JP2018145454A - Method of recovering antimony - Google Patents

Method of recovering antimony Download PDF

Info

Publication number
JP2018145454A
JP2018145454A JP2017038995A JP2017038995A JP2018145454A JP 2018145454 A JP2018145454 A JP 2018145454A JP 2017038995 A JP2017038995 A JP 2017038995A JP 2017038995 A JP2017038995 A JP 2017038995A JP 2018145454 A JP2018145454 A JP 2018145454A
Authority
JP
Japan
Prior art keywords
antimony
leaching
leachate
hydroxide
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017038995A
Other languages
Japanese (ja)
Other versions
JP6869053B2 (en
Inventor
翔一 公文
Shoichi Kumon
翔一 公文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metals and Mining Co Ltd
Original Assignee
Dowa Metals and Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metals and Mining Co Ltd filed Critical Dowa Metals and Mining Co Ltd
Priority to JP2017038995A priority Critical patent/JP6869053B2/en
Publication of JP2018145454A publication Critical patent/JP2018145454A/en
Application granted granted Critical
Publication of JP6869053B2 publication Critical patent/JP6869053B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently separate and recover antimony which contains few heavy metals as impurities and has high quality, from an antimony-containing material by a wet process.SOLUTION: A method of recovering antimony includes adding sodium hydroxide to a liquid in which a hydroxide containing antimony and potassium and a heavy metal are dissolved, to replace potassium in the hydroxide with sodium, thereby precipitating an antimony compound containing antimony and sodium.SELECTED DRAWING: Figure 1

Description

本発明は、アンチモンの回収方法に関する。   The present invention relates to a method for recovering antimony.

近年、アンチモン(Sb)は化合物半導体の材料として注目されており、その需要は高まっている。アンチモンを含む製品における不純物を低減するという要求は非常に強く、不純物を効率的に短時間で且つ確実に低減できる方法の必要性が高まっている。不純物としては、ヒ素(As)やビスマス(Bi)などの重金属がある。   In recent years, antimony (Sb) has attracted attention as a material for compound semiconductors, and its demand is increasing. The demand for reducing impurities in products containing antimony is very strong, and there is an increasing need for a method that can efficiently and reliably reduce impurities in a short time. Impurities include heavy metals such as arsenic (As) and bismuth (Bi).

一般に、高品位なアンチモンは、アンチモンを含む輝安鉱(Sb)を原料として製錬し、さらに乾式法で精錬して粗アンチモンを生成した後に、電解法等で品位を高めることで得られる。また、精錬においては、乾式法に比べて簡便な湿式法も検討されており、種々の方法が提案されている。 In general, high-grade antimony is produced by smelting antimony-containing antimony (Sb 2 S 3 ) as a raw material, further refined by a dry method to produce crude antimony, and then improving the quality by an electrolytic method or the like. can get. In refining, a simple wet method compared to the dry method has been studied, and various methods have been proposed.

湿式法として、例えば特許文献1では、高品位なアンチモンの製造過程で得られる中間産物(以下、アンチモン含有物ともいう)をフッ素および硫酸を含むフッ素含有液で処理する方法が提案されている。この方法では、フッ素含有液にアンチモンと他の重金属とを浸出させ、重金属のうちBiを硫化して除去した後、中和によりアンチモンを沈殿させることで、アンチモンを他の重金属から分離回収することができる。   As a wet method, for example, Patent Document 1 proposes a method of treating an intermediate product (hereinafter, also referred to as antimony-containing product) obtained in the production process of high-quality antimony with a fluorine-containing liquid containing fluorine and sulfuric acid. In this method, antimony and other heavy metals are leached into the fluorine-containing liquid, Bi of the heavy metals is removed by sulfurization, and then antimony is precipitated by neutralization to separate and recover antimony from the other heavy metals. Can do.

また例えば特許文献2では、硫化物状態のアンチモン含有物からアルカリの存在下でアンチモンを酸化浸出させる方法が提案されている。この方法では、硫化物状態のアンチモン含有物に水酸化ナトリウム溶液を接触させるとともに酸素を吹き込むことによりアンチモンを浸出させ、その後に沈殿させることで、アンチモンを他の重金属から分離回収することができる。   For example, Patent Document 2 proposes a method of oxidizing and leaching antimony in the presence of alkali from a sulfide-containing antimony-containing material. In this method, the antimony can be separated and recovered from other heavy metals by bringing the antimony-containing material in a sulfide state into contact with a sodium hydroxide solution and injecting oxygen into the antimony and then precipitating it.

特開2008−184653号公報JP 2008-184653 A 特開平11−80853号公報Japanese Patent Laid-Open No. 11-80853

ところが、特許文献1の方法では、重金属のうちBiは分離できるものの、ヒ素(As)を十分に分離することが困難である。ヒ素は、アンチモンと同族元素であって、硫化の際にはBiのように沈殿せずに浸出液に残存し、中和によりアンチモンを沈殿させるときに一緒に沈殿するためである。この方法では、Biを分離した後に別途Asを分離する必要があり、工程が複雑となる。   However, in the method of Patent Document 1, Bi of heavy metals can be separated, but it is difficult to sufficiently separate arsenic (As). This is because arsenic is an element similar to antimony and remains in the leachate without being precipitated like Bi during sulfidation, and precipitates together when antimony is precipitated by neutralization. In this method, it is necessary to separate As after separating Bi, which complicates the process.

一方、特許文献2の方法では、アンチモンからAsやBi等を容易に分離して除去できるが、アンチモンの溶解度が低く、アンチモンを浸出させにくいため、アンチモンを効率的に分離回収することが困難である。   On the other hand, in the method of Patent Document 2, As and Bi can be easily separated and removed from antimony, but the solubility of antimony is low and antimony is difficult to leach out, so it is difficult to efficiently separate and recover antimony. is there.

そこで、本発明は、湿式法によりアンチモン含有物から不純物である重金属が少なく高品位なアンチモンを効率的に分離回収する技術を提供することを目的とする。   Accordingly, an object of the present invention is to provide a technique for efficiently separating and recovering high-quality antimony with few heavy metals as impurities from an antimony-containing material by a wet method.

本発明の第1の態様は、
アンチモンおよびカリウムを含む水酸化物と重金属が溶存する液に水酸化ナトリウムを添加して、前記水酸化物における前記カリウムをナトリウムで置換し、前記アンチモンおよび前記ナトリウムを含むアンチモン化合物を沈殿させる、アンチモンの回収方法である。
The first aspect of the present invention is:
Adding sodium hydroxide to a solution in which a hydroxide and heavy metal containing antimony and potassium are dissolved, replacing the potassium in the hydroxide with sodium, and precipitating the antimony and the antimony compound containing sodium; This is a recovery method.

本発明の第2の態様は、
アンチモンおよび重金属を含むアンチモン含有物を水酸化カリウムおよび酸化剤を含む溶液に接触させて前記アンチモンを浸出させ、前記アンチモンおよびカリウムを含む水酸化物が溶存する浸出液と浸出残渣とに分離し、前記浸出液を回収する浸出工程と、
前記浸出液に水酸化ナトリウムを添加して、前記水酸化物における前記カリウムをナトリウムで置換し、前記アンチモンおよび前記ナトリウムを含むアンチモン化合物を沈殿させる置換工程と、を有する、アンチモンの回収方法である。
The second aspect of the present invention is:
The antimony-containing material containing antimony and heavy metal is brought into contact with a solution containing potassium hydroxide and an oxidizing agent to leach the antimony, and separated into a leachate in which the hydroxide containing antimony and potassium is dissolved and a leach residue, A leaching process for recovering the leachate;
A replacement step of adding sodium hydroxide to the leaching solution, replacing the potassium in the hydroxide with sodium, and precipitating the antimony and the antimony compound containing sodium.

本発明の第3の態様は、第2の態様に記載の発明において、
前記浸出工程の前に、前記アンチモン化合物を酸溶液に接触させ、前記重金属における鉛の含有量が20質量%以下となるように前記鉛を浸出させて除去する脱鉛工程を有する。
According to a third aspect of the present invention, in the invention according to the second aspect,
Before the leaching step, there is a deleading step of bringing the antimony compound into contact with an acid solution and leaching and removing the lead so that the content of lead in the heavy metal is 20% by mass or less.

本発明の第4の態様は、第3の態様に記載の発明において、
前記脱鉛工程を第1脱鉛工程としたとき、前記浸出工程と前記置換工程との間に、前記浸出工程で得られる前記浸出液から鉛を除去する第2脱鉛工程をさらに有し、
前記第2脱鉛工程では、前記浸出液に硫化剤を添加して鉛を硫化鉛として沈殿させて除去する。
According to a fourth aspect of the present invention, in the invention according to the third aspect,
When the deleading step is the first deleading step, the method further includes a second deleading step for removing lead from the leachate obtained in the leaching step between the leaching step and the replacement step,
In the second deleading step, a sulfiding agent is added to the leachate to precipitate and remove lead as lead sulfide.

本発明の第5の態様は、第2〜第4のいずれかの態様に記載の発明において、
前記置換工程では、前記浸出液の温度を20℃以上80℃以下とする。
According to a fifth aspect of the present invention, in the invention according to any one of the second to fourth aspects,
In the replacement step, the temperature of the leachate is set to 20 ° C. or higher and 80 ° C. or lower.

本発明の第6の態様は、第2〜第5のいずれかの態様に記載の発明において、
前記アンチモン含有物が、非鉄製錬の中間産物である。
According to a sixth aspect of the present invention, in the invention according to any one of the second to fifth aspects,
The antimony-containing material is an intermediate product of non-ferrous smelting.

本発明によれば、湿式法によりアンチモン含有物から不純物である重金属が少なく高品位なアンチモンを効率的に分離回収することができる。   According to the present invention, high-quality antimony with few heavy metals as impurities can be efficiently separated and recovered from an antimony-containing material by a wet method.

実施例1におけるアンチモンの回収方法を示す工程図である。FIG. 3 is a process diagram showing a method for collecting antimony in Example 1. 実施例2におけるアンチモンの回収方法を示す工程図である。6 is a process diagram showing a method for recovering antimony in Example 2. FIG. 鉛含有量の違いによるアンチモンの浸出を評価する浸出試験の工程図である。It is process drawing of the leaching test which evaluates the leaching of antimony by the difference in lead content. 溶液温度の違いによる置換反応を評価する試験の工程図である。It is process drawing of the test which evaluates the substitution reaction by the difference in solution temperature.

<本発明の一実施形態>
以下、本発明の一実施形態にかかるアンチモンの回収方法について、アンチモン含有物からアンチモンを浸出させて回収する方法を例に説明する。
<One Embodiment of the Present Invention>
Hereinafter, an antimony recovery method according to an embodiment of the present invention will be described by taking, as an example, a method of leaching and recovering antimony from antimony-containing materials.

本実施形態のアンチモンの回収方法は、準備工程、脱鉛工程、浸出工程および置換工程を有する。これらの工程は必要に応じて行われるものも含む。以下、各工程について説明する。なお、本明細書にて、各元素の含有量はICPやICP−MSなどの分析機器で測定されたものである。   The antimony recovery method of this embodiment includes a preparation process, a deleading process, a leaching process, and a replacement process. These steps include those performed as necessary. Hereinafter, each step will be described. In the present specification, the content of each element is measured by an analytical instrument such as ICP or ICP-MS.

(準備工程)
まず、アンチモン含有物を準備する。本実施形態のアンチモン含有物とは、アンチモンと重金属とを含むものであり、金属製錬過程で分離されたもの(以下、中間産物ともいう)、もしくは中間産物を処理して得られる金属元素が複数混在する金属状態のもの(以下、多金属塊ともいう)を示す。
(Preparation process)
First, an antimony-containing material is prepared. The antimony-containing material of the present embodiment includes antimony and heavy metal, and is separated in the metal smelting process (hereinafter also referred to as an intermediate product) or a metal element obtained by processing the intermediate product. The thing of the metal state which mixes two or more (henceforth a multi-metal lump) is shown.

中間産物は、例えば非鉄製錬所にて鉛製錬過程で得られる鉛残渣などが挙げられる。この中間産物には、アンチモンの他に、鉛、ヒ素、ビスマスなどが含まれ、さらに微量ではあるが、錫、カドミウム、銅、鉄、ニッケル、チタン、亜鉛などの各種金属も含まれている。   Examples of the intermediate products include lead residues obtained in the lead smelting process at a non-ferrous smelter. In addition to antimony, this intermediate product contains lead, arsenic, bismuth, and the like, and even trace amounts of various metals such as tin, cadmium, copper, iron, nickel, titanium, and zinc.

多金属塊は、中間産物を還元処理して、もしくは酸化物に改質して得られる。例えばコークスなどの還元剤とフラックス剤との混合物を用いて中間産物に加熱還元処理を施し、金属元素を金属状態までに還元して金属化させて得られる。この多金属塊は、主成分としてアンチモンを含み、他の成分としてヒ素、鉛、ビスマス、銅、亜鉛、テルル、カドミウムなどが含まれていてもよい。他の成分は元素の還元に応じた状態となっている。なお、多金属塊におけるアンチモンの品位(含有量)は低くてもよいが、アンチモンの回収を合理的に行う観点からは70質量%以上であるとよい。一方、本実施形態ではアンチモンの品位が99.9質量%を超えても微量なAsやBiを分離除去できるが、回収効率の観点からは99.9質量%以下であるとよい。   The multimetallic mass is obtained by reducing the intermediate product or modifying it into an oxide. For example, the intermediate product is obtained by subjecting the intermediate product to a heat reduction treatment using a mixture of a reducing agent such as coke and a fluxing agent, and reducing the metal element to a metal state to be metallized. This multimetallic mass contains antimony as a main component, and may contain arsenic, lead, bismuth, copper, zinc, tellurium, cadmium and the like as other components. Other components are in a state corresponding to the reduction of the element. In addition, although the quality (content) of antimony in a multi-metal lump may be low, it is good that it is 70 mass% or more from a viewpoint which collect | recovers antimony rationally. On the other hand, although trace amounts of As and Bi can be separated and removed even if the quality of antimony exceeds 99.9% by mass in this embodiment, it is preferably 99.9% by mass or less from the viewpoint of recovery efficiency.

アンチモン含有物としては、中間産物をそのまま用いてもよいが、中間産物を処理した多金属塊を用いることが好ましい。多金属塊は、金属状態であり、後述の浸出工程において中間産物と比べて溶解させやすく、効率的にアンチモンを浸出できるからである。また、多金属塊は中間産物を還元処理して金属化させたものであることが好ましい。多金属塊は中間産物を酸化物に改質しても得られるが、この場合、アンチモンも酸化され後述の浸出工程でアルカリ剤に浸出しにくくなるからである。
なお、多金属塊は塊状態のまま用いてもよいが、アトマイズ法により微細粉末に加工してもよい。微細粉末とすることで浸出工程でのアンチモンの浸出を促し、アンチモンの回収率とともに回収効率を高めることができるからである。
As the antimony-containing material, an intermediate product may be used as it is, but it is preferable to use a multi-metal block obtained by treating the intermediate product. This is because the multi-metal lump is in a metallic state and can be easily dissolved in the leaching step described later as compared with the intermediate product, and antimony can be leached efficiently. Moreover, it is preferable that the multimetallic mass is a metallized product obtained by reducing the intermediate product. This is because the multimetallic mass can be obtained by modifying the intermediate product into an oxide, but in this case, antimony is also oxidized and it is difficult to leach into the alkaline agent in the leaching step described later.
In addition, although a multimetallic lump may be used as a lump state, it may be processed into a fine powder by an atomizing method. This is because, by using a fine powder, leaching of antimony in the leaching process can be promoted, and the recovery efficiency can be enhanced together with the recovery rate of antimony.

(脱鉛工程)
続いて、準備したアンチモン含有物から重金属のうち鉛(Pb)を除去する。詳細は実施例で説明するが、本発明者の検討によると、Pbはアンチモン(Sb)の浸出を阻害し、その浸出量を減少させるとともに浸出に要する時間を長くさせることが分かった。そのため、Sbを効率的に浸出させて回収する観点からはアンチモン含有物におけるPbの含有量を低く抑えるとよく、Pbの含有量が好ましくは20質量%以下、より好ましくは10質量%以下、さらに好ましくは5質量%以下となるようにPbを除去するとよい。
(Delead process)
Subsequently, lead (Pb) is removed from the prepared antimony-containing material. Although details will be described in Examples, according to the study of the present inventors, it has been found that Pb inhibits leaching of antimony (Sb), reduces the amount of leaching, and increases the time required for leaching. Therefore, from the viewpoint of efficiently leaching and recovering Sb, the content of Pb in the antimony-containing material should be kept low, and the Pb content is preferably 20% by mass or less, more preferably 10% by mass or less, Pb is preferably removed so as to be 5% by mass or less.

具体的には、アンチモン含有物を酸溶液に接触させて、アンチモン含有物中のPbを酸溶液に浸出させることでアンチモン含有物からPbを除去する。そして、ろ過により固液分離することで、脱鉛によりPbの含有量が20質量%以下となったアンチモン含有物を得る。なお、酸溶液としてはアミド酸や硝酸などを用いることができる。   Specifically, Pb is removed from the antimony-containing material by bringing the antimony-containing material into contact with the acid solution and leaching Pb in the antimony-containing material into the acid solution. And the antimony containing material which became 20 mass% or less of Pb content by deleading by solid-liquid separation by filtration is obtained. As the acid solution, amide acid or nitric acid can be used.

なお、脱鉛後のPbが溶解する酸溶液は、硫酸などを添加してPbを硫酸鉛として沈殿させて取り除くことにより再使用するとよい。   In addition, it is good to reuse the acid solution in which Pb after lead removal dissolves by adding sulfuric acid or the like to precipitate and remove Pb as lead sulfate.

(浸出工程)
続いて、脱鉛後のアンチモン含有物を、水酸化カリウム(KOH)および酸化剤を含む溶液に接触させ、アンチモン含有物に含まれるSbを溶液に浸出させる。浸出させたSbはKOHとの反応により、SbおよびKを含む水酸化物、例えばアンチモン酸カリウムであるヘキサヒドロキソアンチモン酸カリウム(KSb(OH))を形成し、溶液に溶解する。一方、Sb以外の重金属(Pb、Biなど)はその多くが浸出せずにアンチモン含有物にとどまり、浸出残渣となる。すなわち、Sbを含む浸出液とその他の重金属を含む浸出残渣とに分離される。そして、ろ過により固液分離することで、Sbを含む抽出液を回収する。
(Leaching process)
Subsequently, the antimony-containing material after lead removal is brought into contact with a solution containing potassium hydroxide (KOH) and an oxidizing agent, and Sb contained in the antimony-containing material is leached into the solution. The leached Sb reacts with KOH to form a hydroxide containing Sb and K, for example, potassium hexahydroxoantimonate (KSb (OH) 6 ), which is potassium antimonate, and dissolves in the solution. On the other hand, most of heavy metals (Pb, Bi, etc.) other than Sb are not leached but remain in the antimony-containing material and become leaching residues. That is, it is separated into a leaching solution containing Sb and a leaching residue containing other heavy metals. And the extract containing Sb is collect | recovered by carrying out solid-liquid separation by filtration.

また、浸出工程では、Pbの含有量が20質量%以下であるアンチモン含有物を用いることで、PbによるSb浸出の阻害を抑制でき、Sbを効率的に浸出させることができる。すなわち、溶液へのSbの溶解度を高め、Sbの回収率を高めることができる。   In the leaching step, by using an antimony-containing material having a Pb content of 20% by mass or less, inhibition of Sb leaching by Pb can be suppressed, and Sb can be efficiently leached. That is, the solubility of Sb in the solution can be increased and the recovery rate of Sb can be increased.

浸出工程で得られた浸出液は、PbやBiなどの重金属が取り除かれて不純物の含有量が少ない一方、Sbを水酸化物の形態で多く含有している。ただし、この浸出液にはSbと同族元素であるAsがヒ酸塩として混入することがあるので、後述の置換工程によりSbと微量のAsとを分離する。   The leachate obtained in the leaching process contains a large amount of Sb in the form of hydroxide, while heavy metals such as Pb and Bi are removed and the content of impurities is low. However, since As, which is an element similar to Sb, may be mixed in this leachate as an arsenate, Sb and a trace amount of As are separated by a substitution step described later.

KOHの添加量は、アンチモン含有化合物に含まれるSbの化学等量以上とするとよい。一方、上限値は特に限定されないが、KOHの添加量が増えるのに応じて、後述の置換工程で添加する水酸化ナトリウムの添加量も増えるため、化学等量以上で過度に多くならないようにするとよい。   The amount of KOH added may be equal to or greater than the chemical equivalent of Sb contained in the antimony-containing compound. On the other hand, the upper limit is not particularly limited, but as the amount of KOH added increases, the amount of sodium hydroxide added in the substitution step described later also increases, so that it is not excessively increased beyond the chemical equivalent. Good.

酸化剤としては、例えば過酸化水素水、酸素ガス、オゾンガス、金属過酸化物などを用いることができるが、不純物を増やさない観点からは過酸化水素水、酸素ガスおよびオゾンガスが好ましく、この中でもコストおよび取り扱い性の観点からは酸素ガスがより好ましい。酸化剤として酸素ガスを用いる場合であれば、溶液に酸素ガスを吹き込みながらSbを浸出させるとよい。   As the oxidizing agent, for example, hydrogen peroxide water, oxygen gas, ozone gas, metal peroxide, and the like can be used. From the viewpoint of not increasing impurities, hydrogen peroxide water, oxygen gas, and ozone gas are preferable. From the viewpoint of handleability, oxygen gas is more preferable. If oxygen gas is used as the oxidant, Sb may be leached while blowing oxygen gas into the solution.

(置換工程)
続いて、回収した浸出液に水酸化ナトリウム(NaOH)を添加して撹拌する。これにより、SbおよびKを含む水酸化物におけるカリウム(K)をナトリウム(Na)で置換し、SbおよびNaを含有するアンチモン化合物を形成する。このアンチモン化合物は、例えばアンチモン酸ソーダであるヘキサヒドロキソアンチモン酸ナトリウム(NaSb(OH))であり、浸出液に不溶であるため沈殿することになる。一方、浸出液に混入するヒ素は沈殿せずにヒ酸塩のまま浸出液に残存する。すなわち、Sbを含む沈殿物(アンチモン化合物)と、微量のAsが残存する溶液とに分離することができる。そして、置換後に固液分離することでアンチモン化合物を得ることができる。
(Replacement process)
Subsequently, sodium hydroxide (NaOH) is added to the recovered leachate and stirred. Thereby, potassium (K) in the hydroxide containing Sb and K is replaced with sodium (Na) to form an antimony compound containing Sb and Na. This antimony compound is, for example, sodium hexahydroxoantimonate (NaSb (OH) 6 ), which is sodium antimonate, and precipitates because it is insoluble in the leachate. On the other hand, arsenic mixed in the leachate does not precipitate but remains in the leachate as arsenate. That is, it can be separated into a precipitate (antimony compound) containing Sb and a solution in which a trace amount of As remains. And an antimony compound can be obtained by carrying out solid-liquid separation after substitution.

置換工程で得られたアンチモン化合物は、不純物であるAs、Bi、Pbなどの重金属が少なく、アンチモンの品位が高い。アンチモン化合物はAsの含有量が2000ppm以下であり、工業的に使用可能である。   The antimony compound obtained in the substitution process has few heavy metals such as impurities such as As, Bi, and Pb, and has high antimony quality. The antimony compound has an As content of 2000 ppm or less and can be used industrially.

アンチモン化合物は乾式法もしくは湿式法で処理することにより、アンチモン化合物中のSbを金属アンチモンや酸化アンチモンなど所望の形態で分離することができる。例えば乾式法であれば、アンチモン化合物を酸化焼成することで酸化アンチモンが得られ、湿式法であれば、アンチモン化合物を還元剤を用いて還元することで金属アンチモンが得られる。   By treating the antimony compound by a dry method or a wet method, Sb in the antimony compound can be separated in a desired form such as metal antimony or antimony oxide. For example, in a dry method, antimony oxide is obtained by oxidizing and baking an antimony compound, and in a wet method, metal antimony is obtained by reducing the antimony compound using a reducing agent.

置換工程では、浸出液の温度を低く維持しつつ、浸出液に水酸化ナトリウムを添加することが好ましい。後述の実施例で示すように、浸出液の温度上昇にともなってアンチモン化合物が沈殿しにくくなり、沈殿率が低下するためである。このメカニズムは明確ではないが、浸出液の昇温によりアンチモン化合物が過飽和して沈殿しにくくなる、もしくは置換により生成する結晶核が小さく、アンチモン化合物が沈殿するような大きさまで成長しない、ことが推測される。このような点から、浸出液の温度は20℃以上80℃以下とすることが好ましく、40〜60℃とすることがより好ましい。このような温度に浸出液を保持しつつ、NaOHを添加することで、アンチモン化合物の沈殿を促し、その沈殿率を高めることができる。   In the replacement step, it is preferable to add sodium hydroxide to the leachate while keeping the temperature of the leachate low. This is because the antimony compound is less likely to precipitate as the temperature of the leachate rises, and the precipitation rate decreases, as shown in the examples described later. Although this mechanism is not clear, it is assumed that the antimony compound becomes supersaturated due to the temperature rise of the leachate and is difficult to precipitate, or the crystal nucleus produced by substitution is small and does not grow to such a size that the antimony compound precipitates. The From such a point, the temperature of the leachate is preferably 20 ° C. or more and 80 ° C. or less, and more preferably 40 to 60 ° C. By adding NaOH while keeping the leachate at such a temperature, precipitation of the antimony compound can be promoted and the precipitation rate can be increased.

置換工程において、Kを置換するために添加するNaOHの添加量は、浸出工程で添加したKOHの量に応じて適宜変更するとよい。添加量としては、水酸化物におけるSbに対するNaのモル比が好ましくは0.9倍以上、より好ましくは1倍以上1.3倍以下となるようにNaOHを添加することが好ましい。   In the replacement step, the amount of NaOH added to replace K may be appropriately changed according to the amount of KOH added in the leaching step. As the addition amount, it is preferable to add NaOH so that the molar ratio of Na to Sb in the hydroxide is preferably 0.9 times or more, more preferably 1 to 1.3 times.

なお、浸出液にNaOHを添加して置換させる時間(反応時間)は、反応量によって適宜変更するとよく、例えば10分〜120分程度とするとよい。また、浸出液を撹拌するときの強度(撹拌強度)は反応時間や装置仕様に応じて適宜変更するとよい。   In addition, the time (reaction time) for adding and replacing NaOH in the leachate may be appropriately changed depending on the reaction amount, for example, about 10 to 120 minutes. In addition, the strength (stirring strength) when stirring the leachate may be appropriately changed according to the reaction time and apparatus specifications.

<本実施形態にかかる効果>
本実施形態によれば、以下に示す1つ又は複数の効果を奏する。
<Effect according to this embodiment>
According to the present embodiment, the following one or more effects are achieved.

本実施形態では、アンチモン含有物をKOHを含む溶液に接触させて、SbおよびKを含む水酸化物が溶存する浸出液と、BiやPb等の他の重金属を含む浸出残渣とに分離し、浸出液を回収している。これにより、SbとBiやPbなどの重金属とを分離している。
そして、回収した浸出液にNaOHを添加することで、水酸化物におけるKとNaとを置換し、SbおよびNaを含むアンチモン化合物を生成して沈殿させている。回収した浸出液にはAsがヒ酸塩として混入することがあるが、アンチモン化合物を置換により沈殿させる一方、Asを溶液に残存させることで、これらを分離することができる。
すなわち、アンチモン含有物をKOHで浸出させるとともに、浸出で得られる水酸化物をNaOHにより置換することで、アンチモン含有物に含まれるSbとその他の重金属とを好適に分離することができる。これにより、不純物である重金属の少ないSbを効率よく回収することができる。
In this embodiment, the antimony-containing material is brought into contact with a solution containing KOH, and separated into a leachate in which a hydroxide containing Sb and K is dissolved, and a leach residue containing another heavy metal such as Bi or Pb, and the leachate Is recovered. Thereby, Sb and heavy metals such as Bi and Pb are separated.
Then, by adding NaOH to the recovered leachate, K and Na in the hydroxide are replaced, and an antimony compound containing Sb and Na is generated and precipitated. In the recovered leachate, As may be mixed as an arsenate, the antimony compound is precipitated by substitution, while the As is left in the solution, these can be separated.
That is, Sb contained in the antimony-containing material and other heavy metals can be suitably separated by leaching the antimony-containing material with KOH and replacing the hydroxide obtained by leaching with NaOH. Thereby, Sb with few heavy metals which are impurities can be efficiently recovered.

また、アンチモン含有物におけるPbの含有量を20質量%以下とすることで、PbによるSbの浸出阻害を抑制でき、Sbの溶解度を高めて、その回収率を向上させることができる。   In addition, when the content of Pb in the antimony-containing material is 20% by mass or less, inhibition of leaching of Sb by Pb can be suppressed, the solubility of Sb can be increased, and the recovery rate can be improved.

また、置換工程では、浸出液の温度を20℃以上80℃以下とすることにより、NaOHによる置換を促し、SbおよびNaを含むアンチモン化合物を効率よく沈殿させることができる。また、置換工程にて置換されたKは、KOHとなり前記浸出工程の浸出液に再利用できる。   In the substitution step, the temperature of the leachate is set to 20 ° C. or more and 80 ° C. or less, so that substitution with NaOH can be promoted, and the antimony compound containing Sb and Na can be efficiently precipitated. Further, K substituted in the substitution step becomes KOH and can be reused in the leachate in the leaching step.

<本発明の他の実施形態>
以上、本発明の実施形態について説明してきたが、本発明は、上述した実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々に改変することができる。
<Other Embodiments of the Present Invention>
As mentioned above, although embodiment of this invention has been described, this invention is not limited to the embodiment mentioned above at all, and can be variously modified within the range which does not deviate from the summary of this invention.

上述の実施形態では、浸出工程の前に、アンチモン含有物からPbを除去する脱鉛工程(第1脱鉛工程)を設けているが、浸出工程と置換工程との間に、浸出液からPbを除去する脱鉛工程(第2脱鉛工程)をさらに設けることが好ましい。浸出液にはSbの浸出の際にPbも浸出して混入することがあり、Sbの品位を低下させるおそれがある。しかし、第2脱鉛工程によれば、置換工程で沈殿させて得られるアンチモン化合物に含まれるPbをさらに低減し、Sbの品位をさらに向上させることができる。   In the above-described embodiment, a deleading step (first deleading step) for removing Pb from the antimony-containing material is provided before the leaching step, but Pb is removed from the leaching solution between the leaching step and the replacement step. It is preferable to further provide a deleading step (second deleading step) to be removed. When the Sb is leached, Pb may also be leached and mixed in the leachate, which may reduce the quality of Sb. However, according to the second deleading step, Pb contained in the antimony compound obtained by precipitation in the substitution step can be further reduced, and the quality of Sb can be further improved.

具体的には、第2脱鉛工程では、浸出工程で回収された浸出液に硫化剤を添加する。硫化剤は浸出液中のPbと反応して硫化鉛を形成する。硫化鉛は浸出液には不溶であるため沈殿することになる。そして、ろ過により固液分離することで硫化鉛を除去し、浸出液に含まれるPbを低減する。これにより、浸出液中のSbの含有量を減らすことなく、Pbの含有量を数10ppm以下にまで低減することができる。   Specifically, in the second deleading step, a sulfiding agent is added to the leachate collected in the leaching step. The sulfurizing agent reacts with Pb in the leachate to form lead sulfide. Lead sulfide precipitates because it is insoluble in the leachate. And lead sulfide is removed by carrying out solid-liquid separation by filtration, and Pb contained in a leachate is reduced. Thereby, the content of Pb can be reduced to several tens ppm or less without reducing the content of Sb in the leachate.

なお、硫化剤としては、例えば硫化水素ナトリウムや硫化水素などを用いることができる。また、第2脱鉛工程で沈殿させて得られる硫化鉛は、別工程にて金属鉛として回収することもでき、そのまま製錬原料として使用することもできる。   As the sulfiding agent, for example, sodium hydrogen sulfide or hydrogen sulfide can be used. Moreover, the lead sulfide obtained by precipitation in the second deleading step can be recovered as metallic lead in a separate step, and can be used as a raw material for smelting as it is.

以下、本発明の金属粒子分散液について、実施例及び比較例によりさらに詳細に説明する。なお、本発明はこれらにより何ら限定されるものではない。薬剤の量については、実施の形態に記載の範囲としてある。   Hereinafter, the metal particle dispersion of the present invention will be described in more detail with reference to Examples and Comparative Examples. In addition, this invention is not limited at all by these. The amount of the drug is within the range described in the embodiment.

(実施例1)
本実施例では、アンチモン含有物として、非鉄製錬の過程で得られたPb−Sbスラグを用いた。このPb−Sbスラグに含まれる各元素の組成を下記表1に示す。なお、表1では質量%をwt%で表記している。
Example 1
In this example, Pb—Sb slag obtained in the process of non-ferrous smelting was used as the antimony-containing material. The composition of each element contained in this Pb—Sb slag is shown in Table 1 below. In Table 1, mass% is expressed as wt%.

表1に示すように、鉛残渣には、鉛、アンチモン、ヒ素、ビスマス等が含まれ、微量であるが、錫、カドミニウム、銅、鉄、ニッケル、硫黄、チタン、亜鉛等の各種金属が雑多に含まれていた。   As shown in Table 1, the lead residue contains lead, antimony, arsenic, bismuth, etc., and it is a trace amount, but various metals such as tin, cadmium, copper, iron, nickel, sulfur, titanium, zinc are miscellaneous. It was included in.

この鉛残渣から図1に示す手順でアンチモンを回収した。図1は、実施例1におけるアンチモンを回収する工程図である。なお、図1では、容器、装置、大気雰囲気等、通常の操作は省略してある。   Antimony was recovered from this lead residue by the procedure shown in FIG. FIG. 1 is a process diagram for recovering antimony in Example 1. In FIG. 1, normal operations such as a container, an apparatus, and an atmospheric atmosphere are omitted.

具体的には、まず、Pb−Sbスラグをコークスおよびフラックスと混合して加熱することにより乾式還元処理を施し、多金属塊(Pb−Sbメタル)を得た。この多金属塊を粉砕することで粒径が100μm以下の金属粉を形成した。続いて、金属粉をアミド酸に添加して、金属粉に含まれるPbを浸出させて脱鉛処理を行った。その後、ろ過により、脱鉛後の金属粉(Sbメタル)を回収した。この金属粉に含まれる各元素の組成を下記表2に示す。なお、表2では質量%をwt%で表記している。   Specifically, first, Pb—Sb slag was mixed with coke and flux and heated to perform a dry reduction treatment to obtain a multi-metal lump (Pb—Sb metal). By pulverizing this multi-metal lump, a metal powder having a particle size of 100 μm or less was formed. Subsequently, the metal powder was added to amic acid, and Pb contained in the metal powder was leached to perform a deleading process. Then, the metal powder (Sb metal) after deleading was collect | recovered by filtration. The composition of each element contained in this metal powder is shown in Table 2 below. In Table 2, mass% is expressed as wt%.

表2に示すように、金属粉から脱鉛することによりPbの含有量を低減し、Sbの含有比率を向上できることが確認された。   As shown in Table 2, it was confirmed that the Pb content can be reduced and the Sb content ratio can be improved by deleading from the metal powder.

次に、水酸化カリウム溶液(濃度50g/L)に酸素を吹き込みつつ溶液に脱鉛後の金属粉を添加し、Sbを浸出させた。所定時間後、固液分離することにより、Sbを含む浸出液を回収した。この浸出液にはSbとKOHとの反応により生成したアンチモン酸カリウムとして、ヘキサヒドロキソアンチモン酸カリウム(KSb(OH))が溶解しているものと考えられる。
KOH+Sb+O+HO→KSb(OH)・・・(1)
なお、式(1)は総括的な反応を示しており、各成分の係数は省略している。
Next, metal powder after deleading was added to the solution while blowing oxygen into a potassium hydroxide solution (concentration 50 g / L), and Sb was leached. After a predetermined time, the leachate containing Sb was recovered by solid-liquid separation. It is considered that potassium hexahydroxoantimonate (KSb (OH) 6 ) is dissolved in this leachate as potassium antimonate produced by the reaction between Sb and KOH.
KOH + Sb + O 2 + H 2 O → KSb (OH) 6 (1)
In addition, Formula (1) has shown the general reaction and the coefficient of each component is abbreviate | omitted.

続いて、浸出液にNaOHを添加し、下記式(2)に示す置換反応により、溶液中のアンチモン酸カリウム(KSb(OH))を不溶性のアンチモン酸ソーダであるヘキサヒドロキソアンチモン酸ナトリウム(NaSb(OH))として沈殿させた。
KSb(OH)+NaOH→NaSb(OH)+KOH・・・(2)
なお、式(2)は総括的な反応を示しており、各成分の係数は省略している。
Subsequently, NaOH is added to the leachate, and potassium antimonate (KSb (OH) 6 ) in the solution is converted to insoluble sodium antimonate sodium hexahydroxoantimonate (NaSb (NaSb (Na)) by the substitution reaction shown in the following formula (2). Precipitated as OH) 6 ).
KSb 6 (OH) 6 + NaOH → NaSb (OH) 6 + KOH (2)
In addition, Formula (2) has shown general reaction and the coefficient of each component is abbreviate | omitted.

アンチモン化合物に含まれる各元素の組成を下記表3に示す。最終的に、沈殿させたNaSb(OH)(アンチモン化合物)を還元することにより金属アンチモンを得た。なお、表3では質量%をwt%で表記している。他、Naや酸素については含有しているが省略している。 The composition of each element contained in the antimony compound is shown in Table 3 below. Finally, metal antimony was obtained by reducing the precipitated NaSb (OH) 6 (antimony compound). In Table 3, mass% is expressed as wt%. In addition, Na and oxygen are contained but omitted.

表3に示すように、沈殿させて回収されたアンチモン化合物は、PbおよびAsが分離され、Sbが高品位であることが確認された。各元素について中間産物からのアンチモン化合物への物量分配率を求めたところ、Sbが86%、Asが1%以下、Pbが2%以下、Sが1%以下であることが分かった。   As shown in Table 3, in the antimony compound recovered by precipitation, it was confirmed that Pb and As were separated and Sb was of high quality. When the quantity distribution ratio from the intermediate product to the antimony compound was determined for each element, it was found that Sb was 86%, As was 1% or less, Pb was 2% or less, and S was 1% or less.

(実施例2)
実施例2は、図2に示すように、実施例1における浸出工程と置換工程との間に浸出液の脱鉛工程(第2脱鉛工程)を設けた以外は、実施例1と同様の手順で行った。浸出液の脱鉛工程は、浸出液に硫化剤として硫化水素ナトリウム(NaHS)を添加し、浸出液に含まれる鉛を硫化鉛として沈殿させ、この硫化鉛をろ過により固液分離することで除去した。
実施例2で最終的に沈殿させて得られたアンチモン化合物について各元素の組成を測定したところ、表3に示すように、PbおよびAsが分離されており、Sbの品位が実施例1よりも高くなることが確認された。
(Example 2)
As shown in FIG. 2, Example 2 is the same procedure as Example 1 except that a leachate deleading step (second deleading step) is provided between the leaching step and the replacing step in Example 1. I went there. In the leachate deleading step, sodium hydrogen sulfide (NaHS) was added to the leachate as a sulfiding agent, lead contained in the leachate was precipitated as lead sulfide, and the lead sulfide was removed by solid-liquid separation by filtration.
When the composition of each element was measured for the antimony compound finally obtained by precipitation in Example 2, as shown in Table 3, Pb and As were separated, and the quality of Sb was higher than that of Example 1. It was confirmed that it would be higher.

(実施例3)
実施例3では、PbによるSbの浸出阻害について評価するため、Pbの含有量が異なる複数のサンプルを準備し、それぞれのサンプルについて浸出試験を行った。
まず、鉛残渣から得られる多金属塊を模擬したサンプルを作製した。具体的には、図3に示すように、アンチモン金属(Sbメタル)と鉛金属(Pbメタル)とをPbの含有量が所定量となるように混合し、これらをマッフル炉で溶解し、多金属塊を作製した。ここでは、下記表4に示すように、Pb含有量を20質量%、10質量%および5質量%に調整し、サンプル1からサンプル3を作製した。
続いて、得られたサンプル1〜3を粉砕して篩分けをし、目開き100μm以下の篩下の金属粉を得た。この金属粉50gを、水酸化カリウム溶液(濃度63g/L)にて、溶解温度70℃、酸素を吹き込む条件下で、アンチモンの溶出試験を行った。また、サンプル4および5として、サンプル3の多金属塊について溶解温度を50℃または90℃に変更して浸出試験を行った。各サンプルで得られた浸出液について化学分析を行い、各元素の組成を測定した。その結果を表4に示す。
(Example 3)
In Example 3, in order to evaluate the inhibition of Sb leaching by Pb, a plurality of samples having different Pb contents were prepared, and a leaching test was performed on each sample.
First, a sample simulating a multimetallic lump obtained from a lead residue was prepared. Specifically, as shown in FIG. 3, antimony metal (Sb metal) and lead metal (Pb metal) are mixed so that the content of Pb becomes a predetermined amount, and these are melted in a muffle furnace. A metal mass was made. Here, as shown in Table 4 below, the Pb content was adjusted to 20 mass%, 10 mass%, and 5 mass%, and Sample 1 to Sample 3 were produced.
Subsequently, the obtained samples 1 to 3 were pulverized and sieved to obtain a metal powder under a sieve having an opening of 100 μm or less. An antimony elution test was conducted on 50 g of this metal powder using a potassium hydroxide solution (concentration 63 g / L) under the conditions of a melting temperature of 70 ° C. and oxygen blowing. Further, as Samples 4 and 5, the leaching test was performed on the multimetallic mass of Sample 3 while changing the melting temperature to 50 ° C or 90 ° C. Chemical analysis was performed on the leachate obtained from each sample, and the composition of each element was measured. The results are shown in Table 4.

サンプル1〜3によると、多金属塊に含まれる鉛含有量が低いほど、Sb溶解率が高く、アンチモンが浸出しやすいことが確認できた。このことから、多金属塊に含まれる鉛含有量としては、好ましくは20質量%以下、より好ましくは10質量%以下、さらに好ましくは5質量%以下であることが分かる。鉛含有量が増えることでアンチモンが浸出しにくくなる理由は、本実施例で用いたサンプルがPb−Sb合金を形成しており、鉛含有量が増えることで鉛化合物が結晶表面(粒界)に形成し、アンチモンが覆われ、アンチモンの浸出が鈍化したためと推測される。また、鉛が浸出の際にアルカリと反応し、難溶性の化合物を金属粉の表面に形成したためとも推測される。なお、ここでのサンプルは、溶解により作製されているため合金状態にあるが、その他の形態として、鉛等が分離状態、例えば単体粉体で含有されている場合は、鉛の含有率は20%以上でも構わない。アンチモンの浸出への影響は少ないためである。
また、サンプル3〜5によると、浸出させるときの溶液温度は70℃程度であるとよいことが確認できた。
According to Samples 1 to 3, it was confirmed that the lower the lead content contained in the multi-metal lump, the higher the Sb dissolution rate and the easier leaching of antimony. From this, it can be seen that the lead content contained in the multimetallic mass is preferably 20% by mass or less, more preferably 10% by mass or less, and further preferably 5% by mass or less. The reason why antimony is difficult to leach out as the lead content increases is that the sample used in this example forms a Pb-Sb alloy, and the lead compound increases as the lead content increases on the crystal surface (grain boundaries). It is presumed that the antimony was covered and the antimony leaching slowed down. It is also presumed that lead reacted with alkali during leaching to form a hardly soluble compound on the surface of the metal powder. The sample here is in an alloy state because it is prepared by melting, but as another form, when lead or the like is contained in a separated state, for example, a single powder, the lead content is 20 % Or more. This is because it has little effect on antimony leaching.
Moreover, according to the samples 3-5, it has confirmed that the solution temperature at the time of leaching should be about 70 degreeC.

(実施例4)
実施例4では、水酸化ナトリウムを用いて置換するときの溶液温度の影響を評価するため、サンプル溶液(元液)を準備し、溶液温度を適宜変更して置換反応を行い、そのときの沈殿物の生成量を測定した。
具体的には、中間産物(鉛残渣)から実施例1と同様に前処理を行い、水酸化カリウムに溶解し、元液を準備した。元液の組成を下記表5に示す。
(Example 4)
In Example 4, in order to evaluate the influence of the solution temperature when substituting with sodium hydroxide, a sample solution (original solution) is prepared, and the substituting reaction is performed by appropriately changing the solution temperature. The amount of product produced was measured.
Specifically, the intermediate product (lead residue) was pretreated in the same manner as in Example 1, dissolved in potassium hydroxide, and an original solution was prepared. The composition of the original solution is shown in Table 5 below.

続いて、この元液を、図4に示すように40℃、60℃、80℃にそれぞれ昇温して、フレークもしくは48%の水酸化ナトリウムを6g溶解し、撹拌した。所定の時間反応させた後、ろ過により固液分離して沈殿物(残渣)を得た。各溶液温度で置換させて得られた残渣のそれぞれについて、組成を測定したところ、下記表6に示すような結果が得られた。   Subsequently, the original solution was heated to 40 ° C., 60 ° C., and 80 ° C. as shown in FIG. 4 to dissolve 6 g of flakes or 48% sodium hydroxide, followed by stirring. After reacting for a predetermined time, solid-liquid separation was performed by filtration to obtain a precipitate (residue). When the composition was measured for each of the residues obtained by substitution at each solution temperature, the results shown in Table 6 below were obtained.

サンプル6〜8によると、Sb沈殿率を高くする観点からは置換工程での溶液温度を低くするとよいことが確認された。   According to Samples 6 to 8, it was confirmed that the solution temperature in the substitution step should be lowered from the viewpoint of increasing the Sb precipitation rate.

(実施例5)
実施例5では、置換工程でのSbに対するNaOHの反応等量による影響を評価するため、SbとNaとのモル比を適宜変更して置換を行った。具体的には、実施例4と同様に元液を準備し、NaOHの添加量を適宜変更してSbに対するNaのモル比(Na/Sb)を下記表7に示すように変化させて置換工程を行った。
置換による沈殿物について組成を測定したところ、モル比を1以上とすることにより、Sb沈殿率を高く維持でき、アンチモンを効率的に回収できることが確認された。なお、この置換を複数回行う多段処理をすることも実際には想定され、その場合は、当該モル比は0.9以上としても良い。上限値については特に限定されないが、コストの観点から1.3以下とするとよいことが確認された。なお、敢えて当量より少なくし(1未満)すれば、沈殿物のアンチモン品位が54%と高くなることから、品位の高いアンチモンを回収できることが確認された。
(Example 5)
In Example 5, in order to evaluate the influence of the reaction equivalent of NaOH to Sb in the substitution step, substitution was performed by appropriately changing the molar ratio of Sb and Na. Specifically, the original solution is prepared in the same manner as in Example 4, and the substitution step is performed by changing the addition amount of NaOH as appropriate and changing the molar ratio of Na to Sb (Na / Sb) as shown in Table 7 below. Went.
As a result of measuring the composition of the precipitate by substitution, it was confirmed that by setting the molar ratio to 1 or more, the Sb precipitation rate can be maintained high and antimony can be efficiently recovered. In addition, it is actually assumed that a multistage process in which this replacement is performed a plurality of times is performed. In this case, the molar ratio may be 0.9 or more. Although it does not specifically limit about an upper limit, It was confirmed that it is good to set it as 1.3 or less from a viewpoint of cost. In addition, if it dares to be less than an equivalent (less than 1), since the antimony quality of the precipitate will be as high as 54%, it was confirmed that high quality antimony can be recovered.

以上のように、本発明によれば、アンチモン含有物から水酸化カリウムを用いてアンチモンを浸出させて、浸出液に水酸化ナトリウムを添加して置換することにより、アンチモン化合物を効率よく回収することができる。   As described above, according to the present invention, antimony compounds can be efficiently recovered by leaching antimony from an antimony-containing material using potassium hydroxide and adding sodium hydroxide to the leaching solution for replacement. it can.

Claims (6)

アンチモンおよびカリウムを含む水酸化物と重金属が溶存する液に水酸化ナトリウムを添加して、前記水酸化物における前記カリウムをナトリウムで置換し、前記アンチモンおよび前記ナトリウムを含むアンチモン化合物を沈殿させる、アンチモンの回収方法。   Adding sodium hydroxide to a solution in which a hydroxide and heavy metal containing antimony and potassium are dissolved, replacing the potassium in the hydroxide with sodium, and precipitating the antimony and the antimony compound containing sodium; Recovery method. アンチモンおよび重金属を含むアンチモン含有物を水酸化カリウムおよび酸化剤を含む溶液に接触させて前記アンチモンを浸出させ、前記アンチモンおよびカリウムを含む水酸化物が溶存する浸出液と浸出残渣とに分離し、前記浸出液を回収する浸出工程と、
前記浸出液に水酸化ナトリウムを添加して、前記水酸化物における前記カリウムをナトリウムで置換し、前記アンチモンおよび前記ナトリウムを含むアンチモン化合物を沈殿させる置換工程と、を有する、アンチモンの回収方法。
The antimony-containing material containing antimony and heavy metal is brought into contact with a solution containing potassium hydroxide and an oxidizing agent to leach the antimony, and separated into a leachate in which the hydroxide containing antimony and potassium is dissolved and a leach residue, A leaching process for recovering the leachate;
A replacement step of adding sodium hydroxide to the leaching solution, replacing the potassium in the hydroxide with sodium, and precipitating the antimony and the antimony compound containing sodium.
前記浸出工程の前に、前記アンチモン含有物を酸溶液に接触させ、前記重金属における鉛の含有量が20質量%以下となるように前記鉛を浸出させて除去する脱鉛工程を有する、請求項2に記載のアンチモンの回収方法。   Before the leaching step, there is a deleading step of bringing the antimony-containing material into contact with an acid solution and leaching and removing the lead so that the content of lead in the heavy metal is 20% by mass or less. 2. The method for recovering antimony according to 2. 前記脱鉛工程を第1脱鉛工程としたとき、前記浸出工程と前記置換工程との間に、前記浸出工程で得られる前記浸出液から鉛を除去する第2脱鉛工程をさらに有し、
前記第2脱鉛工程では、前記浸出液に硫化剤を添加して鉛を硫化鉛として沈殿させて除去する、請求項2又は3に記載のアンチモンの回収方法。
When the deleading step is the first deleading step, the method further includes a second deleading step for removing lead from the leachate obtained in the leaching step between the leaching step and the replacement step,
The antimony recovery method according to claim 2 or 3, wherein, in the second deleading step, a sulfurizing agent is added to the leachate to precipitate and remove lead as lead sulfide.
前記置換工程では、前記浸出液の温度を20℃以上80℃以下とする、
請求項2〜4のいずれか1項に記載のアンチモンの回収方法。
In the replacement step, the temperature of the leachate is 20 ° C. or more and 80 ° C. or less.
The method for recovering antimony according to any one of claims 2 to 4.
前記アンチモン含有物が、非鉄製錬の中間産物である、
請求項2〜5のいずれか1項に記載のアンチモンの回収方法。
The antimony-containing material is an intermediate product of non-ferrous smelting,
The method for recovering antimony according to any one of claims 2 to 5.
JP2017038995A 2017-03-02 2017-03-02 How to collect antimony Active JP6869053B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017038995A JP6869053B2 (en) 2017-03-02 2017-03-02 How to collect antimony

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017038995A JP6869053B2 (en) 2017-03-02 2017-03-02 How to collect antimony

Publications (2)

Publication Number Publication Date
JP2018145454A true JP2018145454A (en) 2018-09-20
JP6869053B2 JP6869053B2 (en) 2021-05-12

Family

ID=63590745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017038995A Active JP6869053B2 (en) 2017-03-02 2017-03-02 How to collect antimony

Country Status (1)

Country Link
JP (1) JP6869053B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190052632A (en) * 2017-11-08 2019-05-16 제일화학주식회사 Method for preparing Sodium Antimonate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190052632A (en) * 2017-11-08 2019-05-16 제일화학주식회사 Method for preparing Sodium Antimonate
KR102021997B1 (en) 2017-11-08 2019-09-18 제일화학주식회사 Method for preparing Sodium Antimonate

Also Published As

Publication number Publication date
JP6869053B2 (en) 2021-05-12

Similar Documents

Publication Publication Date Title
JP5904459B2 (en) Manufacturing method of high purity nickel sulfate
US4293332A (en) Hydrometallurgical process for recovering precious metals from anode slime
Guo et al. Recovery of metal values from waste printed circuit boards using an alkali fusion–leaching–separation process
CA2798302C (en) Process for recovering valuable metals from precious metal smelting slag
JP5445777B2 (en) Method for producing ferronickel smelting raw material from low-grade nickel oxide ore
CN105112674A (en) All-wet recovery process for waste circuit boards
JP2013139595A (en) Method for recovering valuables from impurity lump containing copper derived from lead smelting
CN103952563A (en) Method for removing arsenic from white smoke
JP5507310B2 (en) Method for producing valuable metals
JP2010138490A (en) Method of recovering zinc
JP6869053B2 (en) How to collect antimony
JP5835961B2 (en) Metal leaching method
JP2015134954A (en) Method for treating antimony-containing material discharged from tin smelting process
JP5188768B2 (en) Tin recovery method
Liu et al. Comprehensive recovery of Sn-Cu bearing residue and preparation of high purity SnO2 and CuSO4· 5H2O
JP7121885B2 (en) Cobalt and nickel separation method
JP5423592B2 (en) Method for producing low chlorine nickel sulfate / cobalt solution
JP2011058018A (en) Method for recovering gold concentrate from leach residue of copper sulfide minerals
JP2020132957A (en) Silver recovery method
JP2015081371A (en) Method of exuding nickel and cobalt from mixed sulfide
Wang et al. Preparation of nano zinc oxide by alkaline treatment of industrial zinc oxide dust
US1011899A (en) Metallurgy of metal sulfids.
WO2023191030A1 (en) Electrode material leaching method and method for separating cobalt and nickel
US1513200A (en) Treatment of vanadium ores
CN103966449B (en) A kind of method preparing terne metal from silver separating residue of copper anode slime

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210413

R150 Certificate of patent or registration of utility model

Ref document number: 6869053

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250