation valve is normally closed (maintains a closed state when no air pressure is applied).

ところが、ノーマルクローズ型の空気式操作弁は、供給される空気圧が作動圧と同等程度の場合、空気式操作弁の個体差などの理由で、複数あるうち一部のノーマルクローズ型の空気式操作弁のみ開く状態となる可能性がある。   However, there are some normally closed type pneumatic operation valves when there is a plurality of normal closed type pneumatic operation valves due to individual differences of pneumatic operation valves when the supplied air pressure is about the same as the operating pressure. Only the valve may be open.

このため、供給される空気圧が低い状態になった場合、一部のノーマルクローズ型の空気式操作弁が開かない場合がある。例えば、流量制御装置よりも下流に設けられた空気式操作弁が開き、上流に設けられた空気式操作弁が閉じると、反応容器内や除害装置内のガスが配管上流側に逆流し、拡散する可能性がある。   For this reason, when the supplied air pressure is low, some normally closed type pneumatic operation valves may not open. For example, when the pneumatic control valve provided downstream of the flow control device is opened and the pneumatic control valve provided upstream is closed, the gas in the reaction vessel or the abatement device flows backward to the upstream side of the pipe, May spread.

一方、空気式操作弁に対する空気圧の供給は、空気圧供給経路に設けられた電磁弁の開閉によって制御されている。電磁弁は電気的に開閉が制御されており、停電等の電源供給が無い場合に、閉じた状態を維持するノーマルクローズ型と、開いた状態を維持するノーマルオープン型がある。   On the other hand, the supply of air pressure to the pneumatic operation valve is controlled by opening and closing an electromagnetic valve provided in the air pressure supply path. The solenoid valve is electrically controlled to open and close, and there are a normally closed type that maintains a closed state and a normally open type that maintains an open state when there is no power supply such as a power failure.

通常、ガラス合成用流体供給装置は、各経路に設けられた空気式操作弁を制御する電磁弁に関しノーマルクローズ型とノーマルオープン型を適宜配置して、停電等の異常の発生により電源供給が遮断された場合、流量制御装置前後の配管や流量制御装置にパージガスが流れるようになっている。しかしながら、停電等の異常時から復電する際に、空気式操作弁を作動させる空気圧が適正範囲より低い状態となる場合があり、このとき例えば、上記のように、反応容器内や除害装置内のガスが配管上流側に逆流し、拡散するなどの現象が発生し、配管または流量制御装置の劣化防止が不十分になるおそれがあった。   Usually, the fluid supply device for glass synthesis arranges the normally closed type and the normally open type as appropriate for the solenoid valve that controls the pneumatic operation valve provided in each path, and the power supply is cut off due to the occurrence of an abnormality such as a power failure In this case, the purge gas flows through the pipes before and after the flow control device and the flow control device. However, when power is restored from an abnormality such as a power failure, the air pressure for operating the pneumatic control valve may be lower than the appropriate range. At this time, for example, as described above, the reaction vessel or the abatement device There is a possibility that the inside gas flows back to the upstream side of the pipe and diffuses, and the deterioration of the pipe or the flow rate control device may be insufficient.

本発明は、停電等の異常時から復電する際など、空気式操作弁を作動させる空気圧が適正範囲より低い場合でも、配管または流量制御装置の劣化を抑制することができるガラス合成用流体供給装置を提供することを目的とする。   The present invention provides a glass synthesis fluid supply capable of suppressing deterioration of a pipe or a flow control device even when an air pressure for operating a pneumatic operation valve is lower than an appropriate range, such as when power is restored from an abnormality such as a power failure. An object is to provide an apparatus.

本発明の一態様に係るガラス合成用流体供給装置は、
反応容器に腐食性流体を供給する腐食性流体供給ラインと、
前記腐食性流体供給ラインに設けられた流量制御装置と、
を備え、
前記流量制御装置を流れる前記腐食性流体の経路において、前記流量制御装置より上流側の前記腐食性流体供給ラインと、前記流量制御装置より下流側の前記腐食性流体供給ラインと、にはそれぞれ電磁弁で操作される空気式操作弁が設けられ、
前記空気式操作弁は全てノーマルクローズ型であり、
前記流量制御装置より下流側に設けられた前記空気式操作弁は、前記流量制御装置より上流側に設けられた前記空気式操作弁の作動圧より高い作動圧を有する。
A fluid supply device for glass synthesis according to one embodiment of the present invention,
A corrosive fluid supply line for supplying corrosive fluid to the reaction vessel;
A flow control device provided in the corrosive fluid supply line;
With
In the path of the corrosive fluid flowing through the flow control device, the corrosive fluid supply line upstream of the flow control device and the corrosive fluid supply line downstream of the flow control device are respectively electromagnetic. Pneumatic operation valve operated by valve is provided,
All of the pneumatic operating valves are normally closed,
The pneumatic operating valve provided on the downstream side of the flow control device has an operating pressure higher than the operating pressure of the pneumatic operating valve provided on the upstream side of the flow control device.

また、本発明の一態様に係るガラス合成用流体供給装置は、
反応容器にパージガスを供給するパージガス供給ラインと、
前記パージガス供給ラインに設けられた流量制御装置と、
を備え、
前記流量制御装置を流れる前記パージガスの経路において、前記流量制御装置より上流側の前記パージガス供給ラインと、前記流量制御装置より下流側の前記パージガス供給ラインと、にはそれぞれ電磁弁で操作される空気式操作弁が設けられ、
前記空気式操作弁は全てノーマルクローズ型であり、
前記流量制御装置より下流側に設けられた前記空気式操作弁は、前記流量制御装置より上流側に設けられた前記空気式操作弁の作動圧より高い作動圧を有する。
Further, a glass synthesis fluid supply apparatus according to an aspect of the present invention includes:
A purge gas supply line for supplying purge gas to the reaction vessel;
A flow control device provided in the purge gas supply line;
With
In the path of the purge gas flowing through the flow rate control device, the purge gas supply line upstream of the flow rate control device and the purge gas supply line downstream of the flow rate control device are respectively operated by solenoid valves. Type operation valve is provided,
All of the pneumatic operating valves are normally closed,
The pneumatic operating valve provided on the downstream side of the flow control device has an operating pressure higher than the operating pressure of the pneumatic operating valve provided on the upstream side of the flow control device.

また、本発明の一態様に係るガラス合成用流体供給装置は、
腐食性流体を供給する腐食性流体供給ラインと、
パージガスを供給するパージガス供給ラインと、
前記パージガス供給ラインと前記腐食性流体供給ラインとが合流された合流ラインと、
前記合流ラインに設けられた流量制御装置と、
前記流量制御装置より下流側の前記合流ラインから分岐して反応容器に向かう反応容器ラインと、
前記流量制御装置より下流側の前記合流ラインから分岐して除害装置に向かう排ガスラインと、
を備え、
前記腐食性流体供給ラインと、前記パージガス供給ラインと、前記反応容器ラインと、前記排ガスラインと、はそれぞれ電磁弁で操作される空気式操作弁が設けられ、
前記パージガス供給ラインに設けられた前記空気式操作弁用の電磁弁と、前記排ガスラインに設けられた前記空気式操作弁用の電磁弁と、はノーマルオープン型であり、
前記腐食性流体供給ラインに設けられた前記空気式操作弁用の電磁弁と、前記反応容器ラインに設けられた前記空気式操作弁用の電磁弁と、はノーマルクローズ型であり、
前記反応容器ラインに設けられた前記空気式操作弁は、前記腐食性流体供給ラインに設けられた前記空気式操作弁の作動圧より高い作動圧を有し、
前記排ガスラインに設けられた前記空気式操作弁は、前記パージガス供給ラインに設けられた前記空気式操作弁の作動圧より高い作動圧を有する。
Further, a glass synthesis fluid supply apparatus according to an aspect of the present invention includes:
A corrosive fluid supply line for supplying corrosive fluid;
A purge gas supply line for supplying a purge gas;
A merge line in which the purge gas supply line and the corrosive fluid supply line are merged;
A flow control device provided in the merge line;
A reaction vessel line branched from the merge line downstream from the flow rate control device and heading to the reaction vessel;
An exhaust gas line branching from the merging line downstream from the flow rate control device and heading toward the detoxifying device;
With
The corrosive fluid supply line, the purge gas supply line, the reaction vessel line, and the exhaust gas line are each provided with a pneumatic operation valve operated by a solenoid valve,
The solenoid valve for the pneumatic operation valve provided in the purge gas supply line and the solenoid valve for the pneumatic operation valve provided in the exhaust gas line are normally open types,
The solenoid valve for the pneumatic operation valve provided in the corrosive fluid supply line and the solenoid valve for the pneumatic operation valve provided in the reaction vessel line are normally closed,
The pneumatic operating valve provided in the reaction vessel line has an operating pressure higher than the operating pressure of the pneumatic operating valve provided in the corrosive fluid supply line,
The pneumatic operating valve provided in the exhaust gas line has an operating pressure higher than the operating pressure of the pneumatic operating valve provided in the purge gas supply line.

上記発明によれば、停電等の異常時から復電する際など、空気式操作弁を作動させる空気圧が適正範囲より低い場合でも、配管または流量制御装置の劣化を抑制することができる。   According to the above invention, even when the air pressure for operating the pneumatic operation valve is lower than the appropriate range, such as when power is restored from an abnormality such as a power failure, the deterioration of the piping or the flow control device can be suppressed.

本実施形態に係るガラス合成用流体供給装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the fluid supply apparatus for glass synthesis which concerns on this embodiment.

(本発明の実施形態の説明)
最初に本発明の実施態様を列記して説明する。
本発明の一態様に係るガラス合成用流体供給装置は、
(1)反応容器に腐食性流体を供給する腐食性流体供給ラインと、
前記腐食性流体供給ラインに設けられた流量制御装置と、
を備え、
前記流量制御装置を流れる前記腐食性流体の経路において、前記流量制御装置より上流側の前記腐食性流体供給ラインと、前記流量制御装置より下流側の前記腐食性流体供給ラインと、にはそれぞれ電磁弁で操作される空気式操作弁が設けられ、
前記空気式操作弁は全てノーマルクローズ型であり、
前記流量制御装置より下流側に設けられた前記空気式操作弁は、前記流量制御装置より上流側に設けられた前記空気式操作弁の作動圧より高い作動圧を有する。
上記構成によれば、流量制御装置より下流側に設けられた空気式操作弁は、流量制御装置より上流側に設けられた空気式操作弁の作動圧より高い作動圧を有するので、空気式操作弁を作動させる空気圧が適正範囲より低い状態から高くなっていく場合、上流側の空気式操作弁が先に開き、下流側の空気式操作弁が後で開く。これにより、停電等の異常時から復電する際など、空気式操作弁を作動させる空気圧が適正範囲より低い場合に、反応容器内のガスが配管上流側に逆流、拡散することを防ぐことができるので、配管または流量制御装置の劣化を抑制することができる。
(Description of Embodiment of the Present Invention)
First, embodiments of the present invention will be listed and described.
A fluid supply device for glass synthesis according to one embodiment of the present invention,
(1) a corrosive fluid supply line for supplying a corrosive fluid to the reaction vessel;
A flow control device provided in the corrosive fluid supply line;
With
In the path of the corrosive fluid flowing through the flow control device, the corrosive fluid supply line upstream of the flow control device and the corrosive fluid supply line downstream of the flow control device are respectively electromagnetic. Pneumatic operation valve operated by valve is provided,
All of the pneumatic operating valves are normally closed,
The pneumatic operating valve provided on the downstream side of the flow control device has an operating pressure higher than the operating pressure of the pneumatic operating valve provided on the upstream side of the flow control device.
According to the above configuration, the pneumatic operation valve provided on the downstream side of the flow control device has an operating pressure higher than that of the pneumatic operation valve provided on the upstream side of the flow control device. When the air pressure for operating the valve increases from a state lower than the appropriate range, the upstream pneumatic control valve opens first, and the downstream pneumatic control valve opens later. This prevents the gas in the reaction vessel from flowing back and diffusing upstream in the piping when the air pressure that activates the pneumatic operating valve is lower than the appropriate range, such as when power is restored from an abnormality such as a power failure. Since it can do, degradation of piping or a flow control device can be controlled.

また、本発明の一態様に係るガラス合成用流体供給装置は、
(2)反応容器にパージガスを供給するパージガス供給ラインと、
前記パージガス供給ラインに設けられた流量制御装置と、
を備え、
前記流量制御装置を流れる前記パージガスの経路において、前記流量制御装置より上流側の前記パージガス供給ラインと、前記流量制御装置より下流側の前記パージガス供給ラインと、にはそれぞれ電磁弁で操作される空気式操作弁が設けられ、
前記空気式操作弁は全てノーマルクローズ型であり、
前記流量制御装置より下流側に設けられた前記空気式操作弁は、前記流量制御装置より上流側に設けられた前記空気式操作弁の作動圧より高い作動圧を有する。
上記構成によれば、流量制御装置より下流側に設けられた空気式操作弁は、流量制御装置より上流側に設けられた空気式操作弁の作動圧より高い作動圧を有するので、空気式操作弁を作動させる空気圧が適正範囲より低い状態から高くなっていく場合、上流側の空気式操作弁が先に開き、下流側の空気式操作弁が後で開く。これにより、停電等の異常時から復電する際など、空気式操作弁を作動させる空気圧が適正範囲より低い場合に、反応容器内のガスが配管上流側に逆流、拡散することを防ぐことができるので、配管または流量制御装置の劣化を抑制することができる。
Further, a glass synthesis fluid supply apparatus according to an aspect of the present invention includes:
(2) a purge gas supply line for supplying purge gas to the reaction vessel;
A flow control device provided in the purge gas supply line;
With
In the path of the purge gas flowing through the flow rate control device, the purge gas supply line upstream of the flow rate control device and the purge gas supply line downstream of the flow rate control device are respectively operated by solenoid valves. Type operation valve is provided,
All of the pneumatic operating valves are normally closed,
The pneumatic operating valve provided on the downstream side of the flow control device has an operating pressure higher than the operating pressure of the pneumatic operating valve provided on the upstream side of the flow control device.
According to the above configuration, the pneumatic operation valve provided on the downstream side of the flow control device has an operating pressure higher than that of the pneumatic operation valve provided on the upstream side of the flow control device. When the air pressure for operating the valve increases from a state lower than the appropriate range, the upstream pneumatic control valve opens first, and the downstream pneumatic control valve opens later. This prevents the gas in the reaction vessel from flowing back and diffusing upstream in the piping when the air pressure that activates the pneumatic operating valve is lower than the appropriate range, such as when power is restored from an abnormality such as a power failure. Since it can do, degradation of piping or a flow control device can be controlled.

また、本発明の一態様に係るガラス合成用流体供給装置は、
(3)腐食性流体を供給する腐食性流体供給ラインと、
パージガスを供給するパージガス供給ラインと、
前記パージガス供給ラインと前記腐食性流体供給ラインとが合流された合流ラインと、
前記合流ラインに設けられた流量制御装置と、
前記流量制御装置より下流側の前記合流ラインから分岐して反応容器に向かう反応容器ラインと、
前記流量制御装置より下流側の前記合流ラインから分岐して除害装置に向かう排ガスラインと、
を備え、
前記腐食性流体供給ラインと、前記パージガス供給ラインと、前記反応容器ラインと、前記排ガスラインと、はそれぞれ電磁弁で操作される空気式操作弁が設けられ、
前記パージガス供給ラインに設けられた前記空気式操作弁用の電磁弁と、前記排ガスラインに設けられた前記空気式操作弁用の電磁弁と、はノーマルオープン型であり、
前記腐食性流体供給ラインに設けられた前記空気式操作弁用の電磁弁と、前記反応容器ラインに設けられた前記空気式操作弁用の電磁弁と、はノーマルクローズ型であり、
前記反応容器ラインに設けられた前記空気式操作弁は、前記腐食性流体供給ラインに設けられた前記空気式操作弁の作動圧より高い作動圧を有し、
前記排ガスラインに設けられた前記空気式操作弁は、前記パージガス供給ラインに設けられた前記空気式操作弁の作動圧より高い作動圧を有する。
上記構成によれば、流量制御装置より下流側に設けられた空気式操作弁は、流量制御装置より上流側に設けられた空気式操作弁の作動圧より高い作動圧を有するので、空気式操作弁を作動させる空気圧が適正範囲より低い状態から高くなっていく場合、腐食性流体供給ラインまたはパージガス供給ラインの空気式操作弁が先に開き、反応容器ラインまたは排ガスラインの空気式操作弁が後で開く。これにより、停電等の異常時から復電する際など、空気式操作弁を作動させる空気圧が適正範囲より低い場合に、反応容器内または除害装置内のガスが配管上流側に逆流、拡散することを防ぐことができるので、配管または流量制御装置の劣化を抑制することができる。
Further, a glass synthesis fluid supply apparatus according to an aspect of the present invention includes:
(3) a corrosive fluid supply line for supplying corrosive fluid;
A purge gas supply line for supplying a purge gas;
A merge line in which the purge gas supply line and the corrosive fluid supply line are merged;
A flow control device provided in the merge line;
A reaction vessel line branched from the merge line downstream from the flow rate control device and heading to the reaction vessel;
An exhaust gas line branching from the merging line downstream from the flow rate control device and heading toward the detoxifying device;
With
The corrosive fluid supply line, the purge gas supply line, the reaction vessel line, and the exhaust gas line are each provided with a pneumatic operation valve operated by a solenoid valve,
The solenoid valve for the pneumatic operation valve provided in the purge gas supply line and the solenoid valve for the pneumatic operation valve provided in the exhaust gas line are normally open types,
The solenoid valve for the pneumatic operation valve provided in the corrosive fluid supply line and the solenoid valve for the pneumatic operation valve provided in the reaction vessel line are normally closed,
The pneumatic operating valve provided in the reaction vessel line has an operating pressure higher than the operating pressure of the pneumatic operating valve provided in the corrosive fluid supply line,
The pneumatic operating valve provided in the exhaust gas line has an operating pressure higher than the operating pressure of the pneumatic operating valve provided in the purge gas supply line.
According to the above configuration, the pneumatic operation valve provided on the downstream side of the flow control device has an operating pressure higher than that of the pneumatic operation valve provided on the upstream side of the flow control device. If the air pressure that operates the valve increases from a state below the appropriate range, the pneumatic operation valve of the corrosive fluid supply line or purge gas supply line opens first, and the pneumatic operation valve of the reaction vessel line or exhaust gas line opens later. Open with. As a result, when the air pressure that operates the pneumatic control valve is lower than the appropriate range, such as when power is restored from an abnormality such as a power failure, the gas in the reaction vessel or the abatement device flows back and diffuses upstream of the piping. Since this can be prevented, deterioration of the piping or the flow rate control device can be suppressed.

(4)前記パージガス供給ラインに流量絞り弁が設けられていることが好ましい。
パージガス供給ラインに流量絞り弁が設けられているので、停電時のパージガス流量を抑えることができる。これにより、パージガスを節約することができ、また、復電時のパージ圧力の低下を抑止することができる。
(4) It is preferable that a flow restrictor is provided in the purge gas supply line.
Since the flow restrictor is provided in the purge gas supply line, the purge gas flow rate at the time of power failure can be suppressed. As a result, purge gas can be saved, and a decrease in purge pressure during power recovery can be suppressed.

(本発明の実施形態の詳細)
本発明の実施形態に係るガラス合成用流体供給装置の具体例を、以下に図面を参照しつつ説明する。
なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
(Details of the embodiment of the present invention)
A specific example of a glass synthesis fluid supply apparatus according to an embodiment of the present invention will be described below with reference to the drawings.
In addition, this invention is not limited to these illustrations, is shown by the claim, and intends that all the changes within the meaning and range equivalent to a claim are included.

図1は、ガラス合成用流体供給装置の一例を示す図である。
図1に示すガラス合成用流体供給装置1は、ガラスを合成する際に用いられる腐食性流体を反応容器11に向けて供給する。また、ガラス合成用流体供給装置1は、ガラスの合成に使用されなかった腐食性流体を除害装置12に排出する。
FIG. 1 is a diagram illustrating an example of a glass synthesis fluid supply apparatus.
A glass synthesis fluid supply apparatus 1 shown in FIG. 1 supplies a corrosive fluid used when synthesizing glass toward a reaction vessel 11. Further, the glass synthesis fluid supply apparatus 1 discharges the corrosive fluid that has not been used for glass synthesis to the abatement apparatus 12.

反応容器11では、例えばOVD法やVAD法により、光ファイバ用の円柱状ガラス母材等のガラス合成が行われる。OVD法の場合、反応容器11内で出発ガラスロッドを軸方向に往復移動させるとともに回転させながら、その外周に、腐食性流体供給部13から供給されるガラス原料となる腐食性流体を、H等の燃料ガスとO等の助燃ガスとともにバーナーから吹き付ける。そして、火炎加水分解反応によりガラス微粒子を生成して堆積させ、ガラス微粒子堆積体として円柱状ガラス母材を合成する。また、除害装置12では、ガラスの合成に使用されなかった腐食性流体が清浄化処理される。腐食性流体としては、ガラス合成用原料ガスまたは液体(POCl,TiCl,SiCl,GeCl等)や、プロセス用ガスまたは液体(BCl,SF,Cl,SiF,CF等)が用いられる。 In the reaction vessel 11, glass synthesis such as a columnar glass preform for optical fibers is performed by, for example, the OVD method or the VAD method. In the case of the OVD method, while the starting glass rod is reciprocated in the axial direction in the reaction vessel 11 and rotated, a corrosive fluid serving as a glass raw material supplied from the corrosive fluid supply unit 13 is H 2 on the outer periphery. And so on and the auxiliary gas such as O 2 is blown from the burner. Then, glass fine particles are generated and deposited by a flame hydrolysis reaction, and a cylindrical glass base material is synthesized as a glass fine particle deposit. Moreover, in the abatement apparatus 12, the corrosive fluid which was not used for the synthesis | combination of glass is cleaned. Corrosive fluids include glass synthesis source gases or liquids (POCl 3 , TiCl 4 , SiCl 4 , GeCl 4, etc.), process gases or liquids (BCl 3 , SF 6 , Cl 2 , SiF 4 , CF 4, etc.). ) Is used.

ガラス合成用流体供給装置1は、流体を供給する流路として、腐食性流体供給部13から反応容器11に向けて腐食性流体を供給する腐食性流体供給ラインL1と、パージガス供給部14から反応容器11に向けてパージガスを供給するパージガス供給ラインL2とを備えている。また、ガラス合成用流体供給装置1は、腐食性流体供給ラインL1とパージガス供給ラインL2とが合流された合流ラインL3と、合流ラインL3から分岐して反応容器11に向かう反応容器ラインL4と、合流ラインL3から分岐して除害装置12に向かう排ガスラインL5とを備えている。   The fluid supply device for glass synthesis 1 reacts from a corrosive fluid supply line L1 for supplying a corrosive fluid from the corrosive fluid supply unit 13 toward the reaction vessel 11 and a purge gas supply unit 14 as a flow path for supplying fluid. A purge gas supply line L2 for supplying a purge gas toward the container 11 is provided. Further, the glass synthesis fluid supply apparatus 1 includes a merge line L3 in which the corrosive fluid supply line L1 and the purge gas supply line L2 are merged, a reaction vessel line L4 branched from the merge line L3 and directed to the reaction vessel 11, An exhaust gas line L5 branched from the merging line L3 and heading toward the abatement device 12 is provided.

腐食性流体供給ラインL1には、電磁弁16aで操作される空気式操作弁17aが設けられ、パージガス供給ラインL2には、電磁弁16bで操作される空気式操作弁17bが設けられている。また、パージガス供給ラインL2には、空気式操作弁17bよりも上流側に、通過するパージガスの流量を制御することが可能な流量絞り弁(例えば、ニードル弁等)18が設けられている。そして、腐食性流体供給ラインL1の空気式操作弁17aの下流側とパージガス供給ラインL2の空気式操作弁17bの下流側とが合流して合流ラインL3となっている。   The corrosive fluid supply line L1 is provided with a pneumatic operation valve 17a operated by an electromagnetic valve 16a, and the purge gas supply line L2 is provided with a pneumatic operation valve 17b operated by an electromagnetic valve 16b. The purge gas supply line L2 is provided with a flow rate throttle valve (for example, a needle valve) 18 that can control the flow rate of the purge gas that passes through the upstream side of the pneumatic operation valve 17b. The downstream side of the pneumatic operation valve 17a in the corrosive fluid supply line L1 and the downstream side of the pneumatic operation valve 17b in the purge gas supply line L2 merge to form a merge line L3.

合流ラインL3(腐食性流体供給ラインL1かつパージガス供給ラインL2)の途中には、通過する流体の流量を制御することが可能な流量制御装置(例えば、Mass Flow Controller:MFC)15が設けられている。そして、合流ラインL3のMFC15の下流側で、反応容器ラインL4と排ガスラインL5とが合流ラインL3から分岐している。   In the middle of the merge line L3 (corrosive fluid supply line L1 and purge gas supply line L2), a flow control device (for example, Mass Flow Controller: MFC) 15 capable of controlling the flow rate of the fluid passing therethrough is provided. Yes. The reaction vessel line L4 and the exhaust gas line L5 are branched from the merge line L3 on the downstream side of the MFC 15 in the merge line L3.

反応容器ラインL4には、電磁弁16cで操作される空気式操作弁17cが設けられ、排ガスラインL5には、電磁弁16dで操作される空気式操作弁17dが設けられている。そして、反応容器ラインL4の空気式操作弁17cの下流側に反応容器11が接続され、排ガスラインL5の空気式操作弁17dの下流側に除害装置12が接続されている。なお、反応容器ラインL4には腐食性流体が流れるので、反応容器ラインL4のことをMFC15より下流側の腐食性流体供給ラインともいう。また、排ガスラインL5にはパージガスが流れるので、排ガスラインL5のことをMFC15より下流側のパージガス供給ラインともいう。   The reaction vessel line L4 is provided with a pneumatic operation valve 17c operated by an electromagnetic valve 16c, and the exhaust gas line L5 is provided with a pneumatic operation valve 17d operated by an electromagnetic valve 16d. The reaction vessel 11 is connected to the downstream side of the pneumatic operation valve 17c in the reaction vessel line L4, and the detoxifying device 12 is connected to the downstream side of the pneumatic operation valve 17d in the exhaust gas line L5. Since the corrosive fluid flows in the reaction vessel line L4, the reaction vessel line L4 is also referred to as a corrosive fluid supply line on the downstream side of the MFC 15. Further, since purge gas flows through the exhaust gas line L5, the exhaust gas line L5 is also referred to as a purge gas supply line downstream of the MFC 15.

空気式操作弁17a〜17dは、駆動用の空気圧によって開閉動作を行う弁である。電磁弁16a〜16dは、ソレノイドのコイルに電流が供給されて開閉動作を行う弁である。電磁弁16a〜16dは、図示を省略する電磁弁制御部によって、それぞれの開閉が制御されている。各電磁弁16a〜16dのオン/オフにより、パージガス供給部14のパージガスが各空気式操作弁17a〜17dに駆動用の空気圧として作用し、この空気圧によって各空気式操作弁17a〜17dの開閉が操作される。すなわち、各流路(L1,L2,L4,L5)に設けられた空気式操作弁17a〜17dは、それぞれ駆動用の電磁弁16a〜16dを制御することで動作し、各流路(L1,L2,L4,L5)を開状態または閉状態にすることができる。   The pneumatic operation valves 17a to 17d are valves that perform opening and closing operations by driving air pressure. The electromagnetic valves 16a to 16d are valves that perform opening and closing operations when current is supplied to a solenoid coil. The solenoid valves 16a to 16d are controlled to be opened and closed by a solenoid valve controller (not shown). As the solenoid valves 16a to 16d are turned on / off, the purge gas of the purge gas supply unit 14 acts as a driving air pressure on the pneumatic operating valves 17a to 17d, and the pneumatic operating valves 17a to 17d are opened and closed by the air pressure. Operated. That is, the pneumatic operation valves 17a to 17d provided in the respective flow paths (L1, L2, L4, L5) operate by controlling the driving electromagnetic valves 16a to 16d, respectively. L2, L4, L5) can be opened or closed.

MFC15より下流側の反応容器ラインL4に設けられている空気式操作弁17cには、MFC15より上流側の腐食性流体供給ラインL1に設けられている空気式操作弁17aよりも作動圧が高い弁が使用されている。また、MFC15より下流側の排ガスラインL5に設けられている空気式操作弁17dには、MFC15より上流側のパージガス供給ラインL2に設けられている空気式操作弁17bよりも作動圧が高い弁が使用されている。   The pneumatic operating valve 17c provided in the reaction vessel line L4 downstream from the MFC 15 has a higher operating pressure than the pneumatic operating valve 17a provided in the corrosive fluid supply line L1 upstream from the MFC 15. Is used. Further, the pneumatic operation valve 17d provided in the exhaust gas line L5 downstream from the MFC 15 has a valve having a higher operating pressure than the pneumatic operation valve 17b provided in the purge gas supply line L2 upstream from the MFC 15. It is used.

空気式操作弁17a〜17dには、非動作時に流路が閉状態となるノーマルクローズ型が使用されている。また、電磁弁16a,16cには、ソレノイドの非動作時に流路が閉状態となるノーマルクローズ型が使用され、電磁弁16b,16dには、ソレノイドの非動作時に流路が開状態となるノーマルオープン型が使用されている。また、MFC15には、非動作時に流路が開状態となるノーマルオープン型が使用されている。   As the pneumatic operation valves 17a to 17d, normally closed types are used in which the flow paths are closed when not in operation. The solenoid valves 16a and 16c are of a normally closed type in which the flow path is closed when the solenoid is not operated, and the solenoid valves 16b and 16d are normally closed in which the flow path is opened when the solenoid is not operated. Open type is used. Further, the MFC 15 is a normally open type in which the flow path is opened when not operating.

次に、ガラス合成用流体供給装置1の動作について説明する。
(ガラス合成時)
ガラス合成時には、ガラス合成用流体供給装置1は、電磁弁16bを閉じることで空気式操作弁17bを閉じ、電磁弁16aを開けることで空気式操作弁17aを開けるように制御される。これにより、合流ラインL3のMFC15の上流側には、パージガス供給ラインL2からパージガスが供給されず、腐食性流体供給ラインL1からガラス原料ガス等の腐食性流体が供給される。そして、MFC15によって流量が適宜制御されて、MFC15の下流側へ腐食性流体が供給される。
また、電磁弁16dを閉じることで空気式操作弁17dを閉じ、電磁弁16cを開けることで空気式操作弁17cを開けるように制御する。これにより、MFC15の下流側から除害装置12には腐食性流体は供給されず、反応容器11へ腐食性流体が供給される。
Next, the operation of the glass synthesis fluid supply apparatus 1 will be described.
(During glass synthesis)
At the time of glass synthesis, the glass synthesis fluid supply device 1 is controlled to close the pneumatic operation valve 17b by closing the electromagnetic valve 16b and open the pneumatic operation valve 17a by opening the electromagnetic valve 16a. Thereby, the purge gas is not supplied from the purge gas supply line L2 to the upstream side of the MFC 15 in the merge line L3, and a corrosive fluid such as a glass raw material gas is supplied from the corrosive fluid supply line L1. Then, the flow rate is appropriately controlled by the MFC 15, and the corrosive fluid is supplied to the downstream side of the MFC 15.
Moreover, it controls to close the pneumatic operation valve 17d by closing the electromagnetic valve 16d and open the pneumatic operation valve 17c by opening the electromagnetic valve 16c. Thereby, the corrosive fluid is not supplied to the abatement apparatus 12 from the downstream side of the MFC 15, and the corrosive fluid is supplied to the reaction vessel 11.

(ガラス非合成時)
ガラス非合成時には、ガラス合成用流体供給装置1は、電磁弁16aを閉じることで空気式操作弁17aを閉じ、電磁弁16bを開けることで空気式操作弁17bを開けるように制御される。これにより、合流ラインL3のMFC15の上流側には、腐食性流体供給ラインL1からガラス原料ガス等の腐食性流体が供給されず、パージガス供給ラインL2からパージガスが供給される。そして、MFC15によって流量が適宜制御されて、MFC15の下流側へパージガスが供給される。
そして、電磁弁16cを閉じることで空気式操作弁17cを閉じ、電磁弁16dを開けることで空気式操作弁17dを開けるように制御される。これにより、MFC15の内部やMFC15の前後のラインに残留している腐食性流体がパージガスと共に排ガスラインL5を通って除害装置12へ排出される。
(When glass is not synthesized)
When glass is not synthesized, the glass synthesis fluid supply device 1 is controlled to close the pneumatic operation valve 17a by closing the electromagnetic valve 16a and to open the pneumatic operation valve 17b by opening the electromagnetic valve 16b. As a result, the corrosive fluid such as the glass raw material gas is not supplied from the corrosive fluid supply line L1 to the upstream side of the MFC 15 in the merge line L3, and the purge gas is supplied from the purge gas supply line L2. Then, the flow rate is appropriately controlled by the MFC 15 and the purge gas is supplied to the downstream side of the MFC 15.
Control is performed so that the pneumatic operation valve 17c is closed by closing the electromagnetic valve 16c, and the pneumatic operation valve 17d is opened by opening the electromagnetic valve 16d. As a result, the corrosive fluid remaining inside the MFC 15 or in the lines before and after the MFC 15 is discharged together with the purge gas through the exhaust gas line L5 to the abatement apparatus 12.

以下、停電等の異常が発生した場合のガラス合成用流体供給装置1の動作について、動作例を挙げて説明する。
(動作例1)
停電等の異常が生じて電源の供給が遮断された場合、ガラス合成用流体供給装置1は、以下のように動作する。
電磁弁16aは、ノーマルクローズ型であるため、電源の遮断により、自動的に閉状態を維持する。このため、ノーマルクローズ型である空気式操作弁17aは、駆動用の空気圧(パージガス)が加わらず閉状態となる。また、電磁弁16bは、ノーマルオープン型であるため、電源の遮断により、自動的に開状態を維持する。このため、空気式操作弁17bは、駆動用の空気圧が加わり開状態となる。これにより、合流ラインL3のMFC15の上流側には、腐食性流体供給ラインL1から腐食性流体は供給されず、パージガス供給ラインL2からパージガスが供給される状態となる。
Hereinafter, the operation of the glass synthesis fluid supply apparatus 1 when an abnormality such as a power failure occurs will be described with reference to an operation example.
(Operation example 1)
When an abnormality such as a power failure occurs and the supply of power is interrupted, the glass synthesis fluid supply apparatus 1 operates as follows.
Since the electromagnetic valve 16a is a normally closed type, the closed state is automatically maintained when the power is turned off. For this reason, the pneumatic control valve 17a of the normally closed type is in a closed state without applying the driving air pressure (purge gas). Moreover, since the solenoid valve 16b is a normally open type, it automatically maintains an open state when the power is shut off. For this reason, the pneumatic operation valve 17b is opened by the drive air pressure. As a result, the corrosive fluid is not supplied from the corrosive fluid supply line L1 to the upstream side of the MFC 15 in the merge line L3, and the purge gas is supplied from the purge gas supply line L2.

MFC15は、ノーマルオープン型であるため、電源の遮断により、自動的に開状態となる。このため、MFC15の上流側のパージガスは、MFC15の下流側に供給される。電磁弁16cは、ノーマルクローズ型であるので、電源の遮断により、自動的に閉状態を維持する。このため、ノーマルクローズ型である空気式操作弁17cは、駆動用の空気圧が加わらず閉状態となる。また、電磁弁16dは、ノーマルオープン型であるため、電源の遮断により、自動的に開状態を維持する。このため、空気式操作弁17dは、駆動用の空気圧が加わり開状態となる。これにより、MFC15の下流側のパージガスは、反応容器11へは供給されず、排ガスラインL5から除害装置12に供給される。このとき、例えばMFC15の内部やMFC15の前後のラインに残留している腐食性流体は、パージガスと共に排ガスラインL5を通って除害装置12へ排出される。   Since the MFC 15 is a normally open type, it is automatically opened when the power is cut off. For this reason, the purge gas upstream of the MFC 15 is supplied downstream of the MFC 15. Since the solenoid valve 16c is a normally closed type, the solenoid valve 16c automatically maintains a closed state when the power is shut off. For this reason, the pneumatic control valve 17c which is a normally closed type is closed without the driving air pressure being applied. Moreover, since the solenoid valve 16d is a normally open type, it automatically maintains an open state when the power is shut off. For this reason, the pneumatic operation valve 17d is opened by the driving air pressure. Thereby, the purge gas on the downstream side of the MFC 15 is not supplied to the reaction vessel 11 but is supplied from the exhaust gas line L5 to the abatement apparatus 12. At this time, for example, the corrosive fluid remaining inside the MFC 15 or the lines before and after the MFC 15 is discharged to the abatement apparatus 12 through the exhaust gas line L5 together with the purge gas.

また、停電等の異常が発生した場合、MFC15がノーマルオープン型であるため全開となるが、流量絞り弁18により流量が絞られる。これにより、パージガス供給部14から供給されるパージガスの流量が抑制される。   Further, when an abnormality such as a power failure occurs, the MFC 15 is normally open because it is normally open, but the flow rate is reduced by the flow rate restrictor 18. Thereby, the flow rate of the purge gas supplied from the purge gas supply unit 14 is suppressed.

(動作例2)
停電等の異常時に、空気式操作弁を作動させるための駆動用の空気圧(パージガスの圧)が低下する異常が生じた場合、ガラス合成用流体供給装置1は、以下のように動作する。
(Operation example 2)
In the event of an abnormality such as a power failure, when an abnormality occurs in which the driving air pressure (purge gas pressure) for operating the pneumatic operation valve decreases, the glass synthesis fluid supply device 1 operates as follows.

上記のように停電時には、空気式操作弁17bと空気式操作弁17dとが開状態となり、パージガス供給部14から供給されるパージガスがパージガス供給ラインL2、合流ラインL3、及び排ガスラインL5を通過して除害装置12に流れる。   As described above, during a power failure, the pneumatic operation valve 17b and the pneumatic operation valve 17d are opened, and the purge gas supplied from the purge gas supply unit 14 passes through the purge gas supply line L2, the merge line L3, and the exhaust gas line L5. Flow to the abatement device 12.

このような状態においてパージガスの圧が低下していくと、開状態になっている空気式操作弁17bと空気式操作弁17dのうち、作動圧が高い空気式操作弁17dの動作に先ず変化が現れる。パージガスの圧が空気式操作弁17dの作動圧を下回ると、空気式操作弁17dが閉状態となる。このとき、空気式操作弁17dよりも作動圧が低い空気式操作弁17bは、開状態を維持する。そして、さらにパージガスの圧が低下していき空気式操作弁17bの作動圧を下回ったとき、空気式操作弁17bが閉状態となる。このように、下流側の空気式操作弁17dが上流側の空気式操作弁17bよりも先に閉状態になる。   When the pressure of the purge gas decreases in such a state, the operation of the pneumatic operating valve 17d having a high operating pressure among the pneumatic operating valve 17b and the pneumatic operating valve 17d in the open state is first changed. appear. When the pressure of the purge gas falls below the operating pressure of the pneumatic operating valve 17d, the pneumatic operating valve 17d is closed. At this time, the pneumatic operating valve 17b whose operating pressure is lower than that of the pneumatic operating valve 17d maintains the open state. When the pressure of the purge gas further decreases and falls below the operating pressure of the pneumatic operation valve 17b, the pneumatic operation valve 17b is closed. Thus, the downstream pneumatic operation valve 17d is closed before the upstream pneumatic operation valve 17b.

(動作例3)
停電等の異常時から復電した際に、空気式操作弁を作動させるための駆動用の空気圧(パージガスの圧)が低下する異常が生じた場合、ガラス合成用流体供給装置1は、以下のように動作する。
(Operation example 3)
When power is restored from an abnormality such as a power failure, when an abnormality occurs in which the driving air pressure (purge gas pressure) for operating the pneumatic operation valve decreases, the glass synthesis fluid supply device 1 To work.

復電した直後でシステムが起動中の場合、パージガスの圧が安定せず低下することが発生しうる。
ガラス合成用流体供給装置1は、復電した場合、例えば上記動作例1と同様の状態を維持するように設定されている。すなわち空気式操作弁17b,17dが開状態とされ、パージガスがパージガス供給ラインL2、合流ラインL3、及び排ガスラインL5を通過して除害装置12に流れるように設定されている。
このため、復電時にパージガスの圧が低下した場合、上記動作例2と同様に、下流側の空気式操作弁17dが上流側の空気式操作弁17bよりも先に閉状態になる。
When the system is being started immediately after power is restored, the purge gas pressure may be unstable and drop.
The glass synthesizing fluid supply device 1 is set so as to maintain the same state as in the first operation example, for example, when power is restored. That is, the pneumatic operation valves 17b and 17d are opened, and the purge gas is set to flow through the purge gas supply line L2, the merging line L3, and the exhaust gas line L5 to the abatement apparatus 12.
For this reason, when the pressure of the purge gas decreases during power recovery, the downstream pneumatic operation valve 17d closes before the upstream pneumatic operation valve 17b, as in the second operation example.

(動作例4)
ガラス合成時に空気式操作弁を作動させるための駆動用の空気圧(パージガスの圧)が低下する異常が生じた場合、ガラス合成用流体供給装置1は、以下のように動作する。
ガラス合成時には、前述のように、空気式操作弁17bを閉じ、空気式操作弁17aを開けるように制御され、空気式操作弁17dを閉じ、空気式操作弁17cを開けるように制御される。これにより、腐食性流体は、反応容器ラインL4を通過して反応容器11に供給される。
(Operation example 4)
When an abnormality occurs in which the driving air pressure (purge gas pressure) for operating the pneumatic operation valve is reduced during glass synthesis, the glass synthesis fluid supply device 1 operates as follows.
During glass synthesis, as described above, the pneumatic operation valve 17b is controlled to be closed and the pneumatic operation valve 17a is opened, and the pneumatic operation valve 17d is closed and the pneumatic operation valve 17c is opened. Thereby, the corrosive fluid passes through the reaction vessel line L4 and is supplied to the reaction vessel 11.

このような状態においてパージガスの圧が低下していくと、開状態になっている空気式操作弁17a,17cのうち、作動圧が高い空気式操作弁17cが先ず閉状態となる。そして、さらにパージガスの圧が低下していくと、空気式操作弁17cよりも作動圧が低い空気式操作弁17aが閉状態となる。このように、下流側の空気式操作弁17cが上流側の空気式操作弁17aよりも先に閉状態になる。   When the pressure of the purge gas decreases in such a state, among the pneumatic operating valves 17a and 17c in the open state, the pneumatic operating valve 17c having a high operating pressure is first closed. When the pressure of the purge gas further decreases, the pneumatic operation valve 17a whose operating pressure is lower than that of the pneumatic operation valve 17c is closed. Thus, the downstream pneumatic operation valve 17c is closed before the upstream pneumatic operation valve 17a.

(動作例5)
ガラス非合成時に空気式操作弁を作動させるための駆動用の空気圧(パージガスの圧)が低下する異常が生じた場合、ガラス合成用流体供給装置1は、以下のように動作する。
ガラス非合成時には、前述のように、空気式操作弁17aを閉じ、空気式操作弁17bを開け、空気式操作弁17cを閉じ、空気式操作弁17dを開けるように制御される。これにより、パージガスは、排ガスラインL5を通過して除害装置12に供給される。
(Operation example 5)
When an abnormality occurs in which the driving air pressure (purge gas pressure) for operating the pneumatic operation valve is reduced when the glass is not synthesized, the glass synthesizing fluid supply apparatus 1 operates as follows.
When the glass is not synthesized, as described above, the pneumatic operation valve 17a is closed, the pneumatic operation valve 17b is opened, the pneumatic operation valve 17c is closed, and the pneumatic operation valve 17d is opened. As a result, the purge gas passes through the exhaust gas line L5 and is supplied to the abatement apparatus 12.

このような状態においてパージガスの圧が低下していくと、作動圧が高い空気式操作弁17dが先ず閉状態となる。そして、さらにパージガスの圧が低下していくと、空気式操作弁17dよりも作動圧が低い空気式操作弁17bが閉状態となる。このように、下流側の空気式操作弁17dが上流側の空気式操作弁17bよりも先に閉状態になる。   When the pressure of the purge gas decreases in such a state, the pneumatic operation valve 17d having a high operating pressure is first closed. When the pressure of the purge gas further decreases, the pneumatic operation valve 17b whose operating pressure is lower than that of the pneumatic operation valve 17d is closed. Thus, the downstream pneumatic operation valve 17d is closed before the upstream pneumatic operation valve 17b.

(動作例6)
上記動作例2〜動作例5において、空気式操作弁を作動させるための駆動用の空気圧(パージガスの圧)が空気式操作弁17a〜17dの作動圧よりも低下した後、段々と上昇していくような異常が生じた場合、ガラス合成用流体供給装置1は、以下のように動作する。
動作例2,3,5の場合、閉状態になっている空気式操作弁17b,17dのうち、上流側のパージガス供給ラインL2の空気式操作弁17bが先に開状態となり、下流側の排ガスラインL5の空気式操作弁17dが後で開状態となる。また、動作例4の場合、閉状態になっている空気式操作弁17a,17cのうち、上流側の腐食性流体供給ラインL1の空気式操作弁17aが先に開状態となり、下流側の反応容器ラインL4の空気式操作弁17cが後で開状態となる。
(Operation example 6)
In the above operation example 2 to operation example 5, after the driving air pressure (purge gas pressure) for operating the pneumatic operation valve drops below the operating pressure of the pneumatic operation valves 17a to 17d, it gradually increases. When any abnormality occurs, the glass synthesizing fluid supply apparatus 1 operates as follows.
In the case of operation examples 2, 3, and 5, among the pneumatic operating valves 17b and 17d in the closed state, the pneumatic operating valve 17b of the upstream purge gas supply line L2 is opened first, and the exhaust gas on the downstream side The pneumatic operation valve 17d in the line L5 is opened later. In the case of the operation example 4, among the pneumatic operating valves 17a and 17c in the closed state, the pneumatic operating valve 17a of the corrosive fluid supply line L1 on the upstream side is first opened, and the reaction on the downstream side The pneumatic operation valve 17c of the container line L4 is opened later.

このように、本実施形態のガラス合成用流体供給装置1によれば、空気式操作弁を作動させるための駆動用の空気圧(パージガスの圧)に異常が発生し、例えばパージガスの圧が段々と低下していった場合、下流側の空気式操作弁が先に閉状態となり、上流側の空気式操作弁が後から閉状態となる。また、例えばパージガスの圧が空気式操作弁の作動圧未満に低下した後に段々と上昇していった場合、上流側の空気式操作弁が先に開状態となり、下流側の空気式操作弁が後から開状態となる。このため、例えば停電時、復電時、ガラス合成時、及びガラス非合成時においてパージガスの圧が低下する異常が生じた場合でも、反応容器11あるいは除害装置12からガスが配管上流側に逆流、拡散することを抑止することができる。これにより、配管またはMFC15の劣化を抑制することができる   As described above, according to the glass synthesis fluid supply apparatus 1 of the present embodiment, an abnormality occurs in the driving air pressure (purge gas pressure) for operating the pneumatic operation valve. For example, the purge gas pressure gradually increases. When the pressure decreases, the downstream pneumatic operating valve is closed first, and the upstream pneumatic operating valve is closed later. Also, for example, if the pressure of the purge gas gradually increases after decreasing below the operating pressure of the pneumatic operating valve, the upstream pneumatic operating valve is opened first, and the downstream pneumatic operating valve is It will be in the open state later. For this reason, for example, even when an abnormality occurs in which the pressure of the purge gas decreases during a power failure, power recovery, glass synthesis, or glass non-synthesis, the gas flows backward from the reaction vessel 11 or the detoxifying device 12 to the upstream side of the pipe. , Can be prevented from spreading. Thereby, deterioration of piping or MFC15 can be controlled.

ところで、停電時にはMFCが全開状態になるため過大な流量のパージガスが流れる。このため、停電が長時間継続すると、パージガス供給部のガスが枯渇してパージできなくなったり、ガスのロスが多くコストが増大する。また、パージガスと空気式操作弁の駆動ガスとの供給元が同じ場合、パージガスの枯渇により空気式操作弁の駆動ができなくなってしまう。
これに対して、ガラス合成用流体供給装置1によれば、パージガス供給ラインL2に流量絞り弁18が設けられているので、流量絞り弁18の調節により、停電時に供給されるパージガス流量を抑えることができる。これにより、パージガスを節約することができ、また、復電時のパージ圧力の低下を抑止することができる。
By the way, at the time of a power failure, since the MFC is fully opened, an excessive flow rate of purge gas flows. For this reason, if the power failure continues for a long time, the gas in the purge gas supply unit is exhausted and cannot be purged, or there is a lot of gas loss and the cost increases. Further, when the supply source of the purge gas and the drive gas of the pneumatic operation valve is the same, the pneumatic operation valve cannot be driven due to the exhaustion of the purge gas.
On the other hand, according to the fluid supply device for glass synthesis 1, since the flow restrictor 18 is provided in the purge gas supply line L2, the flow rate of the purge gas supplied at the time of power failure can be suppressed by adjusting the flow restrictor 18. Can do. As a result, purge gas can be saved, and a decrease in purge pressure during power recovery can be suppressed.

以上、本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。また、上記説明した構成部材の数、位置、形状等は上記実施の形態に限定されず、本発明を実施する上で好適な数、位置、形状等に変更することができる。   While the invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. In addition, the number, position, shape, and the like of the constituent members described above are not limited to the above-described embodiments, and can be changed to a number, position, shape, and the like that are suitable for carrying out the present invention.

1 ガラス合成用流体供給装置
11 反応容器
12 除害装置
13 腐食性流体供給部
14 パージガス供給部
15 流量制御装置(MFC)
16a〜16d 電磁弁
17a〜17d 空気式操作弁
18 流量絞り弁
L1 腐食性流体供給ライン
L2 パージガス供給ライン
L3 合流ライン
L4 反応容器ライン
L5 排ガスライン
DESCRIPTION OF SYMBOLS 1 Fluid supply apparatus for glass synthesis 11 Reaction container 12 Detoxification apparatus 13 Corrosive fluid supply part 14 Purge gas supply part 15 Flow control apparatus (MFC)
16a to 16d Solenoid valve 17a to 17d Pneumatic operation valve 18 Flow restrictor L1 Corrosive fluid supply line L2 Purge gas supply line L3 Merge line L4 Reaction vessel line L5 Exhaust gas line

Claims (4)

反応容器に腐食性流体を供給する腐食性流体供給ラインと、
前記腐食性流体供給ラインに設けられた流量制御装置と、
を備え、
前記流量制御装置を流れる前記腐食性流体の経路において、前記流量制御装置より上流側の前記腐食性流体供給ラインと、前記流量制御装置より下流側の前記腐食性流体供給ラインと、にはそれぞれ電磁弁で操作される空気式操作弁が設けられ、
前記空気式操作弁は全てノーマルクローズ型であり、
前記流量制御装置より下流側に設けられた前記空気式操作弁は、前記流量制御装置より上流側に設けられた前記空気式操作弁の作動圧より高い作動圧を有する、ガラス合成用流体供給装置。
A corrosive fluid supply line for supplying corrosive fluid to the reaction vessel;
A flow control device provided in the corrosive fluid supply line;
With
In the path of the corrosive fluid flowing through the flow control device, the corrosive fluid supply line upstream of the flow control device and the corrosive fluid supply line downstream of the flow control device are respectively electromagnetic. Pneumatic operation valve operated by valve is provided,
All of the pneumatic operating valves are normally closed,
The glass synthesis fluid supply device, wherein the pneumatic operation valve provided on the downstream side of the flow rate control device has an operating pressure higher than the operation pressure of the pneumatic control valve provided on the upstream side of the flow rate control device. .
反応容器にパージガスを供給するパージガス供給ラインと、
前記パージガス供給ラインに設けられた流量制御装置と、
を備え、
前記流量制御装置を流れる前記パージガスの経路において、前記流量制御装置より上流側の前記パージガス供給ラインと、前記流量制御装置より下流側の前記パージガス供給ラインと、にはそれぞれ電磁弁で操作される空気式操作弁が設けられ、
前記空気式操作弁は全てノーマルクローズ型であり、
前記流量制御装置より下流側に設けられた前記空気式操作弁は、前記流量制御装置より上流側に設けられた前記空気式操作弁の作動圧より高い作動圧を有する、ガラス合成用流体供給装置。
A purge gas supply line for supplying purge gas to the reaction vessel;
A flow control device provided in the purge gas supply line;
With
In the path of the purge gas flowing through the flow rate control device, the purge gas supply line upstream of the flow rate control device and the purge gas supply line downstream of the flow rate control device are respectively operated by solenoid valves. Type operation valve is provided,
All of the pneumatic operating valves are normally closed,
The glass synthesis fluid supply device, wherein the pneumatic operation valve provided on the downstream side of the flow rate control device has an operating pressure higher than the operation pressure of the pneumatic control valve provided on the upstream side of the flow rate control device. .
腐食性流体を供給する腐食性流体供給ラインと、
パージガスを供給するパージガス供給ラインと、
前記パージガス供給ラインと前記腐食性流体供給ラインとが合流された合流ラインと、
前記合流ラインに設けられた流量制御装置と、
前記流量制御装置より下流側の前記合流ラインから分岐して反応容器に向かう反応容器ラインと、
前記流量制御装置より下流側の前記合流ラインから分岐して除害装置に向かう排ガスラインと、
を備え、
前記腐食性流体供給ラインと、前記パージガス供給ラインと、前記反応容器ラインと、前記排ガスラインと、はそれぞれ電磁弁で操作される空気式操作弁が設けられ、
前記パージガス供給ラインに設けられた前記空気式操作弁用の電磁弁と、前記排ガスラインに設けられた前記空気式操作弁用の電磁弁と、はノーマルオープン型であり、
前記腐食性流体供給ラインに設けられた前記空気式操作弁用の電磁弁と、前記反応容器ラインに設けられた前記空気式操作弁用の電磁弁と、はノーマルクローズ型であり、
前記反応容器ラインに設けられた前記空気式操作弁は、前記腐食性流体供給ラインに設けられた前記空気式操作弁の作動圧より高い作動圧を有し、
前記排ガスラインに設けられた前記空気式操作弁は、前記パージガス供給ラインに設けられた前記空気式操作弁の作動圧より高い作動圧を有する、ガラス合成用流体供給装置。
A corrosive fluid supply line for supplying corrosive fluid;
A purge gas supply line for supplying a purge gas;
A merge line in which the purge gas supply line and the corrosive fluid supply line are merged;
A flow control device provided in the merge line;
A reaction vessel line branched from the merge line downstream from the flow rate control device and heading to the reaction vessel;
An exhaust gas line branching from the merging line downstream from the flow rate control device and heading toward the detoxifying device;
With
The corrosive fluid supply line, the purge gas supply line, the reaction vessel line, and the exhaust gas line are each provided with a pneumatic operation valve operated by a solenoid valve,
The solenoid valve for the pneumatic operation valve provided in the purge gas supply line and the solenoid valve for the pneumatic operation valve provided in the exhaust gas line are normally open types,
The solenoid valve for the pneumatic operation valve provided in the corrosive fluid supply line and the solenoid valve for the pneumatic operation valve provided in the reaction vessel line are normally closed,
The pneumatic operating valve provided in the reaction vessel line has an operating pressure higher than the operating pressure of the pneumatic operating valve provided in the corrosive fluid supply line,
The fluid supply apparatus for glass synthesis, wherein the pneumatic operation valve provided in the exhaust gas line has an operating pressure higher than that of the pneumatic operation valve provided in the purge gas supply line.
前記パージガス供給ラインに流量絞り弁が設けられた、請求項2または請求項3に記載のガラス合成用流体供給装置。   The fluid supply apparatus for glass synthesis according to claim 2 or 3, wherein a flow restrictor is provided in the purge gas supply line.
JP2016172613A 2016-09-05 2016-09-05 Fluid supply device for glass synthesis Expired - Fee Related JP6683077B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016172613A JP6683077B2 (en) 2016-09-05 2016-09-05 Fluid supply device for glass synthesis
CN201710756151.3A CN107795546B (en) 2016-09-05 2017-08-29 Fluid supply device for glass synthesis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016172613A JP6683077B2 (en) 2016-09-05 2016-09-05 Fluid supply device for glass synthesis

Publications (2)

Publication Number Publication Date
JP2018039679A true JP2018039679A (en) 2018-03-15
JP6683077B2 JP6683077B2 (en) 2020-04-15

Family

ID=61531581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016172613A Expired - Fee Related JP6683077B2 (en) 2016-09-05 2016-09-05 Fluid supply device for glass synthesis

Country Status (2)

Country Link
JP (1) JP6683077B2 (en)
CN (1) CN107795546B (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61254242A (en) * 1985-05-01 1986-11-12 Sumitomo Electric Ind Ltd Apparatus for supplying stock material
JPS6340739A (en) * 1986-08-06 1988-02-22 Sumitomo Electric Ind Ltd Method and apparatus for calibrating mass flow rate controller
JPS6483665A (en) * 1987-09-25 1989-03-29 Furukawa Electric Co Ltd Liquid raw material evaporating device
JPH11169805A (en) * 1997-12-16 1999-06-29 Dainippon Screen Mfg Co Ltd Substrate treating device
JP2003212554A (en) * 2002-01-24 2003-07-30 Sumitomo Electric Ind Ltd Method and apparatus for manufacturing fine glass particle deposit
JP2003277072A (en) * 2002-03-25 2003-10-02 Sumitomo Electric Ind Ltd Cycle purge method for flow controller
JP2009102207A (en) * 2007-10-25 2009-05-14 Sumitomo Electric Ind Ltd Method and apparatus for manufacturing fine glass particle deposit
JP2014131946A (en) * 2013-01-04 2014-07-17 Sumitomo Electric Ind Ltd Fluid supply apparatus for synthesizing glass

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3442604B2 (en) * 1996-02-15 2003-09-02 株式会社フジキン Method of supplying mixed gas, mixed gas supply device, and semiconductor manufacturing apparatus provided with these
JP4502590B2 (en) * 2002-11-15 2010-07-14 株式会社ルネサステクノロジ Semiconductor manufacturing equipment
JP4933414B2 (en) * 2007-12-11 2012-05-16 大陽日酸株式会社 Compound thin film semiconductor manufacturing apparatus and ammonia gas supply apparatus and method
JP4917158B2 (en) * 2010-03-03 2012-04-18 中外炉工業株式会社 High pressure dry air supply system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61254242A (en) * 1985-05-01 1986-11-12 Sumitomo Electric Ind Ltd Apparatus for supplying stock material
JPS6340739A (en) * 1986-08-06 1988-02-22 Sumitomo Electric Ind Ltd Method and apparatus for calibrating mass flow rate controller
JPS6483665A (en) * 1987-09-25 1989-03-29 Furukawa Electric Co Ltd Liquid raw material evaporating device
JPH11169805A (en) * 1997-12-16 1999-06-29 Dainippon Screen Mfg Co Ltd Substrate treating device
JP2003212554A (en) * 2002-01-24 2003-07-30 Sumitomo Electric Ind Ltd Method and apparatus for manufacturing fine glass particle deposit
JP2003277072A (en) * 2002-03-25 2003-10-02 Sumitomo Electric Ind Ltd Cycle purge method for flow controller
JP2009102207A (en) * 2007-10-25 2009-05-14 Sumitomo Electric Ind Ltd Method and apparatus for manufacturing fine glass particle deposit
JP2014131946A (en) * 2013-01-04 2014-07-17 Sumitomo Electric Ind Ltd Fluid supply apparatus for synthesizing glass

Also Published As

Publication number Publication date
CN107795546B (en) 2020-09-15
JP6683077B2 (en) 2020-04-15
CN107795546A (en) 2018-03-13

Similar Documents

Publication Publication Date Title
JP2016035755A (en) 4-channel gas feeding system, multi-chanel gas feeding system, and method of controlling control valve
US20140096834A1 (en) Method for supplying vaporized precursor
WO2016121075A1 (en) Vacuum processing device
JP2015204461A (en) Device and method for exhaust gas purification in cvd reactor
JP4235076B2 (en) Semiconductor manufacturing apparatus and semiconductor manufacturing method
KR101669689B1 (en) Apparatus and method for controlling flow rate of liquid, and storage medium
JP2018039679A (en) Fluid supply apparatus for glass synthesis
JP2018065073A (en) Diluted hydrogen gas generation device
JP2007247844A (en) Gas supply device and gas supply method
JP7409319B2 (en) Raw material supply device and raw material supply method for manufacturing glass fine particle deposits
JP6102261B2 (en) Fluid supply equipment for glass synthesis
RU2615873C1 (en) System and method for feeding ammonium containing fluid into incinerator exhaust gas duct
JP5849610B2 (en) Apparatus and method for manufacturing glass preform for optical fiber
JP3389345B2 (en) Optical fiber preform manufacturing equipment
KR101190408B1 (en) System and method for controlling exhaust pressure
JP2006285661A (en) Pressure governing device
KR100943065B1 (en) Chemical supplying apparatus
JP2006342031A (en) Method of manufacturing optical fiber preform
US10695710B2 (en) Methods for producing ozone and oxygen mixtures
JP7310373B2 (en) Frit feeder and filter replacement method for frit feeder
WO2019171550A1 (en) Method for replacing gas in gas pipes
JP5479467B2 (en) Burner assembly with improved adaptability and furnace having the burner assembly
KR101403988B1 (en) Gas supply
JP4809809B2 (en) Liquid supply system
TW202300693A (en) Gas systems, semiconductor processing systems, and gas flow control methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200309

R150 Certificate of patent or registration of utility model

Ref document number: 6683077

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees