JP2018037133A - レドックスフロー電池の運転方法、およびレドックスフロー電池 - Google Patents
レドックスフロー電池の運転方法、およびレドックスフロー電池 Download PDFInfo
- Publication number
- JP2018037133A JP2018037133A JP2015011846A JP2015011846A JP2018037133A JP 2018037133 A JP2018037133 A JP 2018037133A JP 2015011846 A JP2015011846 A JP 2015011846A JP 2015011846 A JP2015011846 A JP 2015011846A JP 2018037133 A JP2018037133 A JP 2018037133A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- negative electrode
- electrolyte
- cell stack
- positive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/18—Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
Abstract
【課題】負極側から正極側への液移りを抑制することができるレドックスフロー電池の運転方法、およびレドックスフロー電池を提供する。【解決手段】正極電極、負極電極、および隔膜を有する電池セルを複数積層したセルスタックに、正極用循環機構を用いて正極電解液を循環させると共に、負極用循環機構を用いて負極電解液を循環させるレドックスフロー電池の運転方法である。このレドックスフロー電池の運転方法では、前記正極電解液と前記負極電解液を前記セルスタックに循環させる際、前記隔膜の全面にわたって前記隔膜に作用する前記正極電解液の圧力を前記負極電解液の圧力よりも大きくした差圧状態を維持する。【選択図】図1
Description
本発明は、瞬時電圧低下対策・停電対策や負荷平準化などに用いられるレドックスフロー電池、およびレドックスフロー電池の運転方法に関するものである。
太陽光発電や風力発電といった新エネルギーを蓄電する大容量の蓄電池の一つに電解液循環型電池、代表的にはレドックスフロー電池(RF電池)がある。RF電池は、正極用電解液に含まれるイオンと負極用電解液に含まれるイオンの酸化還元電位の差を利用して充放電を行う電池である(例えば、特許文献1参照)。図6のRF電池αの動作原理図に示すように、RF電池αは、水素イオンを透過させる隔膜101で正極部102と負極部103とに分離された電池セル100を備える。正極部102には正極電極104が内蔵され、かつ正極用電解液を貯留する正極用タンク106が正極用往路管108と正極用復路管110を介して接続されている。正極用往路管108にはポンプ(正極用送液装置)112が設けられており、これら部材106,108,110,112によって正極用電解液を循環させる正極用循環機構100Pが構成されている。同様に、負極部103には負極電極105が内蔵され、かつ負極用電解液を貯留する負極用タンク107が負極用往路管109と負極用復路管111を介して接続されている。負極用往路管109にはポンプ(負極用送液装置)113が設けられており、これらの部材107,109,111,113によって負極用電解液を循環させる負極用循環機構100Nが構成されている。各タンク106,107に貯留される電解液は、充放電の際にポンプ112,113によりセル102,103内に循環される。充放電を行なわない場合、ポンプ112,113は停止され、電解液は循環されない。
上記電池セル100は通常、図7に示すような、セルスタック200と呼ばれる構造体の内部に複数積層される。セルスタック200は、サブスタック200sと呼ばれる積層構造物をその両側から二枚のエンドプレート210,220で挟み込み、締付機構230で締め付けることで構成されている(図示する構成では、複数のサブスタック200sを用いている)。サブスタック200sは、図7の上図に示すように、セルフレーム120、正極電極104、隔膜101、負極電極105、およびセルフレーム120で構成されるセルユニットを複数積層し、その積層体を給排板190,190(図7の下図参照)で挟み込んだ構成を備える。セルユニットに備わるセルフレーム120は、貫通窓を有する枠体122と貫通窓を塞ぐ双極板121とを有しており、双極板121の一面側には正極電極104が接触するように配置され、双極板121の他面側には負極電極105が接触するように配置される。この構成では、隣接する各セルフレーム120の双極板121の間に一つの電池セル100が形成されることになる。
サブスタック200sにおける給排板190,190を介した電池セル100への電解液の流通は、枠体122に形成される給液用マニホールド123,124と、排液用マニホールド125,126により行われる。正極用電解液は、給液用マニホールド123から枠体122の一面側(紙面表側)に形成される入口スリットを介して正極電極104に供給され、枠体122の上部に形成される出口スリットを介して排液用マニホールド125に排出される。同様に、負極用電解液は、給液用マニホールド124から枠体122の他面側(紙面裏側)に形成される入口スリット(点線で示す)を介して負極電極105に供給され、枠体122の上部に形成される出口スリット(点線で示す)を介して排液用マニホールド126に排出される。各セルフレーム120間には、Oリングや平パッキンなどの環状のシール部材127が配置され、サブスタック200sからの電解液の漏れが抑制されている。
サブスタック200sに備わる電池セル100と外部機器との間の電力の入出力は、導電性材料で構成された集電板を用いた集電構造によって行われる。集電板は、各サブスタック200sにつき一対設けられており、各集電板はそれぞれ、積層される複数のセルフレーム120のうち、積層方向の両端に位置するセルフレーム120の双極板121に導通されている。
従来のRF電池では、正極電解液の圧力と負極電解液の圧力とがほとんど同じになるように両電解液を循環させている。しかし、RF電池で用いられる電解液の種類や隔膜の特性によっては、隔膜を介して負極側から正極側に液移りが生じる。そのため、充放電を繰り返して液移りの量が大きくなった場合、電解液タンクの液量がアンバランスになって、正極電解液が正極用タンクから溢れるなどの問題が生じる恐れがある。
本発明は、上記の事情に鑑みてなされたもので、その目的の一つは、負極側から正極側への液移りを抑制することができるレドックスフロー電池の運転方法、およびレドックスフロー電池を提供することにある。
本発明の一形態に係るレドックスフロー電池の運転方法は、正極電極、負極電極、および隔膜を有する電池セルを複数積層したセルスタックに、正極用循環機構を用いて正極電解液を循環させると共に、負極用循環機構を用いて負極電解液を循環させるレドックスフロー電池の運転方法である。このレドックスフロー電池の運転方法では、前記正極電解液と前記負極電解液を前記セルスタックに循環させる際、前記隔膜の全面にわたって前記隔膜に作用する前記正極電解液の圧力を前記負極電解液の圧力よりも大きくした差圧状態を維持する。
本発明の一形態に係るレドックスフロー電池は、正極電極、負極電極、および隔膜を有する電池セルを複数積層したセルスタックと、前記セルスタックに正極電解液を循環させる正極用循環機構と、前記セルスタックに負極電解液を循環させる負極用循環機構と、を備えるレドックスフロー電池である。このレドックスフロー電池は、前記正極電解液と前記負極電解液を前記セルスタックに循環させたときに、前記隔膜の全面にわたって前記隔膜に作用する前記正極電解液の圧力を前記負極電解液の圧力よりも大きくした差圧状態を作り出す差圧形成機構を備える。
上記レドックスフロー電池の運転方法およびレドックスフロー電池によれば、負極側から正極側への液移りを抑制することができる。
[本発明の実施形態の説明]
最初に本発明の実施形態の内容を列記して説明する。
最初に本発明の実施形態の内容を列記して説明する。
<1>実施形態に係るレドックスフロー電池の運転方法は、正極電極、負極電極、および隔膜を有する電池セルを複数積層したセルスタックに、正極用循環機構を用いて正極電解液を循環させると共に、負極用循環機構を用いて負極電解液を循環させるレドックスフロー電池の運転方法である。このレドックスフロー電池の運転方法では、前記正極電解液と前記負極電解液を前記セルスタックに循環させる際、前記隔膜の全面にわたって前記隔膜に作用する前記正極電解液の圧力を前記負極電解液の圧力よりも大きくした差圧状態を維持する。
隔膜の全面にわたって隔膜に作用する正極電解液の圧力を負極電解液の圧力よりも大きくした差圧状態を維持することで、隔膜を介した負極側から正極側への液移りを抑制することができる。ここで、単にセルスタックから排出された直後の正極電解液の圧力が負極電解液の圧力よりも高かったとしても、隔膜の面上の局所で隔膜に作用する正極電解液の圧力が負極電解液の圧力よりも小さくなる場合がある。つまり、隔膜の全面にわたって上記差圧状態を達成することが重要である。
<2>実施形態に係るレドックスフロー電池の運転方法として、前記正極用循環機構および前記負極用循環機構が下記構成を備え、下記[1]および[2]の少なくとも一方を行うことで、前記差圧状態を達成する形態を挙げることができる。
・前記正極用循環機構は、正極用タンクと、前記正極用タンクから前記セルスタックに前記正極電解液を供給する正極用往路管、および前記セルスタックから前記正極用タンクに前記正極電解液を排出する正極用復路管で構成される正極用管路と、前記正極電解液を前記セルスタックに送り出す正極用送液装置と、を備える。
・前記負極用循環機構は、負極用タンクと、前記負極用タンクから前記セルスタックに前記負極電解液を供給する負極用往路管、および前記セルスタックから前記負極用タンクに前記負極電解液を排出する負極用復路管で構成される負極用管路と、前記負極電解液を前記セルスタックに送り出す負極用送液装置を備える。
[1]前記正極用復路管の圧力損失を前記負極用復路管の圧力損失よりも大きくする。
[2]前記負極用往路管の圧力損失を前記正極用往路管の圧力損失よりも大きくする。
・前記正極用循環機構は、正極用タンクと、前記正極用タンクから前記セルスタックに前記正極電解液を供給する正極用往路管、および前記セルスタックから前記正極用タンクに前記正極電解液を排出する正極用復路管で構成される正極用管路と、前記正極電解液を前記セルスタックに送り出す正極用送液装置と、を備える。
・前記負極用循環機構は、負極用タンクと、前記負極用タンクから前記セルスタックに前記負極電解液を供給する負極用往路管、および前記セルスタックから前記負極用タンクに前記負極電解液を排出する負極用復路管で構成される負極用管路と、前記負極電解液を前記セルスタックに送り出す負極用送液装置を備える。
[1]前記正極用復路管の圧力損失を前記負極用復路管の圧力損失よりも大きくする。
[2]前記負極用往路管の圧力損失を前記正極用往路管の圧力損失よりも大きくする。
セルスタックから電解液を排出する復路管の圧力損失を大きくすると、セルスタックから往路管に電解液が排出され難くなるため、セルスタック内の電解液の圧力が上昇する。一方、セルスタックに電解液を供給する往路管の圧力損失を大きくすると、往路管内で電解液の圧力が減じられるので、セルスタック内の電解液の圧力は減少する。このように、管路(往路管・復路管)の圧力損失と、セルスタック内の電解液の圧力と、が密接に関係しているため、正・負の管路の圧力損失を調整することで、前記差圧状態を容易に形成することができる。管路の圧力損失を調整するための構成については、実施形態で詳しく述べる。
<3>実施形態に係るレドックスフロー電池の運転方法として、前記正極用送液装置からの送液量を前記負極用送液装置からの送液量よりも大きくする形態を挙げることができる。
正極用送液装置からの送液量を負極用送液装置からの送液量よりも大きくすることで、セルスタック内に供給される正極電解液の圧力を負極電解液の圧力よりも大きくすることができる。その結果、上記差圧状態を維持し易い。
<4>実施形態に係るレドックスフロー電池は、正極電極、負極電極、および隔膜を有する電池セルを複数積層したセルスタックと、前記セルスタックに正極電解液を循環させる正極用循環機構と、前記セルスタックに負極電解液を循環させる負極用循環機構と、を備えるレドックスフロー電池である。このレドックスフロー電池は、前記正極電解液と前記負極電解液を前記セルスタックに循環させたときに、前記隔膜の全面にわたって前記隔膜に作用する前記正極電解液の圧力を前記負極電解液の圧力よりも大きくした差圧状態を作り出す差圧形成機構を備える。
上記レドックスフロー電池によれば、正極電解液と負極電解液をセルスタックに循環させる際、前記差圧状態を作り出すことができる。そのため、上記レドックスフロー電池では、電解液の循環によって充放電を繰り返しても液移りを抑制でき、正極電解液の総量が負極電解液の総量よりも多くなり過ぎない。
[本発明の実施形態の詳細]
以下、実施形態に係るレドックスフロー電池(RF電池)の運転方法、およびRF電池の実施形態を説明する。実施形態において、同一の符号で示される部材は、同一の機能を備える。なお、本発明は実施形態に示される構成に限定されるわけではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内の全ての変更が含まれることを意図する。
以下、実施形態に係るレドックスフロー電池(RF電池)の運転方法、およびRF電池の実施形態を説明する。実施形態において、同一の符号で示される部材は、同一の機能を備える。なお、本発明は実施形態に示される構成に限定されるわけではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内の全ての変更が含まれることを意図する。
<実施形態1>
≪RF電池の全体構成≫
図1の概略図に示すように、本実施形態に係るRF電池1は、従来のRF電池と同様に、セルスタック2と、正極用循環機構3Pと、負極用循環機構3Nと、を備える。この図1では、セルスタック2の構成を簡素化して示しているが、実際には図7の下図を参照して説明したように、複数のサブスタック200sをエンドプレート210,220で締め付けた構成を備えている。また、図1のセルスタック2には、電池セル100を一つだけ図示しているが、実際には複数の電池セル100が積層されている。各電池セル100は、正極電極104と、負極電極105と、両電極104,105を隔てる隔膜101と、で構成される。
≪RF電池の全体構成≫
図1の概略図に示すように、本実施形態に係るRF電池1は、従来のRF電池と同様に、セルスタック2と、正極用循環機構3Pと、負極用循環機構3Nと、を備える。この図1では、セルスタック2の構成を簡素化して示しているが、実際には図7の下図を参照して説明したように、複数のサブスタック200sをエンドプレート210,220で締め付けた構成を備えている。また、図1のセルスタック2には、電池セル100を一つだけ図示しているが、実際には複数の電池セル100が積層されている。各電池セル100は、正極電極104と、負極電極105と、両電極104,105を隔てる隔膜101と、で構成される。
正極用循環機構3Pは、正極用タンク106と、正極用往路管108および正極用復路管110で構成される正極用管路と、ポンプ(正極用送液装置)112と、を備える。正極用往路管108は、正極用タンク106からセルスタック2に正極電解液を供給する配管であり、正極用復路管110はセルスタック2から正極用タンク106に正極電解液を排出する配管である。ポンプ112は、正極用往路管108の途中に設けられ、正極電解液をセルスタック2に送り出す。
負極用循環機構3Nは、負極用タンク107と、負極用往路管109および負極用復路管111で構成される負極用管路と、ポンプ(負極用送液装置)113と、を備える。負極用往路管109は、負極用タンク107からセルスタック2に負極電解液を供給する配管であり、負極用復路管111はセルスタック2から負極用タンク107に負極電解液を排出する配管である。ポンプ113は、負極用往路管109の途中に設けられ、負極電解液をセルスタック2に送り出す。
上記構成を備える実施形態のRF電池1における従来との主な相違点は、セルスタック2内に正極電解液と負極電解液を循環させる際、隔膜101の全面にわたって隔膜101に作用する正極電解液の圧力が負極電解液の圧力よりも大きい差圧状態を作り出す差圧形成機構を備えることである(白抜き矢印の方向に圧力が作用する)。
≪差圧形成機構≫
差圧形成機構は、RF電池1に備わる既存の部材の構成(主として寸法)を変えること、具体的には正極用循環機構3Pと負極用循環機構3Nとに構成上の差異を設けることで形成される。以下、差圧形成機構の一形態を図2〜図5に基づいて説明する。図2〜図4ではタンク及びポンプを省略し、図5ではさらにセルスタックも省略している。
差圧形成機構は、RF電池1に備わる既存の部材の構成(主として寸法)を変えること、具体的には正極用循環機構3Pと負極用循環機構3Nとに構成上の差異を設けることで形成される。以下、差圧形成機構の一形態を図2〜図5に基づいて説明する。図2〜図4ではタンク及びポンプを省略し、図5ではさらにセルスタックも省略している。
[正負の管路の長さを変える]
図2には、正極用復路管110を、負極用復路管111よりも長くすることで形成した差圧形成機構6Aが示されている。管を長くすると、管内を流れる電解液の圧力損失が増大する。図2の場合は、正極用復路管110を負極用復路管111よりも長くしているので、正極用復路管110の圧力損失が負極用復路管111の圧力損失よりも大きくなる。その結果、セルスタック2内の正極電解液の圧力が負極電解液の圧力よりも高くなり、セルスタック2内の隔膜101の全面にわたって隔膜101に作用する正極電解液の圧力が負極電解液の圧力よりも大きい差圧状態を作り出すことができる。
図2には、正極用復路管110を、負極用復路管111よりも長くすることで形成した差圧形成機構6Aが示されている。管を長くすると、管内を流れる電解液の圧力損失が増大する。図2の場合は、正極用復路管110を負極用復路管111よりも長くしているので、正極用復路管110の圧力損失が負極用復路管111の圧力損失よりも大きくなる。その結果、セルスタック2内の正極電解液の圧力が負極電解液の圧力よりも高くなり、セルスタック2内の隔膜101の全面にわたって隔膜101に作用する正極電解液の圧力が負極電解液の圧力よりも大きい差圧状態を作り出すことができる。
図示しないが、負極用往路管109を、正極用往路管108よりも長くすることで、差圧形成機構6Aを形成しても構わない。この場合、セルスタック2内の負極電解液の圧力が低くなり、相対的に正極電解液の圧力が負極電解液の圧力よりも大きい状態が作り出される。もちろん、復路管110,111の長さを変える構成と、往路管108,109の長さを変える構成と、を組み合わせて差圧形成機構6Aを形成することもできる。
[正負の管路の太さを変える]
図3には、正極用復路管110を、負極用復路管111よりも細くすることで形成した差圧形成機構6Bが示されている。管を細くすると、管内を流れる電解液の圧力損失が増大する。図3の場合は、正極用復路管110を負極用復路管111よりも細くしているので、正極用復路管110の圧力損失が負極用復路管111の圧力損失よりも大きくなる。その結果、セルスタック2内の正極電解液の圧力が負極電解液の圧力よりも高くなり、セルスタック2内の隔膜101の全面にわたって隔膜101に作用する正極電解液の圧力が負極電解液の圧力よりも大きい差圧状態を作り出すことができる。
図3には、正極用復路管110を、負極用復路管111よりも細くすることで形成した差圧形成機構6Bが示されている。管を細くすると、管内を流れる電解液の圧力損失が増大する。図3の場合は、正極用復路管110を負極用復路管111よりも細くしているので、正極用復路管110の圧力損失が負極用復路管111の圧力損失よりも大きくなる。その結果、セルスタック2内の正極電解液の圧力が負極電解液の圧力よりも高くなり、セルスタック2内の隔膜101の全面にわたって隔膜101に作用する正極電解液の圧力が負極電解液の圧力よりも大きい差圧状態を作り出すことができる。
図示しないが、負極用往路管109を、正極用往路管108よりも細くすることで、差圧形成機構6Bを形成しても構わない。この場合、セルスタック2内の負極電解液の圧力が低くなり、相対的に正極電解液の圧力が負極電解液の圧力よりも大きい状態が作り出される。もちろん、復路管110,111の太さを変える構成と、往路管108,109の太さを変える構成と、を組み合わせて差圧形成機構6Bを形成することもできる。
[正負の管路の経路を変える]
図4には、正極用復路管110を、負極用復路管111よりも複雑に屈曲させることで形成した差圧形成機構6Cが示されている。管の屈曲箇所が多いと、管内を流れる電解液の圧力損失が増大する。図4の場合は、正極用復路管110を負極用復路管111よりも複雑に屈曲させているので、正極用復路管110の圧力損失が負極用復路管111の圧力損失よりも大きくなる。その結果、セルスタック2内の正極電解液の圧力が負極電解液の圧力よりも高くなり、セルスタック2内の隔膜101の全面にわたって隔膜101に作用する正極電解液の圧力が負極電解液の圧力よりも大きい差圧状態を作り出すことができる。
図4には、正極用復路管110を、負極用復路管111よりも複雑に屈曲させることで形成した差圧形成機構6Cが示されている。管の屈曲箇所が多いと、管内を流れる電解液の圧力損失が増大する。図4の場合は、正極用復路管110を負極用復路管111よりも複雑に屈曲させているので、正極用復路管110の圧力損失が負極用復路管111の圧力損失よりも大きくなる。その結果、セルスタック2内の正極電解液の圧力が負極電解液の圧力よりも高くなり、セルスタック2内の隔膜101の全面にわたって隔膜101に作用する正極電解液の圧力が負極電解液の圧力よりも大きい差圧状態を作り出すことができる。
図示しないが、負極用往路管109を、正極用往路管108よりも複雑に屈曲させることで、差圧形成機構6Cを形成しても構わない。もちろん、復路管110,111の屈曲状態を変える構成と、往路管108,109の屈曲状態を変える構成と、を組み合わせて差圧形成機構6Cを形成することもできる。
[正負の管路のバルブの開度を変える]
図1に示すRF電池1の正極用管路と負極用管路にはそれぞれ、図示しない複数のバルブが存在する。バルブは、セルスタック2への電解液の循環を停止する際などに利用される。これらバルブを利用して差圧形成機構を形成することもできる。例えば、正極用復路管110のバルブを、負極用復路管111のバルブよりも絞る(開度を小さくする)ことで、正極用復路管110の圧力損失を負極用復路管111の圧力損失よりも大きくできる。その結果、セルスタック2内の正極電解液の圧力が負極電解液の圧力よりも高くなり、セルスタック2内の隔膜101の全面にわたって隔膜101に作用する正極電解液の圧力が負極電解液の圧力よりも高い差圧状態を作り出すことができる。
図1に示すRF電池1の正極用管路と負極用管路にはそれぞれ、図示しない複数のバルブが存在する。バルブは、セルスタック2への電解液の循環を停止する際などに利用される。これらバルブを利用して差圧形成機構を形成することもできる。例えば、正極用復路管110のバルブを、負極用復路管111のバルブよりも絞る(開度を小さくする)ことで、正極用復路管110の圧力損失を負極用復路管111の圧力損失よりも大きくできる。その結果、セルスタック2内の正極電解液の圧力が負極電解液の圧力よりも高くなり、セルスタック2内の隔膜101の全面にわたって隔膜101に作用する正極電解液の圧力が負極電解液の圧力よりも高い差圧状態を作り出すことができる。
負極用往路管109のバルブを、正極用往路管108のバルブよりも絞ることでも、セルスタック2内の負極電解液の圧力を低くして、上記差圧状態を作り出すことができる。もちろん、復路管110,111のバルブの開度を変える構成と、往路管108,109のバルブの開度を変える構成と、を組み合わせて差圧形成機構を形成することもできる。
[正負の送液装置からの送液量を変える]
図1に示すポンプ(正極用送液装置)112からの正極電解液の送液量を、ポンプ(負極用送液装置)113からの負極電解液の送液量よりも大きくすることで差圧形成機構を形成しても良い。電解液の送液量は、ポンプ112,113の出力によって調節することができる。図1の構成では、各ポンプ112,113に流量制御部5が繋がっており、各ポンプ112,113の相対的な出力の調整を精度良く行うことができるようになっている。各ポンプ112,113の出力は、予め試験用のRF電池1を用いて求めた値に基づいて流量制御部5が制御すれば良い。このポンプ112,113からの送液量の調節によっても、セルスタック2内の正極電解液の圧力が負極電解液の圧力よりも高くなり、セルスタック2内の隔膜101の全面にわたって隔膜101に作用する正極電解液の圧力が負極電解液の圧力よりも高い差圧状態を作り出すことができる。
図1に示すポンプ(正極用送液装置)112からの正極電解液の送液量を、ポンプ(負極用送液装置)113からの負極電解液の送液量よりも大きくすることで差圧形成機構を形成しても良い。電解液の送液量は、ポンプ112,113の出力によって調節することができる。図1の構成では、各ポンプ112,113に流量制御部5が繋がっており、各ポンプ112,113の相対的な出力の調整を精度良く行うことができるようになっている。各ポンプ112,113の出力は、予め試験用のRF電池1を用いて求めた値に基づいて流量制御部5が制御すれば良い。このポンプ112,113からの送液量の調節によっても、セルスタック2内の正極電解液の圧力が負極電解液の圧力よりも高くなり、セルスタック2内の隔膜101の全面にわたって隔膜101に作用する正極電解液の圧力が負極電解液の圧力よりも高い差圧状態を作り出すことができる。
[正負の熱交換器の構成を変える]
図1に示すRF電池1は、正極用復路管110の途中に設けられる正極用熱交換器4Pと、負極用復路管111の途中に設けられる負極用熱交換器4Nと、を備える。これら熱交換器4P,4Nによっても差圧形成機構6Dを形成することができる。
図1に示すRF電池1は、正極用復路管110の途中に設けられる正極用熱交換器4Pと、負極用復路管111の途中に設けられる負極用熱交換器4Nと、を備える。これら熱交換器4P,4Nによっても差圧形成機構6Dを形成することができる。
図5の上部には負極用熱交換器4Nの概略構成図が、図5の下部には正極用熱交換器4Pの概略構成図が示されている。熱交換器の基本的な構成は、例えば特開2013−206566号公報に記載のように公知である。例えば、図5に示すように、冷媒40P(40N)を貯留する容器41P(41N)内に配管42P(42N)を這わせることで熱交換器4P(4N)を構成することができる。配管42P(42N)は、復路管110(111)に繋がっており、従って、その内部には正極電解液(負極電解液)が流れる。正極電解液(負極電解液)は、配管42P(42N)を流れる間に、冷媒40P(40N)によって冷却される。冷媒40P(40N)は、空冷用の気体冷媒や、水冷用の液体冷媒があり、図示しない冷却機構で冷却される。ここで、配管42P(42N)は、復路管110(111)の一部と見做すことができる。
熱交換器4P,4Nで差圧形成機構6Dを形成する場合、図示するように、正極用熱交換器4Pの配管42Pを、負極用熱交換器4Nの配管42Nよりも長くすれば良い。そうすることで、復路管110,111の長さを変化させた差圧形成機構6Aと同様の理由により、隔膜101の全面にわたって隔膜101に作用する正極電解液の圧力が負極電解液の圧力よりも高い差圧状態を作り出すことができる。
その他、配管42Pを配管42Nよりも細くする、あるいは配管42Pの屈曲箇所を配管42Nの屈曲箇所よりも多くすることでも、上記差圧状態を作り出すことができる。もちろん、配管長、配管太さ、配管の屈曲状態を組み合わせて上記差圧状態を作り出しても良い。なお、正極用熱交換器4Pのみを設けて、負極用熱交換器4Nを設けないことでも、上記差圧状態を作り出すことができる。
[その他の方策]
図1の正極用タンク106を負極用タンク107よりも高く配設することで、上記差圧状態を形成することもできる。また、正極用復路管110を負極用復路管111より高い位置に取回すことでも上記差圧状態を形成することができる。
図1の正極用タンク106を負極用タンク107よりも高く配設することで、上記差圧状態を形成することもできる。また、正極用復路管110を負極用復路管111より高い位置に取回すことでも上記差圧状態を形成することができる。
[組み合わせについて]
以上説明した各差圧形成機構は、単独あるいは組み合わせて用いることができる。例えば、管路の長さを変えることと、管路の太さを変えることと、を組み合わせると、所望の差圧状態を形成し易い。さらに、管路長と管路径の変更に加えて、ポンプの送液量を変えることで、上記差圧状態の微妙な調整が可能となるため、好ましい。
以上説明した各差圧形成機構は、単独あるいは組み合わせて用いることができる。例えば、管路の長さを変えることと、管路の太さを変えることと、を組み合わせると、所望の差圧状態を形成し易い。さらに、管路長と管路径の変更に加えて、ポンプの送液量を変えることで、上記差圧状態の微妙な調整が可能となるため、好ましい。
[付記]
ここで、本実施形態では、セルスタック2内における正極電解液の流路と負極電解液の流路には構成上の差異を設けていない。セルスタック2内の流路を変化させるには、図7のセルフレーム120の構成を変化させなければならない。セルフレーム120の作製には金型が必要なので、セルフレーム120の変更は容易ではないからである。
ここで、本実施形態では、セルスタック2内における正極電解液の流路と負極電解液の流路には構成上の差異を設けていない。セルスタック2内の流路を変化させるには、図7のセルフレーム120の構成を変化させなければならない。セルフレーム120の作製には金型が必要なので、セルフレーム120の変更は容易ではないからである。
≪RF電池の運転方法≫
上記各差圧形成機構6A〜6Dを単独、あるいは組み合わせた試験用のRF電池1を作製する。そして、その試験用のRF電池1の隔膜101における圧力をモニタリングしながら、セルスタック2内に正極電解液と負極電解液を循環させる。そのモニタリング結果に基づいて、RF電池1の各部の形状・寸法の再調整を行ったり、ポンプ112,113の出力を変化させ、各部の形状・寸法の最適値やポンプ112,113の出力の最適値を決定する。その最適値に基づいて設計されたRF電池1を用いれば、常に、隔膜101の全面にわたって隔膜101に作用する正極電解液の圧力を、隔膜101に作用する負極電解液の圧力よりも高くすることができる。その結果、隔膜101を介した負極側から正極側への液移りを抑制することができる。
上記各差圧形成機構6A〜6Dを単独、あるいは組み合わせた試験用のRF電池1を作製する。そして、その試験用のRF電池1の隔膜101における圧力をモニタリングしながら、セルスタック2内に正極電解液と負極電解液を循環させる。そのモニタリング結果に基づいて、RF電池1の各部の形状・寸法の再調整を行ったり、ポンプ112,113の出力を変化させ、各部の形状・寸法の最適値やポンプ112,113の出力の最適値を決定する。その最適値に基づいて設計されたRF電池1を用いれば、常に、隔膜101の全面にわたって隔膜101に作用する正極電解液の圧力を、隔膜101に作用する負極電解液の圧力よりも高くすることができる。その結果、隔膜101を介した負極側から正極側への液移りを抑制することができる。
例えば、図3を参照する差圧形成機構6Bを採用する場合、正極用復路管110の内径を、負極用復路管111の内径の80%以下とすれば、電池セル100内の隔膜101に作用する正極電解液の圧力を、隔膜101に作用する負極電解液の圧力よりも高くすることができる。
≪その他≫
RF電池1を停止する、即ち電解液の循環を停止する際にも、前記差圧状態を維持することが好ましい。そうすることで、負極側から正極側への液移りを効果的に抑制することができる。例えば、差圧状態が維持されるように、両ポンプ112,113の出力を弱めていき、両ポンプ112,113を同時に停止する。その際、両ポンプ112,113が停止するまでの間、正極用のポンプ112からの送液量が負極用のポンプ113からの送液量よりも大きくなるように両ポンプ112,113の出力を調節することで、電解液の循環が止まるまで差圧状態を維持することができる。あるいは、負極側のポンプ113を正極側のポンプ112よりも先に停止することでも、電解液の循環が止まるまで差圧状態を維持することができる。後者の手法は、負極側のポンプ113が停止した後も暫くは正極側のポンプ112を動かしておく手法と言い換えることもできる。
RF電池1を停止する、即ち電解液の循環を停止する際にも、前記差圧状態を維持することが好ましい。そうすることで、負極側から正極側への液移りを効果的に抑制することができる。例えば、差圧状態が維持されるように、両ポンプ112,113の出力を弱めていき、両ポンプ112,113を同時に停止する。その際、両ポンプ112,113が停止するまでの間、正極用のポンプ112からの送液量が負極用のポンプ113からの送液量よりも大きくなるように両ポンプ112,113の出力を調節することで、電解液の循環が止まるまで差圧状態を維持することができる。あるいは、負極側のポンプ113を正極側のポンプ112よりも先に停止することでも、電解液の循環が止まるまで差圧状態を維持することができる。後者の手法は、負極側のポンプ113が停止した後も暫くは正極側のポンプ112を動かしておく手法と言い換えることもできる。
本発明のレドックスフロー電池およびレドックスフロー電池の運転方法は、太陽光発電、風力発電などの新エネルギーの発電に対して、発電出力の変動の安定化、発電電力の余剰時の蓄電、負荷平準化などに利用できる他、一般的な発電所に併設されて、瞬時電圧低下対策・停電対策や負荷平準化にも利用することができる。
1,α レドックスフロー電池(RF電池)
2 セルスタック
100 電池セル
101 隔膜
102 正極部 103 負極部 104 正極電極 105 負極電極
3P,100P 正極用循環機構
106 正極用タンク 108 正極用往路管 110 正極用復路管
112 ポンプ(正極用送液装置)
3N,100N 負極用循環機構
4P 正極用熱交換器
40P 冷媒 41P 容器 42P 配管
4N 負極用熱交換器
40N 冷媒 41N 容器 42N 配管
5 流量制御部
6A,6B,6C,6D 差圧形成機構
107 負極用タンク 109 負極用往路管 111 負極用復路管
113 ポンプ(負極用送液装置)
120 セルフレーム 121 双極板 122 枠体
123,124 給液用マニホールド 125,126 排液用マニホールド
127 シール部材
190 給排板 210,220 エンドプレート
200 セルスタック 200s サブスタック
230 締付機構
2 セルスタック
100 電池セル
101 隔膜
102 正極部 103 負極部 104 正極電極 105 負極電極
3P,100P 正極用循環機構
106 正極用タンク 108 正極用往路管 110 正極用復路管
112 ポンプ(正極用送液装置)
3N,100N 負極用循環機構
4P 正極用熱交換器
40P 冷媒 41P 容器 42P 配管
4N 負極用熱交換器
40N 冷媒 41N 容器 42N 配管
5 流量制御部
6A,6B,6C,6D 差圧形成機構
107 負極用タンク 109 負極用往路管 111 負極用復路管
113 ポンプ(負極用送液装置)
120 セルフレーム 121 双極板 122 枠体
123,124 給液用マニホールド 125,126 排液用マニホールド
127 シール部材
190 給排板 210,220 エンドプレート
200 セルスタック 200s サブスタック
230 締付機構
Claims (4)
- 正極電極、負極電極、および隔膜を有する電池セルを複数積層したセルスタックに、正極用循環機構を用いて正極電解液を循環させると共に、負極用循環機構を用いて負極電解液を循環させるレドックスフロー電池の運転方法であって、
前記正極電解液と前記負極電解液を前記セルスタックに循環させる際、前記隔膜の全面にわたって前記隔膜に作用する前記正極電解液の圧力を前記負極電解液の圧力よりも大きくした差圧状態を維持するレドックスフロー電池の運転方法。 - 前記正極用循環機構は、
正極用タンクと、
前記正極用タンクから前記セルスタックに前記正極電解液を供給する正極用往路管、および前記セルスタックから前記正極用タンクに前記正極電解液を排出する正極用復路管で構成される正極用管路と、
前記正極電解液を前記セルスタックに送り出す正極用送液装置と、を備え、
前記負極用循環機構は、
負極用タンクと、
前記負極用タンクから前記セルスタックに前記負極電解液を供給する負極用往路管、および前記セルスタックから前記負極用タンクに前記負極電解液を排出する負極用復路管で構成される負極用管路と、
前記負極電解液を前記セルスタックに送り出す負極用送液装置を備え、
下記[1]および[2]の少なくとも一方を行うことで、前記差圧状態を達成する請求項1に記載のレドックスフロー電池の運転方法。
[1]前記正極用復路管の圧力損失を前記負極用復路管の圧力損失よりも大きくする。
[2]前記負極用往路管の圧力損失を前記正極用往路管の圧力損失よりも大きくする。 - 前記正極用送液装置からの送液量を前記負極用送液装置からの送液量よりも大きくする請求項2に記載のレドックスフロー電池の運転方法。
- 正極電極、負極電極、および隔膜を有する電池セルを複数積層したセルスタックと、前記セルスタックに正極電解液を循環させる正極用循環機構と、前記セルスタックに負極電解液を循環させる負極用循環機構と、を備えるレドックスフロー電池であって、
前記正極電解液と前記負極電解液を前記セルスタックに循環させたときに、前記隔膜の全面にわたって前記隔膜に作用する前記正極電解液の圧力を前記負極電解液の圧力よりも大きくした差圧状態を作り出す差圧形成機構を備えるレドックスフロー電池。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015011846A JP2018037133A (ja) | 2015-01-23 | 2015-01-23 | レドックスフロー電池の運転方法、およびレドックスフロー電池 |
PCT/JP2015/085602 WO2016117263A1 (ja) | 2015-01-23 | 2015-12-21 | レドックスフロー電池の運転方法、およびレドックスフロー電池 |
TW104144252A TW201628247A (zh) | 2015-01-23 | 2015-12-29 | 氧化還原液流電池的運轉方法、及氧化還原液流電池 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015011846A JP2018037133A (ja) | 2015-01-23 | 2015-01-23 | レドックスフロー電池の運転方法、およびレドックスフロー電池 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2018037133A true JP2018037133A (ja) | 2018-03-08 |
Family
ID=56416822
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015011846A Pending JP2018037133A (ja) | 2015-01-23 | 2015-01-23 | レドックスフロー電池の運転方法、およびレドックスフロー電池 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2018037133A (ja) |
TW (1) | TW201628247A (ja) |
WO (1) | WO2016117263A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110574199B (zh) * | 2017-04-28 | 2024-04-19 | Ess技术有限公司 | 运行氧化还原液流电池的系统和方法 |
CN117393810B (zh) * | 2023-12-12 | 2024-03-08 | 江苏美淼储能科技有限公司 | 钒电池在线恢复容量和在线抑制钒离子跨膜扩散的办法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01124966A (ja) * | 1987-11-10 | 1989-05-17 | Nkk Corp | 電解液流通型電池システム |
JP2815112B2 (ja) * | 1989-01-23 | 1998-10-27 | 住友電気工業株式会社 | 電解液循還型二次電池 |
JP2006147376A (ja) * | 2004-11-19 | 2006-06-08 | Kansai Electric Power Co Inc:The | レドックスフロー電池 |
JP5831112B2 (ja) * | 2011-10-04 | 2015-12-09 | 住友電気工業株式会社 | セルフレーム、セルスタック、およびレドックスフロー電池 |
-
2015
- 2015-01-23 JP JP2015011846A patent/JP2018037133A/ja active Pending
- 2015-12-21 WO PCT/JP2015/085602 patent/WO2016117263A1/ja active Application Filing
- 2015-12-29 TW TW104144252A patent/TW201628247A/zh unknown
Also Published As
Publication number | Publication date |
---|---|
WO2016117263A1 (ja) | 2016-07-28 |
TW201628247A (zh) | 2016-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6536840B2 (ja) | レドックスフロー電池 | |
US7687193B2 (en) | Electrochemical battery incorporating internal manifolds | |
JP5138994B2 (ja) | レドックスフロー電池システムの運転方法 | |
JP2014523087A (ja) | 金属−ハロゲンフロー電池用電解質流れ構成 | |
KR101357822B1 (ko) | 분로전류를 방지한 레독스 흐름전지 | |
JP5831112B2 (ja) | セルフレーム、セルスタック、およびレドックスフロー電池 | |
EP3118923A1 (en) | Electrolyte-circulating battery, heat exchanger, and pipe | |
US10665882B2 (en) | Redox flow battery | |
WO2016117265A1 (ja) | レドックスフロー電池の運転方法、およびレドックスフロー電池 | |
WO2015001845A1 (ja) | 燃料電池システム及び燃料電池システムの制御方法 | |
JP6751275B2 (ja) | レドックスフロー電池 | |
WO2016117263A1 (ja) | レドックスフロー電池の運転方法、およびレドックスフロー電池 | |
KR101791319B1 (ko) | 션트 손실을 감소시킨 레독스 흐름 전지 시스템 | |
CN204720508U (zh) | 导流板及含有该导流板的燃料电池堆 | |
JPWO2019054332A1 (ja) | レドックスフロー電池 | |
JP2017147121A (ja) | 燃料電池システムの電力制御方法 | |
WO2016117262A1 (ja) | レドックスフロー電池の運転方法、およびレドックスフロー電池 | |
KR101862725B1 (ko) | 레독스 흐름전지 | |
US10199664B2 (en) | Frame body, cell frame, cell stack, and redox flow battery | |
JP2019192466A (ja) | レドックスフロー電池 | |
EP3561930B1 (en) | Redox flow battery | |
JP2019036439A (ja) | モニタセル、及びレドックスフロー電池システム | |
JP2016081852A (ja) | 燃料電池システムとその運転方法 |