JP2018034403A - Manufacturing method of humidity modified housing material - Google Patents

Manufacturing method of humidity modified housing material Download PDF

Info

Publication number
JP2018034403A
JP2018034403A JP2016169234A JP2016169234A JP2018034403A JP 2018034403 A JP2018034403 A JP 2018034403A JP 2016169234 A JP2016169234 A JP 2016169234A JP 2016169234 A JP2016169234 A JP 2016169234A JP 2018034403 A JP2018034403 A JP 2018034403A
Authority
JP
Japan
Prior art keywords
moisture
cement
humidity
humidity control
moisture absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016169234A
Other languages
Japanese (ja)
Other versions
JP6912872B2 (en
Inventor
祐介 樋口
Yusuke Higuchi
祐介 樋口
公洋 木村
Kimihiro Kimura
公洋 木村
水野 素行
Motoyuki Mizuno
素行 水野
渡邉 宏
Hiroshi Watanabe
宏 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KMEW Co Ltd
Original Assignee
KMEW Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KMEW Co Ltd filed Critical KMEW Co Ltd
Priority to JP2016169234A priority Critical patent/JP6912872B2/en
Publication of JP2018034403A publication Critical patent/JP2018034403A/en
Application granted granted Critical
Publication of JP6912872B2 publication Critical patent/JP6912872B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Finishing Walls (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a humidity modified housing material less in micropore and excellent in humidity modification performance for overcoming a situation that release amount of a cement cured article becomes less than moisture absorption amount when the cement cured article has many micropores, water remains inside where moisture is easy to remain in the cement cured body at a state with storing in the micropores, and warpage or dimensional changes are generated in the cement cured body due to secular change when water remains inside.SOLUTION: A molding material containing cement and water is molded to form a substrate, the substrate is autoclave cured and then a carbonation treatment is conducted. Fine pore with diameter of 5 nm or less (micropore) becomes less. By the treatment, released amount of a cement cured article becomes larger than moisture absorption amount and a moisture modified housing material excellent in moisture modification performance is provided.SELECTED DRAWING: Figure 1

Description

本発明は、調湿建材の製造方法に関する。詳しくは、建物の内装材として好適な調湿建材の製造方法に関する。   The present invention relates to a method for producing a humidity control building material. In detail, it is related with the manufacturing method of a humidity-control building material suitable as an interior material of a building.

従来、セメントを含む成形材料を調製し、この成形材料を所望の形状に成形した後に硬化させてセメント硬化物を製造することが行われている。このようなセメント硬化物は湿気を吸収したり放出したりする調湿機能を有しており、内壁材や天井材などの内装材に調湿建材として適用されている(例えば、特許文献1参照)。   Conventionally, a molding material containing cement is prepared, and the molding material is molded into a desired shape and then cured to produce a hardened cement. Such hardened cement has a humidity control function of absorbing and releasing moisture, and is applied as a humidity control building material to interior materials such as inner wall materials and ceiling materials (see, for example, Patent Document 1). ).

セメント硬化物は多数のゲル孔(ゲル空隙)を有している。ゲル孔はセメント硬化物内に形成されている多数の空間(細孔)であって、一部のゲル孔はセメント硬化物の表面に開口している。ゲル孔はその直径の大きさに応じて、ミクロポア、メソポア、マクロポアの三種類に区別される。   The hardened cement has a large number of gel pores (gel voids). The gel holes are a large number of spaces (pores) formed in the hardened cement material, and some of the gel holes open on the surface of the hardened cement material. Gel pores are classified into three types, micropores, mesopores, and macropores, depending on the diameter.

ミクロポアは直径が2nm以下のゲル孔であって、ミクロポアが多いセメント硬化物は吸湿量が多いが、吸湿後の放湿率は低い。またメソポアは直径が2nmより大きく50nm未満のゲル孔であって、メソポアが多いセメント硬化物は吸湿量がミクロポアが多い場合と同様であるが、吸湿後の放湿率はミクロポアが多い場合と比べて高い。マクロポアは直径が50nm以上のゲル孔であって、このマクロポアが多いセメント硬化物では、吸湿量がミクロポアを多く含む場合よりもやや少ないが、吸湿後の放湿率はミクロポアを多く含む場合と比べて高い。   The micropores are gel pores having a diameter of 2 nm or less, and the cement cured product having many micropores has a high moisture absorption amount, but the moisture release rate after moisture absorption is low. In addition, mesopores are gel pores with a diameter greater than 2 nm and less than 50 nm, and the hardened cement with a lot of mesopores is the same as when the amount of moisture absorption is large with micropores, but the moisture release rate after moisture absorption is higher than when there are many micropores. Is expensive. Macropores are gel pores with a diameter of 50 nm or more, and in cement hardened products with many macropores, the moisture absorption is slightly less than when containing many micropores, but the moisture release rate after moisture absorption is higher than when containing many micropores. Is expensive.

図4Aには直径2nm以下のミクロポア1を模式的に示す。図4Bには直径2nmよりも大きく50nm未満のメソポア2を模式的に示す。図4Cには直径50nm以上のマイクロポア3を模式的に示す。   FIG. 4A schematically shows a micropore 1 having a diameter of 2 nm or less. FIG. 4B schematically shows a mesopore 2 having a diameter larger than 2 nm and smaller than 50 nm. FIG. 4C schematically shows a micropore 3 having a diameter of 50 nm or more.

特開2002−220274号公報JP 2002-220274 A

そして、セメント硬化物が多くのミクロポアを有していると、セメント硬化物の放湿量が吸湿量よりも少なくなり、水分がミクロポア内に溜まった状態でセメント硬化物の内部に残存しやすい。このように水分がセメント硬化物の内部に残存していると経年変化によりセメント硬化物に反りや寸法変化が生じることがあった。   If the hardened cement product has a large number of micropores, the moisture release amount of the hardened cement product is less than the moisture absorption amount, and moisture tends to remain in the hardened cement product in a state where water is accumulated in the micropores. When moisture remains in the hardened cement material as described above, warpage or dimensional change may occur in the hardened cement material due to aging.

また、セメント硬化物が多くのミクロポアを有していると、セメント硬化物の放湿量が吸湿量よりも少ないため、調湿性能が充分でない場合があった。   Further, if the hardened cement has many micropores, the moisture release amount of the hardened cement is less than the amount of moisture absorption, and therefore the humidity control performance may not be sufficient.

本発明は上記の点に鑑みてなされたものであり、ミクロポアが少なくて調湿性能に優れる調湿建材の製造方法を提供することを目的とするものである。   This invention is made | formed in view of said point, and it aims at providing the manufacturing method of the humidity control building material which has few micropores and is excellent in humidity control performance.

本発明に係る調湿建材の製造方法は、セメントと水とを含有する成形材料を成形して基材を形成し、該基材をオートクレーブ養生した後、炭酸化処理を施すことを特徴とするものである。   The method for producing a humidity-control building material according to the present invention is characterized by forming a base material by molding a molding material containing cement and water, and subjecting the base material to autoclave curing, followed by carbonation treatment. Is.

本発明では、炭酸化処理により基材のミクロポアを少なくすることができ、調湿性能に優れる調湿建材が得られる。   In the present invention, the micropores of the base material can be reduced by the carbonation treatment, and a humidity control building material having excellent humidity control performance can be obtained.

図1は、実施例及び比較例における細孔径分布測定の結果を示すグラフである。FIG. 1 is a graph showing the results of pore size distribution measurement in Examples and Comparative Examples. 図2は、セメント硬化物の細孔量と吸放湿率の関係を示すグラフである。FIG. 2 is a graph showing the relationship between the amount of pores of the hardened cement and the moisture absorption / release rate. 図3は、セメント硬化物の吸放湿量の経時変化を示すグラフである。FIG. 3 is a graph showing the change with time in the moisture absorption and desorption amount of the hardened cement. 図4Aはミクロポアを示す概略図である。図4Bはミメソポアを示す概略図である。図4Cはマイクロポアを示す概略図である。FIG. 4A is a schematic view showing a micropore. FIG. 4B is a schematic view showing a mimesopore. FIG. 4C is a schematic view showing a micropore. 図5は、第2の実施の形態の調湿建材を示す概略断面図である。FIG. 5 is a schematic cross-sectional view showing a humidity control building material according to the second embodiment.

以下、本発明を実施するための形態を説明する。   Hereinafter, modes for carrying out the present invention will be described.

[第1の実施の形態]
本実施形態で得られる調湿建材は、セメントと水とを含有する成形材料を成形して基材を形成し、基材をオートクレーブ養生した後、炭酸化処理を施すことにより製造される。
[First Embodiment]
The humidity control building material obtained in the present embodiment is manufactured by forming a base material by molding a molding material containing cement and water, subjecting the base material to autoclave curing, and then performing a carbonation treatment.

セメントは、普通ポルトランドセメント、高炉セメント、アルミナセメントなどであり、各種のセメントが併用可能である。   The cement is ordinary Portland cement, blast furnace cement, alumina cement, and the like, and various cements can be used in combination.

成形材料はセメントと水の他に、混和材、骨材、繊維材、スクラップ材などを含有していてもよい。混和材は調湿建材の強度や耐久性の向上を図るものであり、フライアッシュ、シリカフューム、各種ポゾラン(火山灰など)などである。骨材は調湿建材の強度の確保を図るものであり、珪酸を主成分とする珪酸質材であることが好ましく、珪砂、珪石、珪石粉などである。繊維材は調湿建材の強度の向上を図るものであり、パルプ、ロックウール、ビニロン繊維、ポリプロピレン繊維などである。スクラップ材は調湿建材の不良品や端材を粉砕したものであり、調湿建材の増量材として用いる。   The molding material may contain an admixture, an aggregate, a fiber material, a scrap material and the like in addition to cement and water. Admixtures are intended to improve the strength and durability of humidity control building materials, such as fly ash, silica fume, and various pozzolans (such as volcanic ash). The aggregate is intended to ensure the strength of the humidity control building material, and is preferably a siliceous material mainly composed of silicic acid, such as quartz sand, quartzite, and quartzite powder. The fiber material is intended to improve the strength of the humidity-control building material, and examples thereof include pulp, rock wool, vinylon fiber, and polypropylene fiber. The scrap material is a product obtained by pulverizing defective products and end materials of the humidity control building material, and is used as an extender for the humidity control building material.

成形材料はさらに吸放湿付与材を含有していてもよい。吸放湿付与材は調湿建材の吸湿性能及び放湿性能の向上を図るものであり、稚内珪藻土などの珪藻土、ゼオライト、アロフェン、セピオライト、ベントナイト、メタカオリン、カオリナイトなどである。   The molding material may further contain a moisture absorbing / releasing material. The moisture-absorbing / releasing material is intended to improve the moisture-absorbing performance and moisture-releasing performance of the humidity control building material, such as diatomaceous earth such as Wakkanai diatomaceous earth, zeolite, allophane, sepiolite, bentonite, metakaolin and kaolinite.

成形材料は、セメント、混和材、骨材、繊維材、スクラップ材、吸放湿付与材などからなる固形成分と水とを配合することにより調製される。固形成分の配合割合は、例えば、固形成分の合計量を100質量%とした場合、セメント30〜45質量%、混和材30〜45質量%、骨材2〜8質量%、繊維材4〜10質量%、スクラップ材10〜20質量%、吸放湿付与材0〜35質量%とすることができる。また固形成分と水との配合割合は、固形成分の全量に対して、水45〜55質量%とすることができる。   The molding material is prepared by blending a solid component composed of cement, an admixture, an aggregate, a fiber material, a scrap material, a moisture absorption / release material, and water. For example, when the total amount of the solid components is 100% by mass, the mixing ratio of the solid components is 30 to 45% by mass of cement, 30 to 45% by mass of the admixture, 2 to 8% by mass of the aggregate, and 4 to 10 of the fiber material. It can be made into mass%, 10-20 mass% of scrap materials, and 0-35 mass% of moisture absorption / release imparting materials. Moreover, the mixture ratio of a solid component and water can be 45-55 mass% of water with respect to the whole quantity of a solid component.

成形材料は抄造法や押出成形により板状等の基材に成形される。成形後の基材に対して脱水のためにプレスを行っても良い。   The molding material is molded on a base material such as a plate by a papermaking method or extrusion molding. You may press for the spin-dry | dehydrated with respect to the base material after shaping | molding.

基材に対しては一次養生が行われる。一次養生は基材を30〜90℃の大気中で約20〜30時間保持する。一次養生の後、基材に対してオートクレーブ(AC)養生が行われる。オートクレーブ養生は基材を160〜190℃、気圧1.0〜1.2MPa、3〜5時間保持する。   Primary curing is performed on the substrate. In the primary curing, the substrate is kept in the atmosphere at 30 to 90 ° C. for about 20 to 30 hours. After the primary curing, autoclaving (AC) curing is performed on the substrate. Autoclave curing holds the substrate at 160-190 ° C., atmospheric pressure 1.0-1.2 MPa, 3-5 hours.

オートクレーブ養生の後、基材に対して炭酸化処理が施される。炭酸化処理は基材を25〜35℃、湿度50〜95%、炭酸ガス濃度が3〜7%に調製された空気中に、3〜28日保持する。この炭酸化処理により、湿気の拡散孔であるマイクロポアを減少させないで、5nm以下の細孔(ミクロポア)を減少させた基材が得やすくなる。   After the autoclave curing, the substrate is carbonized. In the carbonation treatment, the substrate is kept for 3 to 28 days in air prepared at 25 to 35 ° C., a humidity of 50 to 95%, and a carbon dioxide gas concentration of 3 to 7%. By this carbonation treatment, it becomes easy to obtain a substrate in which pores (micropores) of 5 nm or less are reduced without reducing the micropores which are moisture diffusion holes.

本実施形態の調湿建材は、セメントを含む成形材料を一次養生及びオートクレーブ養生で硬化させた後、更に炭酸化処理を行うことで、直径が5nm以下の細孔(ミクロポア)が少なくなり、これにより、細孔の内部に水分が保持されにくくなって、吸放湿性能が優れるものである。   The moisture-conditioning building material of this embodiment has fewer pores (micropores) having a diameter of 5 nm or less by further carbonizing after the molding material containing cement is cured by primary curing and autoclave curing. As a result, moisture is hardly retained inside the pores, and moisture absorption / release performance is excellent.

[第2の実施の形態]
本実施形態で得られる調湿建材は、セメントと水と軽量骨材とを含有する成形材料を押出成形して押出成形品を形成し、押出成形品の表面に、セメントを含有する散布材料を散布して基材を形成し、この基材をオートクレーブ養生した後、炭酸化処理を施すことにより製造される。
[Second Embodiment]
The humidity control building material obtained in the present embodiment is formed by extruding a molding material containing cement, water, and a lightweight aggregate to form an extrusion molding product, and a dispersion material containing cement is applied to the surface of the extrusion molding product. It is manufactured by spraying to form a base material, autoclaving the base material, and then subjecting it to a carbonation treatment.

成形材料に含有されているセメントは、普通ポルトランドセメント、高炉セメント、アルミナセメントなどであり、各種のセメントが併用可能である。   The cement contained in the molding material is ordinary Portland cement, blast furnace cement, alumina cement, and the like, and various cements can be used in combination.

成形材料に含有されている軽量骨材は、調湿建材の軽量化を図るために配合されるものであり、通常の骨材(珪石粉等)よりも単位体積あたりの質量が軽い。軽量骨材としては、ビーズ法発泡スチロール(expandedpolystyrene、EPS)などが用いられる。EPSの平均粒径は0.8〜2.0mm、好ましくは1.0〜1.5mmである。またEPSの弾性係数が1.5〜2.5、好ましくは1.6〜2.0である。尚、平均粒径は、レーザー回折・散乱法によって求めた粒度分布における積算値50%での粒径を意味する。また弾性係数は、発泡樹脂粒子に50(N)の荷重を加えた時の変位(mm)を測定し、荷重(N)/変位(mm)で算出される数値である。   The lightweight aggregate contained in the molding material is blended in order to reduce the weight of the humidity-controlled building material, and has a lighter mass per unit volume than a normal aggregate (such as silica powder). As the lightweight aggregate, beaded polystyrene (expandedpolystyrene, EPS) or the like is used. The average particle size of EPS is 0.8 to 2.0 mm, preferably 1.0 to 1.5 mm. The elastic modulus of EPS is 1.5 to 2.5, preferably 1.6 to 2.0. The average particle size means the particle size at an integrated value of 50% in the particle size distribution obtained by the laser diffraction / scattering method. The elastic modulus is a numerical value calculated by measuring the displacement (mm) when a load of 50 (N) is applied to the foamed resin particles and calculating the load (N) / displacement (mm).

成形材料はセメントと水と軽量骨材の他に、混和材、骨材、繊維材、スクラップ材などを含有していてもよい。混和材は調湿建材の強度や耐久性の向上を図るものであり、フライアッシュ、シリカフューム、各種ポゾラン(火山灰など)などである。骨材は調湿建材の強度の確保を図るものであり、珪酸を主成分とする珪酸質材であることが好ましく、珪砂、珪石、珪石粉などである。繊維材は調湿建材の強度の向上を図るものであり、パルプ(古紙パルプやバージンパルプなど)、ロックウール、ビニロン繊維、ポリプロピレン繊維などである。スクラップ材は調湿建材の不良品や端材を粉砕したものであり、調湿建材の増量材として用いる。   The molding material may contain an admixture, an aggregate, a fiber material, a scrap material and the like in addition to cement, water, and a lightweight aggregate. Admixtures are intended to improve the strength and durability of humidity control building materials, such as fly ash, silica fume, and various pozzolans (such as volcanic ash). The aggregate is intended to ensure the strength of the humidity control building material, and is preferably a siliceous material mainly composed of silicic acid, such as quartz sand, quartzite, and quartzite powder. The fiber material is intended to improve the strength of the humidity control building material, such as pulp (waste paper pulp, virgin pulp, etc.), rock wool, vinylon fiber, polypropylene fiber and the like. The scrap material is a product obtained by pulverizing defective products and end materials of the humidity control building material, and is used as an extender for the humidity control building material.

散布材料に含有されているセメントは上記成形材料と同様のものが使用可能である。散布材料はセメントの他に、水、混和材、骨材、繊維材、スクラップ材などを含有していてもよい。これらは上記成形材料と同様のものが使用可能である。   The cement contained in the spraying material can be the same as the molding material. In addition to cement, the spray material may contain water, an admixture, an aggregate, a fiber material, a scrap material, and the like. These may be the same as the above molding materials.

散布材料はさらに吸放湿付与材を含有していてもよい。吸放湿付与材は調湿建材の吸湿性能及び放湿性能の向上を図るものであり、稚内珪藻土などの珪藻土、ゼオライト、アロフェン、セピオライト、ベントナイト、メタカオリン、カオリナイトなどである。   The spray material may further contain a moisture absorbing / releasing material. The moisture-absorbing / releasing material is intended to improve the moisture-absorbing performance and moisture-releasing performance of the humidity control building material, such as diatomaceous earth such as Wakkanai diatomaceous earth, zeolite, allophane, sepiolite, bentonite, metakaolin and kaolinite.

成形材料は、セメント、軽量骨材、混和材、骨材、繊維材、スクラップ材などからなる固形成分と水とを配合することにより調製される。固形成分の配合割合は、例えば、固形成分の合計量を100質量%とした場合、セメント30〜45質量%、軽量骨材1〜2質量%、混和材30〜45質量%、骨材2〜8質量%、繊維材4〜10質量%、スクラップ材10〜20質量%とすることができる。また固形成分と水との配合割合は、固形成分の全量に対して、水45〜55質量%とすることができる。   The molding material is prepared by blending a solid component made of cement, lightweight aggregate, admixture, aggregate, fiber material, scrap material, and the like with water. For example, when the total amount of the solid components is 100% by mass, the mixing ratio of the solid components is 30 to 45% by mass of cement, 1 to 2% by mass of lightweight aggregate, 30 to 45% by mass of admixture, and 2 to 2 of aggregate. 8 mass%, fiber material 4-10 mass%, scrap material 10-20 mass%. Moreover, the mixture ratio of a solid component and water can be 45-55 mass% of water with respect to the whole quantity of a solid component.

成形材料は押出成形により板状等の押出成形品に成形される。成形後の押出成形品に対して脱水のためにプレスを行っても良い。   The molding material is molded into an extruded product such as a plate by extrusion molding. You may press for the dehydration with respect to the extrusion molded product after shaping | molding.

押出成形品に対して散布材料の供給が行われて基材が形成される。散布材料は、セメント、混和材、骨材、繊維材、スクラップ材、吸放湿付与材などからなる固形成分と水とを配合することにより調製される。固形成分の配合割合は、例えば、固形成分の合計量を100質量%とした場合、セメント30〜45質量%、混和材30〜45質量%、骨材2〜8質量%、繊維材4〜10質量%、スクラップ材10〜20質量%、吸放湿付与材0〜35質量%とすることができる。また固形成分と水との配合割合は、固形成分の全量に対して、水25〜35質量%とすることができる。ここで、散布材料は、成形材料よりも、固形成分に対する水の配合割合が少ない。すなわち、散布材料の含水量は、成形材料の含水量の略半分程度である。従って、成形材料は押出成形可能な流動性を有するのに対して、散布材料は散布可能な程度の乾燥状態(セミドライ)の粉体である。   The base material is formed by supplying the spray material to the extruded product. The spray material is prepared by blending a solid component made of cement, an admixture, an aggregate, a fiber material, a scrap material, a moisture absorbing / releasing material, and water. For example, when the total amount of the solid components is 100% by mass, the mixing ratio of the solid components is 30 to 45% by mass of cement, 30 to 45% by mass of the admixture, 2 to 8% by mass of the aggregate, and 4 to 10 of the fiber material. It can be made into mass%, 10-20 mass% of scrap materials, and 0-35 mass% of moisture absorption / release imparting materials. Moreover, the mixture ratio of a solid component and water can be 25-35 mass% of water with respect to the whole quantity of a solid component. Here, the spray material has a smaller proportion of water to the solid component than the molding material. That is, the water content of the spray material is about half of the water content of the molding material. Therefore, the molding material has fluidity that allows extrusion molding, whereas the spray material is a powder in a dry state (semi-dry) that can be sprayed.

押出成形品への散布材料の散布量は、2〜4kg/mであることが好ましく、より好ましくは2.5〜3kg/mである。散布量が多すぎると、散布材料により形成される表面層が厚くなりすぎて調湿建材の吸放湿性能が十分に発揮できないおそれがあり、散布量が少なすぎると、散布材料により形成される表面層が薄くなりすぎて基材の表面の隠蔽性が低下して、調湿建材の外観が向上しにくくなる。 The amount of the sprayed material applied to the extruded product is preferably 2 to 4 kg / m 2 , more preferably 2.5 to 3 kg / m 2 . If the spraying amount is too large, the surface layer formed by the spraying material may become too thick and the moisture-absorbing / releasing performance of the humidity control building material may not be exhibited sufficiently. If the spraying amount is too small, it will be formed by the spraying material. Since the surface layer becomes too thin, the concealability of the surface of the substrate is lowered, and the appearance of the humidity control building material is hardly improved.

基材に対しては一次養生が実施される。一次養生は基材を30〜90℃の大気中で約20〜30時間保持する。一次養生の後、基材に対してオートクレーブ(AC)養生が行われる。オートクレーブ養生は基材を160〜190℃、気圧1.0〜1.2MPa、3〜5時間保持する。   Primary curing is performed on the substrate. In the primary curing, the substrate is kept in the atmosphere at 30 to 90 ° C. for about 20 to 30 hours. After the primary curing, autoclaving (AC) curing is performed on the substrate. Autoclave curing holds the substrate at 160-190 ° C., atmospheric pressure 1.0-1.2 MPa, 3-5 hours.

オートクレーブ養生の後、基材に対して炭酸化処理が施される。炭酸化処理は基材を25〜35℃、湿度50〜95%、炭酸ガス濃度が3〜7%に調製された空気中に、3〜28日保持する。この炭酸化処理により、湿気の拡散孔であるマイクロポアを減少させないで、5nm以下の細孔(ミクロポア)を減少させた基材が得やすくなる。   After the autoclave curing, the substrate is carbonized. In the carbonation treatment, the substrate is kept for 3 to 28 days in air prepared at 25 to 35 ° C., a humidity of 50 to 95%, and a carbon dioxide gas concentration of 3 to 7%. By this carbonation treatment, it becomes easy to obtain a substrate in which pores (micropores) of 5 nm or less are reduced without reducing the micropores which are moisture diffusion holes.

図5に本実施形態で得られる調湿建材10の断面図を示す。この調湿建材10は、押出成形品の硬化物である基材本体20の表面に、散布材料の硬化物である表面層30を備えて形成される。   FIG. 5 shows a cross-sectional view of the humidity control building material 10 obtained in the present embodiment. This humidity conditioning building material 10 is formed on the surface of a base body 20 that is a cured product of an extrusion-molded product, with a surface layer 30 that is a cured product of a spray material.

本実施形態の調湿建材は、基材本体の表面に、ほぼ乾燥状態の粉体の散布材料で形成される表面層を有しているため、表面層で基材本体の表面の細孔(ゲル孔)等が隠蔽され、外観が向上する。しかも表面層は比較的柔軟であるため、プレス成形等で凹凸模様が付与しやすく、賦形性に優れるものである。また軽量骨材を配合した基材本体は、軽量骨材がオートクレーブ養生等で溶融して比較的大きな細孔が形成されるため、調湿性に優れるものである。しかも、表面層は透湿性が比較的良好であるため、透湿の阻害が小さくなり、調湿建材の調湿性能が損なわれにくい。さらに、軽量骨材を含有して調湿性能に優れる基材本体を形成するため、表面層に配合する吸放湿付与材が比較的少量でも、調湿建材は調湿性に優れるものである。   Since the humidity control building material of the present embodiment has a surface layer formed of a substantially dry powder dispersion material on the surface of the base body, the surface layer has pores on the surface of the base body ( Gel holes) are concealed and the appearance is improved. In addition, since the surface layer is relatively flexible, it is easy to impart a concavo-convex pattern by press molding or the like, and is excellent in formability. In addition, the base material body blended with the lightweight aggregate is excellent in humidity control because the lightweight aggregate is melted by autoclave curing or the like to form relatively large pores. Moreover, since the surface layer has relatively good moisture permeability, the inhibition of moisture permeability is reduced, and the humidity control performance of the humidity control building material is unlikely to be impaired. Furthermore, since the base material main body containing the lightweight aggregate and excellent in the humidity control performance is formed, the humidity control building material is excellent in the humidity control property even if the moisture absorbing / releasing material blended in the surface layer is relatively small.

以下、本発明を実施例によって具体的に説明する。   Hereinafter, the present invention will be specifically described by way of examples.

(実施例1)
セメント36.1質量%、フライアッシュ35.6質量%、珪石粉4.0質量%、パルプ(NUKP)6.5質量%、スクラップ材17.8質量%からなる固形成分と水とを混合して成形材料であるスラリーを調製した。スラリーの固形成分の濃度は9%であった。
Example 1
A solid component consisting of 36.1% by mass of cement, 35.6% by mass of fly ash, 4.0% by mass of silica powder, 6.5% by mass of pulp (NUKP), and 17.8% by mass of scrap material is mixed with water. Thus, a slurry as a molding material was prepared. The concentration of the solid component of the slurry was 9%.

次に、スラリーを抄造法で抄造した後、2.0MPaでプレスすることにより、縦550mm、横550mm、厚み9mm、含水率18%の板状の基材を形成した。   Next, the slurry was made by a paper making method and then pressed at 2.0 MPa to form a plate-like substrate having a length of 550 mm, a width of 550 mm, a thickness of 9 mm, and a moisture content of 18%.

次に、基材に一次養生を施した。一次養生の条件は、温度40℃で8時間保持した後、80℃まで6時間かけて昇温し、この後、80℃で10時間保持した。   Next, primary curing was performed on the base material. The primary curing condition was that the temperature was kept at 40 ° C. for 8 hours, then the temperature was raised to 80 ° C. over 6 hours, and then kept at 80 ° C. for 10 hours.

次に、基材にオートクレーブ養生を施した。オートクレーブ養生の条件は、温度170℃、気圧1.0MPaで4時間保持した。   Next, the substrate was subjected to autoclave curing. The autoclave curing conditions were maintained at a temperature of 170 ° C. and an atmospheric pressure of 1.0 MPa for 4 hours.

次に、基材に炭酸化処理を施した。炭酸化処理の条件は、温度30℃、湿度60%で、炭酸ガス濃度が5%に調製された大気中で、14日間保持した。   Next, the substrate was carbonized. The conditions for the carbonation treatment were maintained for 14 days in an atmosphere prepared at a temperature of 30 ° C., a humidity of 60%, and a carbon dioxide gas concentration of 5%.

以上のようにして、調湿建材を得た。   As described above, a humidity control building material was obtained.

(実施例2)
実施例1において、炭酸化処理の日数を28日間とした。これ以外は、実施例1と同様にして調湿建材を製造した。
(Example 2)
In Example 1, the number of carbonation treatment days was 28 days. Except for this, a humidity control building material was produced in the same manner as in Example 1.

(比較例1)
炭酸化処理を行わなかった以外は、実施例1と同様にした。
(Comparative Example 1)
The procedure was the same as Example 1 except that no carbonation was performed.

(吸放湿試験)
実施例及び比較例の調湿建材について、吸放湿試験を行った。この試験は、調湿建材判定基準(一般社団法人日本建材・住宅設備産業協会)に基づいて実施した。そして、調湿建材1mあたりの吸湿量及び放湿量を計測し、吸放湿率(放湿量/吸湿量×100)を算出した。結果を表1に示す。
(Moisture absorption / release test)
A moisture absorption / release test was carried out on the humidity control building materials of the examples and comparative examples. This test was conducted based on the humidity-controlling building material judgment standard (Japan Building Materials and Housing Equipment Industry Association). Then, the measured moisture absorption and desorption amount per moisture control construction material 1 m 2, was calculated absorbing Shimeritsu (moisture release amount / moisture absorption × 100). The results are shown in Table 1.

(細孔量測定)
実施例及び比較例の調湿建材について、細孔量測定を行った。この測定は、ガス吸着法により実施した。そして、調湿建材1cmあたりの「直径5nm以下の細孔量」と「直径5nmより大きく直径50nm未満の細孔量」と「直径50nm以上の細孔量」とを測定した。結果を表1に示す。
(Porosity measurement)
The amount of pores was measured for the humidity control building materials of Examples and Comparative Examples. This measurement was performed by a gas adsorption method. Then, “amount of pores having a diameter of 5 nm or less”, “amount of pores having a diameter greater than 5 nm and less than 50 nm”, and “amount of pores having a diameter of 50 nm or more” per 1 cm 3 of the humidity control building material were measured. The results are shown in Table 1.

(細孔径分布測定)
実施例及び比較例の調湿建材について、細孔径分布測定を行った。この測定は、ガス吸着法により実施した。結果を図1にグラフで示す。
(Measurement of pore size distribution)
The pore size distribution measurement was performed on the humidity-controlled building materials of Examples and Comparative Examples. This measurement was performed by a gas adsorption method. The results are shown graphically in FIG.

Figure 2018034403
Figure 2018034403

表1から明らかなように、実施例1、2は比較例よりも吸放湿率が高く、吸放湿性能が優れている。これは、実施例1、2における直径5nm以下の細孔量が、炭酸化処理により、比較例に比べて少なくなり、放湿量がほぼ同じであるにもかかわらず吸湿量が増加したためであると考えられる。   As is clear from Table 1, Examples 1 and 2 have a higher moisture absorption / release rate than the comparative examples, and are superior in moisture absorption / release performance. This is because the amount of pores having a diameter of 5 nm or less in Examples 1 and 2 was reduced by the carbonation treatment as compared with the comparative example, and the moisture absorption amount was increased although the moisture release amount was almost the same. it is conceivable that.

なお、図2に示すように、セメント硬化物は5nm以下の細孔が多く残ることがあるため、細孔量が多くなれば、吸放湿率が減少する傾向にある。また図3に示すように、セメント硬化物の吸放湿量は、時間の経過とともに増加する傾向にある。   In addition, as shown in FIG. 2, since the hardened cement material may have many pores of 5 nm or less, the moisture absorption / release rate tends to decrease as the amount of pores increases. Moreover, as shown in FIG. 3, the moisture absorption / release amount of the hardened cement product tends to increase with time.

(実施例3〜7)
表2に示す配合割合で成形材料を調製し、この成形材料を押出成形することにより、押出成形品を形成した。
(Examples 3 to 7)
A molding material was prepared at a blending ratio shown in Table 2, and an extrusion molded product was formed by extruding the molding material.

次に、表2に示す配合割合で散布材料を調製し、この散布材料を押出成形品の表面に散布して基材を形成した。この時の散布材料の散布量は3kg/mとした。 Next, a spraying material was prepared at a blending ratio shown in Table 2, and the spraying material was sprayed on the surface of the extruded product to form a base material. The amount of sprayed material applied at this time was 3 kg / m 2 .

次に、基材を一次養生した。一次養生の条件は、基材を温度40℃で8時間保持した後、80℃まで6時間かけて昇温し、この後、80℃で10時間保持した。この一次養生により、縦550mm、横550mm、厚み8.5mm、含水率18%の板状にした。   Next, the substrate was primarily cured. The primary curing conditions were that the substrate was held at a temperature of 40 ° C. for 8 hours, then heated to 80 ° C. over 6 hours, and then held at 80 ° C. for 10 hours. By this primary curing, a plate having a length of 550 mm, a width of 550 mm, a thickness of 8.5 mm, and a moisture content of 18% was formed.

次に、基材にオートクレーブ養生を施した。オートクレーブ養生の条件は、温度170℃、気圧1.0MPaで4時間保持した。次に、基材を90℃で5時間保持して乾燥した。   Next, the substrate was subjected to autoclave curing. The autoclave curing conditions were maintained at a temperature of 170 ° C. and an atmospheric pressure of 1.0 MPa for 4 hours. Next, the substrate was dried at 90 ° C. for 5 hours.

次に、基材に炭酸化処理を施した。炭酸化処理の条件は、温度30℃、湿度60%で、炭酸ガス濃度が5%に調製された大気中で、14日間保持した。これにより、押出成形品の硬化物である基材本体の表面に表面層(散布材料の硬化物)が形成された調湿建材を得た。調湿建材の厚みは9mmであった。   Next, the substrate was carbonized. The conditions for the carbonation treatment were maintained for 14 days in an atmosphere prepared at a temperature of 30 ° C., a humidity of 60%, and a carbon dioxide gas concentration of 5%. Thereby, the humidity-control building material by which the surface layer (cured material of the spreading | diffusion material) was formed in the surface of the base-material main body which is a hardened | cured material of an extrusion molded product was obtained. The thickness of the humidity control building material was 9 mm.

(比較例2)
表2に示す配合割合で成形材料を調製し、この成形材料を押出成形することにより、押出成形品を形成した。なお、比較例2では軽量骨材としてマイクロカプセルを使用している。
(Comparative Example 2)
A molding material was prepared at a blending ratio shown in Table 2, and an extrusion molded product was formed by extruding the molding material. In Comparative Example 2, microcapsules are used as lightweight aggregates.

この後、散布材料を散布せずに、押出成形品を一次養生し、オートクレーブ養生し、乾燥することにより、調湿建材を得た。比較例2は炭酸化処理をおこなっていない。   Then, without spraying the spray material, the extruded product was primarily cured, autoclaved, and dried to obtain a humidity control building material. In Comparative Example 2, no carbonation treatment was performed.

(比較例3)
表2に示す配合割合で成形材料を調製し、この成形材料を押出成形することにより、押出成形品を形成した。なお、比較例3は実施例3の成形材料と同じ配合である。
(Comparative Example 3)
A molding material was prepared at a blending ratio shown in Table 2, and an extrusion molded product was formed by extruding the molding material. Comparative Example 3 has the same composition as the molding material of Example 3.

この後、散布材料を散布せずに、押出成形品を一次養生し、オートクレーブ養生し、乾燥することにより、調湿建材を得た。比較例3は炭酸化処理をおこなっていない。   Then, without spraying the spray material, the extruded product was primarily cured, autoclaved, and dried to obtain a humidity control building material. In Comparative Example 3, no carbonation treatment was performed.

(比較例4)
表2に示す配合割合で固形成分を調製し、この固形成分と水とを配合してスラリーを調製した。スラリーの固形成分の濃度は9%であった。次に、スラリーを抄造法で抄造した後、2.0MPaでプレスすることにより、抄造基材を形成した。抄造基材のサイズは実施例と同じであった。
(Comparative Example 4)
A solid component was prepared at a blending ratio shown in Table 2, and the solid component and water were blended to prepare a slurry. The concentration of the solid component of the slurry was 9%. Next, after making the slurry by the paper making method, the paper making base material was formed by pressing at 2.0 MPa. The size of the papermaking substrate was the same as in the examples.

この後、散布材料を散布せずに、抄造基材を一次養生し、オートクレーブ養生し、乾燥することにより、調湿建材を得た。比較例4は炭酸化処理をおこなっていない。   Then, without spraying the spraying material, the papermaking base material was primarily cured, autoclaved, and dried to obtain a humidity control building material. In Comparative Example 4, no carbonation treatment was performed.

(比較例5)
比較例4と同様にして抄造基材を形成した後、抄造基材の表面に実施例3と同様の散布材料を散布し、この後、抄造基材を一次養生し、オートクレーブ養生し、乾燥することにより、調湿建材を得た。比較例5は炭酸化処理をおこなっていない。
(Comparative Example 5)
After forming the papermaking substrate in the same manner as in Comparative Example 4, the same spraying material as in Example 3 was sprayed on the surface of the papermaking substrate, and then the papermaking substrate was primarily cured, autoclaved and dried. Thus, a humidity control building material was obtained. In Comparative Example 5, no carbonation treatment was performed.

(比較例6)
表2に示す配合割合で、比較例4と同様にして抄造基材を形成した後、抄造基材の表面に実施例3と同様の散布材料を散布し、この後、抄造基材を一次養生し、オートクレーブ養生し、乾燥することにより、調湿建材を得た。比較例6は炭酸化処理をおこなっていない。
(Comparative Example 6)
After forming a papermaking substrate in the same manner as in Comparative Example 4 at the blending ratio shown in Table 2, the same spraying material as in Example 3 was sprayed on the surface of the papermaking substrate, and then the papermaking substrate was subjected to primary curing. Then, an autoclave was cured and dried to obtain a humidity control building material. In Comparative Example 6, no carbonation treatment was performed.

(絶乾比重の測定)
実施例3〜7及び比較例2〜6の調湿建材について、絶乾比重を測定した。この測定方法は水中浸漬法を用いて測定した。結果を表2に示す。
(Measurement of absolute dry specific gravity)
The absolute dry specific gravity was measured about the humidity control building materials of Examples 3-7 and Comparative Examples 2-6. This measuring method was measured using an underwater dipping method. The results are shown in Table 2.

(圧縮強度の測定)
実施例3〜7及び比較例2〜6の調湿建材について、圧縮強度を測定した。この測定方法はJIS A 1108に基づいて試験実施した。結果を表2に示す。
(Measurement of compressive strength)
The compressive strength was measured about the humidity-control building materials of Examples 3-7 and Comparative Examples 2-6. This measurement method was tested based on JIS A 1108. The results are shown in Table 2.

(吸放湿試験)
実施例3〜7及び比較例2〜6の調湿建材について、吸放湿性能を評価するために吸放湿試験を行った。この試験は、一般社団法人日本建材・住宅設備産業協会が定める調湿建材判定基準に基づいて実施した。そして、調湿建材1mあたりの吸湿量及び放湿量を計測し、吸放湿率(放湿量/吸湿量×100)を算出した。結果を表2に示す。
(Moisture absorption / release test)
A moisture absorption / release test was performed on the humidity control building materials of Examples 3 to 7 and Comparative Examples 2 to 6 in order to evaluate the moisture absorption / release performance. This test was conducted based on the humidity-controlling building material judgment standard established by the Japan Building Materials and Housing Equipment Industries Association. Then, the measured moisture absorption and desorption amount per moisture control construction material 1 m 2, was calculated absorbing Shimeritsu (moisture release amount / moisture absorption × 100). The results are shown in Table 2.

(外観評価)
実施例3〜7及び比較例2〜6の調湿建材について、外観の評価を行った。この評価方法は寸法及び形状を表面スキャニング装置を用いて実施した。そして、以下のような評価をした。結果を表2に示す。
(Appearance evaluation)
About the humidity-control building materials of Examples 3-7 and Comparative Examples 2-6, the external appearance was evaluated. This evaluation method was carried out using a surface scanning device in terms of size and shape. And the following evaluation was carried out. The results are shown in Table 2.

Figure 2018034403
Figure 2018034403

表2から明らかなように、比較例2,4,5,6は吸放湿率が目標値に達せず、吸放湿性能が低くなった。比較例2は表面層が形成されていないため、外観の評価が低くなった。比較例4と5を対比すると吸放湿率があまり差がなく、表面層が吸放湿(透湿)の阻害になりにくいことが判る。実施例4は吸放湿率が目標値に僅かに達しないが、比較例2、4、5、6よりは吸放湿性が向上し、外観も良好である。実施例3〜7は吸放湿性及び外観のいずれも良好である。   As is clear from Table 2, in Comparative Examples 2, 4, 5, and 6, the moisture absorption / release rate did not reach the target value, and the moisture absorption / release performance was low. In Comparative Example 2, since the surface layer was not formed, the appearance evaluation was low. Comparing Comparative Examples 4 and 5, it can be seen that the moisture absorption / release rate is not so different, and the surface layer is unlikely to inhibit moisture absorption / release (moisture permeability). In Example 4, the moisture absorption / release rate does not reach the target value slightly, but the moisture absorption / release property is improved and the appearance is better than those of Comparative Examples 2, 4, 5, and 6. In Examples 3 to 7, both moisture absorption and release and appearance are good.

Claims (1)

セメントと水とを含有する成形材料を成形して基材を形成し、該基材をオートクレーブ養生した後、炭酸化処理を施す調湿建材の製造方法。
A method for producing a humidity control building material, comprising forming a base material by molding a molding material containing cement and water, curing the base material in an autoclave, and then subjecting the base material to carbonation treatment.
JP2016169234A 2016-08-31 2016-08-31 Manufacturing method of humidity control building materials Active JP6912872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016169234A JP6912872B2 (en) 2016-08-31 2016-08-31 Manufacturing method of humidity control building materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016169234A JP6912872B2 (en) 2016-08-31 2016-08-31 Manufacturing method of humidity control building materials

Publications (2)

Publication Number Publication Date
JP2018034403A true JP2018034403A (en) 2018-03-08
JP6912872B2 JP6912872B2 (en) 2021-08-04

Family

ID=61566868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016169234A Active JP6912872B2 (en) 2016-08-31 2016-08-31 Manufacturing method of humidity control building materials

Country Status (1)

Country Link
JP (1) JP6912872B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023170991A1 (en) * 2022-03-07 2023-09-14 株式会社フジタ Method for producing humidity conditioning building material and humidity conditioning building material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61149312A (en) * 1984-12-24 1986-07-08 松下電工株式会社 Manufacture of inorganic cement board
JP2002001112A (en) * 2000-06-23 2002-01-08 Clion Co Ltd Humidity controlling building material having deodorizing function and its manufacturing method
JP2002097087A (en) * 2000-09-21 2002-04-02 Inax Corp Moisture controlling building material
JP2007131488A (en) * 2005-11-10 2007-05-31 Tokyo Institute Of Technology Calcium silicate hydrate solidification product and its synthesis method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61149312A (en) * 1984-12-24 1986-07-08 松下電工株式会社 Manufacture of inorganic cement board
JP2002001112A (en) * 2000-06-23 2002-01-08 Clion Co Ltd Humidity controlling building material having deodorizing function and its manufacturing method
JP2002097087A (en) * 2000-09-21 2002-04-02 Inax Corp Moisture controlling building material
JP2007131488A (en) * 2005-11-10 2007-05-31 Tokyo Institute Of Technology Calcium silicate hydrate solidification product and its synthesis method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023170991A1 (en) * 2022-03-07 2023-09-14 株式会社フジタ Method for producing humidity conditioning building material and humidity conditioning building material

Also Published As

Publication number Publication date
JP6912872B2 (en) 2021-08-04

Similar Documents

Publication Publication Date Title
JP2009023864A (en) Functional building material
JP4027029B2 (en) Building material composition
JP6912872B2 (en) Manufacturing method of humidity control building materials
JP4009619B2 (en) Building material and method of manufacturing building material
KR101641998B1 (en) Lightweight concrete panel having finishing material composition for building and finishing panel comprising the same
WO2019065226A1 (en) Mineral board and production method therefor
JP2003096930A (en) Humidity-adjustable fire-protective building material and method for producing the same
JP4684241B2 (en) Building material composition
JP3212586B1 (en) Humidity control building materials
JP3212587B1 (en) Humidity control building materials
KR100925355B1 (en) Preparation of nano pore control type Alc panel
JP3212591B1 (en) Humidity control building materials
KR101552212B1 (en) Lec building material reducing hazardous substance and controlling humidity
JP2007153627A (en) Production method of zeolite building material
JP3065607B1 (en) Humidity control building materials
JP3979592B2 (en) Method for producing humidity conditioning building material using allophane or imogolite-containing composition
JP2019151521A (en) Calcium silicate plate and method for producing the same
JP4070446B2 (en) Building materials
KR101537928B1 (en) Inorganic board and a method of manufacturing said inorganic board
JP4633067B2 (en) Composition for building materials
Kumar et al. Activated Charcoal as a Component of Mortar Material for Thermal Insulation of Buildings
JP2004176357A (en) Design building material
WO2024110388A1 (en) Porous geopolymer product
JP2005306665A (en) Building material and method of manufacturing building material
JP2003165762A (en) Moisture-adsorbing and releasing inorganic formed body

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190701

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210709

R150 Certificate of patent or registration of utility model

Ref document number: 6912872

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150