JP2018035260A - Maleimide resin molded body, method for producing maleimide resin molded body, maleimide resin composition and cured product of the same - Google Patents

Maleimide resin molded body, method for producing maleimide resin molded body, maleimide resin composition and cured product of the same Download PDF

Info

Publication number
JP2018035260A
JP2018035260A JP2016169530A JP2016169530A JP2018035260A JP 2018035260 A JP2018035260 A JP 2018035260A JP 2016169530 A JP2016169530 A JP 2016169530A JP 2016169530 A JP2016169530 A JP 2016169530A JP 2018035260 A JP2018035260 A JP 2018035260A
Authority
JP
Japan
Prior art keywords
maleimide resin
maleimide
molded body
resin molded
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016169530A
Other languages
Japanese (ja)
Other versions
JP6482511B2 (en
Inventor
隆行 遠島
Takayuki Toshima
隆行 遠島
政隆 中西
Masataka Nakanishi
政隆 中西
一貴 松浦
Kazuki Matsuura
一貴 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP2016169530A priority Critical patent/JP6482511B2/en
Publication of JP2018035260A publication Critical patent/JP2018035260A/en
Application granted granted Critical
Publication of JP6482511B2 publication Critical patent/JP6482511B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a maleimide resin molded body which is excellent in workability and productivity useful for the application for high reliability semiconductor sealing material, the application for electric/electronic insulating material, and the application for various composite materials including a laminated plate (printed wiring glass fiber-reinforced composite material) and CFRP (carbon fiber-reinforced composite material), the application for various adhesives, the application for various coating materials and a structural member, and causes less environmental exposure; a maleimide resin composition; and a cured product of the same.SOLUTION: There are provided a maleimide resin molded body which contains a maleimide resin and an organic solvent, and has a marble shape or its flake shape; the maleimide resin molded body, where a residual solvent is 30,000 ppm or less; and the maleimide resin molded body, where a thickness is 10 μm-3 mm and an average diameter is 1-5 mm.SELECTED DRAWING: Figure 3

Description

本発明は、マレイミド樹脂成型体、マレイミド樹脂成型体の製造方法、マレイミド樹脂組成物及びその硬化物に関する。詳しくは、高信頼性半導体封止材用途、電気・電子部品絶縁材料用途、及び積層板(プリント配線ガラス繊維強化複合材料)やCFRP(炭素繊維強化複合材料)を始めとする各種複合材料用途、各種接着剤用途、各種塗料用途、構造用部材等に有用な作業性、生産性に優れ、環境暴露の少ないマレイミド樹脂成型体、マレイミド樹脂組成物及びその硬化物に関する。   The present invention relates to a maleimide resin molding, a method for producing a maleimide resin molding, a maleimide resin composition, and a cured product thereof. Specifically, for high-reliability semiconductor encapsulant use, electrical / electronic component insulation material use, and various composite materials use such as laminate (printed wiring glass fiber reinforced composite material) and CFRP (carbon fiber reinforced composite material), The present invention relates to a maleimide resin molded article, a maleimide resin composition and a cured product thereof, which are excellent in workability and productivity useful for various adhesive applications, various paint applications, structural members, and the like, and have little environmental exposure.

マレイミド樹脂は、エポキシ樹脂を超える耐熱性を有するとともに、エポキシ樹脂と同等の成型性を有し、更に低線膨張係数、高Tgという性質も有する化合物である。ポリマレイミド化合物は単独で架橋させるか、または各種のマレイミド化合物もしくは架橋剤と反応させることにより、耐熱性、難燃性に優れた材料を与えることができ、封止材料、基盤材料、絶縁材料各種用途に使用されてきた。特に極めて高い耐熱性および成型性を両立することが必要な、高耐熱基盤材料、フレキシブル基板材料、高耐熱低誘電材料、高耐熱CFRP用材料(炭素繊維複合材料)、車載向けSiCパワーデバイス用高耐熱封止材料用途に使用される。   The maleimide resin is a compound having heat resistance exceeding that of the epoxy resin, moldability equivalent to that of the epoxy resin, and also having a property of low linear expansion coefficient and high Tg. Polymaleimide compounds can be cross-linked alone or reacted with various maleimide compounds or cross-linking agents to give materials with excellent heat resistance and flame retardancy. Various sealing materials, base materials, insulating materials Has been used for applications. High heat resistant base materials, flexible substrate materials, high heat resistant low dielectric materials, high heat resistant CFRP materials (carbon fiber composite materials), high power for automotive SiC power devices, especially where extremely high heat resistance and moldability are required Used for heat-resistant sealing materials.

従来、マレイミド樹脂は、自己反応性を有するため、その取り出しにおいては再結晶など結晶粉体での取り出し、あるいは再沈殿による樹脂粉末状として市販されているものが多く(特許文献1を参照)、使用の際には粉が舞うなどにより作業性・生産性だけでなく、環境への汚染(汚れ、および人体への吸入)などの問題があった。さらには結晶化、沈殿の際に溶剤等の取り込みがあり、除去しきれないという課題があり、製造時に使用する酢酸類が取り込まれ、できた製品に酢酸の臭気が残り、作業者の安全性に関わる課題となる。このような背景から、作業性、生産性、環境安全性に優れるマレイミド成型体が望まれている。例えば、特許文献2は、エバポレータを使用したマレイミド樹脂溶液の溶融取り出し方法を開示している。   Conventionally, since maleimide resin has self-reactivity, in many cases it is commercially available as a resin powder by taking out a crystal powder such as recrystallization or by reprecipitation (see Patent Document 1). When used, there were problems such as contamination of the environment (dirt and inhalation to the human body) as well as workability and productivity due to powder flying. Furthermore, there is a problem that solvent and other substances are taken up during crystallization and precipitation, and cannot be completely removed. Acetic acids used during production are taken in, and the odor of acetic acid remains in the resulting product. It becomes a problem related to. From such a background, a maleimide molded article excellent in workability, productivity, and environmental safety is desired. For example, Patent Document 2 discloses a method for melting and taking out a maleimide resin solution using an evaporator.

特公平6−086425号公報Japanese Patent Publication No. 6-086425 特開2009−001783号公報JP 2009-001783 A

特許文献2では、少量スケールでは大きな変化はないものの、合成量を多くした場合、溶媒留去には長時間を要するため、その間に自己重合が進行する恐れがある。したがって、実生産での製造においては、重合やゲル化のリスクが極めて大きく、分子量増加による粘度の上昇および生産する度に特性が異なる等の、成型性・安定生産性の観点から課題がある。また、この重合を抑えるために溶剤回収温度を下げると、特に50℃以上の軟化点を有するマレイミド樹脂の場合、溶剤の除去が困難となり、溶剤の残留が多くなる(特に30000ppmを超える溶剤の残留)ため、成型時のボイドやクラックの生成のおそれ、および作業者への暴露など安全性にも問題がある。さらに、これらマレイミド樹脂の合成においては酢酸やトルエン、キシレンといった人体への影響のある物質を使用する場合があるため、溶剤の残留は特に問題となる。
そこで、本発明は、作業性・生産性に優れ、環境暴露の少ないマレイミド樹脂成型体を提供することを目的とする。
In Patent Document 2, there is no significant change on a small scale, but when the amount of synthesis is increased, it takes a long time to evaporate the solvent, and thus self-polymerization may proceed during that time. Therefore, in the production in actual production, there is a problem from the viewpoint of moldability and stable productivity, such that the risk of polymerization and gelation is extremely high, the viscosity increases due to the increase in molecular weight, and the characteristics differ every time it is produced. Also, if the solvent recovery temperature is lowered to suppress this polymerization, particularly in the case of a maleimide resin having a softening point of 50 ° C. or higher, it becomes difficult to remove the solvent, and the residual solvent increases (especially, the residual solvent exceeding 30000 ppm). Therefore, there is a problem in safety such as the possibility of generation of voids and cracks during molding and exposure to workers. Furthermore, in the synthesis of these maleimide resins, there are cases where substances having an effect on the human body such as acetic acid, toluene, and xylene are used, so that the remaining of the solvent becomes a problem.
Therefore, an object of the present invention is to provide a maleimide resin molded article that is excellent in workability and productivity and has little environmental exposure.

本発明者らは、上記課題を解決するために鋭意検討した結果、従来の結晶状や粉末状ではなく、マーブル状もしくはそのフレーク状の成型体として取り出すことで作業性、生産性等に優れ、環境暴露の少なくなることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors are excellent in workability, productivity, etc. by taking out as a marble or flaky molded body instead of a conventional crystal or powder. The inventors have found that environmental exposure is reduced, and have completed the present invention.

すなわち、本発明は、
[1]マレイミド樹脂と有機溶剤を含有し、マーブル状またはそのフレーク状のマレイミド樹脂成型体、
[2]残溶剤が30000ppm以下である前項[1]に記載のマレイミド樹脂成型体、
[3]前記有機溶剤が炭素数3〜10の芳香族炭化水素、ケトン類、エステル類、エーテル類から選ばれる少なくとも一種の有機溶剤である前項[1]又は[2]に記載のマレイミド樹脂成型体、
[4]平均高さが10μm〜3mm、平均直径が1mm〜5mmである前項[1]〜[3]のいずれか一項に記載のマレイミド樹脂成型体、
[5]平均官能基数が2〜20であり、繰り返し単位を有するノボラック型マレイミド樹脂である前項[1]〜[4]のいずれか一項に記載のマレイミド樹脂成型体、
[6]前記マレイミド樹脂の軟化点が50〜150℃である前項[1]〜[5]のいずれか一項に記載のマレイミド樹脂成型体、
[7]炭素数3〜10の芳香族炭化水素、ケトン類、エステル類、エーテル類から選ばれる少なくとも一種の有機溶剤に溶解したマレイミド樹脂溶液を表面支持体上に塗布し、乾燥した後、支持体から剥離することにより得られるマレイミド樹脂成型体の製造方法、
[8]乾燥温度が80〜200℃である前項[7]に記載のマレイミド樹脂成型体の製造方法、
[9]表面支持体上に塗布する際のWET膜厚を10μm〜5mmとする前項[7]又は[8]に記載のマレイミド樹脂成型体の製造方法、
[10]前項[7]〜[9]に記載の製造方法により得られたマレイミド樹脂成型体、
[11]前項[1]〜[6]並びに前項[10]のいずれか一項に記載のマレイミド樹脂成型体と、該マレイミド樹脂と架橋反応可能な化合物及び/又は硬化促進剤を含むマレイミド樹脂組成物、
[12]前項[11]のマレイミド樹脂組成物の硬化物、
に関する。
That is, the present invention
[1] A maleimide resin molding containing a maleimide resin and an organic solvent, and a marble or flaked maleimide resin,
[2] The maleimide resin molded article according to [1], wherein the residual solvent is 30000 ppm or less,
[3] The maleimide resin molding according to [1] or [2], wherein the organic solvent is at least one organic solvent selected from aromatic hydrocarbons having 3 to 10 carbon atoms, ketones, esters, and ethers. body,
[4] The maleimide resin molded article according to any one of [1] to [3], wherein the average height is 10 μm to 3 mm, and the average diameter is 1 mm to 5 mm,
[5] The maleimide resin molded article according to any one of [1] to [4], which is a novolac maleimide resin having an average functional group number of 2 to 20 and having a repeating unit,
[6] The maleimide resin molded article according to any one of [1] to [5], wherein the maleimide resin has a softening point of 50 to 150 ° C.
[7] A maleimide resin solution dissolved in at least one organic solvent selected from aromatic hydrocarbons having 3 to 10 carbon atoms, ketones, esters and ethers is applied on a surface support, dried, and then supported. A method for producing a maleimide resin molded body obtained by peeling from a body,
[8] The method for producing a maleimide resin molded article according to [7], wherein the drying temperature is 80 to 200 ° C.,
[9] The method for producing a maleimide resin molded article according to [7] or [8] above, wherein the WET film thickness when applied on the surface support is 10 μm to 5 mm,
[10] A maleimide resin molded article obtained by the production method according to the above [7] to [9],
[11] A maleimide resin composition comprising the maleimide resin molding according to any one of [1] to [6] and [10], a compound capable of crosslinking with the maleimide resin, and / or a curing accelerator. object,
[12] A cured product of the maleimide resin composition of [11],
About.

本発明のマレイミド樹脂成型体は、残溶剤量を抑えることができ、マーブル状もしくはそのフレーク状で成型されているため、作業性・生産性に優れ、環境暴露の少ないマレイミド樹脂成型体を提供することができる。さらに、残溶剤の量を抑えることができるため、成型時のボイドやクラックの生成を防ぐことができる。   The maleimide resin molding of the present invention can suppress the amount of residual solvent, and is molded in a marble form or its flake form, thus providing a maleimide resin molding having excellent workability and productivity and less environmental exposure. be able to. Furthermore, since the amount of residual solvent can be suppressed, generation of voids and cracks during molding can be prevented.

図1は、合成例2より得られた重合反応終了時のマレイミド樹脂溶液(V1)の分子量分布を表す図である。FIG. 1 is a diagram showing the molecular weight distribution of the maleimide resin solution (V1) at the end of the polymerization reaction obtained from Synthesis Example 2. 図2は、比較例1より得られた大量合成時溶媒留去後のマレイミド樹脂(B1)の分子量分布を表す図である。FIG. 2 is a diagram showing the molecular weight distribution of the maleimide resin (B1) obtained after the solvent was distilled off during mass synthesis obtained from Comparative Example 1. 図3は、実施例1より得られたマレイミド樹脂成型体(M1)の分子量分布を表す図である。FIG. 3 is a diagram showing the molecular weight distribution of the maleimide resin molding (M1) obtained from Example 1. 図4は、比較例4のマレイミド樹脂(C1)の酢酸の定量を表す図である。FIG. 4 is a diagram showing the quantitative determination of acetic acid in the maleimide resin (C1) of Comparative Example 4. 図5は、左側がフィルム状のマレイミド樹脂成型体を表し、右側はマーブル状のマレイミド樹脂成型体を表す図である。FIG. 5 is a diagram showing a film-like maleimide resin molding on the left side and a marble-like maleimide resin molding on the right side. 図6は、マーブル状の成型体を表す図である。FIG. 6 is a diagram showing a marble-shaped molded body.

以下、本発明を詳細に説明する。
本発明のマレイミド樹脂成型体は、マレイミド樹脂と有機溶剤を含有し、マーブル状またはフレーク状で成型されていることを特徴とする。
従来一般的に結晶状もしくは粉末状で供給されていたマレイミド樹脂と比較して、マーブル状もしくはそのフレーク状の成型体で供給することが可能であるため作業性の面において粉塵等の問題が起こらずきわめて取り扱いが容易である。すなわち本発明のマレイミド樹脂成型体は容易にマレイミド樹脂組成物を調製することができる。
Hereinafter, the present invention will be described in detail.
The maleimide resin molding of the present invention contains a maleimide resin and an organic solvent, and is characterized by being molded in a marble or flake shape.
Compared with the maleimide resin that has been generally supplied in the form of crystals or powders in the past, it can be supplied in the form of marble or its flakes, which causes problems such as dust in terms of workability. It is extremely easy to handle. That is, the maleimide resin molding of the present invention can easily prepare a maleimide resin composition.

樹脂成型体とは、樹脂溶液を表面支持体上に塗布し、成型した後、過熱条件下で、溶剤を除去し、支持体から剥離したものをいい、例えば、マーブル状、フィルム状、シート状、繊維状、板状、棒状等が挙げられる。
ここで、マーブル状とは、平均高さが10μm〜3mm、平均直径が1mm〜5mmの比較的粒径が均一なビーズ状の形状をいう(図5及び図6を参照)。フレーク状とはマーブル状の成型体を粉砕した状態をいう。
A resin molded body refers to a resin solution applied on a surface support, molded and then removed from the support under superheating conditions, for example, a marble, film, or sheet. , Fiber, plate, rod and the like.
Here, the marble shape means a bead shape having an average height of 10 μm to 3 mm and an average diameter of 1 mm to 5 mm and having a relatively uniform particle size (see FIGS. 5 and 6). The flake shape refers to a state in which a marble shaped molded body is pulverized.

次に、説明の便宜上、本発明のマレイミド樹脂成型体の製造方法について説明する。
本発明のマレイミド樹脂成型体は、有機溶剤に溶解したマレイミド樹脂溶液を表面支持体上に塗布し、マーブル状とした後、加熱条件下、(必要に応じて減圧条件下)溶剤を除去し、支持体からマーブル状の成型体を剥離することによりマレイミド樹脂成型体を得ることができる。すわなち、本発明のマレイミド樹脂成型体の製造方法は、樹脂溶液を表面支持体上に塗布する工程と、加熱乾燥する工程と、支持体から剥離する工程により行われる。
Next, the manufacturing method of the maleimide resin molding of this invention is demonstrated for convenience of explanation.
The maleimide resin molded body of the present invention is obtained by applying a maleimide resin solution dissolved in an organic solvent on a surface support to make it marbled, and then removing the solvent under heating conditions (under reduced pressure conditions as necessary) A maleimide resin molding can be obtained by peeling the marble molding from the support. That is, the method for producing a maleimide resin molded body of the present invention is performed by a step of applying a resin solution on a surface support, a step of heat drying, and a step of peeling from the support.

(マレイミド樹脂)
本発明において用いることができるマレイミド樹脂としては公知のものを用いることができるが、粘度および軟化点の観点から、平均官能基数が2を超えて10以下である繰り返し単位を有するノボラック型のマレイミド樹脂が好ましい。
本発明において用いることができるマレイミド樹脂としては、例えば、下記式(1)で表される構造を有する。
(Maleimide resin)
As the maleimide resin that can be used in the present invention, known ones can be used. From the viewpoint of viscosity and softening point, a novolac maleimide resin having a repeating unit having an average functional group number of more than 2 and 10 or less. Is preferred.
As maleimide resin which can be used in this invention, it has a structure represented by following formula (1), for example.

(式中、複数存在するRはそれぞれ独立して存在し、水素原子、炭素数1〜10のアルキル基もしくはフェニル基を表す。Xは下記構造式(a)〜(e)で表される。nは平均値であり1<n≦5を表す。)。 (In the formula, a plurality of R's are present independently and each represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a phenyl group. X is represented by the following structural formulas (a) to (e)). n is an average value and represents 1 <n ≦ 5).

または、マレイミド樹脂の混合物も挙げられるが、本発明は、これらに限定されるものではない。   Alternatively, a mixture of maleimide resins may be mentioned, but the present invention is not limited to these.

前記式(1)で表されるマレイミド樹脂の製法は、特に限定されず、マレイミド化合物の合成法として公知のいかなる方法で製造してもよい。具体的な製造方法としては例えば、特開2009−001783号公報のような方法を用いることが好ましい。   The method for producing the maleimide resin represented by the formula (1) is not particularly limited, and any method known as a method for synthesizing a maleimide compound may be used. As a specific manufacturing method, for example, it is preferable to use a method as disclosed in JP-A-2009-001783.

(マレイミド樹脂溶液)
本発明におけるマレイミド樹脂溶液とは、前記マレイミド樹脂が有機溶媒に溶解したものを意味する。
マレイミド樹脂溶液は、マレイミド樹脂が有機溶媒に溶解したものであれば特に限定されず、公知の溶液重合法や種々の制御重合法により合成された重合体溶液の他に、重合中に固体状重合体が一部析出したものであってもよいし、重合が終了した溶液に沈殿剤を添加して重合体を沈殿させたものであってもよい。
用いることができる有機溶媒としては、特に限定されず、例えば、炭素数3〜10の芳香族炭化水素、ケトン類、エステル類、エーテル類から選ばれる少なくとも一種の有機溶剤が好ましく、また、重合後の反応液を処理することによって得られたものを用いることが好ましい。
(Maleimide resin solution)
The maleimide resin solution in the present invention means a solution in which the maleimide resin is dissolved in an organic solvent.
The maleimide resin solution is not particularly limited as long as the maleimide resin is dissolved in an organic solvent. In addition to a polymer solution synthesized by a known solution polymerization method or various control polymerization methods, a solid state resin is polymerized during polymerization. A part of the polymer may be precipitated, or a polymer may be precipitated by adding a precipitating agent to the polymerized solution.
The organic solvent that can be used is not particularly limited, and for example, at least one organic solvent selected from aromatic hydrocarbons having 3 to 10 carbon atoms, ketones, esters, and ethers is preferable. It is preferable to use what was obtained by processing the reaction liquid.

有機溶剤の使用量は、マレイミド樹脂と該溶剤の混合物中で通常10〜70重量%であり、好ましくは15〜70重量%である。   The amount of the organic solvent used is usually 10 to 70% by weight, preferably 15 to 70% by weight in the mixture of maleimide resin and the solvent.

マレイミド樹脂溶液の粘度(コーンプレート法、150℃溶融粘度):5mPa・s〜10000Pa・sが好ましく、10mPa・s〜100Pa・sがより好ましく、10mPa・s〜10Pa・sが特に好ましい。コーンプレート法での150℃溶融粘度が10000Pa・sを超えると残溶剤量の低減効果が十分に得られないおそれがある。   Viscosity of maleimide resin solution (cone plate method, 150 ° C. melt viscosity): 5 mPa · s to 10000 Pa · s is preferable, 10 mPa · s to 100 Pa · s is more preferable, and 10 mPa · s to 10 Pa · s is particularly preferable. If the 150 ° C. melt viscosity in the corn plate method exceeds 10,000 Pa · s, the effect of reducing the residual solvent amount may not be sufficiently obtained.

(表面支持体に塗布する工程)
次に、得られたマレイミド樹脂溶液を、離形処理を施した表面支持体に塗布し、フィルム状もしくはシート状に成型する。
マレイミド樹脂溶液を塗布する離形処理を施した表面支持体としては、表面が平滑であれば特に限定されないが、好ましくは離形処理を施したPETフィルム、金属、イミドフィルム等が挙げられる。表面支持体に離形処理を施すことで、加熱溶融したマレイミド樹脂が自身の表面張力により液滴となるため、マーブル状の成型体が形成される。
(Process to apply to surface support)
Next, the obtained maleimide resin solution is applied to a surface support that has been subjected to a release treatment, and molded into a film or sheet.
Although it will not specifically limit as long as the surface support body which performed the mold release process which apply | coats a maleimide resin solution is smooth, Preferably PET film, a metal, an imide film, etc. which performed the mold release process are mentioned. By subjecting the surface support to a mold release treatment, the heated and melted maleimide resin becomes droplets due to its surface tension, so that a marble shaped molded body is formed.

表面支持体に塗布する際の膜厚および面積が、表面支持体100cm当たりそれぞれ、膜厚10μm〜3mm、面積100cmとなるような行うことが好ましい。 The film thickness and the area at the time of applying to the surface support, each per surface support 100 cm 2, thickness 10Myuemu~3mm, it is preferably carried out such that the area of 100 cm 2.

塗布時のWET膜厚は10μm〜5mmが好ましく、10μm〜4.5mmがより好ましく、200μm〜4.3mmが特に好ましい。上記範囲を超えると残溶剤低減効果が十分に得られない恐れがあり、下回るとマレイミド樹脂成型体の生産性が下がる恐れがある。   The WET film thickness at the time of application is preferably 10 μm to 5 mm, more preferably 10 μm to 4.5 mm, and particularly preferably 200 μm to 4.3 mm. If the above range is exceeded, the residual solvent reducing effect may not be sufficiently obtained, and if it is below the range, the productivity of the maleimide resin molded product may be lowered.

(加熱乾燥する工程と表面支持体から剥離する工程)
次に、アプリケータを用いて離形処理を施した表面支持体に流涎塗布したマレイミド樹脂溶液を加熱乾燥条件下、(必要に応じて減圧条件下)溶剤を除去し、表面支持体からマーブル状の成型体を剥離し、取り出す。
(Step of drying by heating and step of peeling from surface support)
Next, the maleimide resin solution fluently applied to the surface support that has been subjected to the release treatment using an applicator is removed from the surface support in a marbled state by removing the solvent under heating and drying conditions (under reduced pressure if necessary). The molded body is peeled off and taken out.

乾燥温度は80〜250℃が好ましく、好ましくは80℃〜200℃、特に100℃〜200℃が好ましい。乾燥温度が250℃以上では樹脂の劣化が進行し易いため、必要とする加工特性に応じて設定される。また80℃未満では溶剤の除去が困難であり、溶剤の残量が多くなるため、成型時のボイドやクラックの生成、べた付きがあり、フィルムの形状を維持できず、引き剥がし粉砕することができない恐れがある。   The drying temperature is preferably 80 to 250 ° C, preferably 80 to 200 ° C, particularly preferably 100 to 200 ° C. When the drying temperature is 250 ° C. or higher, the deterioration of the resin is likely to proceed, so that it is set according to the required processing characteristics. If the temperature is lower than 80 ° C., it is difficult to remove the solvent, and the remaining amount of the solvent increases. Therefore, voids and cracks at the time of molding and stickiness are formed, the shape of the film cannot be maintained, and it may be peeled off and pulverized. There is a fear that it cannot be done.

マーブル状のマレイミド樹脂成型体の厚みは特に限定されないが、好ましくは10μm〜3mm、より好ましくは30μm〜1mmである。膜厚が3mmを超えると、残溶剤量の低減効果が十分に得られないため、必要とする加工特性に応じて設定される。   The thickness of the marble maleimide resin molding is not particularly limited, but is preferably 10 μm to 3 mm, more preferably 30 μm to 1 mm. If the film thickness exceeds 3 mm, the effect of reducing the residual solvent amount cannot be obtained sufficiently, so that it is set according to the required processing characteristics.

マーブル状のマレイミド樹脂成型体の直径は特に限定されないが、好ましくは1mm〜1cm、より好ましくは2mm〜1cmである。直径が2mmを下回ると、残溶剤量の低減効果が十分に得られないため、必要とする加工特性に応じて設定される。   The diameter of the marble maleimide resin molding is not particularly limited, but is preferably 1 mm to 1 cm, more preferably 2 mm to 1 cm. When the diameter is less than 2 mm, the effect of reducing the amount of residual solvent cannot be obtained sufficiently, so that it is set according to the required processing characteristics.

上記工程により得られたマレイミド樹脂成型体は、残溶剤が30000ppm以下である。好ましくは20000ppm以下であり、より好ましくは10000ppm以下である。なお測定検出限界として下限値は5ppmである。
また、得られたマレイミド樹脂成型体は溶剤に可溶であることが好ましい。完全溶解するということはマレイミド樹脂が、高分子量化反応が進んでいないことを意味する。
The maleimide resin molding obtained by the above process has a residual solvent of 30000 ppm or less. Preferably it is 20000 ppm or less, More preferably, it is 10,000 ppm or less. Note that the lower limit of the measurement detection limit is 5 ppm.
Moreover, it is preferable that the obtained maleimide resin molding is soluble in a solvent. The complete dissolution means that the maleimide resin has not progressed in the high molecular weight reaction.

このようにして得られるマレイミド樹脂成型体は従来の結晶状もしくは粉末状で供給されているマレイミド樹脂と比較して、作業性・生産性に優れる樹脂成型体となる。   The maleimide resin molding thus obtained is a resin molding excellent in workability and productivity as compared with a conventional maleimide resin supplied in a crystalline or powder form.

次に、本発明のマレイミド樹脂組成物について説明する。
本発明のマレイミド樹脂組成物はマレイミド樹脂成型体と架橋反応可能な化合物を含むことができる。架橋可能な化合物はマレイミド樹脂成型体と架橋反応を起こし、マレイミド樹脂の硬化剤として作用する。架橋可能な化合物としては、アミノ基、シアネート基、フェノール性水酸基、アルコール性水酸基、アリル基、アクリル基、メタクリル基、ビニル基、共役ジエン基を有する化合物等が挙げられる。例えば、耐熱性が必要なときはアミン化合物、誘電特性が必要なときはシアネートエステル化合物を配合することが好ましい。
Next, the maleimide resin composition of the present invention will be described.
The maleimide resin composition of the present invention can contain a compound capable of undergoing a crosslinking reaction with the maleimide resin molded article. The crosslinkable compound causes a cross-linking reaction with the maleimide resin molding and acts as a curing agent for the maleimide resin. Examples of the crosslinkable compound include compounds having an amino group, a cyanate group, a phenolic hydroxyl group, an alcoholic hydroxyl group, an allyl group, an acrylic group, a methacryl group, a vinyl group, or a conjugated diene group. For example, an amine compound is preferably blended when heat resistance is required, and a cyanate ester compound is blended when dielectric properties are required.

本発明のマレイミド樹脂組成物には、必要に応じて硬化用の触媒(硬化促進剤)を配合することができる。例えば2−メチルイミダゾール、2−エチルイミダゾール、2−フェニルイミダゾール、2−エチル−4−メチルイミダゾール、2−ウンデシルイミダゾール、1−シアノエチル−2−エチル−4−メチルイミダゾールなどのイミダゾール類、トリエチルアミン、トリエチレンジアミン、2−(ジメチルアミノメチル)フェノール、1,8−ジアザ−ビシクロ(5,4,0)7−ウンデセン、トリス(ジメチルアミノメチル)フェノール、ベンジルジメチルアミン等のアミン類、トリフェニルホスフィン、トリブチルホスフィン、トリオクチルホスフィンなどのホスフィン類、オクチル酸スズ、オクチル酸亜鉛、ジブチルスズジマレエート、ナフテン酸亜鉛、ナフテン酸コバルト、オレイン酸スズ等の有機金属塩、塩化亜鉛、塩化アルミニウム、塩化スズなどの金属塩化物、ジ−tert−ブチルパーオキサイド、ジクミルパーオキサイドなどの有機過酸化物、アゾビスイソブチロニトリル、アゾビスジメチルバレロニトリルなどのアゾ化合物、塩酸、硫酸、リン酸などの鉱酸、三フッ化ホウ素などのルイス酸、炭酸ナトリウムや塩化リチウム等の塩類などが挙げられる。硬化用の触媒の配合量は、前記マレイミド樹脂成型体100重量部に対して好ましくは10重量部以下、より好ましくは5重量部以下の範囲である。   The maleimide resin composition of the present invention may contain a curing catalyst (curing accelerator) as necessary. For example, imidazoles such as 2-methylimidazole, 2-ethylimidazole, 2-phenylimidazole, 2-ethyl-4-methylimidazole, 2-undecylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, triethylamine, Amines such as triethylenediamine, 2- (dimethylaminomethyl) phenol, 1,8-diaza-bicyclo (5,4,0) 7-undecene, tris (dimethylaminomethyl) phenol, benzyldimethylamine, triphenylphosphine, Phosphines such as tributylphosphine and trioctylphosphine, tin octylate, zinc octylate, dibutyltin dimaleate, zinc naphthenate, cobalt naphthenate, tin oleate, zinc chloride, aluminum chloride Metal chlorides such as tin chloride, organic peroxides such as di-tert-butyl peroxide and dicumyl peroxide, azo compounds such as azobisisobutyronitrile and azobisdimethylvaleronitrile, hydrochloric acid, sulfuric acid, phosphorus Examples include mineral acids such as acids, Lewis acids such as boron trifluoride, and salts such as sodium carbonate and lithium chloride. The amount of the curing catalyst is preferably 10 parts by weight or less, more preferably 5 parts by weight or less, based on 100 parts by weight of the maleimide resin molding.

本発明のマレイミド樹脂組成物に有機溶剤を添加してワニス状の組成物(以下、単にワニスという)とすることができる。本発明のマレイミド樹脂組成物を必要に応じてトルエン、キシレン、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等の溶剤に溶解させ、エポキシ樹脂組成物ワニスとし、炭素繊維、ガラス繊維、カ−ボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維、紙などの基材に含浸させて加熱乾燥して得たプリプレグを熱プレス成形することにより、本発明のマレイミド樹脂組成物の硬化物とすることができる。 この際の溶剤は、本発明のマレイミド樹脂組成物と該溶剤の混合物中で通常10〜70重量%、好ましくは15〜70重量%を占める量を用いる。また液状組成物であれば、そのまま例えば、RTM方式でカーボン繊維を含有するマレイミド樹脂組成物の硬化物を得ることもできる。   An organic solvent can be added to the maleimide resin composition of the present invention to obtain a varnish-like composition (hereinafter simply referred to as varnish). If necessary, the maleimide resin composition of the present invention is dissolved in a solvent such as toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone to obtain an epoxy resin composition varnish, and carbon fiber. The maleimide resin composition of the present invention is obtained by hot press molding a prepreg obtained by impregnating a base material such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, alumina fiber, paper, etc. It can be a cured product. The solvent used here is usually 10 to 70% by weight, preferably 15 to 70% by weight in the mixture of the maleimide resin composition of the present invention and the solvent. Moreover, if it is a liquid composition, the hardened | cured material of the maleimide resin composition which contains a carbon fiber by RTM system as it is can also be obtained as it is.

また、本発明のマレイミド樹脂組成物をフィルム型組成物の改質剤としても使用できる。具体的にはB−ステージにおけるフレキ性等を向上させる場合に用いることができる。このようなフィルム型の樹脂組成物は、本発明のマレイミド樹脂組成物を前記マレイミド樹脂組成物ワニスとして剥離フィルム上に塗布し、加熱下で溶剤を除去した後、Bステージ化を行うことによりシート状の接着剤として得られる。このシート状接着剤は多層基板などにおける層間絶縁層として使用することが出来る。   Moreover, the maleimide resin composition of the present invention can also be used as a modifier for a film-type composition. Specifically, it can be used to improve the flexibility of the B-stage. Such a film-type resin composition is formed by applying the maleimide resin composition of the present invention on the release film as the maleimide resin composition varnish, removing the solvent under heating, and then performing B-stage formation. Obtained as an adhesive. This sheet-like adhesive can be used as an interlayer insulating layer in a multilayer substrate or the like.

本発明のマレイミド樹脂組成物を加熱溶融し、低粘度化してガラス繊維、カ−ボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維などの強化繊維に含浸させることによりプリプレグを得ることができる。
また、前記ワニスを、強化繊維に含浸させて加熱乾燥させることによりプリプレグを得ることもできる。
A prepreg can be obtained by heating and melting the maleimide resin composition of the present invention, lowering the viscosity, and impregnating the fiber with a reinforcing fiber such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, or alumina fiber.
Moreover, a prepreg can also be obtained by impregnating the varnish into a reinforcing fiber and drying by heating.

これらの強化繊維に本発明のマレイミド樹脂組成物を含浸させる方法にも特に制限はないが、溶剤を使用しない方法が好ましいため、本発明のマレイミド樹脂組成物を60〜110℃に加温し、流動性がある状態で含浸させるホットメルト法が好ましい。   Although there is no particular limitation on the method for impregnating the maleimide resin composition of the present invention into these reinforcing fibers, a method that does not use a solvent is preferable, so the maleimide resin composition of the present invention is heated to 60 to 110 ° C, A hot melt method of impregnation in a fluid state is preferred.

得られるプリプレグ(強化繊維にマレイミド樹脂組成物を含浸させたもの)に占めるマレイミド樹脂組成物の割合は、強化繊維の形態にもよるが通常20重量%以上80重量%以下、好ましくは25重量%以上65重量%以下、より好ましくは30重量%以上50% 以下である。この範囲よりもマレイミド樹脂組成物の割合が多いと相対的に強化繊維の割合が減ることにより十分な補強効果が得られず、逆にマレイミド樹脂組成物が少ないと成型性が損なわれる。   The proportion of the maleimide resin composition in the prepreg obtained (impregnated with the maleimide resin composition in the reinforcing fiber) is usually 20% by weight to 80% by weight, preferably 25% by weight, although it depends on the form of the reinforcing fiber. The content is 65% by weight or less, more preferably 30% by weight or more and 50% or less. If the ratio of the maleimide resin composition is larger than this range, the ratio of the reinforcing fibers is relatively decreased, so that a sufficient reinforcing effect cannot be obtained. Conversely, if the maleimide resin composition is small, the moldability is impaired.

このプリプレグは公知の手法により硬化させて最終成型品とすることができる。例えば、プリプレグを積層して、オートクレーブ中で2ないし10kgf/cmに加圧し、150℃から200℃で30分ないし3時間加熱硬化させて成型体とすることができるが、さらに耐熱性を向上させるため、ポストキュアとして180℃ないし280℃の温度範囲で温度をステップ的に加温しながら1時間ないし12時間処理することにより繊維強化複合材成型品とすることができる。
上記のプリプレグを所望の形に裁断、必要により銅箔などと積層後、積層物にプレス成形法やオートクレーブ成形法、シートワインディング成形法などで圧力をかけながら積層板用エポキシ樹脂組成物を加熱硬化させることにより積層板を得ることができる。
更に、表面に銅箔を重ねてできた積層板に回路を形成し、その上にプリプレグや銅箔等を重ねて上記の操作を繰り返して多層の回路基板を得ることができる。
This prepreg can be cured by a known method to obtain a final molded product. For example, a prepreg can be laminated, pressurized to 2 to 10 kgf / cm 2 in an autoclave, and cured by heating at 150 ° C. to 200 ° C. for 30 minutes to 3 hours. Therefore, a fiber reinforced composite material molded article can be obtained by treating for 1 hour to 12 hours while heating stepwise in the temperature range of 180 ° C. to 280 ° C. as a post cure.
The above prepreg is cut into the desired shape, laminated with copper foil, etc. if necessary, and the epoxy resin composition for laminates is heat-cured while applying pressure to the laminate by the press molding method, autoclave molding method, sheet winding molding method, etc. By doing so, a laminated board can be obtained.
Furthermore, a circuit can be formed on a laminated board made by superimposing copper foil on the surface, and a multilayer circuit board can be obtained by superimposing a prepreg or copper foil thereon and repeating the above operation.

本発明のプリプレグの硬化物は、液晶ガラス基板搬送ロボットハンド用途、シリコンウェハー搬送用ディスク用途、航空宇宙向け部材用途、自動車のエンジン部材用途など、軽量で高強度かつ高耐熱性が要求される部材に広く適用することができる。   The cured product of the prepreg of the present invention is a member that requires light weight, high strength, and high heat resistance, such as a liquid crystal glass substrate transfer robot hand application, a silicon wafer transfer disk application, an aerospace member application, and an automobile engine member application. Can be widely applied to.

本発明のマレイミド樹脂組成物の具体的な用途としては、接着剤、塗料、コーティング剤、成形材料(シート、フィルム、FRP等を含む)、電子材料用絶縁材料(プリント基板、電線被覆等を含む、封止材の他、封止材、基板用のシアネート樹脂組成物)や、レジスト用硬化剤としてアクリル酸エステル系樹脂等、他樹脂等への添加剤等が挙げられる。特にFRP用途においては環境への配慮、およびボイドによる欠陥の排除の問題から近年無溶剤化が大きく進んでいる。さらには半導体封止の用途においても同様に溶剤が工程中に入ることができない環境がある。
一方、従来マレイミドは結晶状を呈しており、溶解性が悪く取り扱いが困難である。本発明の成型体はこういった課題を解決できる材料である。
Specific uses of the maleimide resin composition of the present invention include adhesives, paints, coating agents, molding materials (including sheets, films, FRP, etc.), insulating materials for electronic materials (including printed boards, wire coatings, etc.) In addition to the encapsulant, an encapsulant, a cyanate resin composition for a substrate), and an additive for other resins such as an acrylate ester resin as a curing agent for a resist. In particular, in the FRP application, in recent years, the use of solvent-free has greatly progressed due to environmental considerations and the problem of eliminating defects due to voids. Furthermore, there is an environment where the solvent cannot enter the process in the same way in the application of semiconductor sealing.
On the other hand, conventional maleimide has a crystalline form and is poorly soluble and difficult to handle. The molded body of the present invention is a material that can solve these problems.

以下に実施例に基づいて本発明の内容を具体的に説明するが、本発明はこれによって限定されるものではない。尚、本文中「部」及び「%」は、それぞれ「重量部」及び「重量%」を表す。実施例中、軟化点及び溶融粘度は下記の方法で測定した。
・軟化点:JISK−7234に準じた方法で測定
・溶融粘度:コーンプレート法での150℃における粘度
・残溶剤量の定量は島津製作所社製ガスクロマトグラフGC−2010を用いて行い、カラムとしてはDB−WAX(Agilene Technologies社製)長さ30m、内径0.25mmを用いた。
昇温プログラムとしては、70℃で5分保持し、10℃/minの昇温速度で140℃まで昇温後、20℃/minの昇温速度で220℃まで昇温し、220℃で5分保持するプログラムを用いた。
・分子量のデータ取得には、ゲルパーミエーションクロマトグラフィー(GPC 島津製作所社製LC−20AD)を用いた。カラムにはKF−603,KF−602.5,KF−602,KF−601を使用し、カラム温度40℃、移動相をTHFとし、流速 0.5ml/minの条件にて、RI検出器により測定を行った。
The contents of the present invention will be specifically described below based on examples, but the present invention is not limited thereto. In the text, “parts” and “%” represent “parts by weight” and “% by weight”, respectively. In the examples, the softening point and melt viscosity were measured by the following methods.
-Softening point: Measured by a method according to JISK-7234-Melt viscosity: Viscosity at 150 ° C by cone plate method-Residual solvent amount is quantified using a gas chromatograph GC-2010 manufactured by Shimadzu Corporation. DB-WAX (manufactured by Agilent Technologies) having a length of 30 m and an inner diameter of 0.25 mm was used.
As the temperature raising program, the temperature is maintained at 70 ° C. for 5 minutes, heated to 140 ° C. at a temperature rising rate of 10 ° C./min, then heated to 220 ° C. at a temperature rising rate of 20 ° C./min, A minute retention program was used.
-For the molecular weight data acquisition, gel permeation chromatography (LC-20 AD manufactured by GPC Shimadzu Corporation) was used. KF-603, KF-602.5, KF-602, KF-601 are used for the column, the column temperature is 40 ° C., the mobile phase is THF, and the flow rate is 0.5 ml / min. Measurements were made.

(合成例1)
温度計、冷却管、ディーンスターク共沸蒸留トラップ、撹拌機を取り付けたフラスコにアニリン559部とトルエン500部を仕込み、室温で35%塩酸167部を1時間で滴下した。滴下終了後加熱して共沸してくる水とトルエンを冷却・分液した後、有機層であるトルエンだけを系内に戻して脱水を行った。次いで4,4’−ビス(クロロメチル)ビフェニル251部を60〜70℃に保ちながら1時間かけて添加し、更に同温度で2時間反応を行った。反応終了後、昇温をしながらトルエンを留去して系内を190〜200℃とし、この温度で15時間反応をした。その後冷却しながら30%水酸化ナトリウム水溶液500部を系内が激しく還流しないようにゆっくりと滴下し、80℃以下で留去したトルエンを系内に戻し、70℃〜80℃で静置した。分離した下層の水層を除去し、反応液の水洗を洗浄液が中性になるまで繰り返した。次いで油層から加熱減圧下において過剰のアニリンとトルエンを留去することにより芳香族アミン樹脂335部(A1)を得た。芳香族アミン樹脂(A1)の軟化点は59℃、溶融粘度は0.05Pa・sであった。
(Synthesis Example 1)
A flask equipped with a thermometer, a condenser, a Dean-Stark azeotropic distillation trap, and a stirrer was charged with 559 parts of aniline and 500 parts of toluene, and 167 parts of 35% hydrochloric acid was added dropwise at room temperature over 1 hour. After completion of the dropwise addition, the mixture was heated to cool and separate azeotropic water and toluene, and then only the organic layer of toluene was returned to the system for dehydration. Next, 251 parts of 4,4′-bis (chloromethyl) biphenyl was added over 1 hour while maintaining the temperature at 60 to 70 ° C., and the reaction was further carried out at the same temperature for 2 hours. After completion of the reaction, toluene was distilled off while raising the temperature to make the system at 190 to 200 ° C., and the reaction was carried out at this temperature for 15 hours. Thereafter, 500 parts of a 30% aqueous sodium hydroxide solution was slowly added dropwise while cooling so that the system did not vigorously reflux, and toluene distilled off at 80 ° C. or lower was returned to the system and allowed to stand at 70 ° C. to 80 ° C. The separated lower aqueous layer was removed, and the reaction solution was washed with water until the washing solution became neutral. Subsequently, 335 parts of aromatic amine resin (A1) was obtained by distilling off excess aniline and toluene from the oil layer under heating and reduced pressure. The softening point of the aromatic amine resin (A1) was 59 ° C., and the melt viscosity was 0.05 Pa · s.

(合成例2)
温度計、冷却管、ディーンスターク共沸蒸留トラップ、撹拌機を取り付けたフラスコに無水マレイン酸88部とトルエン300部を仕込み、加熱して共沸してくる水とトルエンを冷却・分液した後、有機層であるトルエンだけを系内に戻して脱水を行った。次に、芳香族アミン樹脂(A1)116部をN−メチル−2−ピロリドン116部に溶解した樹脂溶液を、系内を80〜85℃に保ちながら1時間かけて滴下した。滴下終了後、同温度で2時間反応を行い、p−トルエンスルホン酸2 部を加えて、還流条件で共沸してくる縮合水とトルエンを冷却・分液した後、有機層であるトルエンだけを系内に戻して脱水を行いながら10時間反応を行った。反応終了後、トルエンを120部追加し、水洗を繰り返してp−トルエンスルホン酸及び過剰の無水マレイン酸を除去し、加熱して共沸により水を系内から除いた。次いで反応溶液を濃縮して、マレイミド樹脂を70%含有するマレイミド樹脂溶液(V1)を得た。
(Synthesis Example 2)
A flask equipped with a thermometer, condenser, Dean-Stark azeotropic distillation trap, and stirrer was charged with 88 parts of maleic anhydride and 300 parts of toluene, and heated to cool and separate the azeotropic water and toluene. Then, only toluene which is an organic layer was returned to the system for dehydration. Next, a resin solution in which 116 parts of the aromatic amine resin (A1) was dissolved in 116 parts of N-methyl-2-pyrrolidone was added dropwise over 1 hour while maintaining the system at 80 to 85 ° C. After completion of the dropwise addition, the reaction is carried out at the same temperature for 2 hours, 2 parts of p-toluenesulfonic acid is added, condensed water and toluene azeotroped under reflux conditions are cooled and separated, and only toluene which is an organic layer Was returned to the system and reacted for 10 hours while dehydrating. 120 parts of toluene was added after completion | finish of reaction, water washing was repeated, p-toluenesulfonic acid and excess maleic anhydride were removed, and it heated and removed water from the system by azeotropy. Next, the reaction solution was concentrated to obtain a maleimide resin solution (V1) containing 70% maleimide resin.

(実施例1)(表面支持体:離形PETフィルム)
合成例2により得られたマレイミド樹脂溶液(V1)を、アプリケータを用いて離形PETフィルム(リンテック社製 PTN756502)へ流延塗布(WET膜厚200μm)し、塗布された樹脂膜を120℃で1時間乾燥させることにより溶媒を除去した。
得られたマレイミド樹脂成型体は高さ0.799mm、直径4.9mmのマーブル状であり、引き剥がし、粉砕することでフレーク状の形状のマレイミド成型体(M1)とした。
得られたマレイミド樹脂成型体(M1)の残溶剤は2.98%(29800ppm)であった。
なお、本工程による分子量分布の変化は見られなかった(GPCによる測定)
(Example 1) (Surface support: Release PET film)
The maleimide resin solution (V1) obtained in Synthesis Example 2 was cast and applied (WET film thickness 200 μm) to a release PET film (PTN756502 manufactured by Lintec Corporation) using an applicator, and the applied resin film was 120 ° C. The solvent was removed by drying for 1 hour.
The obtained maleimide resin molding was marbled with a height of 0.799 mm and a diameter of 4.9 mm, and was peeled off and pulverized to obtain a flaky maleimide molding (M1).
The residual solvent of the obtained maleimide resin molding (M1) was 2.98% (29800 ppm).
In addition, the change of molecular weight distribution by this process was not seen (measurement by GPC).

(実施例2)(表面支持体:離形PETフィルム)
合成例2により得られたマレイミド樹脂溶液(V1)を、アプリケータを用いて離形PETフィルム(リンテック社製 PTN756502)へ流延塗布(WET膜厚200μm)し、塗布された樹脂膜を140℃で1時間乾燥させることにより溶媒を除去した。
得られたマレイミド樹脂成型体は厚さ1.045mm、直径4.1mmのマーブル状であり、引き剥がし、粉砕することでフレーク状の形状のマレイミド樹脂成型体(M2)とした。
得られたマレイミド樹脂成型体(M2)の残溶剤は1.68%(16800ppm)であった。
なお、本工程による分子量分布の変化は見られなかった(GPCによる測定)
(Example 2) (Surface support: Release PET film)
The maleimide resin solution (V1) obtained in Synthesis Example 2 was cast and applied (WET film thickness 200 μm) to a release PET film (PTN756502, manufactured by Lintec Corporation) using an applicator, and the applied resin film was 140 ° C. The solvent was removed by drying for 1 hour.
The obtained maleimide resin molding was marbled with a thickness of 1.045 mm and a diameter of 4.1 mm, and was peeled off and pulverized to obtain a flaky maleimide resin molding (M2).
The residual solvent of the obtained maleimide resin molding (M2) was 1.68% (16800 ppm).
In addition, the change of molecular weight distribution by this process was not seen (measurement by GPC).

(実施例3)(表面支持体:離形PETフィルム)
合成例2により得られたマレイミド樹脂溶液(V1)を、アプリケータを用いて離形PETフィルム(リンテック社製 PTN756502)へ流延塗布(WET膜厚200μm)し、塗布された樹脂膜を150℃で1時間乾燥させることにより溶媒を除去した。
得られたマレイミド樹脂成型体は高さ1.165mm、直径3.9mmのマーブル状であり、引き剥がし、粉砕することでフレーク状の形状のマレイミド樹脂成型体(M3)とした。
得られたマレイミド樹脂成型体(M3)の残溶剤は0.843%(8430ppm)であった。
なお、本工程による分子量分布の変化は見られなかった(GPCによる測定)
(Example 3) (Surface support: Release PET film)
The maleimide resin solution (V1) obtained in Synthesis Example 2 was cast and applied (WET film thickness 200 μm) to a release PET film (PTN756502, manufactured by Lintec Corporation) using an applicator, and the applied resin film was 150 ° C. The solvent was removed by drying for 1 hour.
The obtained maleimide resin molding was marbled with a height of 1.165 mm and a diameter of 3.9 mm, and was peeled off and pulverized to obtain a flake-shaped maleimide resin molding (M3).
The residual solvent of the obtained maleimide resin molding (M3) was 0.843% (8430 ppm).
In addition, the change of molecular weight distribution by this process was not seen (measurement by GPC).

(実施例4)(表面支持体:離形PETフィルム)
合成例2により得られたマレイミド樹脂溶液(V1)を、アプリケータを用いて離形PETフィルム(リンテック社製 PTN756502)へ流延塗布(WET膜厚200μm)し、塗布された樹脂膜を160℃で1時間乾燥させることにより溶媒を除去した。
得られたマレイミド樹脂成型体は高さ1.178mm、直径3.8mmのマーブル状であり、引き剥がし、粉砕することでフレーク状の形状のマレイミド樹脂成型体(M4)とした。
得られたマレイミド樹脂成型体(M4)の残溶剤は0.996%(9960ppm)であった。
なお、本工程による分子量分布の変化は見られなかった(GPCによる測定)
(Example 4) (Surface support: Release PET film)
The maleimide resin solution (V1) obtained in Synthesis Example 2 was cast and applied (WET film thickness 200 μm) onto a release PET film (PTN756502 manufactured by Lintec Corporation) using an applicator, and the applied resin film was 160 ° C. The solvent was removed by drying for 1 hour.
The obtained maleimide resin molding was marbled with a height of 1.178 mm and a diameter of 3.8 mm, and was peeled off and pulverized to obtain a flake-shaped maleimide resin molding (M4).
The residual solvent of the obtained maleimide resin molding (M4) was 0.996% (9960 ppm).
In addition, the change of molecular weight distribution by this process was not seen (measurement by GPC).

(実施例5)(表面支持体:離形PETフィルム)
合成例2により得られたマレイミド樹脂溶液(V1)を、アプリケータを用いて離形PETフィルム(リンテック社製 PTN756502)へ流延塗布(WET膜厚30μm)し、塗布された樹脂膜を120℃で1時間乾燥させることにより溶媒を除去した。
得られたマレイミド樹脂成型体は高さ0.227mm、直径2.1mmのマーブル状であり、引き剥がし、粉砕することでフレーク状の形状のマレイミド樹脂成型体(M5)とした。
得られたマレイミド樹脂成型体(M5)の残溶剤は0.899%(8990ppm)であった。
なお、本工程による分子量分布の変化は見られなかった(GPCによる測定)
(Example 5) (Surface support: Release PET film)
The maleimide resin solution (V1) obtained in Synthesis Example 2 was cast and applied (WET film thickness 30 μm) to a release PET film (PTN756502, manufactured by Lintec Corporation) using an applicator, and the applied resin film was 120 ° C. The solvent was removed by drying for 1 hour.
The obtained maleimide resin molding was marbled with a height of 0.227 mm and a diameter of 2.1 mm, and was peeled off and pulverized to obtain a flaky maleimide resin molding (M5).
The residual solvent of the obtained maleimide resin molding (M5) was 0.899% (8990 ppm).
In addition, the change of molecular weight distribution by this process was not seen (measurement by GPC).

(実施例6)(表面支持体:離形PETフィルム)
合成例2により得られたマレイミド樹脂溶液(V1)を、アプリケータを用いて離形PETフィルム(リンテック社製 PTN756502)へ流延塗布(WET膜厚50μm)し、塗布された樹脂膜を120℃で1時間乾燥させることにより溶媒を除去した。
得られたマレイミド樹脂成型体は高さ0.240mm、直径2.0mmのマーブル状であり、引き剥がし、粉砕することでフレーク状の形状のマレイミド樹脂成型体(M6)とした。
得られたマレイミド樹脂成型体(M6)の残溶剤は0.768%(7680ppm)であった。
なお、本工程による分子量分布の変化は見られなかった(GPCによる測定)
Example 6 (Surface support: Release PET film)
The maleimide resin solution (V1) obtained in Synthesis Example 2 was cast and applied (WET film thickness 50 μm) onto a release PET film (PTN756502 manufactured by Lintec Corporation) using an applicator, and the applied resin film was 120 ° C. The solvent was removed by drying for 1 hour.
The obtained maleimide resin molding was marbled with a height of 0.240 mm and a diameter of 2.0 mm, and was peeled off and pulverized to obtain a flaky maleimide resin molding (M6).
The residual solvent of the obtained maleimide resin molding (M6) was 0.768% (7680 ppm).
In addition, the change of molecular weight distribution by this process was not seen (measurement by GPC).

(実施例7)(表面支持体:離形PETフィルム)
合成例2により得られたマレイミド樹脂溶液(V1)を、アプリケータを用いて離形PETフィルム(リンテック社製 PTN756502)へ流延塗布(WET膜厚100μm)し、塗布された樹脂膜を120℃で1時間乾燥させることにより溶媒を除去した。
得られたマレイミド樹脂成型体は高さ0.277mm、直径2.6mmのマーブル状であり、引き剥がし、粉砕することでフレーク状の形状のマレイミド樹脂成型体(M7)とした。
得られたマレイミド樹脂成型体(M7)の残溶剤は1.187%(11870ppm)であった。
なお、本工程による分子量分布の変化は見られなかった(GPCによる測定)
(Example 7) (Surface support: Release PET film)
The maleimide resin solution (V1) obtained in Synthesis Example 2 was cast and applied (WET film thickness 100 μm) to a release PET film (PTN756502 made by Lintec Corporation) using an applicator, and the applied resin film was 120 ° C. The solvent was removed by drying for 1 hour.
The obtained maleimide resin molding was marbled with a height of 0.277 mm and a diameter of 2.6 mm, and was peeled off and pulverized to obtain a flaky maleimide resin molding (M7).
The residual solvent of the obtained maleimide resin molding (M7) was 1.187% (11870 ppm).
In addition, the change of molecular weight distribution by this process was not seen (measurement by GPC).

(実施例8)(表面支持体:離形PETフィルム)
合成例2により得られたマレイミド樹脂溶液(V1)を、アプリケータを用いて離形PETフィルム(リンテック社製 PTN756502)へ流延塗布(WET膜厚150μm)し、塗布された樹脂膜を120℃で1時間乾燥させることにより溶媒を除去した。
得られたマレイミド樹脂成型体は高さ0.577mm、直径4.1mmのマーブル状であり、引き剥がし、粉砕することでフレーク状の形状のマレイミド樹脂成型体(M8)とした。
得られたマレイミド樹脂成型体(M8)の残溶剤は2.182%(21820ppm)であった。
なお、本工程による分子量分布の変化は見られなかった(GPCによる測定)
(Example 8) (Surface support: Release PET film)
The maleimide resin solution (V1) obtained in Synthesis Example 2 was cast and applied (WET film thickness 150 μm) onto a release PET film (PTN756502, manufactured by Lintec Corporation) using an applicator, and the applied resin film was 120 ° C. The solvent was removed by drying for 1 hour.
The obtained maleimide resin molding was marbled with a height of 0.577 mm and a diameter of 4.1 mm, and was peeled off and pulverized to obtain a flaky maleimide resin molding (M8).
The residual solvent of the obtained maleimide resin molding (M8) was 2.182% (21820 ppm).
In addition, the change of molecular weight distribution by this process was not seen (measurement by GPC).

(比較例1)
合成例2により得られたマレイミド樹脂溶液(V1)300mLを、ロータリーエバポレータを用い、加熱減圧下160℃で溶剤を留去し、マレイミド樹脂(B1)を樹脂ブロック状で得た。重合反応終了後のマレイミド樹脂溶液(V1)と大量合成時溶媒留去後のマレイミド樹脂(B1)のGPCを測定したところ高分子量化していることを確認した。その結果を図1及び図2に示す。得られたマレイミド樹脂の残溶剤は0.1%(1000ppm)以下であった。
(Comparative Example 1)
300 mL of the maleimide resin solution (V1) obtained in Synthesis Example 2 was distilled off using a rotary evaporator at 160 ° C. under heating and reduced pressure to obtain a maleimide resin (B1) in the form of a resin block. When the GPC of the maleimide resin solution (V1) after completion of the polymerization reaction and the maleimide resin (B1) after evaporation of the solvent during mass synthesis was measured, it was confirmed that the polymer had increased in molecular weight. The results are shown in FIGS. The residual solvent of the obtained maleimide resin was 0.1% (1000 ppm) or less.

(比較例2)
合成例2により得られたマレイミド樹脂溶液(V1)1.0Lを、ロータリーエバポレータを用い、加熱減圧下180℃で溶剤を留去したところゲル化していることが確認できた。得られたマレイミド樹脂(B2)は流動性がなくなった。
(Comparative Example 2)
It was confirmed that 1.0 L of the maleimide resin solution (V1) obtained in Synthesis Example 2 was gelated when the solvent was distilled off at 180 ° C. under heating and reduced pressure using a rotary evaporator. The obtained maleimide resin (B2) lost fluidity.

<マレイミド樹脂成型体の製造方法における乾燥温度の比較>
(比較例3)
実施例1と同様に、合成例2により得られたマレイミド樹脂溶液(V1)を、アプリケータを用いて市販のイミドフィルム(東レデュポン製「カプトン(登録商標)100H」)へ流延塗布(WET膜厚200μm)し、塗布された樹脂膜を50℃の熱風にて1時間、加熱・乾燥させることにより溶媒を除去した。
得られたマレイミド樹脂成型体はべた付きがあり、フィルムの形状を維持できず、引き剥がし粉砕することができなかった。
<Comparison of drying temperature in the manufacturing method of maleimide resin molding>
(Comparative Example 3)
As in Example 1, the maleimide resin solution (V1) obtained in Synthesis Example 2 was cast onto a commercially available imide film (“Kapton (registered trademark) 100H” manufactured by Toray DuPont) using an applicator (WET). The solvent was removed by heating and drying the applied resin film with hot air at 50 ° C. for 1 hour.
The obtained maleimide resin molding was sticky, could not maintain the shape of the film, and could not be peeled off and pulverized.

(比較例4)
実施例1と同様に、合成例2により得られたマレイミド樹脂溶液(V1)を、アプリケータを用いて市販のイミドフィルム(東レデュポン製「カプトン(登録商標)100H」)へ流延塗布(WET膜厚200μm)し、塗布された樹脂膜を250℃の熱風にて1時間、加熱・乾燥させることにより溶媒を除去した。
得られたマレイミド樹脂成型体はマーブルの形状かつ、引きはがしてフレーク化できたものの、高分子量化が進行し、アセトン等の各種溶剤に不溶となった。
(Comparative Example 4)
As in Example 1, the maleimide resin solution (V1) obtained in Synthesis Example 2 was cast onto a commercially available imide film (“Kapton (registered trademark) 100H” manufactured by Toray DuPont) using an applicator (WET). The solvent was removed by heating and drying the applied resin film with hot air at 250 ° C. for 1 hour.
Although the obtained maleimide resin molded body was marbled and could be peeled off and formed into flakes, the molecular weight increased and it became insoluble in various solvents such as acetone.

<臭気の比較>
(実施例9、比較例5)
実施例1で得られたマレイミド樹脂成型体(M1)および比較用に4,4’−ビスマレイミドジフェニルメタン(TCI社製 以下C1とする)を用意し、臭気の比較を行った。
なお、酢酸の定量は島津製作所社製ガスクロマトグラフGC−2010Plusを用いて行い、カラムとしてはDB−WAX(Agilene Technologies社製)長さ30m、内径0.25mmを用いた。昇温プログラムとしては、60℃で7分保持し、20℃/minの昇温速度で220℃まで昇温し、220℃で5分保持するプログラムを用いた。
<Odor comparison>
(Example 9, Comparative Example 5)
The maleimide resin molding (M1) obtained in Example 1 and 4,4′-bismaleimide diphenylmethane (manufactured by TCI, hereinafter referred to as C1) were prepared for comparison, and the odors were compared.
The acetic acid was quantified using a gas chromatograph GC-2010Plus manufactured by Shimadzu Corporation, and the column used was a DB-WAX (Agilene Technologies) length 30 m and an inner diameter of 0.25 mm. As the temperature raising program, a program was used that was held at 60 ° C. for 7 minutes, heated to 220 ° C. at a temperature rising rate of 20 ° C./min, and held at 220 ° C. for 5 minutes.

その結果、比較例5では酢酸の臭気がすることを確認し、実施例9では臭気は感じられなかった。
また、ガスクロマトグラフィーを測定したところ、比較例5では酢酸が検出された(図4を参照。 保持時間11.298分)。また、酸価を測定したところ、酸価10mgKOH/gとなり、酢酸1%相当に該当することを確認した。
As a result, it was confirmed that the odor of acetic acid was found in Comparative Example 5, and no odor was felt in Example 9.
Moreover, when the gas chromatography was measured, the acetic acid was detected in the comparative example 5 (refer FIG. 4. Retention time 11.298 minutes). Moreover, when the acid value was measured, it was confirmed that the acid value was 10 mgKOH / g, corresponding to 1% acetic acid.

<形状および溶剤溶解性の比較>
(実施例10、比較例6、7)
実施例4で得られたマレイミド樹脂成型体(M4)および比較用にマレイミド樹脂(C1)、比較例2に記載のマレイミド樹脂(B2)を用いてアセトンへの溶解試験を行った。
樹脂濃度50%にそろえて検討をしたところマレイミド樹脂成型体M1、M5〜M7は完全溶解したことを確認できたが、マレイミド樹脂(C1)とマレイミド樹脂(B2)は完全溶解ができないことを確認した。
<Comparison of shape and solvent solubility>
(Example 10, Comparative Examples 6 and 7)
The maleimide resin molding (M4) obtained in Example 4, the maleimide resin (C1) for comparison, and the maleimide resin (B2) described in Comparative Example 2 were subjected to a dissolution test in acetone.
Examination with 50% resin concentration confirmed that maleimide resin moldings M1, M5 to M7 were completely dissolved, but maleimide resin (C1) and maleimide resin (B2) could not be completely dissolved. did.

以上より、実施例10では完全溶解したことからマレイミド樹脂成型体(M1、M5〜M7)は高分子量化反応が進んでいないことがわかる。一方、比較例6と7では完全溶解できなかったことからマレイミド樹脂成型体(C1、B2)は高分子量化反応が進んでいることがわかる。   As mentioned above, since it melt | dissolved completely in Example 10, it turns out that the high molecular weight reaction does not advance the maleimide resin molding (M1, M5-M7). On the other hand, since it was not able to completely dissolve in Comparative Examples 6 and 7, it can be seen that the maleimide resin molded body (C1, B2) is undergoing a high molecular weight reaction.

<マレイミド樹脂組成物の調整、硬化物特性の比較>
(実施例11)
実施例1により得られたマレイミド樹脂成型体(M1)を10部、硬化促進剤として2−エチルー4−メチルイミダゾール(2E4MZ 四国化成株式会社製)を0.21部重量部配合し撹拌により均一に混合・混練し、本発明のマレイミド樹脂組成物を得た。このマレイミド樹脂組成物を、アプリケータを用いて市販の離形PETフィルム(リンテック社製 PTN756502)へ流延塗布(WET膜厚200μm)し、塗布された樹脂膜を硬化条件160℃×2h+180℃×6hで溶媒を取り除きながら硬化させることにより硬化物を得た。得られた硬化物の物性を評価した結果を表1に示す。
<Adjustment of maleimide resin composition, comparison of cured product properties>
(Example 11)
10 parts of the maleimide resin molding (M1) obtained in Example 1 and 0.21 part by weight of 2-ethyl-4-methylimidazole (2E4MZ manufactured by Shikoku Kasei Co., Ltd.) as a curing accelerator were mixed uniformly by stirring. The maleimide resin composition of the present invention was obtained by mixing and kneading. This maleimide resin composition was cast and applied (WET film thickness 200 μm) onto a commercially available release PET film (PTN756502, manufactured by Lintec Corporation) using an applicator, and the applied resin film was cured under conditions of 160 ° C. × 2 h + 180 ° C. × A cured product was obtained by curing while removing the solvent in 6 h. Table 1 shows the results of evaluating the physical properties of the obtained cured product.

(比較例8)
EPPN−502H(日本化薬製 エポキシ当量169g/eq.軟化点67.5℃EP1)を61部、フェノールノボラック(P−2 明和化成製 H−1、水酸基当量106g/eq.)38重量部、トリフェニルホスフィン(TPP純正化学 試薬)1重量部を配合し、ミキシングロールを用いて均一に混合・混練し、エポキシ樹脂組成物を得た。このエポキシ樹脂組成物をタブレット化後、トランスファー成形で樹脂成形体を調製し、硬化条件160℃×2h+180℃×6hで硬化物を得た。得られた硬化物の下記の物性を評価した。結果を表1に示す。
(Comparative Example 8)
EPPN-502H (Nippon Kayaku Epoxy equivalent 169 g / eq. Softening point 67.5 ° C EP1) 61 parts, phenol novolak (P-2 Meiwa Kasei H-1, hydroxyl group equivalent 106 g / eq.) 38 parts by weight, An epoxy resin composition was obtained by blending 1 part by weight of triphenylphosphine (TPP Pure Chemical Reagent) and uniformly mixing and kneading using a mixing roll. After making this epoxy resin composition into a tablet, a resin molding was prepared by transfer molding, and a cured product was obtained under curing conditions of 160 ° C. × 2 h + 180 ° C. × 6 h. The following physical properties of the obtained cured product were evaluated. The results are shown in Table 1.

(比較例9)
EOCN−1020-55(日本化薬製エポキシ当量194g/eq.軟化点54.8℃ EP2)を65部、フェノールノボラック(P−2 明和化成製 H−1、水酸基当量106g/eq.)34重量部、TPP(純正化学 試薬)1重量部を配合しミキシングロールで混ミキシングロールを用いて均一に混合・混練し、エポキシ樹脂組成物を得た。このエポキシ樹脂組成物をタブレット化後、トランスファー成形で樹脂成形体を調製し、硬化条件160℃×2h+180℃×6hで硬化物を得た。得られた硬化物の下記の物性を評価した。結果を表1に示す。
(Comparative Example 9)
EOCN-1020-55 (Nippon Kayaku Epoxy equivalent 194 g / eq. Softening point 54.8 ° C. EP2) 65 parts, phenol novolak (P-2 Meiwa Kasei H-1, hydroxyl group equivalent 106 g / eq.) 34 weight Part and 1 part by weight of TPP (pure chemical reagent) were mixed and uniformly mixed and kneaded with a mixing roll using a mixing roll to obtain an epoxy resin composition. After making this epoxy resin composition into a tablet, a resin molding was prepared by transfer molding, and a cured product was obtained under curing conditions of 160 ° C. × 2 h + 180 ° C. × 6 h. The following physical properties of the obtained cured product were evaluated. The results are shown in Table 1.

得られた硬化物について下記の測定を実施した。
・DMA
測定項目:30℃、200℃、250℃の貯蔵弾性率、
:ガラス転移温度(tanδ最大時の温度)
測定方法:動的粘弾性測定器TA−instruments製、Q−800
測定温度範囲:30℃〜350℃
温速度:2℃/min
試験片サイズ:5mm×50mmに切り出した物を使用した(厚みは約800μm)。
The following measurement was implemented about the obtained hardened | cured material.
・ DMA
Measurement items: storage elastic modulus at 30 ° C, 200 ° C, 250 ° C,
: Glass transition temperature (temperature at maximum of tan δ)
Measuring method: Dynamic viscoelasticity measuring instrument TA-instruments Q-800
Measurement temperature range: 30 ° C-350 ° C
Temperature rate: 2 ° C / min
Test piece size: A material cut into 5 mm × 50 mm was used (thickness was about 800 μm).

(表1)
(Table 1)

表1から、本発明のマレイミド樹脂組成物の硬化物は、エポキシ樹脂と同様の硬化条件で成形可能であり、また、得られた硬化物は高耐熱エポキシ樹脂を用いた場合と比較して、高温での弾性率変化が少ないことがわかる。   From Table 1, the cured product of the maleimide resin composition of the present invention can be molded under the same curing conditions as the epoxy resin, and the obtained cured product is compared with the case where a high heat-resistant epoxy resin is used. It can be seen that there is little change in elastic modulus at high temperatures.

本発明のマレイミド樹脂成型体は容易にマレイミド樹脂組成物を調製することができ、高耐熱基盤材料、フレキシブル基板材料、高耐熱低誘電材料、高耐熱CFRP用材料(炭素繊維複合材料)、車載向けSiCパワーデバイス用高耐熱封止材料用途等の広範囲の用途に極めて有用である。
The maleimide resin molding of the present invention can easily prepare a maleimide resin composition, and is a high heat resistant base material, flexible substrate material, high heat resistant low dielectric material, high heat resistant CFRP material (carbon fiber composite material), and in-vehicle use. It is extremely useful for a wide range of applications such as a high heat resistant sealing material for SiC power devices.

Claims (12)

マレイミド樹脂と有機溶剤を含有し、マーブル状またはそのフレーク状であるマレイミド樹脂成型体。   A maleimide resin molded article containing a maleimide resin and an organic solvent and having a marble shape or its flake shape. 残溶剤が30000ppm以下である請求項1に記載のマレイミド樹脂成型体。   The maleimide resin molding according to claim 1, wherein the residual solvent is 30000 ppm or less. 前記残溶剤が炭素数3〜10の芳香族炭化水素、ケトン類、エステル類、エーテル類から選ばれる少なくとも一種の有機溶剤である請求項1又は請求項2に記載のマレイミド樹脂成型体。   The maleimide resin molded article according to claim 1 or 2, wherein the residual solvent is at least one organic solvent selected from aromatic hydrocarbons having 3 to 10 carbon atoms, ketones, esters, and ethers. 厚み10μm〜3mm、平均直径が1mm〜5mmである請求項1〜請求項3のいずれか一項に記載のマレイミド樹脂成型体。   The maleimide resin molded article according to any one of claims 1 to 3, which has a thickness of 10 µm to 3 mm and an average diameter of 1 mm to 5 mm. 平均官能基数が2〜20であり、繰り返し単位を有するノボラック型マレイミド樹脂である請求項1〜請求項4のいずれか一項に記載のマレイミド樹脂成型体。   The maleimide resin molding according to any one of claims 1 to 4, which is a novolak maleimide resin having an average functional group number of 2 to 20 and having a repeating unit. 前記マレイミド樹脂の軟化点が50〜150℃である請求項1〜請求項5のいずれか一項に記載のマレイミド樹脂成型体。   The maleimide resin molded body according to any one of claims 1 to 5, wherein the maleimide resin has a softening point of 50 to 150 ° C. 炭素数3〜10の芳香族炭化水素、ケトン類、エステル類、エーテル類から選ばれる少なくとも一種の有機溶剤に溶解したマレイミド樹脂溶液を表面支持体上に塗工し、乾燥することを特徴とするマレイミド化合物成型体の製造方法、   A maleimide resin solution dissolved in at least one organic solvent selected from aromatic hydrocarbons having 3 to 10 carbon atoms, ketones, esters, and ethers is coated on a surface support and dried. Method for producing maleimide compound molded body, 乾燥機内の温度が80〜200℃である請求項7に記載のマレイミド化合物成型体の製造方法。   The method for producing a maleimide compound molded article according to claim 7, wherein the temperature in the dryer is 80 to 200 ° C. 表面支持体に塗工する際のWET膜厚が10μm〜5mmとなる請求項7又は請求項8のいずれか一項に記載のマレイミド化合物成型体の製造方法。   The method for producing a maleimide compound molded body according to any one of claims 7 and 8, wherein a WET film thickness when applied to the surface support is 10 µm to 5 mm. 請求項7〜請求項9のいずれか一項に記載の製造方法により得られたマレイミド樹脂成型体。   The maleimide resin molding obtained by the manufacturing method as described in any one of Claims 7-9. 請求項1〜請求項6並びに請求項10のいずれか一項に記載のマレイミド樹脂成型体と、該マレイミド樹脂と架橋反応可能な化合物を含むマレイミド樹脂組成物。   A maleimide resin composition comprising the maleimide resin molded article according to any one of claims 1 to 6 and claim 10 and a compound capable of undergoing a crosslinking reaction with the maleimide resin. 請求項11に記載のマレイミド樹脂組成物の硬化物。

A cured product of the maleimide resin composition according to claim 11.

JP2016169530A 2016-08-31 2016-08-31 Maleimide resin molded body, method for producing maleimide resin molded body, maleimide resin composition and cured product thereof Active JP6482511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016169530A JP6482511B2 (en) 2016-08-31 2016-08-31 Maleimide resin molded body, method for producing maleimide resin molded body, maleimide resin composition and cured product thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016169530A JP6482511B2 (en) 2016-08-31 2016-08-31 Maleimide resin molded body, method for producing maleimide resin molded body, maleimide resin composition and cured product thereof

Publications (2)

Publication Number Publication Date
JP2018035260A true JP2018035260A (en) 2018-03-08
JP6482511B2 JP6482511B2 (en) 2019-03-13

Family

ID=61566348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016169530A Active JP6482511B2 (en) 2016-08-31 2016-08-31 Maleimide resin molded body, method for producing maleimide resin molded body, maleimide resin composition and cured product thereof

Country Status (1)

Country Link
JP (1) JP6482511B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018043380A1 (en) 2016-08-31 2018-03-08 日本化薬株式会社 Maleimide resin mold, method for manufacturing maleimide resin mold, maleimide resin composition, and cured product thereof

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02209964A (en) * 1989-02-10 1990-08-21 Mitsui Toatsu Chem Inc Resin composition for sealing semiconductor
JPH0393840A (en) * 1989-09-07 1991-04-18 Showa Highpolymer Co Ltd High-strength laminated material using vinylbenzyl ether
JPH09328601A (en) * 1995-12-08 1997-12-22 Mitsui Petrochem Ind Ltd Thermosetting resin composition, prepreg using the same and laminated sheet
JP2000302968A (en) * 1999-04-23 2000-10-31 Matsushita Electric Works Ltd Resin composition for sealing electronic part, its production and sealed electronic part using the same resin composition
JP2006176578A (en) * 2004-12-21 2006-07-06 Denki Kagaku Kogyo Kk Maleimide copolymer composition, its preparation method and molded product thereof
JP2006348298A (en) * 2005-06-15 2006-12-28 E I Du Pont De Nemours & Co Composition patternable by using amplified light, and useful as application example of electronic circuit type, and method and composition associated therewith
JP2007503490A (en) * 2003-08-27 2007-02-22 フレクシス ビー.ブイ. Method for increasing the melt strength of polypropylene
JP2007254654A (en) * 2006-03-24 2007-10-04 Teijin Ltd Transparent heatproof resin composition and method for manufacturing the same
JP2008287226A (en) * 2007-04-18 2008-11-27 Tosoh Corp Optical compensation film and process for producing the same
JP2010096905A (en) * 2008-10-15 2010-04-30 Tosoh Corp Method for manufacturing optical compensation film
JP2010235826A (en) * 2009-03-31 2010-10-21 Nippon Steel Chem Co Ltd Polyhydroxy resin, production method of the same, and epoxy resin composition and cured product of the same
JP2010270229A (en) * 2009-05-21 2010-12-02 Nippon Steel Materials Co Ltd Heat-resistant resin composition, fiber-reinforced prepreg and fiber-reinforced composite material
JP2011082559A (en) * 2010-12-24 2011-04-21 Hitachi Chem Co Ltd Adhesive film for semiconductor

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02209964A (en) * 1989-02-10 1990-08-21 Mitsui Toatsu Chem Inc Resin composition for sealing semiconductor
JPH0393840A (en) * 1989-09-07 1991-04-18 Showa Highpolymer Co Ltd High-strength laminated material using vinylbenzyl ether
JPH09328601A (en) * 1995-12-08 1997-12-22 Mitsui Petrochem Ind Ltd Thermosetting resin composition, prepreg using the same and laminated sheet
JP2000302968A (en) * 1999-04-23 2000-10-31 Matsushita Electric Works Ltd Resin composition for sealing electronic part, its production and sealed electronic part using the same resin composition
JP2007503490A (en) * 2003-08-27 2007-02-22 フレクシス ビー.ブイ. Method for increasing the melt strength of polypropylene
JP2006176578A (en) * 2004-12-21 2006-07-06 Denki Kagaku Kogyo Kk Maleimide copolymer composition, its preparation method and molded product thereof
JP2006348298A (en) * 2005-06-15 2006-12-28 E I Du Pont De Nemours & Co Composition patternable by using amplified light, and useful as application example of electronic circuit type, and method and composition associated therewith
JP2007254654A (en) * 2006-03-24 2007-10-04 Teijin Ltd Transparent heatproof resin composition and method for manufacturing the same
JP2008287226A (en) * 2007-04-18 2008-11-27 Tosoh Corp Optical compensation film and process for producing the same
JP2010096905A (en) * 2008-10-15 2010-04-30 Tosoh Corp Method for manufacturing optical compensation film
JP2010235826A (en) * 2009-03-31 2010-10-21 Nippon Steel Chem Co Ltd Polyhydroxy resin, production method of the same, and epoxy resin composition and cured product of the same
JP2010270229A (en) * 2009-05-21 2010-12-02 Nippon Steel Materials Co Ltd Heat-resistant resin composition, fiber-reinforced prepreg and fiber-reinforced composite material
JP2011082559A (en) * 2010-12-24 2011-04-21 Hitachi Chem Co Ltd Adhesive film for semiconductor

Also Published As

Publication number Publication date
JP6482511B2 (en) 2019-03-13

Similar Documents

Publication Publication Date Title
TWI820204B (en) Maleimide resin, curable resin composition and cured product
JP5199669B2 (en) Epoxy resin, curable resin composition, and cured product thereof
TWI516518B (en) An epoxy resin composition, a prepreg using the epoxy resin composition, a resin film with a support, a laminated sheet of a metal foil, and a multilayer printed circuit board
JP7385344B2 (en) Thermosetting resin composition and multilayer substrate
TWI786271B (en) Phosphorus-containing phenoxy resin, resin composition thereof, and cured product thereof
JP6978371B2 (en) Curable resin composition and laminate
JP6385884B2 (en) Allyloxysilane oligomer, epoxy resin curing agent, and use thereof
WO2019078300A1 (en) Curable resin composition, varnish, prepreg, cured product, laminate and copper-clad laminate
JP6482511B2 (en) Maleimide resin molded body, method for producing maleimide resin molded body, maleimide resin composition and cured product thereof
JP4655490B2 (en) Epoxy resin composition and cured product thereof
JP7011589B2 (en) Maleimide resin molded body, method for producing maleimide resin molded body, maleimide resin composition and cured product thereof
JP6863679B2 (en) Solution, its manufacturing method, epoxy resin composition and laminate
WO2013080936A1 (en) Phenol novolak resin and epoxy resin composition using same
CN116670199A (en) Epoxy resin, method for producing same, curable resin composition, and cured product thereof
KR20100057777A (en) Thermosetting resin composition and cured product thereof
JP2010209150A (en) Epoxy resin composition
JP4702764B2 (en) Epoxy resin composition and cured product thereof
JP4509539B2 (en) Epoxy resin composition sheet
TWI837297B (en) Ester compounds, resin compositions, hardeners, and build-up films
CN113272358B (en) Ester compound, resin composition, cured product, and laminate film
JP4453899B2 (en) Epoxy resin composition
JP2019143106A (en) Modified polyphenylene ether resin-based polymer compound, and resin composition containing the polymer compound
CN117120503A (en) Epoxy resin, curable resin composition, and cured product of curable resin composition
TW202106748A (en) Multifunctional active ester compound, resin composition, cured product and buildup film
JP2011157441A (en) Adhesive rein composition, cured product, adhesive film and cover lay film

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190212

R150 Certificate of patent or registration of utility model

Ref document number: 6482511

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250