JP2010100938A - Method for leaching nickel from mixed sulfides - Google Patents

Method for leaching nickel from mixed sulfides Download PDF

Info

Publication number
JP2010100938A
JP2010100938A JP2009220194A JP2009220194A JP2010100938A JP 2010100938 A JP2010100938 A JP 2010100938A JP 2009220194 A JP2009220194 A JP 2009220194A JP 2009220194 A JP2009220194 A JP 2009220194A JP 2010100938 A JP2010100938 A JP 2010100938A
Authority
JP
Japan
Prior art keywords
leaching
nickel
reaction
chlorine
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009220194A
Other languages
Japanese (ja)
Other versions
JP5440070B2 (en
Inventor
Chu Kobayashi
宙 小林
Masaki Imamura
正樹 今村
Hiroshi Shoji
浩史 庄司
Tatsuya Higaki
達也 檜垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2009220194A priority Critical patent/JP5440070B2/en
Publication of JP2010100938A publication Critical patent/JP2010100938A/en
Application granted granted Critical
Publication of JP5440070B2 publication Critical patent/JP5440070B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide a chlorine-leaching method for recovering nickel and cobalt from mixed sulfides with a high leaching rate while preventing the vaporization of chlorine gas and suppressing the oxidation and fusing of elemental sulfur in a lixiviation residue, in a method of chlorine-leaching nickel from the mixed sulfides obtained through a wet sulfidizing reaction. <P>SOLUTION: When blowing chlorine gas into a slurry containing the mixed sulfides and a leachate formed of an aqueous solution of a chloride to leach out nickel and cobalt from the mixed sulfides, in the method of chlorine-leaching nickel from the mixed sulfides which are obtained through the wet sulfidizing reaction and contain coprecipitated cobalt and NiS as a main component, this leaching method includes: controlling grain sizes of the mixed sulfides at a specific range; adjusting a Cu concentration in the leachate to 10-60 g/L; and also adjusting an oxidation-reduction potential (Ag/AgCl electrode base) to 480-550 mV and controlling the pH to 1.0 to -1.0 by adjusting an amount of chlorine gas to be blown. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、混合硫化物からのニッケルの浸出方法に関し、さらに詳しくは、湿式硫化反応により得られる共沈澱したコバルトを含み、主成分がNiSである混合硫化物を塩素浸出する方法において、塩素ガスの揮散を防止し、及び元素状イオウの酸化と融着を抑制しながら、該混合硫化物からニッケルを高い浸出率で浸出する方法に関する。   The present invention relates to a method for leaching nickel from a mixed sulfide, and more particularly, in a method for chlorine leaching of a mixed sulfide containing co-precipitated cobalt obtained by a wet sulfidation reaction and containing NiS as a main component. The present invention relates to a method for leaching nickel from the mixed sulfide at a high leaching rate while preventing volatilization of the element and suppressing oxidation and fusion of elemental sulfur.

従来、ニッケル及びコバルトを含む硫化物原料としては、硫鉄ニッケル鉱など硫化物鉱石や、ニッケル含有量の多い磁硫鉄鉱を溶鉱炉でとかして得られるニッケルマットが主体であったが、近年に至り、地球上に豊富に存在するニッケル酸化鉱を酸浸出し、例えば、硫化水素を用いて硫化物として回収された共沈澱したコバルトを含み、主成分がNiSである混合硫化物(以下、混合硫化物と呼称する場合もある。)が新たな原料として注目されている。
なお、ニッケルマットは、熔融された硫化物を冷却して固形化させたものであり、主成分であるNi相とニッケルを主とする金属相が緻密に析出した組織を有している。一方、混合硫化物は、前記したようにニッケル酸化鉱を酸浸出して得られる浸出液から硫化反応により沈殿された粉末状のもので、主成分としては、NiSと共沈殿したCoSである。
Conventionally, as a sulfide raw material containing nickel and cobalt, sulfide ore such as iron ore nickel ore and nickel matte obtained by dissolving a pyrrhotite with a high nickel content in a blast furnace, but in recent years, Nickel oxide ore abundantly present on the earth is acid leached, for example, mixed sulfide containing co-precipitated cobalt recovered as sulfide using hydrogen sulfide, the main component of which is NiS (hereinafter, mixed sulfide) Is also attracting attention as a new raw material.
The nickel mat is obtained by cooling and solidifying a molten sulfide, and has a structure in which a Ni 3 S 2 phase as a main component and a metal phase mainly composed of nickel are densely precipitated. Yes. On the other hand, the mixed sulfide is a powder that is precipitated by a sulfurization reaction from the leachate obtained by acid leaching of nickel oxide ore as described above, and the main component is CoS co-precipitated with NiS.

ニッケルマットからニッケルを浸出する方法としては、塩素浸出法が実用化されている。この方法では塩素浸出反応により、イオウを固形の元素状イオウとして分離し、かつ高いニッケルとコバルトの浸出率を得るために微粉砕したニッケルマットを浸出原料としている。   As a method for leaching nickel from a nickel mat, a chlorine leaching method has been put to practical use. In this method, sulfur is separated as solid elemental sulfur by a chlorine leaching reaction, and a finely pulverized nickel mat is used as a leaching raw material in order to obtain a high nickel and cobalt leaching rate.

一方、混合硫化物に対しても、塩素浸出法を用いてニッケルを浸出することが検討されている。例えば、混合硫化物の粉体特性を予め調整し、比表面積、或いは単位粒径当たりの比表面積が特定の値を満たすように制御した後、塩素浸出して、ニッケルとコバルトとを浸出する方法(特許文献1 第1、2ページ参照。)が提案されている。この方法は、ニッケルマットと混合硫化物の析出組織組成とそれに伴う浸出反応の機構の違いに注目し、一定以上の比表面積が得られるまで微粉砕した粒子を浸出原料とすることにより、反応生成物として析出するイオウが粒子表面を覆い反応を阻害しないようにして十分なニッケル浸出率を得るというものである。   On the other hand, leaching of nickel using a chlorine leaching method has also been studied for mixed sulfides. For example, after adjusting powder characteristics of mixed sulfides in advance and controlling the specific surface area or specific surface area per unit particle size to satisfy a specific value, leaching chlorine and leaching nickel and cobalt (See Patent Document 1, pages 1 and 2.). This method pays attention to the difference between the precipitation structure composition of nickel mat and mixed sulfide and the mechanism of the leaching reaction, and the reaction generation by using finely pulverized particles as the leaching raw material until a specific surface area above a certain level is obtained. Sulfur deposited as a product covers the particle surface and does not inhibit the reaction so that a sufficient nickel leaching rate is obtained.

この方法を実操業において採用しようとすると、原料となる混合硫化物には、その粒度、硬度等の性状に変動があり、混合硫化物の粉砕のためのコストが極めて高いものとなるという問題、また粉砕時に混合硫化物粒子にかかるエネルギーによりイオウの酸化率も増えるという新たな問題が発生することが分かってきた。粉砕時にイオウの酸化率が増加すると、得られる浸出液中の硫酸イオンが増加し、その結果、浸出液からニッケルを電解採取する際に用いる不溶性アノード電極の劣化を早めたり、硫酸イオンを系外に除去排出するための中和剤量が増加したりする等の問題が大きくなる。
また、浸出時の反応性を上げるため、粒子径を小さくする場合には、浸出後のろ過工程におけるろ過性が悪化し、浸出残渣に随伴して排出されるニッケル量が増加し、ニッケル実収率が低下するという問題も有していた。
このため、過度な粉砕をすることなく、効率良く混合硫化物よりニッケルを浸出することができる方法が求められている。この解決策として、例えば、十分に浸出されなかった浸出残渣を再浸出してトータル浸出率の向上を図ることが考えられるが、処理時間、工程、エネルギー等の増加を伴いコストアップにつながるため、工業的には望ましくない。
When trying to adopt this method in actual operation, the mixed sulfide used as a raw material has a variation in properties such as its particle size and hardness, and the problem that the cost for pulverizing the mixed sulfide becomes extremely high, It has also been found that a new problem arises that the sulfur oxidation rate increases due to the energy applied to the mixed sulfide particles during grinding. If the oxidation rate of sulfur increases during pulverization, sulfate ions in the resulting leachate increase. As a result, deterioration of the insoluble anode electrode used to electrolyze nickel from the leachate is accelerated, and sulfate ions are removed from the system. Problems such as an increase in the amount of neutralizing agent for discharging increase.
In addition, in order to increase the reactivity during leaching, when the particle size is reduced, the filterability in the filtration process after leaching deteriorates, the amount of nickel discharged accompanying the leaching residue increases, and the actual nickel yield There was also a problem of lowering.
For this reason, there is a need for a method that can efficiently leach nickel from mixed sulfides without excessive grinding. As a solution to this, for example, it may be possible to improve the total leaching rate by re-leaching the leaching residue that has not been sufficiently leached, but this leads to an increase in cost due to an increase in processing time, process, energy, etc. Industrially undesirable.

ところで、ニッケルマットを処理対象とするものではあるが、過度な粉砕をすることなく、効率良くニッケルマットからニッケルとコバルトとを浸出する方法として、1L当り10〜50gの一価の銅イオンを含む塩化物水溶液と、ニッケル、コバルト、銅及び硫黄を含む粒状ニッケルマットとで構成されたスラリーに、該スラリーのpHが2〜0.5となり、酸化還元電位が300〜500mVとなるように塩素、あるいは、塩酸を添加しつつ空気又は酸素を吹き込む第一工程と、第一工程を経たスラリーに該スラリーの酸化還元電位が600〜650mVとなるように塩素を供給し、ニッケル、コバルト、銅及び銅より卑な金属を含む浸出液と、残りの金属を含み、融解濾過可能な浸出残渣を生成させる第二工程とからなる有価金属の分離方法が提案されている(特許文献2 第1頁参照)。   By the way, although nickel mat is intended for processing, as a method for efficiently leaching nickel and cobalt from the nickel mat without excessive crushing, 10 to 50 g of monovalent copper ions per liter are included. In a slurry composed of an aqueous chloride solution and a granular nickel mat containing nickel, cobalt, copper and sulfur, chlorine such that the pH of the slurry is 2 to 0.5 and the oxidation-reduction potential is 300 to 500 mV. Alternatively, the first step of blowing air or oxygen while adding hydrochloric acid, and supplying the chlorine to the slurry after the first step so that the oxidation-reduction potential of the slurry is 600 to 650 mV, nickel, cobalt, copper and copper A valuable metal fraction comprising a leachate containing a more base metal and a second step containing the remaining metal and producing a leaching residue that can be melt filtered. Methods have been proposed (see Patent Document 2, page 1).

上記方法の第一工程の目的は大気中に塩素を揮散させることなく、又浸出反応により生成する単体硫黄を酸化させることなく、ニッケルマット中の銅より卑なる金属の大部分を浸出することである。この工程で生じるとされる反応は以下の反応式で示される。なお、反応式(1)で示される反応は気液反応であり、反応式(2)で示される反応は固液反応であり、反応式(3)及び反応式(4)で示される反応は固気反応である。   The purpose of the first step of the above method is to leach most of the metal below the copper in the nickel mat without volatilizing chlorine in the atmosphere and without oxidizing the elemental sulfur produced by the leaching reaction. is there. The reaction assumed to occur in this step is represented by the following reaction formula. The reaction represented by the reaction formula (1) is a gas-liquid reaction, the reaction represented by the reaction formula (2) is a solid-liquid reaction, and the reactions represented by the reaction formula (3) and the reaction formula (4) are It is a solid-gas reaction.

反応式(1)
2Cu+ +Cl =2Cu2+ +2Cl (1)
Reaction formula (1)
2Cu + + Cl 2 = 2Cu 2+ + 2Cl (1)

反応式(2)
6Cu2+ +Ni =6Cu +3Ni2+ +2S (2)
Reaction formula (2)
6Cu 2+ + Ni 3 S 2 = 6Cu + + 3Ni 2+ + 2S 0 (2)

反応式(3)
Ni +Cl =2NiS+Ni2+ +2Cl (3)
Reaction formula (3)
Ni 3 S 2 + Cl 2 = 2NiS + Ni 2+ + 2Cl - (3)

反応式(4)
Ni +Cl =Ni2+ +2Cl (4)
Reaction formula (4)
Ni 0 + Cl 2 = Ni 2+ + 2Cl (4)

一般に、固気反応の反応速度は気液反応や固液反応の反応速度より遅い。しかし、式(4)の反応はNiの溶解電位が低いことから比較的速い反応速度をもつと思われるが、Niの量がNiとして存在しているNi量より少ないことを考慮すると、この工程における主反応は反応式(1)と反応式(2)で示される反応となろう。即ち、Cu2+とCuとの酸化還元反応によりNiが溶解されることになる。尚、反応式(3)で生成するNiSは第一工程の条件では浸出されず、上記の第二工程で浸出されることになる。 In general, the reaction rate of a solid-gas reaction is slower than the reaction rate of a gas-liquid reaction or a solid-liquid reaction. However, that the reaction of formula (4) appears to have a relatively high reaction rate since solubility potential of Ni 0 is low, less than the amount of Ni amounts of Ni 0 exists as Ni 3 S 2 Considering this, the main reaction in this step will be the reaction shown in reaction formula (1) and reaction formula (2). That is, Ni 3 S 2 is dissolved by the oxidation-reduction reaction between Cu 2+ and Cu + . In addition, NiS produced | generated by Reaction formula (3) is not leached on the conditions of a 1st process, but is leached in said 2nd process.

しかしながら、一般的なニッケルマットとは析出組織が大きく異なり、共沈澱したコバルトを含み、主成分かNiSで構成される混合硫化物の処理に上記方法が適用可能かどうかについては、特許文献2には、何ら記載されていないし、示唆する記載もない。特に、実用的な浸出工程では、浸出率の向上とともに、塩素ガスの揮散の防止、及び浸出残渣の元素状のイオウの酸化と融着の抑制が肝要であり、これらの現象は、原料とされるものの浸出反応、即ち、原料の析出組織等の浸出反応と密接に関連しているので、上記方法が混合硫化物に対しても適用可能かどうかは、試してみるほか無く、試したという報告もされていない。   However, as to whether or not the above method can be applied to the treatment of a mixed sulfide containing a co-precipitated cobalt and composed of a main component or NiS, the precipitation structure differs greatly from that of a general nickel mat. Is not described or suggested at all. In particular, in a practical leaching process, it is important to improve the leaching rate, to prevent the volatilization of chlorine gas, and to suppress the oxidation and fusion of elemental sulfur in the leaching residue. It is closely related to the leaching reaction of the material, that is, the leaching reaction of the precipitate structure of the raw material, etc., so whether the above method can be applied to mixed sulfides has to be tested. It has not been done.

こうした状況下、混合硫化物を微細に粉砕する必要もなく、反応スラリーからの塩素ガスの揮散を防止し、かつ発生する元素状イオウの酸化と融着を抑制し、高いニッケルの浸出率を得ることが可能な実用的、且つ効率的な混合硫化物からのニッケルの塩素浸出方法が求められている。   Under these circumstances, it is not necessary to finely pulverize the mixed sulfide, prevent volatilization of chlorine gas from the reaction slurry, suppress the oxidation and fusion of the generated elemental sulfur, and obtain a high nickel leaching rate. There is a need for a practical and efficient method for leaching nickel from mixed sulfides that can be performed.

特開2008−156713号公報(第1頁、第2頁参照)JP 2008-156713 A (refer to the first and second pages) 特公平7−91599号公報(第1頁参照)Japanese Examined Patent Publication No. 7-91599 (see page 1)

本発明の目的は、上記の従来技術の問題点に鑑み、混合硫化物からニッケルを塩素浸出するに際して、混合硫化物を微細に粉砕する必要もなく、反応スラリーからの塩素ガスの揮散を防止でき、かつ発生する元素状イオウの酸化と融着を抑制し、ニッケルを高い浸出率で浸出することが可能な混合硫化物からのニッケルとコバルトの塩素浸出方法を提供することにある。   The object of the present invention is to prevent the volatilization of chlorine gas from the reaction slurry without the need to finely pulverize the mixed sulfide when leaching nickel from the mixed sulfide in view of the above-mentioned problems of the prior art. Another object of the present invention is to provide a method for leaching nickel and cobalt from a mixed sulfide capable of suppressing oxidation and fusion of the generated elemental sulfur and leaching nickel at a high leaching rate.

本発明者らは、上記目的を達成するために、混合硫化物中のニッケルを塩素により浸出する方法について鋭意研究を重ねた結果、該混合硫化物の粒度分布を特定の粒度分布とし、該浸出液中のCu濃度を特定の値とするとともに、浸出時の酸化還元電位とpHとを特定の値に制御したところ、塩素ガスの揮散を防止し、かつ浸出反応に伴って生成する元素状イオウの酸化と反応界面への融着とを抑制でき、該混合硫化物からニッケルを高い浸出率で回収することができることを見出し、本発明を完成した。
すなわち、本発明の第1の発明によれば、湿式硫化反応により得られる共沈澱したコバルトを含み、主成分がNiSである混合硫化物を、粒度分布のD90が10〜200μmとなるように調整して混合硫化物粉を得、得られた混合硫化物粉と、Cuを10〜60g/Lの割合で含む塩化物水溶液とを混合してスラリーを得、該スラリーに塩素を吹き込み、該スラリーの酸化還元電位を480〜550mV(Ag/AgCl電極基準)とし、pHを−1〜1とすることを特徴とする混合硫化物からのニッケルの浸出方法が提供される。
In order to achieve the above object, the present inventors have conducted extensive research on a method of leaching nickel in mixed sulfide with chlorine. As a result, the mixed sulfide has a specific particle size distribution, and the leachate When the Cu concentration in the steel is set to a specific value and the oxidation-reduction potential and pH at the time of leaching are controlled to a specific value, the volatilization of chlorine gas is prevented and the elemental sulfur produced in the leaching reaction is prevented. The inventors have found that oxidation and fusion to the reaction interface can be suppressed, and nickel can be recovered from the mixed sulfide with a high leaching rate, thereby completing the present invention.
That is, according to the first invention of the present invention, the mixed sulfide containing co-precipitated cobalt obtained by wet sulfidation reaction and containing NiS as the main component is adjusted so that the D90 of the particle size distribution is 10 to 200 μm. The mixed sulfide powder is obtained, and the obtained mixed sulfide powder is mixed with an aqueous chloride solution containing 10 to 60 g / L of Cu to obtain a slurry, and chlorine is blown into the slurry. A method for leaching nickel from a mixed sulfide is provided, in which the oxidation-reduction potential of 480 to 550 mV (Ag / AgCl electrode standard) and the pH is −1 to 1.

また、本発明の第2の発明に依れば、前記第1の発明において、前記塩化物水溶液中のCuの濃度は30〜40g/Lであることを特徴とする混合硫化物からのニッケルの浸出方法が提供される。   Further, according to the second invention of the present invention, in the first invention, the concentration of Cu in the aqueous chloride solution is 30 to 40 g / L. A leaching method is provided.

また、本発明の第3の発明によれば、前記第1の発明において、前記塩化物水溶液はニッケル及び/又はコバルトを含むことを特徴とする混合硫化物からのニッケルの浸出方法が提供される。   According to a third aspect of the present invention, there is provided the method for leaching nickel from a mixed sulfide according to the first aspect, wherein the aqueous chloride solution contains nickel and / or cobalt. .

また、本発明の第4の発明に依れば、前記第1の発明において、前記スラリーのスラリー濃度は100〜300g/Lであることを特徴とする混合硫化物からのニッケルの浸出方法が提供される。   According to a fourth aspect of the present invention, there is provided a method for leaching nickel from a mixed sulfide according to the first aspect, wherein the slurry has a slurry concentration of 100 to 300 g / L. Is done.

また、本発明の第5の発明に依れば、前記第1の発明において、前記酸化還元電位は510〜530mVであることを特徴とする混合硫化物からのニッケルの浸出方法が提供される。   According to a fifth aspect of the present invention, there is provided a method for leaching nickel from a mixed sulfide according to the first aspect, wherein the oxidation-reduction potential is 510 to 530 mV.

また、本発明の第6の発明に依れば、前記第1又は5の発明において、前記酸化還元電位の調整を塩素の吹き込み量及び/又はスラリー濃度の調整によりおこなうことを特徴とする混合硫化物からのニッケルの浸出方法が提供される。   According to a sixth aspect of the present invention, in the first or fifth aspect, the mixed sulfidation is characterized in that the oxidation-reduction potential is adjusted by adjusting the amount of chlorine blown and / or the slurry concentration. A method of leaching nickel from an object is provided.

また、本発明の第7の発明に依れば、前記第1の発明において、pHの調整を塩素の吹き込み量及び/又はスラリー濃度の調整によりおこなうことを特徴とする混合硫化物からのニッケルの浸出方法が提供される。   According to the seventh invention of the present invention, in the first invention, the pH is adjusted by adjusting the amount of chlorine blown and / or the slurry concentration. A leaching method is provided.

本発明の方法では、湿式硫化反応により得られる混合硫化物を、粒度分布のD90が10〜200μmとなるように調整し、得られた混合硫化物粉と、Cuを10〜60g/Lの割合で含む塩化物水溶液とを混合してスラリー濃度を得、これに塩素を吹き込み、酸化還元電位とpHとが特定の条件になるようにする。これにより、スラリー中に2価のテトラクロロ銅(II)酸イオンを形成し、これとNiSとを反応させることにより、急激な浸出反応の進行を抑制し、反応界面でのイオウの融着を防止してニッケルを浸出する。
したがって、本発明では液中の1価のトリクロロ銅(I)酸イオンを酸化するに見合った量の塩素ガスを供給するため、過剰の塩素ガスの吹き込みとその揮散が防止できるとともに、反応により析出するイオウの酸化を抑え、かつ急激な浸出反応の進行による反応界面の過剰な温度上昇を防止して、析出するイオウの反応界面への融着による物理的な障害の形成を抑制し、ニッケルを95%以上という高い浸出率で浸出することができる。
また、混合硫化物の粉砕は、粒度分布のD90が10〜200μmとなる程度に解砕すれば良く、通常の解砕機のみで簡単に解砕できるため、解砕コストもとりわけ増加しない。
したがって、本発明の工業的価値は極めて大きい。
In the method of the present invention, the mixed sulfide obtained by the wet sulfidation reaction is adjusted so that the D90 of the particle size distribution is 10 to 200 μm, and the obtained mixed sulfide powder and Cu are in a ratio of 10 to 60 g / L. A slurry concentration is obtained by mixing with an aqueous chloride solution contained in (3), and chlorine is blown into the slurry so that the oxidation-reduction potential and pH become specific conditions. As a result, divalent tetrachlorocopper (II) ion is formed in the slurry, and this is reacted with NiS, thereby suppressing the rapid progress of the leaching reaction and preventing sulfur fusion at the reaction interface. Prevent and leach out nickel.
Therefore, in the present invention, since an amount of chlorine gas corresponding to the oxidation of monovalent trichlorocopper (I) acid ions in the liquid is supplied, excess chlorine gas can be prevented from being blown out and volatilized, and deposited by reaction. Suppresses the oxidation of sulfur and prevents excessive temperature rise at the reaction interface due to the rapid leaching reaction, and suppresses the formation of physical obstacles due to fusion of precipitated sulfur to the reaction interface. It can be leached at a high leaching rate of 95% or more.
In addition, the mixed sulfide may be pulverized to such an extent that the D90 of the particle size distribution is 10 to 200 μm, and can be easily crushed only by a normal pulverizer, so that the pulverization cost is not particularly increased.
Therefore, the industrial value of the present invention is extremely large.

本発明の混合硫化物からのニッケルの塩素浸出方法は、混合硫化物を、粒度分布のD90が10〜200μm、好ましくは10〜100μm、より好ましくは10〜35μmとなるように調整し、得られた混合硫化物粉と、Cuを10〜60g/L、好ましくは30〜40g/Lの割合で含む塩化物水溶液とを混合してスラリー濃度100〜300g/Lのスラリーを得、これに塩素を吹き込んで酸化還元電位を480〜550mV(Ag/AgCl電極基準)とし、−1.0〜1.0となるようにする。
本発明の方法においては、前記浸出液のCu濃度を10〜60g/Lに調整するとともに、浸出時の酸化還元電位(Ag/AgCl電極基準)を480〜550mVに、pHを−1.0〜1.0に調整することが特に重要である。
The method for leaching nickel from the mixed sulfide of the present invention is obtained by adjusting the mixed sulfide so that the D90 of the particle size distribution is 10 to 200 μm, preferably 10 to 100 μm, more preferably 10 to 35 μm. The mixed sulfide powder was mixed with a chloride aqueous solution containing 10 to 60 g / L, preferably 30 to 40 g / L of Cu to obtain a slurry having a slurry concentration of 100 to 300 g / L, and chlorine was added thereto. The redox potential is set to 480 to 550 mV (Ag / AgCl electrode standard) and is set to −1.0 to 1.0.
In the method of the present invention, the Cu concentration of the leachate is adjusted to 10 to 60 g / L, the oxidation-reduction potential (Ag / AgCl electrode standard) at the time of leaching is 480 to 550 mV, and the pH is −1.0 to 1 It is particularly important to adjust to 0.0.

以下、項立て本発明を説明する。
1)混合硫化物
1)−1 由来、組成等
本発明の混合硫化物としては、主成分がNiS及び/又はCoSであれば、特にこだわらないが、近年注目されている硫酸を用いたニッケル酸化鉱の高温加圧酸浸出法等の湿式方法で得られるニッケル品位が50質量%程度で共沈澱したコバルトを含む混合硫化物であれば好ましい。
具体的には、例えば、ニッケル酸化鉱石などをスラリーとし、このスラリーに硫酸を添加し、高温高圧下で浸出し、ニッケル、コバルト及び他の不純物を含む浸出液を得、この浸出液の酸化還元電位とpHを調整し、鉄等の不純物元素を中和澱物として除去し、得た浸出液に硫化水素ガスを吹き込んでこれらの金属を硫化物として沈殿させたものである。
このため、一般的に、混合硫化物はニッケルマットと比較してニッケル品位が低く、イオウ品位が高いので、塩素浸出における挙動がニッケルマットのそれと異なる。特に、反応により生成するイオウが多くなるため、反応系の温度が高かったり、発生する反応熱が多かったりするとイオウが軟化し、融合しあって凝集体を作りやすく、これにより浸出阻害が起きやすい。
これに対して、ニッケルマットは、前記したように、主成分であるNi相と金属ニッケル相とが緻密に析出した組織を有しているため、反応の進行と共に発生するイオウ量は相対的に少なく、イオウの反応界面への融着による浸出阻害は起きがたい。
The present invention will be described below.
1) Mixed sulfide 1) -1 Origin, composition, etc. The mixed sulfide of the present invention is not particularly limited as long as the main component is NiS and / or CoS, but nickel oxidation using sulfuric acid which has been attracting attention in recent years. A mixed sulfide containing cobalt coprecipitated at a nickel grade of about 50% by mass obtained by a wet method such as a high temperature pressure acid leaching method of ore is preferable.
Specifically, for example, nickel oxide ore or the like is used as a slurry, sulfuric acid is added to the slurry, and leaching is performed at high temperature and high pressure to obtain a leachate containing nickel, cobalt, and other impurities. The pH is adjusted, impurity elements such as iron are removed as neutralized starch, and hydrogen sulfide gas is blown into the obtained leachate to precipitate these metals as sulfides.
For this reason, in general, mixed sulfides have lower nickel quality and higher sulfur quality than nickel mats, and therefore the behavior in chlorine leaching differs from that of nickel mats. In particular, the amount of sulfur produced by the reaction increases, so if the temperature of the reaction system is high or the reaction heat generated is large, the sulfur will soften and coalesce easily to form aggregates, which tends to cause leaching inhibition. .
On the other hand, since the nickel mat has a structure in which the Ni 3 S 2 phase, which is the main component, and the metallic nickel phase are densely precipitated as described above, the amount of sulfur generated as the reaction proceeds is Relatively little, leaching inhibition due to the fusion of sulfur to the reaction interface is unlikely to occur.

1)−2 混合硫化物の粒度分布
上記から分かるように、通常得られる混合硫化物は粉状であるが、濾過工程でケーキとして払い出されるため、長期間の保管や輸送の間に硫化物粒子同士が強く付着し、塊状に固まることが多い、このように塊状に固まったものをそのまま浸出液と混合して強攪拌しても、細かい粒子が分散した均一なスラリーとはなりがたい。そのため、浸出に先立ち、混合硫化物を解砕することが求められる。
粒度分布をどの程度小さくするかは、どれだけ高い浸出率を短時間で得るかという問題と、解砕コストをどこまで低下できるかという問題のレイオフ関係で決まると考えられる。とはいえ、解砕コストの上昇をできるだけ押さえつつ、高い浸出率を得ることが必要であり、これをかなえる条件として、本発明では、D90を10〜200μm、好ましくは10〜100μm、より好ましくは10〜35μmとする。すなわち、解砕された混合硫化物の粒度分布の90%径が上記範囲となるようにする。D90を200μmより大きくすると、95%を超える高い浸出率を得ようとすると反応時間を極めて長くせざるを得ず、生産効率の悪化とコストの上昇を来すことになる。一方、D90を10μm未満とするためには、混合硫化物を強粉砕することが必要となり、コストの大幅な上昇を来す。
なお、混合硫化物の解砕は、解砕により発熱を生ずるような強い解砕は、通常不要であり、一般的なロッドミルやボールミルを用いて簡単におこなうことができるが、強固に大きく固まっているようなものがある場合には、発熱による硫黄分の酸化を防止しつつ解砕することが好ましく、そのために冷却式の解砕機を用いることが好ましい。
1) -2 Particle size distribution of mixed sulfides As can be seen from the above, normally obtained mixed sulfides are powdery, but since they are dispensed as cakes in the filtration process, sulfide particles during long-term storage and transportation Even if they adhere strongly to each other and harden in a lump, such a lump that has been lumped in a lump is mixed with the leachate as it is and strongly stirred, so that it is difficult to obtain a uniform slurry in which fine particles are dispersed. Therefore, it is required to crush the mixed sulfide prior to leaching.
It is considered that how small the particle size distribution is determined is determined by the layoff relationship between the problem of how high the leaching rate is obtained in a short time and the problem of how much the crushing cost can be reduced. Nonetheless, it is necessary to obtain a high leaching rate while suppressing the increase in crushing cost as much as possible. As a condition for achieving this, in the present invention, D90 is 10 to 200 μm, preferably 10 to 100 μm, more preferably 10 to 35 μm. That is, the 90% diameter of the particle size distribution of the crushed mixed sulfide is set in the above range. If D90 is larger than 200 μm, the reaction time must be extremely long to obtain a high leaching rate exceeding 95%, resulting in a deterioration in production efficiency and an increase in cost. On the other hand, in order to make D90 less than 10 μm, it is necessary to strongly pulverize the mixed sulfide, resulting in a significant increase in cost.
It should be noted that the pulverization of mixed sulfides is not usually required for strong pulverization that generates heat due to pulverization, and can be easily performed using a general rod mill or ball mill. When there is such a thing, it is preferable to crush while preventing oxidation of sulfur due to heat generation, and therefore, it is preferable to use a cooling type crusher.

2)浸出液の組成
本発明の方法に用いる浸出液としては、まずCuを10〜60g/L、好ましくは25〜50g/L含む物を用いる。本発明において、銅は、下記反応式(5)に示したように、実質的に塩素キャリアとして働く。
2) Composition of leaching solution As the leaching solution used in the method of the present invention, first, a material containing 10 to 60 g / L, preferably 25 to 50 g / L of Cu is used. In the present invention, copper substantially acts as a chlorine carrier as shown in the following reaction formula (5).

反応式(5)
2CuCl 2−+Cl =2CuCl 2− (5)
ここにおいて、[CuCl 2−]は1価のトリクロロ銅(I)酸イオンであり、[CuCl 2−]は2価のテトラクロロ銅(II)酸イオンであり、後述するようにNiSやCoSと反応してNiやCoを浸出する。
Reaction formula (5)
2CuCl 3 2− + Cl 2 = 2CuCl 4 2− (5)
Here, [CuCl 3 2− ] is a monovalent trichloro copper (I) acid ion, and [CuCl 4 2− ] is a divalent tetrachloro copper (II) acid ion. Ni and Co are leached by reacting with CoS.

ここで、前記Cu濃度が10g/L未満では、塩素浸出反応に十分な量のCuCl 2−ができない。一方、前記Cu濃度が60g/Lを超えると、浸出反応自体には有利に働くが、その反面で過剰に反応が促進されて析出するイオウの酸化や反応界面への融着を進め、逆に浸出率を低下させる。また、ニッケルを回収するために混合硫化物を塩素浸出する目的から見れば、過剰の銅の添加は、いずれ浄液を行ない、ニッケル及びコバルトと銅とを分離する必要があるので、プロセスのコストアップにも繋がる。
本発明の浸出液としては、銅を含有する精錬工程からの繰り返し溶液や、ニッケル精錬工程からの繰り返し溶液、例えば電解廃液を用いることができる。
なお、よく知られているように、浸出液中のニッケル濃度は、厳密には、浸出速度や浸出率に影響を与える。浸出液中のニッケル濃度の最適値はプラント全体の設備能力と関係するため、そうした点を総合的に考慮して決定することが好ましい。
Here, when the Cu concentration is less than 10 g / L, a sufficient amount of CuCl 4 2− for chlorine leaching reaction cannot be obtained. On the other hand, if the Cu concentration exceeds 60 g / L, the leaching reaction itself works advantageously, but on the other hand, the reaction is promoted excessively, and the precipitated sulfur is oxidized and fused to the reaction interface. Reduce leaching rate. Further, from the viewpoint of chlorine leaching of mixed sulfides for recovering nickel, the addition of excess copper will eventually require cleaning and separation of nickel, cobalt, and copper, so the cost of the process It leads to up.
As the leachate of the present invention, a repetitive solution from a refining process containing copper or a repetitive solution from a nickel refining process, for example, an electrolytic waste liquid, can be used.
As is well known, the nickel concentration in the leachate strictly affects the leach rate and the leach rate. Since the optimum value of the nickel concentration in the leachate is related to the facility capacity of the whole plant, it is preferable to determine such points comprehensively.

3)浸出反応、酸化還元電位、pH等について
3)−1 浸出反応
ここで、混合硫化物に直接的に塩素を作用させる方法、例えば特許文献1に記載された従来の方法の浸出反応と、本発明の銅イオンを媒体として用いる本発明の方法の反応との違いについて説明する。
従来の方法での浸出反応は、下記の反応式(6)により進行する。反応式(6)から分かるように、この反応は固気反応であり、NiSのS2−がSとなることによって塩素ガスを塩素イオンとし、同時にニッケルを溶出させる。
3) About leaching reaction, redox potential, pH, etc. 3) -1 Leaching reaction Here, a method in which chlorine is allowed to act directly on the mixed sulfide, for example, the leaching reaction of the conventional method described in Patent Document 1, The difference from the reaction of the method of the present invention using the copper ion of the present invention as a medium will be described.
The leaching reaction in the conventional method proceeds according to the following reaction formula (6). As can be seen from the reaction formula (6), this reaction is a solid-gas reaction. When S 2− of NiS becomes S 0 , chlorine gas is converted into chlorine ions, and nickel is eluted at the same time.

反応式(6)
NiS+Cl =Ni2++S+2Cl (6)
Reaction formula (6)
NiS + Cl 2 = Ni 2+ + S 0 + 2Cl (6)

これに対して、本発明の方法のように、特定の酸化還元電位とpH範囲では、浸出反応は、下記の反応式(7)の反応より分かるとおり、浸出液中の1価のトリクロロ銅(I)酸イオン[CuCl 2−]が塩素と反応し、2価のテトラクロロ銅(II)酸イオン[CuCl 2−]となり、反応式(8)に示したように、NiSと反応してS2−がSとなり、ニッケルを溶出させる。 On the other hand, in the specific oxidation-reduction potential and pH range as in the method of the present invention, the leaching reaction, as can be seen from the reaction of the following reaction formula (7), is a monovalent trichlorocopper (I ) The acid ion [CuCl 3 2− ] reacts with chlorine to form a divalent tetrachlorocopper (II) acid ion [CuCl 4 2− ], which reacts with NiS as shown in the reaction formula (8). S 2− becomes S 0 and nickel is eluted.

反応式(7)
2CuCl 2−+Cl =2CuCl 2− (7)
Reaction formula (7)
2CuCl 3 2− + Cl 2 = 2CuCl 4 2− (7)

反応式(8)
NiS+2CuCl 2− =Ni2++S+2Cl+2CuCl 2− (8)
Reaction formula (8)
NiS + 2CuCl 4 2− = Ni 2+ + S 0 + 2Cl + 2CuCl 3 2− (8)

反応式(7)は、気液反応であり、(8)は固液反応であり、いずれも前記反応式(6)の固気反応より反応速度は速く、効率もよい。   Reaction formula (7) is a gas-liquid reaction, and (8) is a solid-liquid reaction, both of which are faster and more efficient than the solid-gas reaction of reaction formula (6).

浸出反応の進行に伴い混合硫化物粒子の反応界面には元素状のイオウ(S)が生成し、付着したまま残留する。これによって、混合硫化物粒子表面がSで塞がれるため、浸出に有効な反応界面の面積が低下されるとともに、粒子内部への浸出液の浸入が妨げられるという問題がある。
この対策として、前記従来の方法の場合は、混合硫化物粒子の粒度を微細化することにより、浸出反応に与る粒子数を多くし、もって析出するイオウの融着による物理的な障害を軽減し、高い浸出率を得ようとするものである。
これに対し、本発明では、1価のトリクロロ銅(I)酸イオンと2価のテトラクロロ銅(II)酸イオンとの交換反応を用いてニッケルを浸出するので、粒子表面での反応は固気反応よりも早く、且つ穏やかな固液反応となっている。したがって、前記従来の方法と異なり各粒子表面での反応自体を均一に制御することが容易であり、反応仮面の急激な温度上昇を押さえることができるので、イオウの反応界面への融着による物理的な障害の形成を確実に抑制することができる。
As the leaching reaction proceeds, elemental sulfur (S 0 ) is generated at the reaction interface of the mixed sulfide particles and remains attached. As a result, the surface of the mixed sulfide particles is blocked with S 0 , so that there is a problem that the area of the reaction interface effective for leaching is reduced and the intrusion of the leachate into the particles is hindered.
As a countermeasure, in the case of the conventional method, by reducing the particle size of the mixed sulfide particles, the number of particles subjected to the leaching reaction is increased, thereby reducing physical obstacles due to fusion of precipitated sulfur. However, it is intended to obtain a high leaching rate.
In contrast, in the present invention, nickel is leached using an exchange reaction between a monovalent trichlorocopper (I) ion and a divalent tetrachlorocopper (II) ion. The reaction is faster and slower than the gas reaction. Therefore, unlike the conventional method, it is easy to uniformly control the reaction itself on the surface of each particle, and the rapid temperature rise of the reaction mask can be suppressed. The formation of specific obstacles can be reliably suppressed.

3)−2 酸化還元電位
本発明では、浸出時の酸化還元電位(Ag/AgCl電極基準)を480〜550mV、好ましくは510〜530mVに制御する。すなわち、前記酸化還元電位(Ag/AgCl電極基準)が480mV未満では、浸出反応を促進させるために必要なテトラクロロ銅(II)酸イオン量が確保できない。一方、前記酸化還元電位(Ag/AgCl電極基準)が550mVを超えると、過剰に浸出反応が促進されるばかりか、前記反応式(6)に示される塩素が直接NiSにアタックする反応も無視できなくなり、析出するイオウの反応界面への融着を進め、逆に浸出率を低下させる。
なお、酸化還元電位の調整は、スラリー中への塩素ガスの吹き込み量を調整するか、或いはスラリー中への混合硫化物の添加量、即ち、スラリー濃度を調節することにより行うことが簡便であり、好ましい。ニッケルやコバルトの回収に支障となる不純物を増加させないからである。
3) -2 Redox potential In the present invention, the redox potential (Ag / AgCl electrode standard) during leaching is controlled to 480 to 550 mV, preferably 510 to 530 mV. That is, when the oxidation-reduction potential (Ag / AgCl electrode standard) is less than 480 mV, the amount of tetrachlorocopper (II) acid ion necessary for promoting the leaching reaction cannot be ensured. On the other hand, when the oxidation-reduction potential (Ag / AgCl electrode standard) exceeds 550 mV, not only the leaching reaction is promoted excessively, but also the reaction in which chlorine shown in the reaction formula (6) directly attacks NiS can be ignored. Eliminates and promotes fusion of precipitated sulfur to the reaction interface, and conversely reduces the leaching rate.
It is easy to adjust the oxidation-reduction potential by adjusting the amount of chlorine gas blown into the slurry or by adjusting the amount of mixed sulfide added to the slurry, that is, the slurry concentration. ,preferable. This is because impurities that hinder the recovery of nickel and cobalt are not increased.

3)−3 pH
本発明では、浸出時のpHを−1.0〜1.0に制御する。すなわち、pHが−1.0を下回ると、テトラクロロ銅(II)酸イオン量を介しての液中へ溶解する塩素の溶解速度が低下し、一方、pHが1.0を超えると、テトラクロロ銅(II)酸イオンを介さず、塩素が直接、硫黄分の酸化を促進させる確立が増え、Sの酸化率の上昇につながるため好ましくない。
なお、pHの調整は、スラリー中への塩素ガスの吹き込み量を調整するか、或いはスラリー中への混合硫化物の添加量、即ち、スラリー濃度を調節することにより行うことが簡便であり、好ましい。ニッケルやコバルトの回収に支障となる不純物を増加させないからである。
3) -3 pH
In the present invention, the pH during leaching is controlled to -1.0 to 1.0. That is, when the pH is below -1.0, the dissolution rate of chlorine dissolved into the liquid via the amount of tetrachlorocopper (II) acid ions decreases, while when the pH exceeds 1.0, Chlorine directly promotes the oxidation of the sulfur content without using chlorocopper (II) acid ions, leading to an increase in the oxidation rate of S, which is not preferable.
In addition, it is simple and preferable to adjust the pH by adjusting the amount of chlorine gas blown into the slurry or by adjusting the amount of mixed sulfide added to the slurry, that is, the slurry concentration. . This is because impurities that hinder the recovery of nickel and cobalt are not increased.

3)−4 スラリー濃度
本発明において、混合硫化物の粒度分布、浸出液中のCu濃度、酸化還元電位、そしてpHとを本発明の条件とする限り、スラリー濃度は浸出時間と比例関係を示し、イオウの反応界面への融着による物理的な障害とはあまり関係がない。従って、スラリー濃度が低ければ浸出時間は短くなるが、生産性が低い。スラリー濃度が高すぎると浸出時間が大幅に長くなり、結果的に生産性が低下する。したがって、用いる装置と生産性とを考慮して選定するべきである。
因みに、生産性や取り扱い性を考慮すれば100〜300g/Lとすることが好ましい。100g/Lより低いと取扱量が少なく、生産性が悪くなる。300g/Lより多いと浸出時間がかかりすぎ、爾後の固液分離工程等を考慮すると、全体としての生産性を悪化させかねないからである。
3) -4 Slurry concentration In the present invention, as long as the particle size distribution of the mixed sulfide, the Cu concentration in the leachate, the oxidation-reduction potential, and the pH are the conditions of the present invention, the slurry concentration shows a proportional relationship with the leaching time, It has little to do with physical obstacles due to the fusion of sulfur to the reaction interface. Therefore, if the slurry concentration is low, the leaching time is shortened, but the productivity is low. If the slurry concentration is too high, the leaching time is significantly increased, resulting in decreased productivity. Therefore, it should be selected in consideration of the equipment to be used and productivity.
Incidentally, it is preferable to set it as 100-300 g / L if productivity and handleability are considered. When it is lower than 100 g / L, the handling amount is small and the productivity is deteriorated. This is because if it exceeds 300 g / L, it takes too much leaching time, and considering the solid-liquid separation process after soaking, the productivity as a whole may be deteriorated.

3)−5 温度
本発明の方法に係る反応は、前記した反応式より分かるように発熱反応である。従って、そのまま放置すればスラリーが沸騰してしまう。こうした状態は、安全上、また装置保全状好ましくないので、沸騰しない範囲内で制御することが好ましく、通常110℃以下とすることが好ましい。
3) -5 Temperature The reaction according to the method of the present invention is an exothermic reaction as can be seen from the above reaction formula. Therefore, if left as it is, the slurry will boil. Since such a state is not preferable for safety and device maintenance, it is preferably controlled within a range in which it does not boil, and is preferably 110 ° C. or lower.

以下に、本発明の実施例及び比較例によって本発明をさらに詳細に説明するが、本発明は、これらの実施例によってなんら限定されるものではない。なお、実施例及び比較例で用いた金属の分析、粒度分布の評価方法は、以下の通りである。
(1)金属の分析:ICP発光分析法で行なった。
(2)粒度分布の測定:粒度分布測定装置(MICROTRAC HRA、型式:9320−X100)で行なった。
(3)塩素浸出の浸出装置
反応槽:500mLのチタン撹拌槽
撹拌機の回転数:400rpm(4枚ペラのチタン製シャフト)
Hereinafter, the present invention will be described in more detail by way of examples and comparative examples of the present invention, but the present invention is not limited to these examples. In addition, the analysis method of the metal used by the Example and the comparative example and the evaluation method of a particle size distribution are as follows.
(1) Metal analysis: ICP emission analysis was performed.
(2) Measurement of particle size distribution: Measured with a particle size distribution measuring device (MICROTRAC HRA, model: 9320-X100).
(3) Leaching device for chlorine leaching Reaction tank: 500 mL titanium stirring tank Rotating speed of stirrer: 400 rpm (four-peller titanium shaft)

(実施例1)
本例は酸化還元電位の効果に関する。
原料として、ニッケル酸化鉱石の高圧硫酸浸出法の硫化工程から産出されたばかりの混合硫化物(A)(Ni品位:55質量%、Co品位:4.5質量%、D90:18μm)を未粉砕のまま使用し、混合硫化物(A)と表1に示した組成の浸出液とでスラリーを形成し、そのスラリー中へ吹き込み量を変えて塩素ガスを吹き込み、酸化還元電位を480mV(Ag/AgCl電極基準)とし、pHを0となるようにして4時間塩素浸出を行なった。その後、ニッケルとコバルトとの浸出率を求めた。得られた結果を表1に示した。
Example 1
This example relates to the effect of redox potential.
As a raw material, unmixed mixed sulfide (A) (Ni quality: 55 mass%, Co quality: 4.5 mass%, D90: 18 μm) just produced from the sulfidation process of high pressure sulfuric acid leaching of nickel oxide ore The mixed sulfide (A) and the leachate having the composition shown in Table 1 are used as they are, and a slurry is formed and chlorine gas is blown into the slurry by changing the blowing amount. The oxidation-reduction potential is 480 mV (Ag / AgCl electrode). Chlorine leaching was carried out for 4 hours at a pH of 0. Thereafter, the leaching rate of nickel and cobalt was determined. The obtained results are shown in Table 1.

(実施例2〜5)
本例は酸化還元電位の効果に関する。
酸化還元電位を510、520、530、550mV(Ag/AgCl電極基準)とした以外は実施例1と同様にして塩素浸出を行ない、ニッケルとコバルトとの浸出率を求めた。得られた結果を表1に示した。
(Examples 2 to 5)
This example relates to the effect of redox potential.
Chlorine leaching was performed in the same manner as in Example 1 except that the oxidation-reduction potential was 510, 520, 530, and 550 mV (Ag / AgCl electrode standard), and the leaching rate of nickel and cobalt was determined. The obtained results are shown in Table 1.

(比較例1、2)
本例は酸化還元電位の効果に関する。
酸化還元電位を460、600mV(Ag/AgCl電極基準)とした以外は実施例1と同様にして塩素浸出を行ない、ニッケルとコバルトとの浸出率を求めた。得られた結果を表1に示した。
(Comparative Examples 1 and 2)
This example relates to the effect of redox potential.
Chlorine leaching was performed in the same manner as in Example 1 except that the oxidation-reduction potential was set to 460 and 600 mV (Ag / AgCl electrode standard), and the leaching rate of nickel and cobalt was determined. The obtained results are shown in Table 1.

(実施例6〜10、比較例3、4)
本例は銅濃度の効果に関する。
原料として、産出日のことなる混合硫化物(B)(Ni品位:55質量%、Co品位:4.5質量%、D90:17μm)を未粉砕のまま使用し、混合硫化物(B)と表1に組成を示す銅濃度が、それぞれ5(比較例3)、10(実施例6)、20(実施例7)、27(実施例8)、47(実施例9)、55(実施例10)、64g/L(比較例4)の浸出液を用いてスラリーを形成し、そのスラリー中へ塩素ガスを吹き込み、酸化還元電位(ORP)を520mVに制御した以外は実施例1と同様に塩素浸出を行ない、ニッケルとコバルト浸出率とを求めた。結果を表1に示す。
なお、これらの例では、可能な限り銅濃度の効果のみを調べるべく全金属イオン濃度を同様にした。
(Examples 6 to 10, Comparative Examples 3 and 4)
This example relates to the effect of copper concentration.
As a raw material, mixed sulfide (B) (Ni quality: 55 mass%, Co quality: 4.5 mass%, D90: 17 μm), which is different from the date of production, is used without being crushed, and mixed sulfide (B) and The copper concentrations shown in Table 1 are 5 (Comparative Example 3), 10 (Example 6), 20 (Example 7), 27 (Example 8), 47 (Example 9), 55 (Example), respectively. 10), 64 g / L (Comparative Example 4), a slurry was formed, chlorine gas was blown into the slurry, and the oxidation-reduction potential (ORP) was controlled to 520 mV. Leaching was performed and nickel and cobalt leaching rates were determined. The results are shown in Table 1.
In these examples, the total metal ion concentration was made the same in order to examine only the effect of the copper concentration as much as possible.

(実施例11〜14)
これらの例は粒度分布の効果に関する。
原料として、産出日のことなる塊状に固まった混合硫化物(C)(Ni品位:55質量%、Co品位:4.5質量%)を解砕してD90を10(実施例11)、17(実施例12)、35(実施例13)、50μm(実施例14)とし、酸化還元電位を520mV、Cu濃度を30g/Lとした以外は実施例と同様にして塩素浸出し、ニッケル浸出率を求めた。得られた結果を表1に示した。
(Examples 11-14)
These examples relate to the effect of particle size distribution.
As a raw material, mixed sulfide (C) (Ni quality: 55% by mass, Co quality: 4.5% by mass) solidified in a lump shape different from the date of production was crushed to obtain D90 of 10 (Example 11), 17 (Example 12), 35 (Example 13), 50 μm (Example 14), chlorine leaching and nickel leaching rate in the same manner as in Example except that the oxidation-reduction potential was 520 mV and the Cu concentration was 30 g / L. Asked. The obtained results are shown in Table 1.

(実施例15〜17)
これらの例はスラリー濃度の効果に関する。
原料として、混合硫化物(B)を未粉砕のまま使用し、混合硫化物(B)と表1に示した浸出液とでスラリーを形成し、スラリー濃度を100(実施例15)、300(実施例16)、350g/L(実施例17)とし、そのスラリー中へ塩素ガスを吹き込み、酸化還元電位を制御する方法により、表1に示した浸出条件で塩素浸出を行ない、ニッケル浸出率を求めた。得られた結果を表1に示す。
なお、ここで、浸出時間は、実施例15では4時間、実施例16では10時間、実施例18では11時間とした。この際、塩素ガスの外部への揮散、及び析出したイオウの融着は見られなかった。
(Examples 15 to 17)
These examples relate to the effect of slurry concentration.
As a raw material, the mixed sulfide (B) is used without being pulverized, and a slurry is formed with the mixed sulfide (B) and the leachate shown in Table 1, and the slurry concentration is 100 (Example 15), 300 (implementation). Example 16), 350 g / L (Example 17), chlorine gas was blown into the slurry, and chlorine leaching was performed under the leaching conditions shown in Table 1 by the method of controlling the oxidation-reduction potential, and the nickel leaching rate was determined. It was. The obtained results are shown in Table 1.
Here, the leaching time was 4 hours in Example 15, 10 hours in Example 16, and 11 hours in Example 18. At this time, the volatilization of chlorine gas to the outside and the fusion of the precipitated sulfur were not observed.

Figure 2010100938
Figure 2010100938

表1の実施例1〜5は酸化還元電位の効果を調べたものであるが、実施例1〜5では、浸出液のCu濃度が30g/Lで、酸化還元電位(Ag/AgCl電極規準)が480〜550mVであり、本発明の方法に従って行われたので、95%以上の高ニッケル浸出率が得られていることが分かる。
これに対して、比較例1では、酸化還元電位(Ag/AgCl電極規準)が480mV未満であり、本発明の条件を満たしていないので、反応に供する第2銅イオン量が少ないため塩素浸出反応が遅く、十分な浸出率は得られないことが分かる。また、比較例2では、酸化還元電位(Ag/AgCl電極規準)が550mVを超え、これらの条件を満たしていないので、反応に供する第2銅イオン量が過剰であるため、反応熱により粒子表面の温度が上昇するため、浸出により析出したイオウが融着し物理的な障害となり、継続して浸出されなくなるため、十分な浸出率は得られないことが分かる。
なお、イオウ酸化率に注目すれば、酸化還元電位の上昇に従って次第に増加する傾向があり、この面からも過度に高い酸化還元電位での反応は好ましくない。
In Examples 1 to 5 in Table 1, the effect of the redox potential was examined. In Examples 1 to 5, the Cu concentration of the leachate was 30 g / L, and the redox potential (Ag / AgCl electrode standard) was Since it was 480-550 mV and it was performed according to the method of the present invention, it can be seen that a high nickel leaching rate of 95% or more was obtained.
In contrast, in Comparative Example 1, the oxidation-reduction potential (Ag / AgCl electrode standard) is less than 480 mV and does not satisfy the conditions of the present invention. However, it is understood that a sufficient leaching rate cannot be obtained. In Comparative Example 2, since the oxidation-reduction potential (Ag / AgCl electrode standard) exceeds 550 mV and does not satisfy these conditions, the amount of cupric ion to be used for the reaction is excessive. As the temperature rises, sulfur deposited by leaching is fused and becomes a physical obstacle, and is not continuously leached, so that a sufficient leaching rate cannot be obtained.
When attention is paid to the sulfur oxidation rate, there is a tendency to gradually increase as the oxidation-reduction potential increases. From this aspect, the reaction at an excessively high oxidation-reduction potential is not preferable.

表1の実施例6〜10は銅濃度の効果を見たものであるが、浸出液のCu濃度がそれぞれ10〜55g/Lで、酸化還元電位(Ag/AgCl電極規準)が520mVであり、本発明の方法に従って行われたので、95%以上の高ニッケル浸出率が得られることが分かる。
これに対して、比較例3では、浸出液中のCu濃度が過小であり、浸出反応自体が混合硫化物と塩素との直接反応となり、反応熱により粒子の反応界面の温度が上昇し、浸出により析出したイオウが反応界面に融着し物理的な障害となり、継続して浸出されなくなり、十分な浸出率は得られなかった。また、比較例4では、浸出液のCu濃度が64g/Lであり、これらの条件を満たしていないので、反応に供する第2銅イオン量が過剰となり、反応熱により粒子の反応界面の温度が上昇し、浸出により析出したイオウが反応界面に融着し物理的な障害となり、継続して浸出されなくなり、十分な浸出率は得られなかった。
なお、イオウ酸化率に注目すれば、浸出液のCu濃度の上昇に従って次第に増加する傾向があり、この面からも過度に高い浸出液のCu濃度での反応は好ましくない。
Examples 6 to 10 in Table 1 show the effect of the copper concentration. The Cu concentration of the leachate is 10 to 55 g / L, and the oxidation-reduction potential (Ag / AgCl electrode standard) is 520 mV. It can be seen that a high nickel leaching rate of 95% or more can be obtained since the process was performed according to the method of the invention.
On the other hand, in Comparative Example 3, the Cu concentration in the leaching solution is too low, and the leaching reaction itself becomes a direct reaction between the mixed sulfide and chlorine, and the reaction heat increases the temperature of the reaction interface of the particles. The precipitated sulfur was fused to the reaction interface and became a physical obstacle, and was not continuously leached, and a sufficient leaching rate was not obtained. In Comparative Example 4, the Cu concentration of the leachate is 64 g / L, and these conditions are not satisfied. Therefore, the amount of cupric ions used for the reaction becomes excessive, and the reaction heat increases the temperature of the reaction interface of the particles. However, sulfur precipitated by leaching was fused to the reaction interface, resulting in a physical obstacle, and leaching was not continued, and a sufficient leaching rate was not obtained.
If attention is paid to the sulfur oxidation rate, there is a tendency to gradually increase as the Cu concentration of the leachate increases. From this aspect, the reaction at an excessively high Cu concentration of the leachate is not preferable.

表1の実施例11〜14は、粒度分布の効果を見たものであるが、D90が10〜50μmの間では、得られた浸出率は、いずれも95%以上であったがD90が小さい程高浸出率であった。
表1の実施例15〜17は、スラリー濃度の効果を見たものであるが、浸出液のCu濃度が30g/Lで、酸化還元電位(Ag/AgCl電極規準)が520mVであり、本発明の方法に従って行われたので、スラリー濃度が高くなる程浸出時間を長くしなければならなかったが、いずれも95%以上の高ニッケル及びコバルト浸出率が得られることが分かる。
Examples 11 to 14 in Table 1 looked at the effect of the particle size distribution. When D90 was between 10 and 50 μm, the leaching rate obtained was 95% or more, but D90 was small. The leaching rate was as high as possible.
Examples 15 to 17 in Table 1 show the effect of the slurry concentration. The Cu concentration of the leachate is 30 g / L, and the oxidation-reduction potential (Ag / AgCl electrode standard) is 520 mV. Since it was carried out according to the method, the leaching time had to be increased as the slurry concentration increased, but it can be seen that both high nickel and cobalt leaching rates of 95% or more can be obtained.

以上より明らかなように、本発明の混合硫化物からのニッケルの浸出方法は該混合硫化物に過剰な粉砕処理を加えることなく、塩素ガスの揮散を防止し、そして浸出残渣中の元素状イオウの酸化と融着を抑制しながら、ニッケルの高浸出率を安定的に達成する方法として好適である。また、上記混合硫化物以外の硫化物、例えばニッケルマットの他、コバルトや銅といった各種金属の硫化物からの有価金属の浸出に広く適用することができる。   As is clear from the above, the method for leaching nickel from the mixed sulfide of the present invention prevents volatilization of chlorine gas without adding excessive grinding treatment to the mixed sulfide, and elemental sulfur in the leaching residue. It is suitable as a method for stably achieving a high leaching rate of nickel while suppressing oxidation and fusion of the steel. Further, the present invention can be widely applied to leaching of valuable metals from sulfides other than the above mixed sulfides, for example, nickel matte, and sulfides of various metals such as cobalt and copper.

Claims (7)

湿式硫化反応により得られる共沈澱したコバルトを含み、主成分がNiSである混合硫化物を、粒度分布のD90が10〜200μmとなるように調整して混合硫化物粉を得、得られた混合硫化物粉と、Cuを10〜60g/Lの割合で含む塩化物水溶液とを混合してスラリーを得、該スラリーに塩素を吹き込み、該スラリーの酸化還元電位を480〜550mV(Ag/AgCl電極基準)とし、pHを−1〜1とすることを特徴とする混合硫化物からのニッケルの浸出方法。 A mixed sulfide powder containing coprecipitated cobalt obtained by a wet sulfidation reaction and containing NiS as a main component is adjusted so that D90 of the particle size distribution is 10 to 200 μm to obtain a mixed sulfide powder, and the obtained mixture Sulfide powder and an aqueous chloride solution containing 10 to 60 g / L of Cu are mixed to obtain a slurry, and chlorine is blown into the slurry. The oxidation-reduction potential of the slurry is 480 to 550 mV (Ag / AgCl electrode) And leaching of nickel from the mixed sulfide, characterized in that the pH is −1 to 1. 前記塩化物水溶液中のCuの濃度は30〜40g/Lであることを特徴とする請求項1記載の混合硫化物からのニッケルの浸出方法。 The method for leaching nickel from a mixed sulfide according to claim 1, wherein the concentration of Cu in the aqueous chloride solution is 30 to 40 g / L. 前記塩化物水溶液はニッケル及び/又はコバルトを含むことを特徴とする請求項1記載の混合硫化物からのニッケルの浸出方法。 The method for leaching nickel from a mixed sulfide according to claim 1, wherein the aqueous chloride solution contains nickel and / or cobalt. 前記スラリーのスラリー濃度は100〜300g/Lであることを特徴とする請求項1記載の混合硫化物からのニッケルの浸出方法。 The method for leaching nickel from the mixed sulfide according to claim 1, wherein the slurry has a slurry concentration of 100 to 300 g / L. 前記酸化還元電位は510〜530mVであることを特徴とする請求項1記載の混合硫化物からのニッケルの浸出方法。 The method of leaching nickel from a mixed sulfide according to claim 1, wherein the oxidation-reduction potential is 510 to 530 mV. 前記酸化還元電位の調整を塩素の吹き込み量及び/又はスラリー濃度の調整によりおこなうことを特徴とする請求項1又は5記載のいずれかの混合硫化物からのニッケルの浸出方法。 6. The method for leaching nickel from a mixed sulfide according to claim 1, wherein the oxidation-reduction potential is adjusted by adjusting the amount of chlorine blown and / or the slurry concentration. 前記pHの調整を塩素の吹き込み量及び/又はスラリー濃度の調整によりおこなうことを特徴とする請求項1記載の混合硫化物からのニッケルの浸出方法。 The method for leaching nickel from a mixed sulfide according to claim 1, wherein the pH is adjusted by adjusting the amount of chlorine blown and / or the slurry concentration.
JP2009220194A 2008-09-29 2009-09-25 Method for leaching nickel from mixed sulfides Active JP5440070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009220194A JP5440070B2 (en) 2008-09-29 2009-09-25 Method for leaching nickel from mixed sulfides

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008249454 2008-09-29
JP2008249454 2008-09-29
JP2009220194A JP5440070B2 (en) 2008-09-29 2009-09-25 Method for leaching nickel from mixed sulfides

Publications (2)

Publication Number Publication Date
JP2010100938A true JP2010100938A (en) 2010-05-06
JP5440070B2 JP5440070B2 (en) 2014-03-12

Family

ID=42291820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009220194A Active JP5440070B2 (en) 2008-09-29 2009-09-25 Method for leaching nickel from mixed sulfides

Country Status (1)

Country Link
JP (1) JP5440070B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013067838A (en) * 2011-09-22 2013-04-18 Sumitomo Metal Mining Co Ltd Chlorine leaching process for metal sulfide and hydrometallurgical process for metal
JP2013067840A (en) * 2011-09-22 2013-04-18 Sumitomo Metal Mining Co Ltd Chlorine leaching method for metal sulfide
JP2013067839A (en) * 2011-09-22 2013-04-18 Sumitomo Metal Mining Co Ltd Chlorine leaching process for metal sulfide, and hydrometallurgical process for metal
WO2014053705A1 (en) * 2012-10-03 2014-04-10 Outotec Oyj Method for recovery of silver from sulphur-containing zinc leach residues
JP2015081371A (en) * 2013-10-23 2015-04-27 住友金属鉱山株式会社 Method of exuding nickel and cobalt from mixed sulfide
US9194716B1 (en) 2010-06-18 2015-11-24 Google Inc. Point of interest category ranking
JP2015214737A (en) * 2014-05-13 2015-12-03 住友金属鉱山株式会社 Method of adjusting copper concentration of chlorine leachate in nickel chlorine leaching process
US9275154B2 (en) 2010-06-18 2016-03-01 Google Inc. Context-sensitive point of interest retrieval
JP2016121370A (en) * 2014-12-24 2016-07-07 住友金属鉱山株式会社 Leaching control system and leaching control method
US9715553B1 (en) 2010-06-18 2017-07-25 Google Inc. Point of interest retrieval
JP2017155342A (en) * 2017-05-19 2017-09-07 住友金属鉱山株式会社 Method for adjusting copper concentration of chlorine leachate in nickel chlorine leaching process
JP2018035436A (en) * 2016-08-24 2018-03-08 住友金属鉱山株式会社 Chlorine bleeding method of nickel from mixed sulfide
WO2020004285A1 (en) * 2018-06-27 2020-01-02 住友金属鉱山株式会社 Method for separating copper from nickel and cobalt
US11718894B2 (en) 2017-12-18 2023-08-08 Sumitomo Metal Mining Co., Ltd. Method for separating copper, and nickel and cobalt

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5427295B1 (en) * 1971-03-18 1979-09-08
JPH0791599B2 (en) * 1989-01-25 1995-10-04 住友金属鉱山株式会社 Valuable metal separation method
JPH10140258A (en) * 1996-11-07 1998-05-26 Sumitomo Metal Mining Co Ltd Removing method of impurity from chlorine leaching liquid of nickel
JP2005104809A (en) * 2003-10-02 2005-04-21 Sumitomo Metal Mining Co Ltd Method for purifying nickel chloride aqueous solution
JP2008013388A (en) * 2006-07-04 2008-01-24 Sumitomo Metal Mining Co Ltd Method for purifying nickel chloride aqueous solution

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5427295B1 (en) * 1971-03-18 1979-09-08
JPH0791599B2 (en) * 1989-01-25 1995-10-04 住友金属鉱山株式会社 Valuable metal separation method
JPH10140258A (en) * 1996-11-07 1998-05-26 Sumitomo Metal Mining Co Ltd Removing method of impurity from chlorine leaching liquid of nickel
JP2005104809A (en) * 2003-10-02 2005-04-21 Sumitomo Metal Mining Co Ltd Method for purifying nickel chloride aqueous solution
JP2008013388A (en) * 2006-07-04 2008-01-24 Sumitomo Metal Mining Co Ltd Method for purifying nickel chloride aqueous solution

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9275154B2 (en) 2010-06-18 2016-03-01 Google Inc. Context-sensitive point of interest retrieval
US9715553B1 (en) 2010-06-18 2017-07-25 Google Inc. Point of interest retrieval
US9194716B1 (en) 2010-06-18 2015-11-24 Google Inc. Point of interest category ranking
JP2013067840A (en) * 2011-09-22 2013-04-18 Sumitomo Metal Mining Co Ltd Chlorine leaching method for metal sulfide
JP2013067839A (en) * 2011-09-22 2013-04-18 Sumitomo Metal Mining Co Ltd Chlorine leaching process for metal sulfide, and hydrometallurgical process for metal
JP2013067838A (en) * 2011-09-22 2013-04-18 Sumitomo Metal Mining Co Ltd Chlorine leaching process for metal sulfide and hydrometallurgical process for metal
EA029249B1 (en) * 2012-10-03 2018-02-28 Оутотек (Финлэнд) Ой Method for recovery of silver from sulphur-containing zinc leach residues
AU2013326361B2 (en) * 2012-10-03 2016-06-16 Outotec (Finland) Oy Method for recovery of silver from sulphur-containing zinc leach residues
WO2014053705A1 (en) * 2012-10-03 2014-04-10 Outotec Oyj Method for recovery of silver from sulphur-containing zinc leach residues
JP2015081371A (en) * 2013-10-23 2015-04-27 住友金属鉱山株式会社 Method of exuding nickel and cobalt from mixed sulfide
JP2015214737A (en) * 2014-05-13 2015-12-03 住友金属鉱山株式会社 Method of adjusting copper concentration of chlorine leachate in nickel chlorine leaching process
JP2016121370A (en) * 2014-12-24 2016-07-07 住友金属鉱山株式会社 Leaching control system and leaching control method
JP2018035436A (en) * 2016-08-24 2018-03-08 住友金属鉱山株式会社 Chlorine bleeding method of nickel from mixed sulfide
JP2017155342A (en) * 2017-05-19 2017-09-07 住友金属鉱山株式会社 Method for adjusting copper concentration of chlorine leachate in nickel chlorine leaching process
US11718894B2 (en) 2017-12-18 2023-08-08 Sumitomo Metal Mining Co., Ltd. Method for separating copper, and nickel and cobalt
WO2020004285A1 (en) * 2018-06-27 2020-01-02 住友金属鉱山株式会社 Method for separating copper from nickel and cobalt
JP2020002418A (en) * 2018-06-27 2020-01-09 住友金属鉱山株式会社 Separation method of copper, and nickel and cobalt
EP3816309A4 (en) * 2018-06-27 2022-03-23 Sumitomo Metal Mining Co., Ltd. Method for separating copper from nickel and cobalt
JP7277084B2 (en) 2018-06-27 2023-05-18 住友金属鉱山株式会社 Method for separating copper from nickel and cobalt

Also Published As

Publication number Publication date
JP5440070B2 (en) 2014-03-12

Similar Documents

Publication Publication Date Title
JP5440070B2 (en) Method for leaching nickel from mixed sulfides
El-Nasr et al. Environmentally friendly synthesis of copper nanoparticles from waste printed circuit boards
Dong et al. Comprehensive recoveries of selenium, copper, gold, silver and lead from a copper anode slime with a clean and economical hydrometallurgical process
CA2796844C (en) Method of removing copper ions from copper containing nickel chloride solution and method of producing electro-nickel
JP5209249B2 (en) Copper manufacturing method
WO2006087412A1 (en) Method for the recovery of gold from sulphide concentrate
CN101115854A (en) Method for recovering indium
CN106460089A (en) Process for recovery of copper from arsenic-bearing and/or antimony-bearing copper sulphide concentrates
JP5439997B2 (en) Method for recovering copper from copper-containing iron
WO2013027603A1 (en) Nickel recovery loss reduction method, hydrometallurgical method for nickel oxidized ore, and sulfuration treatment system
JP5209248B2 (en) Copper electrolyte raw material manufacturing method and copper manufacturing method using the same
JPH02197533A (en) Separation of valuable metal
WO2016176732A1 (en) Novel synthetic rutile products and processes for their production
JP6335519B2 (en) Method for treating antimony-containing material discharged from tin smelting process
JP5143495B2 (en) Method for producing copper solution and method for producing copper
CN100552059C (en) The method of direct leaching indium in the indium ore deposit
CA3211845A1 (en) Method of manufacturing copper sulfate electrolyte
JP5506136B2 (en) Method for chlorine leaching of mixed sulfides containing nickel and cobalt
JP6610368B2 (en) Method for removing impurities from aqueous nickel chloride solution
WO2017140723A1 (en) Hydrometallurgical processes for leaching or dissolving metal and enhancing electrorefinery and smelting operations
JP5339762B2 (en) Method for producing indium metal
JP4406745B2 (en) Method for processing Sn, Pb, Cu-containing material
JP6743858B2 (en) Zinc separation method, zinc material manufacturing method, and iron material manufacturing method
JP3024385B2 (en) Method for recovering indium from indium scrap
JP2015081371A (en) Method of exuding nickel and cobalt from mixed sulfide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131202

R150 Certificate of patent or registration of utility model

Ref document number: 5440070

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150