JP2018035436A - Chlorine bleeding method of nickel from mixed sulfide - Google Patents
Chlorine bleeding method of nickel from mixed sulfide Download PDFInfo
- Publication number
- JP2018035436A JP2018035436A JP2016187082A JP2016187082A JP2018035436A JP 2018035436 A JP2018035436 A JP 2018035436A JP 2016187082 A JP2016187082 A JP 2016187082A JP 2016187082 A JP2016187082 A JP 2016187082A JP 2018035436 A JP2018035436 A JP 2018035436A
- Authority
- JP
- Japan
- Prior art keywords
- chlorine
- leaching
- nickel
- mixed sulfide
- residue
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 title claims abstract description 231
- 229910052801 chlorine Inorganic materials 0.000 title claims abstract description 157
- 239000000460 chlorine Substances 0.000 title claims abstract description 157
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 title claims abstract description 150
- 229910052759 nickel Inorganic materials 0.000 title claims abstract description 110
- 238000000034 method Methods 0.000 title claims abstract description 89
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 title claims abstract description 56
- 230000000740 bleeding effect Effects 0.000 title abstract 13
- 239000002002 slurry Substances 0.000 claims abstract description 37
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 claims abstract description 23
- 239000010941 cobalt Substances 0.000 claims abstract description 23
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 23
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 23
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims abstract description 21
- 238000003756 stirring Methods 0.000 claims abstract description 9
- 229910000480 nickel oxide Inorganic materials 0.000 claims abstract description 5
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 claims abstract description 5
- 238000005486 sulfidation Methods 0.000 claims abstract description 3
- 238000002386 leaching Methods 0.000 claims description 231
- 239000010949 copper Substances 0.000 claims description 40
- 229910052802 copper Inorganic materials 0.000 claims description 34
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 20
- 230000033116 oxidation-reduction process Effects 0.000 claims description 11
- 229910021607 Silver chloride Inorganic materials 0.000 claims description 6
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 claims description 6
- 238000009854 hydrometallurgy Methods 0.000 claims description 2
- 239000007788 liquid Substances 0.000 abstract description 20
- 238000004519 manufacturing process Methods 0.000 abstract description 10
- 238000007664 blowing Methods 0.000 abstract description 8
- 238000003723 Smelting Methods 0.000 abstract description 5
- 238000007796 conventional method Methods 0.000 abstract 2
- 239000000243 solution Substances 0.000 description 47
- 238000006243 chemical reaction Methods 0.000 description 23
- 229910052717 sulfur Inorganic materials 0.000 description 23
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 18
- 239000011593 sulfur Substances 0.000 description 18
- 238000006467 substitution reaction Methods 0.000 description 15
- 239000007864 aqueous solution Substances 0.000 description 13
- 230000001590 oxidative effect Effects 0.000 description 12
- 150000002500 ions Chemical class 0.000 description 11
- 239000007787 solid Substances 0.000 description 11
- 150000004763 sulfides Chemical class 0.000 description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 7
- 150000001804 chlorine Chemical class 0.000 description 7
- 229910001431 copper ion Inorganic materials 0.000 description 7
- WWNBZGLDODTKEM-UHFFFAOYSA-N sulfanylidenenickel Chemical compound [Ni]=S WWNBZGLDODTKEM-UHFFFAOYSA-N 0.000 description 7
- 239000012071 phase Substances 0.000 description 6
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 239000007800 oxidant agent Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 238000005363 electrowinning Methods 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 238000007711 solidification Methods 0.000 description 4
- 230000008023 solidification Effects 0.000 description 4
- VEQPNABPJHWNSG-UHFFFAOYSA-N Nickel(2+) Chemical compound [Ni+2] VEQPNABPJHWNSG-UHFFFAOYSA-N 0.000 description 3
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 229910001429 cobalt ion Inorganic materials 0.000 description 3
- XLJKHNWPARRRJB-UHFFFAOYSA-N cobalt(2+) Chemical compound [Co+2] XLJKHNWPARRRJB-UHFFFAOYSA-N 0.000 description 3
- 229910052976 metal sulfide Inorganic materials 0.000 description 3
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 3
- 229910001453 nickel ion Inorganic materials 0.000 description 3
- 230000035484 reaction time Effects 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000011133 lead Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000000638 solvent extraction Methods 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- IPRPPFIAVHPVJH-UHFFFAOYSA-N (4-hydroxyphenyl)acetaldehyde Chemical compound OC1=CC=C(CC=O)C=C1 IPRPPFIAVHPVJH-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- NLZQVLUEFDOPMA-UHFFFAOYSA-N [Cl].[Ni] Chemical compound [Cl].[Ni] NLZQVLUEFDOPMA-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- INPLXZPZQSLHBR-UHFFFAOYSA-N cobalt(2+);sulfide Chemical compound [S-2].[Co+2] INPLXZPZQSLHBR-UHFFFAOYSA-N 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- -1 for example Chemical compound 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 1
- 239000012254 powdered material Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000005987 sulfurization reaction Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
本発明は、混合硫化物からのニッケルの塩素浸出方法に関する。
より詳しくは、ニッケルおよびコバルトを含む混合硫化物からニッケルを塩素浸出する方法において、混合硫化物と塩化物水溶液を含む塩素浸出前スラリーに塩素ガスを吹き込み、混合硫化物からニッケルを塩素浸出後、塩素浸出残渣を放置浸出する方法に関する。
The present invention relates to a method for leaching nickel from mixed sulfides.
More specifically, in the method of leaching nickel from a mixed sulfide containing nickel and cobalt, chlorine gas is blown into the slurry before chlorine leaching containing mixed sulfide and an aqueous chloride solution, and after leaching nickel from the mixed sulfide, The present invention relates to a method for leaching a chlorine leaching residue.
ニッケルおよびコバルトの製錬においては、例えばニッケル硫化鉱石を溶鉱炉で溶解して得られるニッケル硫化物や、ニッケル酸化鉱石に硫黄を添加して電気炉で溶解して得られるニッケル硫化物等、いわゆる乾式製錬法で得られたNi3S2等のニッケル硫化物を主成分とするニッケルマットが生産されている。 In smelting of nickel and cobalt, for example, nickel sulfide obtained by melting nickel sulfide ore in a blast furnace, nickel sulfide obtained by adding sulfur to nickel oxide ore and melting in an electric furnace, so-called dry type Nickel mats mainly composed of nickel sulfide such as Ni 3 S 2 obtained by a smelting method are produced.
一方で、低品位ニッケルのニッケル酸化鉱石を加圧酸浸出(High Pressure Acid Leaching、通称HPAL)して、その加圧酸浸出液から鉄をはじめとする不純物を除去した後、湿式硫化反応によって、例えば硫化水素ガスをニッケルイオンおよびコバルトイオンを含んだ浸出液中に吹き込むことによって、得られたNiS等の硫化物を主成分とするニッケルおよびコバルトを含む混合硫化物(以降、混合硫化物と称する。)も生産されている。 On the other hand, nickel oxide ore of low-grade nickel is subjected to pressure acid leaching (High Pressure Acid Leaching, commonly called HPAL), and impurities such as iron are removed from the pressure acid leaching solution. By mixing hydrogen sulfide gas into a leachate containing nickel ions and cobalt ions, the resulting mixed sulfide containing nickel and cobalt whose main components are sulfides such as NiS (hereinafter referred to as mixed sulfide). Has also been produced.
一般に、ニッケルおよびコバルトの浸出法としては、酸化浸出法、アルカリ浸出法、塩素浸出法等の種々の方法が既に知られている。
この中でも、上記ニッケルマットや混合硫化物を原料としてニッケル及びコバルトを精製する方法としては、例えば特許文献1に記載されているように、塩素ガスの酸化作用を利用してニッケルマットや混合硫化物を浸出し、浸出されたニッケルイオン及びコバルトイオンを電解採取によって電気ニッケル及び電気コバルトとして製品化する塩素浸出プロセスが実用化されている。
In general, as a leaching method of nickel and cobalt, various methods such as an oxidative leaching method, an alkali leaching method, and a chlorine leaching method are already known.
Among them, as a method for refining nickel and cobalt using the nickel mat or mixed sulfide as a raw material, for example, as described in Patent Document 1, the nickel mat or mixed sulfide is utilized by utilizing the oxidizing action of chlorine gas. A chlorine leaching process has been put into practical use in which leached nickel ions and cobalt ions are produced as electrolytic nickel and electrolytic cobalt by electrowinning.
この方法は、混合硫化物と下記セメンテーション残渣を塩化物水溶液にレパルプした後、そのスラリーに塩素ガスを吹き込むことによりニッケル及びコバルトを塩化物水溶液中に塩素浸出する。
そこで得られた酸化剤としての2価の銅クロロ錯イオンを含んだ塩素浸出液に、粉砕したニッケルマットを接触させて銅とニッケルのセメンテーション反応を行うことにより、ニッケルマット中のニッケルが液に置換浸出され、銅イオンはCu2SまたはCu0(金属銅)の形態となって固体(セメンテーション残渣の一部)となる。
In this method, mixed sulfide and the following cementation residue are repulped into an aqueous chloride solution, and then nickel and cobalt are leached into the aqueous chloride solution by blowing chlorine gas into the slurry.
The nickel leaching solution containing divalent copper chloro complex ions as an oxidizing agent thus obtained was brought into contact with a crushed nickel mat to perform a cementation reaction between copper and nickel, whereby the nickel in the nickel mat was converted into a liquid. By substitution leaching, copper ions become a solid (part of cementation residue) in the form of Cu 2 S or Cu 0 (metallic copper).
その置換浸出終液と、ニッケルマットの置換浸出残渣と前記Cu2SまたはCu0(金属銅)の形態となって沈澱した固体とからなるセメンテーション残渣は、固液分離された後、置換浸出終液は次の浄液工程へ、固体のセメンテーション残渣は塩素浸出工程へ送られる。
この浄液工程では、得られた置換浸出終液から鉄、鉛、銅、亜鉛等の不純物を除去すると共に、置換浸出終液中のコバルトを溶媒抽出等の方法を用いて分離する。
次いでニッケルを電解採取して電気ニッケルを製造する方法である。
The cementation residue composed of the substitution leaching final solution, the nickel mat substitution leaching residue, and the solid precipitated in the form of Cu 2 S or Cu 0 (metal copper) is solid-liquid separated, and then the substitution leaching. The final liquid is sent to the next purification process, and the solid cementation residue is sent to the chlorine leaching process.
In this liquid purification step, impurities such as iron, lead, copper, and zinc are removed from the obtained substitution leaching final solution, and cobalt in the substitution leaching final solution is separated using a method such as solvent extraction.
Next, nickel is electrolytically collected to produce electric nickel.
なお、上記塩素浸出プロセスでは、塩素浸出工程で浸出されなかった硫黄を主成分とする塩素浸出残渣は硫黄の回収工程にて処理され、製品硫黄および残渣類として払出される。
この方法はシンプルで、電解採取で発生した塩素ガスを浸出に再利用する等、効率的かつ経済的な生産を実現している。
In the chlorine leaching process, a chlorine leaching residue mainly composed of sulfur that has not been leached in the chlorine leaching step is treated in a sulfur recovery step and discharged as product sulfur and residues.
This method is simple and realizes efficient and economical production such as reusing chlorine gas generated by electrowinning for leaching.
ここで、混合硫化物を処理するに当たって、ニッケルマットと比較して、混合硫化物中のニッケルおよびコバルト浸出率が低いという問題点があった。
その理由は、ニッケルマットと混合硫化物の鉱物組成とそれに伴う浸出反応の機構の違いにある。
Here, when processing mixed sulfide, there existed a problem that the leaching rate of nickel and cobalt in mixed sulfide was low compared with nickel mat.
The reason lies in the difference in the mineral composition of nickel matte and mixed sulfide and the accompanying leaching reaction mechanism.
上記混合硫化物中のニッケルおよびコバルト浸出率が低いという課題を克服するために、特許文献1には、ニッケル硫化物とともに、ニッケルマットを液中の銅イオンにより置換抽出する工程から得られる銅とニッケルを含む置換残渣を、銅イオンを含む塩化物水溶液中で共存させながら塩素浸出に付す方法が開示されている。 In order to overcome the problem that the leaching rate of nickel and cobalt in the mixed sulfide is low, Patent Document 1 discloses copper obtained from the step of substituting and extracting nickel matte with copper ions in the liquid together with nickel sulfide. A method is disclosed in which a substitution residue containing nickel is subjected to chlorine leaching while coexisting in a chloride aqueous solution containing copper ions.
また、特許文献2には、金属硫化物を原料として、銅イオンを含む塩化物溶液中で塩素浸出する金属硫化物の塩素浸出方法であって、塩化物溶液中の銅イオン濃度を30g/L以上とし、かつ、塩濃度を270g/L以上350g/L以下として塩素浸出する方法が開示されている。
しかしながら、これらの手段を採ってもなお、塩素浸出残渣には、固形分品位として1〜10重量%程度のニッケルが残留している。
Patent Document 2 discloses a metal sulfide chlorine leaching method in which metal sulfide is used as a raw material in a chloride solution containing copper ions, and the copper ion concentration in the chloride solution is 30 g / L. A method for leaching chlorine with the salt concentration of 270 g / L to 350 g / L is disclosed.
However, even if these measures are taken, about 1 to 10% by weight of nickel remains as a solid content grade in the chlorine leaching residue.
ところで塩素浸出残渣の一部は、塩素浸出槽に繰り返し装入されるが、繰り返し装入できる量は限られており、残りの塩素浸出残渣中のニッケルは残渣としてプロセス系外へ払出されるため、ニッケルのロスとなってしまうという問題点があった。
増産のためでなく、塩素浸出残渣の繰り返し量を増加させるために、単純に塩素浸出槽の能力を上昇させるのは、装置導入の面および塩素使用量の面でコスト的に不利である。
By the way, some of the chlorine leaching residue is repeatedly charged into the chlorine leaching tank, but the amount that can be repeatedly charged is limited, and the nickel in the remaining chlorine leaching residue is discharged out of the process system as a residue. There was a problem that the loss of nickel.
Simply increasing the capacity of the chlorine leaching tank in order to increase the repetitive amount of chlorine leaching residue, not for increasing production, is disadvantageous in terms of equipment introduction and chlorine usage.
そこで、特許文献3には、塩素浸出法による電気ニッケル製造プロセスの副産物であるS0スラリー、残渣フレーカーおよび塩素浸出残渣から、塩素80g/L〜390g/L及び銅30g/L〜70g/Lを含有する水溶液を用いて、それぞれニッケルを回収する方法が開示されている。
しかし、この方法では工程が増加し、それに伴って設備が増加し、さらには処理コストが増加するという問題があった。
Therefore, Patent Document 3 discloses 80 g / L to 390 g / L of chlorine and 30 g / L to 70 g / L of copper from S 0 slurry, residue flaker and chlorine leaching residue, which are by-products of the electrolytic nickel production process by the chlorine leaching method. A method for recovering nickel using an aqueous solution is disclosed.
However, this method has a problem that the number of steps increases, and accordingly, the number of facilities increases, and the processing cost increases.
そこで、本発明は、上記従来技術の問題点に鑑みてなされたものであり、混合硫化物と塩化物水溶液を含む塩素浸出前スラリーに塩素ガスを吹き込み、混合硫化物からニッケルを塩素浸出後、塩素浸出残渣と塩素浸出液を含む塩素浸出後スラリーを、塩素ガスを吹き込まない状態で、撹拌・保持させることによって、塩素浸出残渣中のニッケルを放置浸出することができ、従来技術よりも塩素浸出残渣中のニッケル品位を低下させることができる。さらに従来技術と比べて製法工程数が大巾に減少した、コスト的にも有利な混合硫化物の塩素浸出方法を提供することを目的とする。 Therefore, the present invention has been made in view of the above-described problems of the prior art, and chlorine gas is blown into a slurry before chlorine leaching containing a mixed sulfide and an aqueous chloride solution, and after leaching nickel from the mixed sulfide, By stirring and holding the slurry after chlorine leaching, which contains chlorine leaching residue and chlorine leaching solution, without chlorine gas being blown in, nickel in the chlorine leaching residue can be left and leached. The nickel quality inside can be reduced. It is another object of the present invention to provide a mixed sulfide chlorine leaching method that is advantageous in terms of cost, in which the number of manufacturing steps is greatly reduced as compared with the prior art.
本発明者らは、上記目的を達成すべく、塩素浸出反応後の浸出液が保有している酸化力を利用して、塩素浸出残渣を浸出液に接触させるだけで塩素浸出残渣中の残留ニッケルを再浸出することができることを見出し、本発明を完成させるに至った。 In order to achieve the above object, the present inventors recycle residual nickel in a chlorine leaching residue by simply contacting the chlorine leaching residue with the leaching solution using the oxidizing power possessed by the leaching solution after the chlorine leaching reaction. The inventors have found that it can be leached and have completed the present invention.
すなわち、本発明の第1の発明は、ニッケル酸化鉱石の湿式製錬工程で湿式硫化反応によって製造されたニッケルおよびコバルトを含む混合硫化物からのニッケルの塩素浸出方法において、前記混合硫化物に塩化物水溶液を加えて作製した前記混合硫化物と塩化物水溶液を含む塩素浸出前スラリーに塩素ガスを吹き込み、前記混合硫化物からニッケルを塩素浸出して塩素浸出残渣と塩素浸出液を含む塩素浸出後スラリーを作製した後、塩素ガスの吹き込みを停止した状態で、前記塩素浸出後スラリーを撹拌・保持させて放置浸出することを特徴とする混合硫化物からのニッケルの塩素浸出方法である。 That is, according to a first aspect of the present invention, in the method for leaching nickel from a mixed sulfide containing nickel and cobalt produced by a wet sulfidation reaction in a hydrometallurgical process of nickel oxide ore, the mixed sulfide is chlorinated. Chlorine gas is blown into the slurry before chlorine leaching containing the mixed sulfide and chloride aqueous solution prepared by adding the aqueous solution of chloride, and chlorine is leached from the mixed sulfide, and the slurry after chlorine leaching containing chlorine leaching residue and chlorine leaching solution In the method of leaching nickel from the mixed sulfide, the slurry is stirred and held after the leaching of chlorine and leached as it is after the chlorine gas blowing is stopped.
本発明の第2の発明は、第1の発明における塩素浸出後スラリーに含まれる塩素浸出液が、銅濃度が30〜60g/L、温度が60〜110℃、酸化還元電位が460mV(Ag/AgCl電極基準)以上の塩素浸出液であることを特徴とする混合硫化物からのニッケルの塩素浸出方法である。 In the second invention of the present invention, the chlorine leaching solution contained in the slurry after chlorine leaching in the first invention has a copper concentration of 30 to 60 g / L, a temperature of 60 to 110 ° C., and a redox potential of 460 mV (Ag / AgCl This is a chlorine leaching method for nickel from mixed sulfides, characterized in that the chlorine leaching liquid is higher than the electrode standard).
本発明の第3の発明は、第1または第2の発明における攪拌・保持中の塩素浸出後スラリーに含まれる塩素浸出液の酸化還元電位が、460mV以上に維持されていることを特徴とする混合硫化物からのニッケルの塩素浸出方法である。 According to a third aspect of the present invention, the oxidation-reduction potential of the chlorine leaching solution contained in the slurry after chlorine leaching during stirring and holding in the first or second aspect is maintained at 460 mV or more. This is a method for leaching nickel from sulfides.
本発明の混合硫化物の浸出方法によれば、製法工程数を増加させずに、低コストで塩素浸出残渣中のニッケルを放置浸出して、ニッケル品位を低下させることができる。 According to the mixed sulfide leaching method of the present invention, nickel in the chlorine leaching residue can be leached at a low cost without increasing the number of manufacturing steps, and the nickel quality can be lowered.
本発明は、ニッケルおよびコバルトを含む混合硫化物からニッケルを塩素浸出する方法において、混合硫化物と塩化物水溶液を含む塩素浸出前スラリーに塩素ガスを吹き込み、混合硫化物からニッケルを塩素浸出し、形成された塩素浸出後スラリーに含まれる塩素浸出残渣を、同じく含まれる浸出液によって放置浸出するものである。 The present invention relates to a method for chlorine leaching nickel from a mixed sulfide containing nickel and cobalt, in which chlorine gas is blown into a slurry before chlorine leaching containing mixed sulfide and an aqueous chloride solution, and nickel is leached from mixed sulfide. The chlorine leaching residue contained in the formed slurry after chlorine leaching is left and leached with the leaching solution also contained.
本発明の一実施形態としては、ニッケルおよびコバルトを含む混合硫化物を、塩素ガスの酸化作用を利用して浸出する、塩素浸出プロセスに好ましく適用することができる。
そこで、以下にニッケルの塩素浸出プロセスについて詳細に説明するが、本実施形態は、特許請求の範囲に記載された本発明の内容を限定するものでは無い。
As one embodiment of the present invention, it can be preferably applied to a chlorine leaching process in which a mixed sulfide containing nickel and cobalt is leached by utilizing the oxidizing action of chlorine gas.
Then, although the chlorine leaching process of nickel is demonstrated in detail below, this embodiment does not limit the content of this invention described in the claim.
1.塩素浸出プロセス
(1)概要
ニッケルおよびコバルトの製錬においては、例えば特許文献1に記載されているように、ニッケルおよびコバルトを含有する硫化物を塩素ガスの酸化作用を利用して浸出し、浸出されたニッケルイオンおよびコバルトイオンを電解採取によって電気ニッケルおよび電気コバルトとして製品化する塩素浸出プロセスが実用化されている。
1. Chlorine leaching process (1) Outline In smelting of nickel and cobalt, for example, as described in Patent Document 1, a sulfide containing nickel and cobalt is leached using the oxidizing action of chlorine gas, and leached. A chlorine leaching process has been put into practical use in which the nickel ions and cobalt ions obtained are commercialized as electrolytic nickel and electrolytic cobalt by electrowinning.
この塩素浸出プロセスにおける塩素浸出工程では、混合硫化物と呼ばれる、硫化ニッケルと硫化コバルトの混合物を塩化物水溶液にレパルプして塩素浸出前スラリーを形成した後、そのスラリーに塩素ガスを吹き込むことによりニッケルおよびコバルトを、その塩素浸出前スラリーの液体成分中に浸出し、浸出されたニッケルおよびコバルトを含む塩素浸出液と塩素浸出残渣を含む塩素浸出後スラリーを形成する。
なお、ニッケルの塩素浸出プロセスでは、塩素浸出工程において、後述するセメンテーション工程で沈澱したセメンテーション残渣を、混合硫化物と共に処理しても良い。
In the chlorine leaching process in this chlorine leaching process, a mixture of nickel sulfide and cobalt sulfide, called mixed sulfide, is repulped into a chloride aqueous solution to form a slurry before chlorine leaching, and then nickel gas is blown into the slurry by blowing chlorine gas into the slurry. And cobalt are leached into the liquid component of the slurry prior to chlorine leaching to form a chlorine leaching solution containing leached nickel and cobalt and a chlorine leaching slurry containing chlorine leaching residues.
In the chlorine leaching process of nickel, the cementation residue precipitated in the cementation step described later may be treated together with the mixed sulfide in the chlorine leaching step.
次工程のセメンテーション工程では、塩素浸出工程で得られた酸化剤となる2価の銅クロロ錯イオンを含んだ塩素浸出液に、Ni3S2と金属ニッケルを主成分とする粉砕したニッケルマットを接触させて銅とニッケルのセメンテーション反応を行うことにより、ニッケルマット中のニッケルが液に置換浸出され置換浸出終液と置換浸出残渣を形成し、銅イオンはCu2SまたはCu0(金属銅)の形態となって固体(セメンテーション残渣の一部)となる。
その置換浸出終液と、ニッケルマットの置換浸出残渣と前記Cu2SまたはCu0(金属銅)の形態となって沈澱した固体とからなるセメンテーション残渣は、固液分離された後、置換浸出終液は次の浄液工程へ、固体のセメンテーション残渣は未溶解のニッケルが残留しているので塩素浸出工程へ送られる。
In the next cementation step, a pulverized nickel mat composed mainly of Ni 3 S 2 and metallic nickel is added to a chlorine leaching solution containing divalent copper chloro complex ions as an oxidizing agent obtained in the chlorine leaching step. By carrying out a cementation reaction between copper and nickel in contact with each other, nickel in the nickel mat is substituted and leached to form a substitution leaching final solution and a substitution leaching residue, and the copper ions are Cu 2 S or Cu 0 (metallic copper). ) To form a solid (a part of the cementation residue).
The cementation residue composed of the substitution leaching final solution, the nickel mat substitution leaching residue, and the solid precipitated in the form of Cu 2 S or Cu 0 (metal copper) is solid-liquid separated, and then the substitution leaching. The final solution is sent to the next purification step, and the solid cementation residue is sent to the chlorine leaching step because undissolved nickel remains.
その浄液工程では、得られた置換浸出終液から鉄、鉛、銅、亜鉛等の不純物を除去すると共に、置換浸出終液中のコバルトを溶媒抽出等の方法を用いて分離する。
次いで、ニッケルを電解採取して電気ニッケルを製造する。
In the liquid purification step, impurities such as iron, lead, copper, and zinc are removed from the obtained substitution leaching final solution, and cobalt in the substitution leaching final solution is separated using a method such as solvent extraction.
Next, nickel is electrolytically collected to produce electric nickel.
前述した、ニッケルおよびコバルトを含有する硫化物から電気ニッケルを製造する方法は、シンプルであり、電解採取で発生した塩素ガスを浸出に再利用する等、効率的かつ経済的な生産を実現しているといえる。
以下、関連工程を詳述する。
The above-mentioned method for producing electrical nickel from sulfides containing nickel and cobalt is simple and realizes efficient and economical production, such as reusing chlorine gas generated by electrowinning for leaching. It can be said that.
Hereinafter, the related process will be described in detail.
(2)塩素浸出工程
塩素浸出工程では、混合硫化物を、塩化物水溶液にレパルプして形成した混合硫化物と塩化物水溶液を含む塩素浸出前スラリーに、塩素ガスを吹き込むことによって混合硫化物中のニッケルおよびコバルトを、スラリーの液体成分中に塩素浸出して塩素浸出液を得る。
なお、本塩素浸出工程においては、上記したセメンテーション工程で沈澱したセメンテーション残渣を、混合硫化物と共に塩化物水溶液にレパルプして塩素浸出前スラリーの形成に利用しても良い。セメンテーション残渣は上記したように、ニッケルマットの置換浸出残渣とCu2SまたはCu0(金属銅)の形態となって沈澱した固体とからなっており、工業的にはニッケルの回収率を向上させるうえで本塩素浸出工程を繰返すことが好ましい。
また、本塩素浸出工程において、塩化物水溶液としては、混合硫化物をレパルプして塩素浸出前スラリーが形成されれば良いため、塩化物イオンを含む水溶液であれば良く、特に制限されない。例えば、ニッケルの塩素浸出プロセスでは、ニッケルの電解工程で発生した塩化ニッケル水溶液からなる電解排液を用いることができる。
(2) Chlorine leaching process In the chlorine leaching process, mixed sulfides are blown into the mixed sulfides by blowing chlorine gas into the slurry before chlorine leaching containing mixed sulfides and chloride aqueous solutions formed by repulping into chloride aqueous solutions. The nickel and cobalt are leached into the liquid component of the slurry to obtain a chlorine leaching solution.
In this chlorine leaching step, the cementation residue precipitated in the above cementation step may be repulped into a chloride aqueous solution together with the mixed sulfide and used for forming a slurry before chlorine leaching. As described above, the cementation residue consists of nickel mat substitution leach residue and solid precipitated in the form of Cu 2 S or Cu 0 (metal copper), and industrially improves nickel recovery. It is preferable to repeat this chlorine leaching process.
In the chlorine leaching step, the aqueous chloride solution is not particularly limited as long as it is an aqueous solution containing chloride ions, since it is sufficient that the mixed sulfide is repulped to form a slurry before chlorine leaching. For example, in the chlorine leaching process of nickel, an electrolytic drain solution made of a nickel chloride aqueous solution generated in the nickel electrolysis step can be used.
この塩素浸出工程では、塩素ガスを反応液中に吹き込むことで液中の銅イオンを酸化し、酸化力を持った2価の銅クロロ錯イオンを生成する。
生成された2価の銅のクロロ錯イオンが、混合硫化物やセメンテーション残渣中の金属を溶解するための直接的な浸出剤として作用する。一方、吹き込まれた塩素ガスは銅の1価イオンを2価イオンに酸化することにより、間接的に浸出反応に関与するものである。
In this chlorine leaching step, chlorine gas is blown into the reaction solution to oxidize copper ions in the solution, thereby generating divalent copper chloro complex ions having oxidizing power.
The produced divalent copper chloro complex ion acts as a direct leaching agent for dissolving mixed sulfides and metals in cementation residues. On the other hand, the injected chlorine gas is indirectly involved in the leaching reaction by oxidizing copper monovalent ions to divalent ions.
具体的には、この塩素浸出工程において、主に下記の(1)〜(4)式に示す塩素浸出反応が生じる。 Specifically, in this chlorine leaching step, a chlorine leaching reaction mainly represented by the following formulas (1) to (4) occurs.
この塩素浸出工程において、塩素浸出反応条件は、反応時の塩化ニッケル水溶液の酸化還元電位が480〜560mV、温度が105〜115℃で行われることが好ましい。 In this chlorine leaching step, the chlorine leaching reaction conditions are preferably carried out at an oxidation-reduction potential of the nickel chloride aqueous solution during the reaction of 480 to 560 mV and a temperature of 105 to 115 ° C.
ところで、混合硫化物のニッケル浸出率は、ニッケルマットと比較して低く、塩素浸出工程では浸出残渣中に溶け残りのニッケルが残留し易い傾向にある。それは、以下の理由によるものである。
ニッケルマットは、熔錬工程において熔融された硫化物が冷却により固形化されたものであり、主成分であるNi3S2相とニッケルを主とする金属相が緻密に析出した組織を有している。
したがって、ニッケルマットの浸出(セメンテーション)反応は、主に下記の(5)〜(7)式で示すことができる。
By the way, the nickel leaching rate of the mixed sulfide is lower than that of the nickel mat, and in the chlorine leaching process, the undissolved nickel tends to remain in the leaching residue. The reason is as follows.
Nickel mats are solidified by cooling the sulfide melted in the smelting process, and have a structure in which the Ni 3 S 2 phase, which is the main component, and the metal phase mainly composed of nickel are densely precipitated. ing.
Therefore, the leaching (cementation) reaction of nickel matte can be mainly expressed by the following formulas (5) to (7).
一方で、混合硫化物は、主に硫酸溶液から硫化反応により沈殿析出された粉末状のもので、主成分としては、NiSおよびCoSである。
金属ニッケルとニッケル硫化物の形態の違いによる浸出され易さは、Ni>Ni3S2>NiSの順であり、混合硫化物中にはNiSしか存在しないため、ニッケル浸出率が低いことが問題となっていた。
On the other hand, the mixed sulfide is mainly a powdered material precipitated by a sulfurization reaction from a sulfuric acid solution, and the main components are NiS and CoS.
The ease of leaching due to the difference in form between metallic nickel and nickel sulfide is in the order of Ni> Ni 3 S 2 > NiS, and since only NiS is present in the mixed sulfide, the problem is that the nickel leaching rate is low. It was.
さらに、ニッケルマットの場合、Ni3S2相中に緻密かつ均等に分散した金属相(Ni0相)が優先的に溶けるため、浸出反応の進行に伴い、浸出反応に関与する液相とNi3S2相の接触面積が増大すると推定される。 Furthermore, in the case of nickel matte, a metal phase (Ni 0 phase) that is densely and uniformly dispersed in the Ni 3 S 2 phase is preferentially dissolved. Therefore, as the leaching reaction proceeds, the liquid phase involved in the leaching reaction and Ni It is estimated that the contact area of 3 S 2 phase increases.
また、塩素浸出反応の温度条件は105〜115℃であるが、硫黄の融点は110〜120℃であるため、局部的に硫黄の融解が発生することがある。
このように塩素浸出反応の進行に伴い、この硫黄の溶融物がコーティング層を形成して、浸出反応を阻害することも推定される。
Moreover, although the temperature conditions of chlorine leaching reaction are 105-115 degreeC, since melting | fusing point of sulfur is 110-120 degreeC, melting | fusing of sulfur may generate | occur | produce locally.
As described above, it is estimated that the sulfur melt forms a coating layer as the chlorine leaching reaction proceeds and inhibits the leaching reaction.
よって、ニッケルマットと比較して硫黄含有率の高い混合硫化物のニッケル浸出率は、ニッケルマットと比較して低くなると推定される。
上記の硫化物の形態の違いによる浸出され易さに加えて、これらの推定により、混合硫化物のニッケル浸出率は低くなっている。
Therefore, it is estimated that the nickel leaching rate of the mixed sulfide having a high sulfur content compared to the nickel mat is lower than that of the nickel mat.
In addition to the ease of leaching due to the difference in the form of sulfides described above, the nickel leaching rate of the mixed sulfides is low due to these estimates.
2.塩素浸出残渣の放置浸出方法
図2に、従来の混合硫化物の浸出方法の工程図を示した。
塩素浸出工程では、塩素ガスの酸化作用を利用して浸出されなかった硫黄を主成分とし、微量の溶け残りの金属を含有した硫化物及び酸化物を含む塩素浸出残渣が生成される。
生成された塩素浸出残渣には、通常、硫黄が80〜87重量%、鉄が2〜5重量%、ニッケルが4〜5重量%程度含まれている。
2. FIG. 2 shows a process diagram of a conventional mixed sulfide leaching method.
In the chlorine leaching process, a chlorine leaching residue containing sulfide and oxide containing sulfur that has not been leached using the oxidizing action of chlorine gas as a main component and containing a trace amount of undissolved metal is generated.
The generated chlorine leaching residue usually contains about 80 to 87% by weight of sulfur, 2 to 5% by weight of iron, and about 4 to 5% by weight of nickel.
塩素浸出残渣と塩素浸出液を含む塩素浸出後スラリーは、遠心分離機等の固液分離装置にて固液分離され、塩素浸出残渣と塩素浸出液が産出される。
塩素浸出液はセメンテーション工程に送られ、塩素浸出残渣の一部は塩素浸出工程に繰返され、残部は残渣工程に送られる。
The slurry after chlorine leaching containing the chlorine leaching residue and the chlorine leaching solution is subjected to solid-liquid separation by a solid-liquid separation device such as a centrifugal separator to produce a chlorine leaching residue and a chlorine leaching solution.
The chlorine leaching solution is sent to the cementation process, a part of the chlorine leaching residue is repeated in the chlorine leaching process, and the remainder is sent to the residue process.
残渣工程では、塩素浸出残渣は、硫黄の融点を超える温度にまで昇温されることにより液体の溶融物となり、その溶融物がろ過装置でろ過されることにより溶融硫黄から固体の金属硫化物及び酸化物が分離されて、塩素浸出残渣から製品硫黄が回収される。
ここで、溶融硫黄から分離された、硫黄を含む固体の金属硫化物及び酸化物は、融解残渣と称し、粉砕されてスラリー化された後、セメンテーション工程に繰返される。
In the residue process, the chlorine leaching residue is heated to a temperature exceeding the melting point of sulfur to become a liquid melt, and the melt is filtered by a filtration device to convert the solid sulfur from solid sulfur and The oxide is separated and product sulfur is recovered from the chlorine leaching residue.
Here, the solid metal sulfide and oxide containing sulfur separated from the molten sulfur are referred to as a molten residue, pulverized and slurried, and then repeated in the cementation step.
さらに、融解残渣の一部は、固化残渣と称し、塩素浸出プロセスの系外に払出される。
具体的には、融解残渣には塩素で浸出されなかった金銀や白金族が濃縮するので、固化残渣は、それら金属の回収工程で処理される。
Further, a part of the molten residue is called a solidified residue and is discharged out of the chlorine leaching process.
Specifically, since the gold and silver and platinum groups that have not been leached with chlorine are concentrated in the molten residue, the solidified residue is treated in a recovery process of these metals.
この固化残渣に含まれるニッケルはニッケルロスとなるため、固化残渣中のニッケル品位、元をたどれば塩素浸出残渣のニッケル品位を低下させて、塩素浸出プロセスのニッケル実収率を向上させる必要がある。 Since the nickel contained in this solidification residue becomes nickel loss, it is necessary to improve the nickel yield of the chlorine leaching process by reducing the nickel quality in the solidification residue and, if traced back, the nickel quality of the chlorine leaching residue. .
そこで本発明では、塩素浸出反応後の塩素浸出液が保持している酸化力を利用して、塩素浸出残渣を塩素浸出液に接触させるだけで塩素浸出残渣中の残留ニッケルを放置浸出するものである。
塩素浸出液には、酸化力を持った2価の銅クロロ錯イオンが含有されているため、例えば、新たに酸化剤としての塩素ガスの吹き込みを行わなくても、塩素浸出残渣中のニッケルの放置浸出反応が進行する。
また、塩素浸出反応後、放置浸出が生じ、進行する程度の撹拌・保持時間を確保すれば良いことから、製造設備においては、塩素浸出反応後の滞留槽のみを新たに設置すれば良い。さらには、酸化力が不足しないように塩素浸出工程における酸化還元電位や塩素浸出液の銅濃度の調整を行い、撹拌・保持時間の調整を行って、攪拌・保持中の塩素浸出液の酸化還元電位が460mV以上を維持する。
Therefore, in the present invention, the residual nickel in the chlorine leaching residue is leached by simply contacting the chlorine leaching residue with the chlorine leaching solution using the oxidizing power retained by the chlorine leaching solution after the chlorine leaching reaction.
Since the chlorine leaching solution contains divalent copper chloro complex ions with oxidizing power, for example, leaving the nickel in the chlorine leaching residue without newly blowing in chlorine gas as an oxidizing agent. The leaching reaction proceeds.
In addition, after the chlorine leaching reaction, leaving leaching occurs and it is sufficient to secure a stirring / holding time enough to proceed, so in the manufacturing facility, only a residence tank after the chlorine leaching reaction may be newly installed. Furthermore, the oxidation-reduction potential in the chlorine leaching process and the copper concentration of the chlorine leaching solution are adjusted so that the oxidizing power is not insufficient, the stirring and holding time is adjusted, and the oxidation-reduction potential of the chlorine leaching solution during stirring and holding is reduced. Maintain 460 mV or higher.
したがって、本発明によれば、酸化剤等の薬剤も不要であるし、必要な設備も滞留槽とそれに付帯する撹拌機のみであり、低コストで塩素浸出残渣中のニッケルを放置浸出してニッケル品位を低下させることができることが長所である。 Therefore, according to the present invention, there is no need for chemicals such as an oxidant, and the only necessary equipment is a residence tank and a stirrer attached thereto, and the nickel in the chlorine leaching residue is left to leach at low cost. The advantage is that the quality can be lowered.
図1は、本発明の混合硫化物の浸出方法の一実施形態を示した工程図である。
従来の混合硫化物の浸出方法の工程において、塩素浸出工程の次工程として放置浸出工程を組み入れ、放置浸出液と放置浸出残渣からなる放置浸出後スラリーを得た後、そのスラリーを固液分離工程で放置浸出液と放置浸出残渣に分離し、浸出並びに放置浸出したニッケルを含む放置浸出液はセメンテーション工程に送られ、最終的に電気ニッケルへと転換される。
一方、放置浸出残渣は、その一部が残渣工程に送られ、残渣に含まれている硫黄と融解残渣に分離されて硫黄を回収し、融解残渣はセメンテーション工程へ送られる。他の一部の残渣は塩素浸出工程に繰り返され再使用される。そして残りの残渣は系外払い出しされる。
FIG. 1 is a process diagram showing an embodiment of the mixed sulfide leaching method of the present invention.
In the conventional mixed sulfide leaching method process, a standing leaching process is incorporated as the next process of the chlorine leaching process, and a slurry after standing leaching consisting of a standing leaching liquid and a standing leaching residue is obtained, and then the slurry is separated by a solid-liquid separation process The left leaching liquid containing the leached and left leached nickel separated into the left leaching liquid and the left leaching residue is sent to the cementation process, and finally converted into electric nickel.
On the other hand, a part of the left leaching residue is sent to the residue process, separated into sulfur contained in the residue and the molten residue to recover sulfur, and the molten residue is sent to the cementation process. Some other residues are repeated and reused in the chlorine leaching process. The remaining residue is paid out of the system.
図1では、放置浸出残渣の一部を系外払出しとしているが、従来通り、残渣工程から発生する固化残渣を系外に払出しても良い。なお、図1には固化残渣は不記載であるが、従来通り、固化残渣を発生させることができる。 In FIG. 1, a part of the left leaching residue is discharged out of the system, but the solidified residue generated from the residue process may be discharged out of the system as usual. In addition, although the solidification residue is not described in FIG. 1, a solidification residue can be generated as usual.
放置浸出工程の反応条件は、混合硫化物と塩化物水溶液を含む塩素浸出前スラリーに塩素ガスを吹き込み、混合硫化物からニッケルを塩素浸出後に得られる、塩素浸出残渣と塩素浸出液を含む塩素浸出後スラリーを、塩素ガスを吹き込まない状態、即ち新たに酸化剤を添加しない状態で、撹拌・保持することで塩素浸出残渣からニッケルを新たに浸出するものであれば、特に制限されない。
しかし、好ましくは、塩素浸出後スラリーに含まれる塩素浸出液の銅濃度を30〜60g/L、温度を60〜110℃、酸化還元電位を460mV(Ag/AgCl電極基準)以上とする。
The reaction condition of the standing leaching process is that after chlorine leaching including chlorine leaching residue and chlorine leaching liquid, which is obtained after chlorine leaching into slurry before chlorine leaching containing mixed sulfide and chloride aqueous solution and nickel leaching from mixed sulfide The slurry is not particularly limited as long as nickel is newly leached from the chlorine leaching residue by stirring and holding the slurry without blowing chlorine gas, that is, without newly adding an oxidizing agent.
However, preferably, the copper concentration of the chlorine leaching solution contained in the slurry after chlorine leaching is 30 to 60 g / L, the temperature is 60 to 110 ° C., and the oxidation-reduction potential is 460 mV (Ag / AgCl electrode standard) or more.
この塩素浸出液の銅濃度は、高い方が、塩素浸出液中の2価の銅クロロ錯イオンの含有量が多くなり放置浸出の効率が高くなる。
しかし、銅濃度が60g/Lを超えると、工程内の不純物としての銅濃度が高くなり、次工程等に悪影響を及ぼすため、避けた方がよい。また、30g/Lより低い場合は、浸出液中の2価の銅クロロ錯イオンの含有量が減少するため、放置浸出効率が低くなる。
The higher the copper concentration of the chlorine leaching solution, the higher the content of divalent copper chloro complex ions in the chlorine leaching solution, and the higher the efficiency of leaving leaching.
However, if the copper concentration exceeds 60 g / L, the concentration of copper as an impurity in the process becomes high and adversely affects the next process and the like. On the other hand, when it is lower than 30 g / L, the content of divalent copper chloro complex ions in the leaching solution is reduced, so that the leaching efficiency is lowered.
塩素浸出液の温度が60℃より低い場合は、高塩濃度の浸出液が結晶化する可能性がある。また、110℃を超えると設備構成材料の腐食が促進されるため、より高価な材料を選定する必要があること、昇温のため過度のエネルギーの使用が必要となること、その後の、固液分離工程前に浸出液を冷却する必要が生じること等の問題が生じ、合理的では無い。
前述のように、塩素浸出反応の温度条件は105〜115℃であるため、意図的に浸出液を冷却するなどしなければ、60〜110℃の条件で、放置浸出を行うことができる。
When the temperature of the chlorine leachate is lower than 60 ° C., the high salt concentration leachate may crystallize. Further, when the temperature exceeds 110 ° C., the corrosion of the equipment constituting material is promoted, so that it is necessary to select a more expensive material, it is necessary to use excessive energy for temperature rise, and the subsequent solid-liquid Problems such as the need to cool the leachate prior to the separation step arise and are not reasonable.
As described above, since the temperature condition of the chlorine leaching reaction is 105 to 115 ° C., the leaching can be performed under the condition of 60 to 110 ° C. unless the leachate is intentionally cooled.
浸出液の酸化還元電位が460mV(Ag/AgCl電極基準)未満のときは、1価の銅クロロ錯イオンの含有率が増加し、2価の銅クロロ錯イオンの含有率が減少するので、酸化力が低下して放置浸出効率が低くなる。
前述のように、塩素浸出反応条件は、反応時の塩化ニッケル水溶液の酸化還元電位が480〜560mVであるので、意図的に塩素浸出液を還元するなどしなければ、460mV(Ag/AgCl電極基準)以上の条件で、放置浸出を行うことができる。さらに、放置浸出工程では工程作業中に、この塩素浸出液の酸化還元電位変動を随時監視し、その値が460mV(Ag/AgCl電極基準)以上となるように、塩素浸出工程における酸化還元電位や塩素浸出液の銅濃度の調整を行い、また撹拌・保持時間の調整を行って、酸化還元電位を上記範囲内に維持する。
When the redox potential of the leachate is less than 460 mV (Ag / AgCl electrode standard), the content of monovalent copper chloro complex ions increases and the content of divalent copper chloro complex ions decreases. Decreases and the leaching efficiency is decreased.
As described above, the chlorine leaching reaction condition is that the oxidation-reduction potential of the nickel chloride aqueous solution during the reaction is 480 to 560 mV. Therefore, unless the chlorine leaching solution is intentionally reduced, 460 mV (Ag / AgCl electrode standard) Under the above conditions, the leaching can be performed. Furthermore, in the standing leaching process, the oxidation-reduction potential fluctuation of this chlorine leaching solution is monitored as needed during the process work, and the oxidation-reduction potential and chlorine in the chlorine leaching process are adjusted so that the value becomes 460 mV (Ag / AgCl electrode standard) or more. The copper concentration of the leachate is adjusted, and the agitation / holding time is adjusted to maintain the redox potential within the above range.
以下、本発明の一実施形態としてのニッケルの塩素浸出プロセスへの適用を例にとって、実施例および比較例により、本発明を詳細に説明する。なお、本実施例および比較例の記載により本発明の範囲が特別に限定されるものでは無い。 Hereinafter, the present invention will be described in detail by way of examples and comparative examples, taking as an example the application of the present invention to a chlorine leaching process of nickel. It should be noted that the scope of the present invention is not particularly limited by the description of the examples and comparative examples.
実施例1〜10では本発明を適用し商業規模のニッケルの塩素浸出プロセスにおいて、塩素浸出残渣の放置浸出操業を表1に示す条件で行った。
また、比較例1〜10では本発明を適用せず、図2に示す従来の工程に従って操業を行い、塩素浸出残渣の放置浸出を実施しなかった。
In Examples 1 to 10, the present invention was applied, and in a commercial-scale nickel chlorine leaching process, the leaching operation of chlorine leaching residue was performed under the conditions shown in Table 1.
Moreover, in Comparative Examples 1-10, this invention was not applied, it operated according to the conventional process shown in FIG. 2, and the chlorine leaching residue was not left-leached.
実施における放置浸出条件は、浸出液Cu濃度が35.0〜58.0g/Lの範囲、放置浸出温度が60〜110℃の範囲、スラリー濃度が100〜500g/Lの範囲、反応時間は1〜12時間とした。
また、塩素浸出液の酸化還元電位は460〜540mVの範囲で行った。
表1に、実施例1〜10、比較例1〜10の結果を合わせて示す。さらに、図3に、実施例4と実施例7における、反応時間とニッケル放置浸出率の関係を示した。
In the practice, the leaching conditions are as follows: the leachate Cu concentration is in the range of 35.0 to 58.0 g / L, the leaching temperature is in the range of 60 to 110 ° C., the slurry concentration is in the range of 100 to 500 g / L, and the reaction time is 1 to 1. It was 12 hours.
The oxidation-reduction potential of the chlorine leaching solution was in the range of 460 to 540 mV.
Table 1 shows the results of Examples 1 to 10 and Comparative Examples 1 to 10 together. Further, FIG. 3 shows the relationship between the reaction time and the nickel leaching rate in Example 4 and Example 7.
実施例1〜10の結果によれば、放置浸出によって塩素浸出残渣のNi品位が低下しており、本発明の放置浸出方法が有効であることが分かる。
また、図3の結果により、放置浸出時間は1時間以上が必要なことが分かる。
According to the results of Examples 1 to 10, it can be understood that the Ni leaching of the chlorine leaching residue is reduced by the standing leaching, and the standing leaching method of the present invention is effective.
Moreover, it can be seen from the results of FIG. 3 that the leaching time must be one hour or longer.
Claims (3)
前記混合硫化物に塩化物水溶液を加えて作製した前記混合硫化物と塩化物水溶液を含む塩素浸出前スラリーに塩素ガスを吹き込み、
前記混合硫化物からニッケルを塩素浸出して塩素浸出残渣と塩素浸出液を含む塩素浸出後スラリーを作製した後、塩素ガスの吹き込みを停止した状態で、前記塩素浸出後スラリーを撹拌・保持して放置浸出を行うことを特徴とする混合硫化物からのニッケルの塩素浸出方法。 In the method for leaching nickel from a mixed sulfide containing nickel and cobalt produced by a wet sulfidation reaction in a hydrometallurgical process of nickel oxide ore,
Chlorine gas is blown into the slurry before chlorine leaching containing the mixed sulfide and the aqueous chloride solution prepared by adding an aqueous chloride solution to the mixed sulfide,
After leaching nickel from the mixed sulfide to prepare a slurry after chlorine leaching containing chlorine leaching residue and chlorine leaching solution, stirring and holding the slurry after chlorine leaching with the chlorine gas blown stopped is allowed to stand A method for leaching nickel from a mixed sulfide characterized by leaching.
銅濃度が30〜60g/L、
温度が60〜110℃、
酸化還元電位が460mV(Ag/AgCl電極基準)以上、
の塩素浸出液であることを特徴とする請求項1に記載の混合硫化物からのニッケルの塩素浸出方法。 The chlorine leaching solution contained in the slurry after chlorine leaching is
Copper concentration is 30-60 g / L,
The temperature is 60-110 ° C,
The oxidation-reduction potential is 460 mV (Ag / AgCl electrode standard) or more,
The method for leaching nickel from a mixed sulfide according to claim 1, wherein the leaching solution is a chlorine leaching solution.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016163825 | 2016-08-24 | ||
JP2016163825 | 2016-08-24 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018035436A true JP2018035436A (en) | 2018-03-08 |
JP6662260B2 JP6662260B2 (en) | 2020-03-11 |
Family
ID=61566979
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016187082A Expired - Fee Related JP6662260B2 (en) | 2016-08-24 | 2016-09-26 | Chlorine leaching method of nickel from mixed sulfide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6662260B2 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009046736A (en) * | 2007-08-21 | 2009-03-05 | Sumitomo Metal Mining Co Ltd | Chlorine leaching method of nickel sulfide |
JP2010100938A (en) * | 2008-09-29 | 2010-05-06 | Sumitomo Metal Mining Co Ltd | Method for leaching nickel from mixed sulfides |
JP2012026027A (en) * | 2010-06-21 | 2012-02-09 | Sumitomo Metal Mining Co Ltd | Method for removing copper ions from copper-containing nickel chloride solution, and method for producing electrolytic nickel |
JP2015183282A (en) * | 2014-03-26 | 2015-10-22 | 住友金属鉱山株式会社 | Copper removal method for aqueous nickel chloride solution |
JP2015214737A (en) * | 2014-05-13 | 2015-12-03 | 住友金属鉱山株式会社 | Method of adjusting copper concentration of chlorine leachate in nickel chlorine leaching process |
JP2016044355A (en) * | 2014-08-26 | 2016-04-04 | 住友金属鉱山株式会社 | Treatment method of nickel sulfide raw material |
-
2016
- 2016-09-26 JP JP2016187082A patent/JP6662260B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009046736A (en) * | 2007-08-21 | 2009-03-05 | Sumitomo Metal Mining Co Ltd | Chlorine leaching method of nickel sulfide |
JP2010100938A (en) * | 2008-09-29 | 2010-05-06 | Sumitomo Metal Mining Co Ltd | Method for leaching nickel from mixed sulfides |
JP2012026027A (en) * | 2010-06-21 | 2012-02-09 | Sumitomo Metal Mining Co Ltd | Method for removing copper ions from copper-containing nickel chloride solution, and method for producing electrolytic nickel |
EP2584055A1 (en) * | 2010-06-21 | 2013-04-24 | Sumitomo Metal Mining Co., Ltd. | Method for removal of copper ions from copper-containing nickel chloride solution, and process for production of electrolytic nickel |
JP2015183282A (en) * | 2014-03-26 | 2015-10-22 | 住友金属鉱山株式会社 | Copper removal method for aqueous nickel chloride solution |
JP2015214737A (en) * | 2014-05-13 | 2015-12-03 | 住友金属鉱山株式会社 | Method of adjusting copper concentration of chlorine leachate in nickel chlorine leaching process |
JP2016044355A (en) * | 2014-08-26 | 2016-04-04 | 住友金属鉱山株式会社 | Treatment method of nickel sulfide raw material |
Also Published As
Publication number | Publication date |
---|---|
JP6662260B2 (en) | 2020-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102586627B (en) | Method for recovering bismuth from bismuth slag | |
JP7341395B2 (en) | Method for recovering copper, nickel, and cobalt from waste lithium-ion batteries | |
JP6011809B2 (en) | Method for producing gold powder with high bulk density | |
JP2019173107A (en) | Method of recovering tellurium | |
JP2013209732A (en) | Method for recovering nickel | |
JP4962078B2 (en) | Nickel sulfide chlorine leaching method | |
US4662938A (en) | Recovery of silver and gold | |
JP6335519B2 (en) | Method for treating antimony-containing material discharged from tin smelting process | |
JP6489378B2 (en) | Method for producing low chlorine concentration mixed aqueous solution of nickel sulfate and cobalt sulfate | |
JP6233478B2 (en) | Purification method of bismuth | |
JP6943141B2 (en) | Leaching method of mixed sulfide containing nickel and cobalt | |
KR101805704B1 (en) | Lead recovery way the disintegration of the metal oil prices from anode slime electrolytic refining | |
JP6127902B2 (en) | Method for leaching nickel and cobalt from mixed sulfides | |
JP5423592B2 (en) | Method for producing low chlorine nickel sulfate / cobalt solution | |
EP3155135A1 (en) | Process of extracting gold and silver from ores and mining by-products | |
JP6662260B2 (en) | Chlorine leaching method of nickel from mixed sulfide | |
JP5884870B1 (en) | How to recover nickel | |
JP6362029B2 (en) | Nickel sulfide raw material processing method | |
JP2013234356A (en) | Pyrometallurgy process for lead using high impurity-containing lead slag as raw material | |
JP5803492B2 (en) | Chlorine leaching method for metal sulfides | |
JP6418140B2 (en) | Nickel smelting method, chlorine leaching method | |
JP7194975B2 (en) | Method for recovering copper from chalcopyrite and solvent system used for the method | |
JP2020132957A (en) | Silver recovery method | |
KR101486668B1 (en) | Recovery of metalic tin from waste materials by aqueous extraction | |
JP2018145454A (en) | Method of recovering antimony |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190405 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20191209 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200114 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200127 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6662260 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |