JP2018034077A - Method for operating membrane separation device and membrane separation device - Google Patents

Method for operating membrane separation device and membrane separation device Download PDF

Info

Publication number
JP2018034077A
JP2018034077A JP2016166828A JP2016166828A JP2018034077A JP 2018034077 A JP2018034077 A JP 2018034077A JP 2016166828 A JP2016166828 A JP 2016166828A JP 2016166828 A JP2016166828 A JP 2016166828A JP 2018034077 A JP2018034077 A JP 2018034077A
Authority
JP
Japan
Prior art keywords
membrane
water
membrane separation
separation device
water level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016166828A
Other languages
Japanese (ja)
Other versions
JP7103728B2 (en
Inventor
康信 岡島
Yasunobu Okajima
康信 岡島
公博 石川
Kimihiro Ishikawa
公博 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2016166828A priority Critical patent/JP7103728B2/en
Priority to EP17846162.0A priority patent/EP3505497B1/en
Priority to ES17846162T priority patent/ES2953620T3/en
Priority to PCT/JP2017/029621 priority patent/WO2018043154A1/en
Publication of JP2018034077A publication Critical patent/JP2018034077A/en
Priority to US16/203,311 priority patent/US11452971B2/en
Application granted granted Critical
Publication of JP7103728B2 publication Critical patent/JP7103728B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • B01D65/06Membrane cleaning or sterilisation ; Membrane regeneration with special washing compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/22Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • C02F3/1273Submerged membrane bioreactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/91Bacteria; Microorganisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/48Mechanisms for switching between regular separation operations and washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/06Submerged-type; Immersion type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • B01D2321/164Use of bases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/18Use of gases
    • B01D2321/185Aeration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/40Automatic control of cleaning processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/03Pressure
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/42Liquid level
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for operating a membrane separation device capable of dealing with an unexpected rapid differential pressure rise while attaining the reduction of operation cost by increasing engineering flux.SOLUTION: Provided is a method for operating a membrane separation device where the water to be treated is subjected to solid-liquid separation via a separation membrane, comprising: a membrane filtration step where, a permeable water amount M (t) from the membrane separation device is set to satisfy the relation represented by the numerical formula M(t)=KQ(t-1); where M(t) denotes the permeable water amount in a time t with a prescribed length; K denotes a gain (>1); and Q(t-1) denotes the inflow amount of the water to be treated in a time t-1 immediately before the time t, and permeable water is pulled out from the membrane separation device at the set permeable water amount; and a stop step where, when the water level of a water tank immersed and arranged with the membrane separation device is reduced to a pre-set stop water level, the pulling out of the permeable water from the membrane separation device is temporarily stopped.SELECTED DRAWING: Figure 4

Description

本発明は、膜分離装置の運転方法及び膜分離装置に関する。   The present invention relates to a method for operating a membrane separator and a membrane separator.

特許文献1には、有機性汚水を活性汚泥により生物処理する曝気槽の内部に、槽内の活性汚泥混合液を固液分離する膜分離装置を浸漬設置した膜分離活性汚泥法を採用した汚水処理装置が示されている。   Patent Document 1 discloses sewage that employs a membrane separation activated sludge method in which a membrane separation device for solid-liquid separation of an activated sludge mixed liquid in a tank is immersed in an aeration tank that biologically treats organic sludge with activated sludge. A processing unit is shown.

当該汚水処理装置は、槽内の水位をほぼ一定範囲内に維持しながら、効率よく重力濾過できるように、曝気槽へ日平均汚水量を満たす流量で有機性汚水を移送する汚水移送手段を備えるとともに、日平均汚水量と同等量の膜透過液を排出する定流量排出手段を備え、汚水移送手段と定流量排出手段とが連動するように構成されている。   The sewage treatment apparatus includes sewage transfer means for transferring organic sewage to the aeration tank at a flow rate that satisfies the daily average sewage amount so that gravity filtration can be efficiently performed while maintaining the water level in the tank within a substantially constant range. In addition, a constant flow discharge means for discharging a membrane permeate equivalent to the daily average amount of sewage is provided, and the sewage transfer means and the constant flow discharge means are configured to work together.

つまり、重力濾過や吸引濾過の何れであっても、膜分離装置が浸漬配置された曝気槽の水位を一定に維持するように、曝気槽への流入汚水量と流出膜透過液量との差が調整され、流入汚水量と流出膜透過液量とが等しくなるように調整されていた。   In other words, in either gravity filtration or suction filtration, the difference between the amount of sewage flowing into the aeration tank and the amount of permeable membrane permeate so that the water level of the aeration tank in which the membrane separation device is immersed is maintained constant. Was adjusted so that the amount of inflow sewage and the amount of outflow membrane permeate were equal.

特開平10−15573号公報Japanese Patent Laid-Open No. 10-15573

このような膜分離装置は、ろ過に伴って膜面に汚れが付着して膜面の差圧つまり透過抵抗値(以下、「膜間差圧」とも記す。)が上昇すると、単位膜面積当たりの透過水量つまり透過流束(以下、「フラックス」とも記す。)が低下するため、そのような場合に、ろ過運転を停止して曝気による被処理水の上向流により膜面を洗浄するリラクゼーションや、次亜塩素酸ソーダ等の薬液を用いた洗浄によって膜面から汚れを除去する必要があった。   In such a membrane separation apparatus, when the membrane surface is contaminated with filtration and the differential pressure on the membrane surface, that is, the permeation resistance value (hereinafter also referred to as “transmembrane differential pressure”) increases, In such a case, the filtration operation is stopped and the membrane surface is washed by the upward flow of the water to be treated by aeration, since the permeated water amount, that is, the permeation flux (hereinafter also referred to as “flux”) decreases. In addition, it was necessary to remove dirt from the film surface by washing with a chemical solution such as sodium hypochlorite.

リラクゼーションや薬液洗浄を行なうと、その間はろ過が滞るため、従来は設計フラックスにかなりの余裕を持たせて急激な差圧上昇の発生を抑制するとともに、汚水の流入が少なくなる時期や時間を見計らって、管理者がポンプやバルブを手動操作することによりろ過膜の薬液洗浄を行なっていた。   When relaxation or chemical cleaning is performed, filtration is delayed during this period.Conventionally, the design flux has a considerable margin to suppress the sudden increase in differential pressure, and at the time and time when the inflow of sewage is reduced. The administrator manually cleans the filter membrane by manually operating pumps and valves.

そのような設計フラックスで所定の透過水量を確保するためには、膜面積を大きくつまり膜分離装置の設置台数を増やす必要があり、その結果、曝気等に要する動力コスト等の運転コストが嵩んでいた。   In order to secure a predetermined amount of permeated water with such a design flux, it is necessary to increase the membrane area, that is, to increase the number of installed membrane separation devices, resulting in increased operating costs such as power costs required for aeration and the like. It was.

このような膜分離活性汚泥法を用いた排水処理設備の運転コストを低減するために、設置する膜分離装置の膜面積を削減して設計フラックスを上げる必要がある。   In order to reduce the operating cost of wastewater treatment facilities using such a membrane separation activated sludge method, it is necessary to reduce the membrane area of the installed membrane separation apparatus and increase the design flux.

しかし、膜面積を削減して設計フラックスを上げると、予期せぬ急激な透過抵抗値の上昇を来す虞があり、そのような場合に所定の透過水量を確保しながら直ちに膜面の洗浄を行なうことができるようにする必要がある。すなわち、通常の運転の中で膜面抵抗を除去する時間を強制的に作り出していく必要がある。   However, if the membrane area is reduced and the design flux is increased, the permeation resistance value may increase unexpectedly. In such a case, the membrane surface should be cleaned immediately while securing a predetermined amount of permeated water. You need to be able to do it. That is, it is necessary to forcibly create time for removing the film surface resistance during normal operation.

本発明の目的は、上述した問題点に鑑み、設計フラックスを上げて運転コストの低減を図りながらも、予期せぬ急激な差圧上昇に対応可能な膜分離装置の運転方法及び膜分離装置を提供する点にある。   In view of the above-described problems, an object of the present invention is to provide an operation method of a membrane separation apparatus and a membrane separation apparatus that can cope with an unexpected and sudden increase in differential pressure while increasing the design flux and reducing the operation cost. The point is to provide.

上述の目的を達成するため、本発明による膜分離装置の運転方法の第一の特徴構成は、特許請求の範囲の書類の請求項1に記載した通り、被処理水を、分離膜を介して固液分離する膜分離装置の運転方法であって、前記膜分離装置からの透過水量M(t)を、以下の数式
M(t)=KQ(t−1)
M(t):所定の長さを有する期間tにおける透過水量
K:ゲイン(>1)
Q(t−1):期間tの直前の期間t−1における被処理水の流入量
で表される関係となるように設定し、設定した透過水量で前記膜分離装置から透過水を引く抜く膜ろ過ステップと、前記膜分離槽装置が浸漬配置された水槽、または該水槽と連通しており当該水槽と同一の水位となる水槽、もしくは当該膜分離装置が浸漬配置された水槽からの越流水が流入する水槽の水位が予め設定された停止水位まで低下したときに前記膜分離装置からの透過水の引抜きを一時停止する停止ステップと、を備えている点にある。
In order to achieve the above-mentioned object, the first characteristic configuration of the operation method of the membrane separation apparatus according to the present invention is that the treated water is passed through the separation membrane as described in claim 1 of the claims. A method for operating a membrane separation device for solid-liquid separation, wherein the permeated water amount M (t) from the membrane separation device is expressed by the following equation M (t) = KQ (t−1)
M (t): Permeated water amount in period t having a predetermined length K: Gain (> 1)
Q (t−1): set to have a relationship represented by the inflow amount of the water to be treated in the period t−1 immediately before the period t, and the permeated water is drawn out from the membrane separation device with the set permeate amount. Membrane filtration step, water tank in which the membrane separation tank device is immersed, water tank in communication with the water tank and having the same water level as the water tank, or overflow water from the water tank in which the membrane separation device is immersed And a stop step for temporarily stopping the extraction of the permeate from the membrane separation device when the water level of the water tank into which the water flows is lowered to a preset stop water level.

ゲインKを1より大に設定し、期間tの直前の期間t−1における被処理水の流入量Q(t−1)に対して期間tの透過水量M(t)が上式に示す関係となるように設定することにより、膜ろ過ステップの実行中に時間の経過により膜分離槽装置が浸漬配置された水槽、または該水槽と連通しており当該水槽と同一の水位となる水槽、もしくは当該膜分離装置が浸漬配置された水槽からの越流水が流入する水槽の水位が次第に低下する定常的な状況が発現する。そのような状況で膜分離装置からの透過水の引抜きを一時停止する停止ステップを実行すると、膜分離槽の水位が次第に回復するようになり、その間に分離膜の洗浄のための時間を確保できるようになり、設計フラックスを上げることによる予期せぬ急激な透過抵抗値の上昇に対処でき、運転コストを低減できるようになる。そして、停止ステップを実行する停止水位を適切に設定することにより、流入量Q(t−1)に対応した透過水量M(t)を確保し、同時に膜分離槽からの被処理水のオーバーフローや分離膜の気中への露出を回避することができる。   The gain K is set to be larger than 1, and the permeated water amount M (t) in the period t with respect to the inflow amount Q (t−1) of the water to be treated in the period t−1 immediately before the period t is expressed by the above equation. By setting so as to be, a water tank in which the membrane separation tank device is immersed and placed over time during the execution of the membrane filtration step, or a water tank communicating with the water tank and having the same water level as the water tank, or A steady situation appears in which the water level of the water tank into which the overflow water from the water tank in which the membrane separation device is immersed is gradually lowered. In such a situation, when the stop step for temporarily stopping the extraction of the permeated water from the membrane separation apparatus is executed, the water level in the membrane separation tank gradually recovers, and in the meantime, it is possible to secure time for cleaning the separation membrane. Thus, it is possible to cope with an unexpected sudden increase in permeation resistance value due to an increase in the design flux, and to reduce the operation cost. And by appropriately setting the stop water level for executing the stop step, the permeated water amount M (t) corresponding to the inflow amount Q (t-1) is secured, and at the same time, the overflow of the water to be treated from the membrane separation tank Exposure of the separation membrane to the air can be avoided.

同第二の特徴構成は、同請求項2に記載した通り、上述の第一の特徴構成に加えて、前記停止ステップは、前記分離膜の透過抵抗値が予め設定された上限許容値以上になると、前記何れかの水槽の水位が設定水位に低下する前であっても、前記膜分離装置からの透過水の引抜きを一時停止する点にある。   In the second characteristic configuration, as described in claim 2, in addition to the first characteristic configuration described above, the stop step has a permeation resistance value of the separation membrane equal to or higher than a preset upper limit allowable value. If it becomes, even if it is before the water level of one of the said water tanks falls to a setting water level, it exists in the point which pauses drawing | extracting of the permeated water from the said membrane separator.

何れかの水槽の水位が設定水位以上の状態であっても、分離膜の透過抵抗値が上限許容値以上になると停止ステップが実行されて分離膜の洗浄の機会が確保でき、緊急時に対処可能になる。   Even if the water level of any tank is higher than the set water level, if the permeation resistance value of the separation membrane exceeds the upper limit allowable value, a stop step is executed and an opportunity for cleaning the separation membrane can be secured, which can be dealt with in an emergency become.

同第三の特徴構成は、同請求項3に記載した通り、上述の第一または第二の特徴構成に加えて、前記停止ステップで、前記膜分離装置を曝気して被処理水の上向流により分離膜を洗浄するリラクゼーション工程を実行する点にある。   In the third feature configuration, in addition to the first or second feature configuration described above, in the stop step, the membrane separation device is aerated in the stop step and the treated water is directed upward. The point is to perform a relaxation step of cleaning the separation membrane by a flow.

停止ステップで強制的にリラクゼーション工程が実行されることにより、透過抵抗値を下げることができ、予期せぬ急激な透過抵抗値の上昇を未然に回避できるようになる。   By forcibly executing the relaxation process in the stop step, the transmission resistance value can be lowered, and an unexpected sudden increase in the transmission resistance value can be avoided in advance.

同第四の特徴構成は、同請求項4に記載した通り、上述の第一または第二の特徴構成に加えて、前記停止ステップで、前記膜分離装置を薬液により洗浄する薬液洗浄工程を実行する点にある。   In the fourth feature configuration, as described in claim 4, in addition to the first or second feature configuration described above, in the stop step, a chemical solution cleaning step of cleaning the membrane separation device with a chemical solution is executed. There is in point to do.

停止ステップで強制的に薬液洗浄工程が実行されることにより、透過抵抗値を低い状態に回復させることができ、安定した状態で膜ろ過ステップが繰返し実行できるようになる。   By forcibly executing the chemical cleaning step in the stop step, the permeation resistance value can be restored to a low state, and the membrane filtration step can be repeatedly executed in a stable state.

同第五の特徴構成は、同請求項5に記載した通り、上述の第一から第四の何れかの特徴構成に加えて、前記停止ステップの実行後、前記膜分離槽の水位が前記停止水位より高い所定水位に回復し、予め設定された時間が経過し、または前記分離膜の透過抵抗値が前記上限許容値より低い基準値へ低下する何れかの条件が成立したときに、前記膜ろ過ステップに復帰する点にある。   In the fifth feature configuration, in addition to any one of the first to fourth feature configurations described above, the water level of the membrane separation tank is stopped after the stop step. When the membrane is restored to a predetermined water level higher than the water level, a preset time elapses, or a condition in which the permeation resistance value of the separation membrane decreases to a reference value lower than the upper limit allowable value is satisfied, the membrane The point is to return to the filtration step.

膜分離槽の水位が停止水位より高い所定水位に回復したとき、予め設定された時間の経過したとき、または分離膜の透過抵抗値が上限許容値より低い基準値へ低下したときの何れかのタイミングで停止ステップから膜ろ過ステップに復帰することが好ましい。膜分離槽の水位が停止水位より高い所定水位に回復したときに復帰すると、膜分離槽から被処理液が不用意にオーバーフローするような不都合な事態の発生を確実に回避でき、予め設定された時間の経過時に復帰すると、その間は安定して膜の洗浄ができ、分離膜の透過抵抗値が上限許容値より低い基準値へ低下したときに復帰すると、確実な膜の洗浄が行なえる。   Either when the water level in the membrane separation tank recovers to a predetermined level higher than the stop water level, when a preset time elapses, or when the permeation resistance value of the separation membrane decreases to a reference value lower than the upper limit allowable value It is preferable to return from the stop step to the membrane filtration step at the timing. When returning when the water level in the membrane separation tank is restored to a predetermined water level higher than the stop water level, it is possible to reliably avoid the occurrence of an inconvenient situation such that the liquid to be treated overflows from the membrane separation tank. When the time passes, the membrane can be stably washed during that time, and when the permeation resistance value of the separation membrane decreases to a reference value lower than the upper limit allowable value, the membrane can be reliably washed.

同第六の特徴構成は、同請求項6に記載した通り、上述の第一から第5の何れかの特徴構成に加えて、ゲインKが、1.01<K<1.10の範囲に設定されている点にある。   In the sixth feature configuration, in addition to any one of the first to fifth feature configurations described above, the gain K is in a range of 1.01 <K <1.10. It is in the set point.

1.01<K<1.10の範囲にゲインを設定することにより、膜ろ過ステップと停止ステップの適度な時間バランスが実現でき、停止ステップで膜を洗浄する場合に十分な洗浄時間が得られるようになる。   By setting the gain in the range of 1.01 <K <1.10, an appropriate time balance between the membrane filtration step and the stop step can be realized, and a sufficient cleaning time can be obtained when the membrane is cleaned in the stop step. It becomes like this.

本発明による膜分離装置の第一の特徴構成は、同請求項7に記載した通り、被処理水を、分離膜を介して固液分離する膜分離装置であって、前記膜分離装置からの透過水量M(t)を計測する透過水量計測部と、前記被処理水の流入量Q(t)を計測する流入量計測部と、前記膜分離装置が浸漬配置された水槽、または該水槽と連通しており当該水槽と同一の水位となる水槽、もしくは当該膜分離装置が浸漬配置された水槽からの越流水が流入する水槽の水位を計測する水位計測部と、以下の数式
M(t)=KQ(t−1)
M(t):所定の長さを有する期間tにおける透過水量
K:ゲイン(>1)
Q(t−1):期間tの直前の期間t−1における被処理水の流入量
で表される関係となるように透過水量を設定し、設定した透過水量で前記膜分離装置から透過水を引き抜き、前記何れかの水槽の水位が予め設定された停止水位まで低下したときに前記膜分離装置からの透過水の引抜きを一時停止する膜ろ過制御部と、を備えている点にある。
A first characteristic configuration of a membrane separation device according to the present invention is a membrane separation device for solid-liquid separation of water to be treated through a separation membrane, as described in claim 7, from the membrane separation device. A permeated water amount measuring unit for measuring the permeated water amount M (t), an inflow amount measuring unit for measuring the inflow amount Q (t) of the treated water, a water tank in which the membrane separation device is immersed, or the water tank, A water level measuring unit that measures the water level of a water tank that is in communication and has the same water level as the water tank, or a water tank into which overflow water flows from the water tank in which the membrane separation device is immersed, and the following equation M (t) = KQ (t-1)
M (t): Permeated water amount in period t having a predetermined length K: Gain (> 1)
Q (t-1): The permeated water amount is set so as to be represented by the inflow amount of the water to be treated in the period t-1 immediately before the period t, and the permeated water from the membrane separation device with the set permeated water amount. And a membrane filtration control unit that temporarily stops drawing of permeated water from the membrane separation device when the water level of any one of the water tanks falls to a preset stop water level.

管理者が手動で膜洗浄のための操作を行なわなくても、膜ろ過制御部によって適切なインタバルで自動的に膜洗浄のための機会が確保される。   Even if the administrator does not manually perform the operation for membrane cleaning, the membrane filtration control unit automatically secures an opportunity for membrane cleaning at an appropriate interval.

同第二の特徴構成は、同請求項8に記載した通り、上述の第一の特徴構成に加えて、前記分離膜の透過抵抗値を計測する透過抵抗値計測部をさらに備え、前記膜ろ過制御部は、前記分離膜の透過抵抗値が予め設定された上限許容値以上になると、前記何れかの水槽の水位が設定水位に低下する前であっても、前記膜分離装置からの透過水の引抜きを一時停止する点にある。   In addition to the first characteristic configuration described above, the second characteristic configuration further includes a permeation resistance value measuring unit that measures a permeation resistance value of the separation membrane, as described in claim 8, and the membrane filtration When the permeation resistance value of the separation membrane is equal to or higher than a preset upper limit allowable value, the control unit transmits permeated water from the membrane separation device even before the water level of any one of the water tanks drops to a set water level. It is in the point which pauses drawing of.

同第三の特徴構成は、同請求項9に記載した通り、上述の第七または第八の特徴構成に加えて、前記膜ろ過制御部は、前記膜分離装置からの透過水の引抜きを一時停止した状態で、前記膜分離装置を曝気して被処理水の上向流により分離膜を洗浄し、または前記膜分離装置を薬液により洗浄する点にある。   In the third feature configuration, in addition to the seventh or eighth feature configuration described above, the membrane filtration control unit temporarily draws permeate from the membrane separation device. In the stopped state, the membrane separation device is aerated and the separation membrane is washed by an upward flow of the water to be treated, or the membrane separation device is washed with a chemical solution.

以上説明した通り、本発明によれば、設計フラックスを上げて運転コストの低減を図りながらも、予期せぬ急激な差圧上昇に対応可能な膜分離装置の運転方法及び膜分離装置を提供することができるようになった。   As described above, according to the present invention, there are provided a method for operating a membrane separation apparatus and a membrane separation apparatus that can cope with an unexpected and sudden increase in differential pressure while increasing design flux and reducing operating costs. I was able to do it.

排水処理設備の説明図Illustration of wastewater treatment facility 膜分離装置の説明図Illustration of membrane separator 膜エレメントの説明図Illustration of membrane element (a),(b)は膜分離装置の運転方法の説明図(A), (b) is explanatory drawing of the operating method of a membrane separator (a),(b),(c)は膜分離装置の運転方法の説明図(A), (b), (c) is explanatory drawing of the operating method of a membrane separator. 別実施形態を示す排水処理設備の説明図Explanatory drawing of the waste water treatment facility which shows another embodiment 別実施形態を示す排水処理設備の説明図Explanatory drawing of the waste water treatment facility which shows another embodiment

以下、本発明による膜分離装置の運転方法及び膜分離装置を説明する。
図1には、膜分離装置7が組み込まれた排水処理設備1の一例が示されている。活性汚泥が充填された無酸素槽4と、底部に散気装置5Aが設置された好気槽5と、膜分離槽6とからなる生物処理槽と、膜分離槽6に浸漬配置され槽内の被処理水から透過水を得る膜分離装置7と、膜分離装置7でろ過された処理水を受け入れる処理水槽8と、膜分離装置7の状態を制御する運転制御装置Cを備えている。
Hereinafter, a method for operating a membrane separator and a membrane separator according to the present invention will be described.
FIG. 1 shows an example of a wastewater treatment facility 1 in which a membrane separation device 7 is incorporated. An anaerobic tank 4 filled with activated sludge, an aerobic tank 5 provided with an air diffuser 5A at the bottom, and a biological treatment tank comprising a membrane separation tank 6; A membrane separation device 7 for obtaining permeated water from the water to be treated, a treatment water tank 8 for receiving the treated water filtered by the membrane separation device 7, and an operation control device C for controlling the state of the membrane separation device 7.

無酸素槽4に流入した被処理水である原水に含まれるアンモニア性窒素は、活性汚泥によって好気槽5で硝酸性窒素に硝化処理されるとともに有機物が分解され、下流側の膜分離槽6に浸漬配置された膜分離装置7により固液分離される。   Ammonia nitrogen contained in the raw water which is the treated water flowing into the anoxic tank 4 is nitrified to nitrate nitrogen in the aerobic tank 5 by the activated sludge and the organic matter is decomposed, and the downstream membrane separation tank 6 The solid-liquid separation is performed by the membrane separation device 7 disposed so as to be immersed.

膜分離槽6に隣接配置されたバッファ槽9にオーバーフローした被処理水に含まれる余剰の活性汚泥はポンプP2により被処理水に含まれる硝酸性窒素とともに無酸素槽4に返流されて、窒素に還元される脱窒処理が行なわれ、一部が引抜かれて廃棄される。活性汚泥の返送量Rは、原水の設計流入量Qに対して約4倍(R=4Q)に設定されている。 Excess activated sludge contained in the to-be-treated water overflowed to the buffer tank 9 disposed adjacent to the membrane separation tank 6 is returned to the anoxic tank 4 together with nitrate nitrogen contained in the to-be-treated water by the pump P2. The denitrification process is reduced, and a part is extracted and discarded. The return amount R of activated sludge is set to about four times (R = 4Q D ) with respect to the design inflow amount Q D of raw water.

膜分離装置7により固液分離された透過水は処理水槽8に貯留され、殺菌処理等の必要な処理が施された後に河川等に放流される。   The permeated water that has been solid-liquid separated by the membrane separation device 7 is stored in the treated water tank 8 and subjected to necessary treatment such as sterilization treatment, and then discharged into a river or the like.

図2に示すように、膜分離装置7は、上下が開口した膜ケース71の内部に100枚の板状の膜エレメント7Bが、各膜面が縦姿勢となるように、かつ6mmから10mm程度(本実施形態では8mm)の一定間隔を隔てて配列されており、さらに膜ケース71の下方に散気装置7Aを備えている。   As shown in FIG. 2, the membrane separation device 7 has 100 plate-like membrane elements 7 </ b> B inside a membrane case 71 that is open at the top and bottom so that each membrane surface is in a vertical posture and about 6 mm to 10 mm. (In this embodiment, 8 mm) are arranged at regular intervals, and further, a diffuser 7A is provided below the membrane case 71.

散気装置7Aは複数の散気孔が形成された散気管13を備え、散気管13に接続された散気ヘッダ14を介して槽外に設置されたブロワBやコンプレッサなどの給気源に接続されている。本実施形態では、給気源としてブロワBが用いられ、好気槽5に備えた散気装置5Aに給気されるとともに、バルブV1を介して散気装置7Aに給気されるように配管されているが、散気装置5A用と散気装置7A用それぞれに専用のブロワを設けて、バルブV1を用いない構成としてもよい。   The air diffuser 7A includes an air diffuser 13 formed with a plurality of air diffusers, and is connected to an air supply source such as a blower B or a compressor installed outside the tank via an air diffuser header 14 connected to the air diffuser 13. Has been. In this embodiment, the blower B is used as an air supply source, and the air is supplied to the air diffuser 5A provided in the aerobic tank 5, and is also supplied to the air diffuser 7A via the valve V1. However, a dedicated blower may be provided for each of the diffuser 5A and the diffuser 7A so that the valve V1 is not used.

膜エレメント7Bには集水管17を介して槽外に設置された吸引機構としてのポンプP1が接続され、槽内の被処理水が膜エレメント7Bの膜面を透過するように吸引ろ過される。   A pump P1 as a suction mechanism installed outside the tank is connected to the membrane element 7B via a water collecting pipe 17, and the water to be treated in the tank is suction filtered so as to pass through the membrane surface of the membrane element 7B.

図3に示すように、膜エレメント7Bは、縦1000mm×横490mmの樹脂製の膜支持体10の表裏両面に、スペーサ11を介して分離膜12が配置され、分離膜12の周縁の辺部13が膜支持体10に超音波や熱で溶着、または接着剤等を用いて接着されている。   As shown in FIG. 3, the membrane element 7 </ b> B has separation membranes 12 disposed on both front and back surfaces of a resin membrane support 10 having a length of 1000 mm × width of 490 mm via spacers 11. 13 is bonded to the membrane support 10 by ultrasonic waves or heat, or is bonded using an adhesive or the like.

分離膜12は、平均孔径が約0.2μmの微多孔性膜で、不織布に多孔性を有する樹脂が塗布及び含浸された有機ろ過膜である。尚、膜エレメント7Bはこのような構成に限るものではなく、分離膜12を膜支持体10の表裏両面に巻き付けるように配置し、分離膜12の端部を接着または溶着処理したものであってもよい。   The separation membrane 12 is a microporous membrane having an average pore diameter of about 0.2 μm, and is an organic filtration membrane in which a nonwoven fabric is coated and impregnated with a porous resin. The membrane element 7B is not limited to such a configuration, and the separation membrane 12 is disposed so as to be wound on both the front and back surfaces of the membrane support 10, and the end of the separation membrane 12 is bonded or welded. Also good.

膜支持体10の表面には長手方向に沿って深さ2mm、幅2mm程度の溝部10bが複数本形成され、その上端部には各溝部10bを連通する水平溝部10cが形成されている。表裏両面に形成された水平溝部10cが連通孔10dを介して連通され、膜支持体10の上縁部に形成されたノズル10aに連通されている。   A plurality of groove portions 10b having a depth of about 2 mm and a width of about 2 mm are formed along the longitudinal direction on the surface of the membrane support 10, and a horizontal groove portion 10c that communicates with each groove portion 10b is formed at the upper end portion thereof. Horizontal groove portions 10c formed on both front and back surfaces are communicated with each other via a communication hole 10d and communicated with a nozzle 10a formed on the upper edge portion of the membrane support 10.

各ノズル10aは、チューブ16を介して集水管17に接続され、集水管17には吸引機構としてのポンプP1が接続され、ポンプP1で吸引された透過水が処理水槽8に移送されるように構成されている(図2参照)。   Each nozzle 10a is connected to a water collecting pipe 17 through a tube 16, and a pump P1 as a suction mechanism is connected to the water collecting pipe 17 so that permeated water sucked by the pump P1 is transferred to the treated water tank 8. It is configured (see FIG. 2).

このような膜分離装置7の散気装置7A及び吸引機構P1を作動させることにより、被処理水を分離膜12に透過させた透過水を得ることができる。   By operating the air diffuser 7A and the suction mechanism P1 of the membrane separation device 7 as described above, it is possible to obtain permeated water that allows the water to be treated to permeate the separation membrane 12.

運転制御装置Cは、膜分離装置7からの透過水量M(t)を計測する透過水量計測部Mと、生物処理槽4への被処理水の流入量Q(t)を計測する流入量計測部Qと、バッファ槽9の水位を計測する水位計測部Wと、演算処理機能を備えた膜ろ過制御部20を備えて構成されている。   The operation controller C measures the amount of permeated water M (t) from the membrane separation device 7 and the amount of inflow measurement that measures the amount Q (t) of inflow water to be treated into the biological treatment tank 4. It comprises the part Q, the water level measurement part W which measures the water level of the buffer tank 9, and the membrane filtration control part 20 provided with the arithmetic processing function.

膜ろ過制御部20は、所定の長さを有する期間tにおける透過水量M(t)、期間tの直前の期間t−1における被処理水の流入量Q(t−1)、ゲインK(K>1)に対して、以下の数式
M(t)=KQ(t−1)
で表される関係となるように透過水量M(t)を設定し、設定した透過水量M(t)で膜分離装置7から透過水を引き抜くようにポンプP1を制御し、バッファ槽9の水位WLが予め設定された停止水位LWLまで低下したときに膜分離装置7からの透過水の引抜きを一時停止する。
The membrane filtration control unit 20 has a permeated water amount M (t) in a period t having a predetermined length, an inflow amount Q (t-1) of treated water in a period t-1 immediately before the period t, and a gain K (K > 1), the following formula M (t) = KQ (t−1)
The permeated water amount M (t) is set so as to be expressed by the following equation, and the pump P1 is controlled so as to draw the permeated water from the membrane separation device 7 with the set permeated water amount M (t). When the WL drops to the preset stop water level LWL, the permeate drawing from the membrane separation device 7 is temporarily stopped.

膜ろ過制御部20は、膜分離装置7からの透過水の引抜きを一時停止した状態で、膜分離装置7を曝気して被処理水の上向流により分離膜を洗浄し、または膜分離装置7を薬液により洗浄するように構成されている。   The membrane filtration control unit 20 aspirates the membrane separation device 7 with the drawing of permeate from the membrane separation device 7 temporarily stopped, and cleans the separation membrane by the upward flow of the water to be treated, or the membrane separation device. 7 is comprised so that it may wash | clean with a chemical | medical solution.

ポンプP1を停止した状態で散気装置7Aから曝気すると、分離膜12に沿って被処理水が上昇し、その過程で分離膜12の表面に付着した微生物の代謝物等のファウリング原因物質が除去され分離膜12の詰り状態が軽減される。   When aeration is performed from the diffuser 7A with the pump P1 stopped, the water to be treated rises along the separation membrane 12, and fouling-causing substances such as microbial metabolites adhering to the surface of the separation membrane 12 in the process. As a result, the clogged state of the separation membrane 12 is reduced.

集水管17とポンプP1との間には止水バルブV2が設けられ、止水バルブV2の上流側には薬液タンク(図示せず)に接続された薬液供給管が分岐接続されている。ポンプP1を停止して止水バルブV2を閉塞した後にV3を開け、薬液供給管から膜分離装置7に薬液を給液することにより分離膜12が洗浄される。薬液タンクには次亜塩素酸ソーダ等の薬液が充填されている。   A water stop valve V2 is provided between the water collecting pipe 17 and the pump P1, and a chemical liquid supply pipe connected to a chemical liquid tank (not shown) is branched and connected upstream of the water stop valve V2. After the pump P1 is stopped and the water stop valve V2 is closed, V3 is opened, and the separation membrane 12 is washed by supplying the solution to the membrane separation device 7 from the solution supply pipe. The chemical solution tank is filled with a chemical solution such as sodium hypochlorite.

薬液洗浄を終えると、V3を閉め止水バルブV2を開放してポンプP1を駆動することによりろ過が行なわれる。ろ過の初期には膜分離装置7から薬液が流出するまでの間、透過水が処理水槽8に流入しないように取り出すバイパス管路が設けられている。   When the chemical cleaning is finished, filtration is performed by closing V3, opening the water stop valve V2, and driving the pump P1. At the initial stage of filtration, a bypass pipe is provided for removing permeate so as not to flow into the treated water tank 8 until the chemical solution flows out of the membrane separation device 7.

分離膜12の透過抵抗値(膜分離装置の圧損値)を計測する透過抵抗値計測部Pをさらに備え、膜ろ過制御部20は、分離膜12の透過抵抗値が予め設定された上限許容値Pu以上になると、バッファ槽9の水位が設定水位LWLに低下する前であっても、膜分離装置7からの透過水の引抜きを一時停止する。   A permeation resistance value measurement unit P that measures the permeation resistance value of the separation membrane 12 (pressure loss value of the membrane separation device) is further provided, and the membrane filtration control unit 20 has an upper limit allowable value in which the permeation resistance value of the separation membrane 12 is set in advance. If it becomes Pu or more, even if it is before the water level of the buffer tank 9 falls to the setting water level LWL, extraction of the permeated water from the membrane separator 7 is stopped temporarily.

図4(a)に示すように、流入変動を1時間単位で区画し、1区画前の流入量Q(t−1)に対して透過水量M(t)を設定する。透過水量M(t)はK・Q(t−1)で与えられる。図4(b)に示すように、流入量Qが増加傾向にある場合には系内に保有する汚泥量は増加傾向にあるが、流入量Qが減少傾向になると系内に保有する汚泥量も減少傾向となり、ある時点では保有汚泥量が初期値に対してマイナスとなる。系内の保有汚泥量の増減はバッファ槽9の水位の増減として現れ、水位計にて検知する。   As shown to Fig.4 (a), an inflow fluctuation | variation is divided per 1 hour unit, and the permeated water amount M (t) is set with respect to the inflow amount Q (t-1) before 1 division. The permeated water amount M (t) is given by K · Q (t−1). As shown in FIG. 4 (b), when the inflow rate Q tends to increase, the amount of sludge retained in the system tends to increase, but when the inflow rate Q tends to decrease, the sludge amount retained in the system However, at a certain point in time, the amount of retained sludge becomes negative with respect to the initial value. The increase or decrease in the amount of retained sludge in the system appears as an increase or decrease in the water level in the buffer tank 9 and is detected by a water level gauge.

ゲインKは、1.01<K<1.10の範囲に設定されていることが好ましく、膜ろ過ステップと停止ステップの適度な時間バランスが実現でき、停止ステップで膜を洗浄する場合に十分な洗浄時間が得られるようになる。   The gain K is preferably set in a range of 1.01 <K <1.10, and an appropriate time balance between the membrane filtration step and the stop step can be realized, which is sufficient when the membrane is washed in the stop step. Cleaning time can be obtained.

図4(a)には、無酸素槽4へ流入する原水の量Q(t)がダイナミックに変動し、それに対して膜分離装置7からの透過水量M(t)が遅れて変動する例が示されている。膜ろ過が進むにつれてろ過抵抗が次第に上昇する。   FIG. 4A shows an example in which the amount of raw water Q (t) flowing into the anaerobic tank 4 changes dynamically, and the amount of permeated water M (t) from the membrane separation device 7 changes with a delay. It is shown. As the membrane filtration proceeds, the filtration resistance gradually increases.

膜分離装置7の設計フラックスを上げて膜分離装置7の全台数を低減することにより運転コストの低減を図ると、予期せぬ急激な膜間差圧TMPの上昇を来す虞がある。   If the operating flux is reduced by increasing the design flux of the membrane separation device 7 to reduce the total number of membrane separation devices 7, there is a risk of unexpectedly increasing the transmembrane pressure difference TMP.

本発明による排水処理設備の運転方法では、急激な膜間差圧TMPの上昇を来すことなく安定した状態でろ過運転が行なわれる。以下、膜ろ過制御部20により実行される当該運転方法について詳述する。   In the operation method of the wastewater treatment facility according to the present invention, the filtration operation is performed in a stable state without causing a rapid increase in the transmembrane pressure difference TMP. Hereinafter, the said operation method performed by the membrane filtration control part 20 is explained in full detail.

上述したように、膜ろ過制御部20は、所定の長さを有する期間tにおける膜分離装置からの透過水量M(t)を、期間tの直前の期間t−1における生物処理槽4への被処理水の流入量Q(t−1)、ゲインK(K>1)に対して、以下の数式で表される関係となるように設定し、設定した透過水量で膜分離装置7から透過水を引く抜く膜ろ過ステップと、バッファ槽9の水位が予め設定された停止水位LWLまで低下したときに膜分離装置7からの透過水の引抜きを一時停止する停止ステップと、が実行される。
M(t)=KQ(t−1)
As described above, the membrane filtration control unit 20 uses the permeated water amount M (t) from the membrane separation device in the period t having a predetermined length to the biological treatment tank 4 in the period t-1 immediately before the period t. The inflow amount Q (t−1) of the water to be treated and the gain K (K> 1) are set so as to have the relationship represented by the following formula, and the permeation from the membrane separation device 7 with the set permeate amount. A membrane filtration step for drawing water and a stop step for temporarily stopping drawing of permeated water from the membrane separation device 7 when the water level in the buffer tank 9 is lowered to a preset stop water level LWL are executed.
M (t) = KQ (t-1)

上式に示すように、ゲインKを1より大に設定し、被処理水の流入量Q(t)に対して透過水量M(t)が遅れて応答する関係となるように設定することにより、膜ろ過ステップの実行中に時間の経過により槽内の活性汚泥量が次第に低下する定常的な状況が発現する。   As shown in the above equation, by setting the gain K to be greater than 1 and setting the relationship so that the permeated water amount M (t) is delayed with respect to the inflow amount Q (t) of the water to be treated. During the execution of the membrane filtration step, a steady state in which the amount of activated sludge in the tank gradually decreases with the passage of time appears.

そのような状況で膜分離装置7からの透過水の引抜きを一時停止する停止ステップを実行すると、バッファ槽9の水位が次第に回復するようになり、その間に分離膜12の洗浄のための時間を確保できるようになる。   In such a situation, when the stop step for temporarily stopping the permeate extraction from the membrane separation device 7 is executed, the water level in the buffer tank 9 gradually recovers, and during that time, the time for cleaning the separation membrane 12 is increased. It can be secured.

設計フラックスを上げることによる予期せぬ急激な透過抵抗値の上昇に対処できるようになり、曝気量の低減等により運転コストを低減できるようになる。そして、停止ステップを実行する停止水位LWLを適切に設定することにより、流入量Q(t)に対応した透過水量M(t)を確保することができる。   It becomes possible to cope with an unexpected and sudden increase in permeation resistance value due to an increase in design flux, and it is possible to reduce operating costs by reducing the amount of aeration. And the permeated water amount M (t) corresponding to the inflow amount Q (t) can be ensured by appropriately setting the stop water level LWL for executing the stop step.

バッファ槽9の水位が停止水位LWLに低下したときに、膜ろ過ステップから停止ステップに切り替えられる。停止ステップで、散気装置7Aにより膜分離装置7の膜エレメント7Bを曝気して、被処理水の上向流により分離膜12を洗浄するリラクゼーション工程を実行することにより、透過抵抗値を下げることができ、予期せぬ急激な透過抵抗値の上昇を未然に回避できるようになる。   When the water level in the buffer tank 9 drops to the stop water level LWL, the membrane filtration step is switched to the stop step. In the stop step, the permeation resistance value is lowered by performing a relaxation process in which the membrane element 7B of the membrane separation device 7 is aerated by the diffuser 7A and the separation membrane 12 is washed by the upward flow of the water to be treated. Thus, an unexpected and sudden increase in permeation resistance can be avoided.

また、停止ステップで、膜分離装置7を薬液により洗浄する薬液洗浄工程を実行することにより、膜間差圧TMPを初期状態に近い低い値に回復させることができ、安定した状態で膜ろ過ステップが繰返し実行できるようになる。   Further, in the stop step, by performing a chemical solution cleaning process for cleaning the membrane separation device 7 with a chemical solution, the transmembrane pressure difference TMP can be recovered to a low value close to the initial state, and the membrane filtration step in a stable state. Can be executed repeatedly.

停止ステップでリラクゼーション工程と薬液洗浄工程の何れを実行するのかは、適宜設定することができる。例えば、透過抵抗値計測部Pで計測された分離膜12の透過抵抗値が所定の閾値以上であれば薬液洗浄工程を選択し、所定の閾値未満であればリラクゼーション工程を実行するように設定することができる。   Which of the relaxation process and the chemical liquid cleaning process is executed in the stop step can be set as appropriate. For example, if the permeation resistance value of the separation membrane 12 measured by the permeation resistance value measurement unit P is equal to or greater than a predetermined threshold, the chemical cleaning step is selected, and if the permeation resistance value is less than the predetermined threshold, the relaxation step is set to be executed. be able to.

また、予め設定された所定回数だけ優先的にリラクゼーション工程を実行し、その後の停止ステップで薬液洗浄工程を実行するような態様を繰り返すように設定してもよい。   Moreover, you may set so that a relaxation process may be preferentially performed only the preset predetermined number of times, and a chemical | medical solution washing | cleaning process may be performed at a subsequent stop step.

図5(a)には、停止ステップでリラクゼーション工程が実行される場合の透過抵抗値の特性(二点鎖線)と、停止ステップでリラクゼーション工程が実行されない場合の透過抵抗値の特性(一点鎖線)が対比されている。停止ステップでリラクゼーション工程が実行される度に分離膜12が洗浄され、汚れの程度が軽減されることにより、透過抵抗値の上昇が緩やかになり、長期安定して膜分離できるようになる。リラクゼーション工程に代えて低濃度の薬液で薬液洗浄工程を実行しても同様の特性が得られる。   FIG. 5A shows the characteristics of the transmission resistance value when the relaxation process is executed in the stop step (two-dot chain line) and the characteristics of the transmission resistance value when the relaxation process is not executed in the stop step (one-dot chain line). Are contrasted. The separation membrane 12 is washed each time the relaxation process is performed in the stop step, and the degree of contamination is reduced, so that the permeation resistance value increases gradually and membrane separation can be performed stably for a long time. Similar characteristics can be obtained even when the chemical cleaning step is performed with a low concentration chemical instead of the relaxation step.

図5(b)には、停止ステップで高濃度の薬液で薬液洗浄工程が実行される場合の透過抵抗値の特性(二点鎖線)と、停止ステップでリラクゼーション工程が実行されない場合の透過抵抗値の特性(一点鎖線)が対比されている。透過抵抗値が所定の閾値を超え、停止ステップで薬液洗浄工程が実行される度に分離膜12が初期状態にまで洗浄されることにより、透過抵抗値の上昇が抑制され、長期安定して膜分離できるようになる。尚、閾値に関わらず一律に薬液洗浄工程が実行されるように構成してもよい。   FIG. 5B shows the permeation resistance value characteristic (two-dot chain line) when the chemical solution washing process is executed with a high concentration chemical solution at the stop step, and the permeation resistance value when the relaxation process is not executed at the stop step. The characteristics (dotted line) are contrasted. When the permeation resistance value exceeds a predetermined threshold value and the chemical solution washing process is executed in the stop step, the separation membrane 12 is washed to the initial state, thereby suppressing an increase in permeation resistance value and stably maintaining the membrane for a long time. It becomes possible to separate. In addition, you may comprise so that a chemical | medical solution washing | cleaning process may be performed uniformly irrespective of a threshold value.

図5(c)には、上述したリラクゼーション工程と薬液洗浄工程を組み合わせた場合の透過抵抗値の特性(二点鎖線)と、停止ステップでリラクゼーション工程が実行されない場合の透過抵抗値の特性(一点鎖線)が対比されている。停止ステップで複数回のリラクゼーション工程が実行された後に薬液洗浄工程が実行される。このように、リラクゼーション工程と薬液洗浄工程を組み合わせることにより、長期安定して膜分離できるようになる。   FIG. 5C shows the characteristics of the permeation resistance value (two-dot chain line) when the above-described relaxation process and the chemical solution cleaning process are combined, and the characteristics of the permeation resistance value when the relaxation process is not executed in the stop step (one point). A chain line) is contrasted. The chemical solution cleaning process is performed after the relaxation process is performed a plurality of times in the stop step. Thus, membrane separation can be stably performed for a long time by combining the relaxation step and the chemical solution washing step.

また、薬液洗浄工程で使用される薬液の濃度を濃淡切り替えるように構成してもよい。例えば、所定回数まで停止ステップで低濃度の薬液洗浄を行ない、所定回数経過すると高濃度の薬液洗浄を実行するような態様を繰り返してもよい。この場合には、図5(c)と同様の特性が得られる。   Moreover, you may comprise so that the density | concentration of the chemical | medical solution used at a chemical | medical solution washing | cleaning process may be switched between light and shade. For example, a mode in which low concentration chemical cleaning is performed in a stop step up to a predetermined number of times and high concentration chemical cleaning is executed after a predetermined number of times may be repeated. In this case, the same characteristics as in FIG.

分離膜12の透過抵抗値が予め設定された上限許容値以上になると、バッファ槽9の水位が設定水位LWLに低下する前であっても、膜分離装置7からの透過水の引抜きを一時停止する停止ステップを実行することが好ましい。   When the permeation resistance value of the separation membrane 12 is equal to or higher than a preset upper limit allowable value, the permeation water drawing from the membrane separation device 7 is temporarily stopped even before the water level of the buffer tank 9 is lowered to the set water level LWL. Preferably, a stop step is performed.

バッファ槽9の水位が設定水位以上の状態であっても、分離膜12の透過抵抗値が上限許容値以上になると停止ステップが実行されて分離膜12の洗浄の機会が確保でき、緊急時に対処可能になる。   Even when the water level of the buffer tank 9 is equal to or higher than the set water level, when the permeation resistance value of the separation membrane 12 exceeds the upper limit allowable value, a stop step is executed, and an opportunity for cleaning the separation membrane 12 can be secured, so that an emergency can be dealt with. It becomes possible.

停止ステップの実行後、バッファ槽9の水位が停止水位より高い所定水位NWLに回復し、予め設定された時間Δtが経過し、または分離膜12の透過抵抗値が上限許容値より低い基準値へ低下する何れかの条件が成立したときに、膜ろ過ステップに復帰することが好ましい。   After execution of the stop step, the water level in the buffer tank 9 is restored to a predetermined water level NWL higher than the stop water level, and a preset time Δt has elapsed, or the permeation resistance value of the separation membrane 12 is lowered to a reference value lower than the upper limit allowable value. It is preferable to return to the membrane filtration step when any of the decreasing conditions is satisfied.

バッファ槽9の水位が停止水位より高い所定水位に回復したときに復帰すると、ポンプP2の空運転を回避でき、予め設定された時間の経過時に復帰すると、その間は安定して膜の洗浄ができ、分離膜の透過抵抗値が上限許容値より低い基準値へ低下したときに復帰すると、確実な膜の洗浄が行なえる。   When the water level in the buffer tank 9 is restored to a predetermined level higher than the stop water level, the pump P2 can be prevented from being idle, and when the preset time elapses, the membrane can be stably washed during that time. When the permeation resistance value of the separation membrane is reduced to a reference value lower than the upper limit allowable value, the membrane can be reliably washed.

尚、図1に示した例では、膜分離槽6に隣接してバッファ槽9を設けてあるが、バッファ槽9を備えていない膜分離槽6では、水位が停止水位より高い所定水位に回復したときにろ過工程に復帰するように構成するのが好ましい。   In the example shown in FIG. 1, the buffer tank 9 is provided adjacent to the membrane separation tank 6, but in the membrane separation tank 6 not provided with the buffer tank 9, the water level is restored to a predetermined water level higher than the stop water level. It is preferable to configure so as to return to the filtration step when it is done.

図6には、排水処理設備の別実施形態が示されている。上述した実施形態では、底部に散気装置5Aが設置された好気槽5と、膜分離装置7が浸漬配置された膜分離槽6を備えた排水処理設備を説明したが、好気槽5と膜分離槽6を兼用して好気処理と膜分離処理を同じ処理槽で実現してもよい。   FIG. 6 shows another embodiment of the wastewater treatment facility. In the above-described embodiment, the wastewater treatment facility including the aerobic tank 5 in which the diffuser 5A is installed at the bottom and the membrane separation tank 6 in which the membrane separation apparatus 7 is immersed is described. Further, the aerobic treatment and the membrane separation treatment may be realized in the same treatment tank by using the membrane separation tank 6 together.

図7には、排水処理設備の別実施形態が示されている。上述した実施形態では、原水が活性汚泥処理槽を構成する上流側の無酸素槽4に直接流入する例を説明したが、原水に混入している夾雑物を除去するバースクリーン2a等が設けられた前処理槽2と、バースクリーン2a等で夾雑物が除去された被処理水を一旦貯留する流量調整槽3を備えてもよい。原水の流入量が変動する場合であっても、ポンプやバルブ等の流量調整機構P3によって、流量調整槽3からは一定流量の被処理水が活性汚泥処理槽4に安定供給されるようになる。   FIG. 7 shows another embodiment of the wastewater treatment facility. In the embodiment described above, an example in which raw water directly flows into the anoxic tank 4 on the upstream side constituting the activated sludge treatment tank has been described, but a bar screen 2a and the like for removing contaminants mixed in the raw water are provided. A pretreatment tank 2 and a flow rate adjustment tank 3 for temporarily storing water to be treated from which impurities have been removed by a bar screen 2a or the like may be provided. Even when the inflow of raw water fluctuates, the water to be treated at a constant flow rate is stably supplied from the flow rate adjustment tank 3 to the activated sludge treatment tank 4 by the flow rate adjustment mechanism P3 such as a pump or a valve. .

上述した実施形態では、無酸素槽4、好気槽5、膜分離槽6を備えた活性汚泥処理槽が一系列である例を説明したが、複数の活性汚泥処理槽が並設された排水処理設備であっても本発明を適用することが可能であることは言うまでもなく、その場合には各系列で同期して膜分離工程と停止工程を実行する必要はなく、夫々の系列で独立して膜分離工程と停止工程を実行するように構成すればよい。   In the above-described embodiment, an example in which the activated sludge treatment tank including the anaerobic tank 4, the aerobic tank 5, and the membrane separation tank 6 is a series is described. However, the waste water in which a plurality of activated sludge treatment tanks are arranged in parallel. It goes without saying that the present invention can be applied even to a processing facility, in which case there is no need to execute the membrane separation step and the stop step in synchronization with each series, and each series independently. The membrane separation process and the stop process may be executed.

この場合、それぞれの系列で運転制御装置Cを備えてもよいし、膜ろ過制御部20のみ共用可能に構成してもよい。   In this case, the operation control device C may be provided in each series, or only the membrane filtration control unit 20 may be configured to be shared.

上述した実施形態は本発明の一態様であり、該記載により本発明が限定されるものではなく、各部の具体的構成や制御態様は本発明の作用効果が奏される範囲で適宜変更設計可能であることはいうまでもない。   The above-described embodiment is one aspect of the present invention, and the present invention is not limited by the description. Specific configurations and control aspects of each part can be appropriately changed and designed within the scope of the effects of the present invention. Needless to say.

1:排水処理設備
4:無酸素槽
5:好気槽
5A:散気装置
6:膜分離槽
7:膜分離装置
7A:散気装置
8:処理水槽
20:膜ろ過制御部
C:運転制御装置
1: Wastewater treatment equipment 4: Anoxic tank 5: Aerobic tank 5A: Aeration device 6: Membrane separation tank 7: Membrane separation device 7A: Aeration device 8: Treated water tank 20: Membrane filtration control unit C: Operation control device

Claims (9)

被処理水を、分離膜を介して固液分離する膜分離装置の運転方法であって、
前記膜分離装置からの透過水量M(t)を、以下の数式
M(t)=KQ(t−1)
M(t):所定の長さを有する期間tにおける透過水量
K:ゲイン(>1)
Q(t−1):期間tの直前の期間t−1における被処理水の流入量
で表される関係となるように設定し、設定した透過水量で前記膜分離装置から透過水を引く抜く膜ろ過ステップと、
前記膜分離槽装置が浸漬配置された水槽、または該水槽と連通しており当該水槽と同一の水位となる水槽、もしくは当該膜分離装置が浸漬配置された水槽からの越流水が流入する水槽の水位が予め設定された停止水位まで低下したときに前記膜分離装置からの透過水の引抜きを一時停止する停止ステップと、
を備えている膜分離装置の運転方法。
An operation method of a membrane separation device for solid-liquid separation of treated water through a separation membrane,
The permeated water amount M (t) from the membrane separator is expressed by the following equation M (t) = KQ (t−1)
M (t): Permeated water amount in period t having a predetermined length K: Gain (> 1)
Q (t-1): Set to have a relationship represented by the inflow amount of the water to be treated in the period t-1 immediately before the period t, and draw out the permeate from the membrane separation device with the set permeate amount. A membrane filtration step;
A water tank in which the membrane separation tank device is immersed, a water tank that communicates with the water tank and has the same water level as the water tank, or a water tank into which overflow water flows from the water tank in which the membrane separation apparatus is immersed. A stop step for temporarily stopping drawing of permeated water from the membrane separator when the water level drops to a preset stop water level;
A method for operating a membrane separation apparatus.
前記停止ステップは、前記分離膜の透過抵抗値が予め設定された上限許容値以上になると、前記何れかの水槽の水位が設定水位に低下する前であっても、前記膜分離装置からの透過水の引抜きを一時停止する請求項1記載の膜分離装置の運転方法。   In the stop step, when the permeation resistance value of the separation membrane is equal to or higher than a preset upper limit allowable value, the permeation from the membrane separation device is performed even before the water level of any one of the water tanks falls to the set water level. The method of operating a membrane separation apparatus according to claim 1, wherein water drawing is temporarily stopped. 前記停止ステップで、前記膜分離装置を曝気して被処理水の上向流により分離膜を洗浄するリラクゼーション工程を実行する請求項1または2記載の膜分離装置の運転方法。   The operation method of the membrane separation device according to claim 1 or 2, wherein in the stopping step, a relaxation step is performed in which the membrane separation device is aerated and the separation membrane is washed by an upward flow of water to be treated. 前記停止ステップで、前記膜分離装置を薬液により洗浄する薬液洗浄工程を実行する請求項1または2記載の膜分離装置の運転方法。   The method for operating a membrane separation device according to claim 1 or 2, wherein a chemical solution cleaning step of cleaning the membrane separation device with a chemical solution is executed in the stopping step. 前記停止ステップの実行後、該停止ステップで水位を検知した水槽の水位が前記停止水位より高い所定水位に回復し、予め設定された時間が経過し、または前記分離膜の透過抵抗値が前記上限許容値より低い基準値へ低下する何れかの条件が成立したときに、前記膜ろ過ステップに復帰する請求項1から4の何れかに記載の膜分離装置の運転方法。   After execution of the stop step, the water level of the water tank whose water level was detected in the stop step is restored to a predetermined water level higher than the stop water level, a preset time has elapsed, or the permeation resistance value of the separation membrane is the upper limit The method for operating a membrane separation device according to any one of claims 1 to 4, wherein when any of the conditions for lowering to a reference value lower than an allowable value is satisfied, the process returns to the membrane filtration step. ゲインKが、1.01<K<1.10の範囲に設定されている請求項1から5の何れかに記載の膜分離装置の運転方法。   The operating method of the membrane separation apparatus according to any one of claims 1 to 5, wherein the gain K is set in a range of 1.01 <K <1.10. 被処理水を、分離膜を介して固液分離する膜分離装置であって、
前記膜分離装置からの透過水量M(t)を計測する透過水量計測部と、
前記被処理水の流入量Q(t)を計測する流入量計測部と、
前記膜分離装置が浸漬配置された水槽、または該水槽と連通しており当該水槽と同一の水位となる水槽、もしくは当該膜分離装置が浸漬配置された水槽からの越流水が流入する水槽の水位を計測する水位計測部と、
以下の数式
M(t)=KQ(t−1)
M(t):所定の長さを有する期間tにおける透過水量
K:ゲイン(>1)
Q(t−1):期間tの直前の期間t−1における被処理水の流入量
で表される関係となるように透過水量を設定し、設定した透過水量で前記膜分離装置から透過水を引き抜き、前記何れかの水槽の水位が予め設定された停止水位まで低下したときに前記膜分離装置からの透過水の引抜きを一時停止する膜ろ過制御部と、
を備えている膜分離装置。
A membrane separation apparatus for solid-liquid separation of water to be treated through a separation membrane,
A permeated water amount measuring unit for measuring a permeated water amount M (t) from the membrane separator;
An inflow measuring unit for measuring the inflow Q (t) of the treated water;
Water level of a water tank in which the membrane separation device is immersed, a water tank communicating with the water tank and having the same water level as the water tank, or a water tank into which overflow water flows from the water tank in which the membrane separation device is immersed A water level measurement unit for measuring
The following formula M (t) = KQ (t−1)
M (t): Permeated water amount in period t having a predetermined length K: Gain (> 1)
Q (t-1): The permeated water amount is set so as to be represented by the inflow amount of the water to be treated in the period t-1 immediately before the period t, and the permeated water from the membrane separation device with the set permeated water amount. A membrane filtration control unit that temporarily stops drawing of permeated water from the membrane separation device when the water level of any one of the water tanks is lowered to a preset stop water level;
A membrane separation apparatus.
前記分離膜の透過抵抗値を計測する透過抵抗値計測部をさらに備え、
前記膜ろ過制御部は、前記分離膜の透過抵抗値が予め設定された上限許容値以上になると、前記何れかの水槽の水位が設定水位に低下する前であっても、前記膜分離装置からの透過水の引抜きを一時停止する請求項7記載の膜分離装置。
Further comprising a permeation resistance value measurement unit for measuring the permeation resistance value of the separation membrane,
When the permeation resistance value of the separation membrane is equal to or higher than a preset upper limit allowable value, the membrane filtration control unit is configured to remove the water level of any one of the water tanks from the membrane separation device even before the water level drops to a set water level. The membrane separator according to claim 7, wherein the permeated water is temporarily withdrawn.
前記膜ろ過制御部は、前記膜分離装置からの透過水の引抜きを一時停止した状態で、前記膜分離装置を曝気して被処理水の上向流により分離膜を洗浄し、または前記膜分離装置を薬液により洗浄する請求項7または8記載の膜分離装置。   The membrane filtration control unit is configured to aerate the membrane separator and wash the separation membrane with an upward flow of water to be treated in a state where drawing of permeate from the membrane separator is temporarily stopped, or the membrane separation The membrane separation apparatus according to claim 7 or 8, wherein the apparatus is washed with a chemical solution.
JP2016166828A 2016-08-29 2016-08-29 Operation method of membrane separation device and wastewater treatment equipment Active JP7103728B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016166828A JP7103728B2 (en) 2016-08-29 2016-08-29 Operation method of membrane separation device and wastewater treatment equipment
EP17846162.0A EP3505497B1 (en) 2016-08-29 2017-08-18 Method for operating membrane separation device, and membrane separation device
ES17846162T ES2953620T3 (en) 2016-08-29 2017-08-18 Method for operating a membrane separation device and membrane separation device
PCT/JP2017/029621 WO2018043154A1 (en) 2016-08-29 2017-08-18 Method for operating membrane separation device, and membrane separation device
US16/203,311 US11452971B2 (en) 2016-08-29 2018-11-28 Method for operating membrane separation device with halt process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016166828A JP7103728B2 (en) 2016-08-29 2016-08-29 Operation method of membrane separation device and wastewater treatment equipment

Publications (2)

Publication Number Publication Date
JP2018034077A true JP2018034077A (en) 2018-03-08
JP7103728B2 JP7103728B2 (en) 2022-07-20

Family

ID=61300427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016166828A Active JP7103728B2 (en) 2016-08-29 2016-08-29 Operation method of membrane separation device and wastewater treatment equipment

Country Status (5)

Country Link
US (1) US11452971B2 (en)
EP (1) EP3505497B1 (en)
JP (1) JP7103728B2 (en)
ES (1) ES2953620T3 (en)
WO (1) WO2018043154A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022009833A1 (en) * 2020-07-06 2022-01-13 株式会社クボタ Method of administering coagulant

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110596200B (en) * 2019-08-07 2022-08-05 中国地质调查局水文地质环境地质调查中心 Underground water stratified sampling detection device and detection method
DE102020122029A1 (en) 2020-08-24 2022-02-24 Krones Aktiengesellschaft Process for controlling a filtration unit
CN112456731B (en) * 2020-11-13 2021-08-13 苏州弘毅环境科技有限公司 Sewage treatment control method and system based on MBR process

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04267986A (en) * 1991-02-22 1992-09-24 Ebara Corp Flow rate change corresponding type waste water treatment apparatus
JPH10118684A (en) * 1996-10-17 1998-05-12 Tokyu Constr Co Ltd Immersion type membrane separation and activated sludge apparatus
JPH11156360A (en) * 1997-11-25 1999-06-15 Kubota Corp Method for operation of water treatment plant
JP2001334130A (en) * 2000-05-30 2001-12-04 Kubota Corp Membrane separation unit having flow rate regulating function
JP2004188255A (en) * 2002-12-09 2004-07-08 Hitachi Kiden Kogyo Ltd Oxidation ditch
JP2007167827A (en) * 2005-12-26 2007-07-05 Mitsubishi Rayon Eng Co Ltd Apparatus for treating activated sludge
JP2007526115A (en) * 2004-02-26 2007-09-13 ハンス、フーバー、アクチェンゲゼルシャフト、マシーネン−、ウント、アンラーゲンバウ Apparatus and method for treating sludge containing feces and thin film unit
US20070289362A1 (en) * 2006-06-19 2007-12-20 David Brian Ross Air scouring for immersed membranes
JP2012528717A (en) * 2009-06-02 2012-11-15 シーメンス インダストリー インコーポレイテッド Membrane cleaning with pulsed gas slag and global aeration
US20130153493A1 (en) * 2010-08-13 2013-06-20 University Of Regina Moving bed membrane bioreactor
JP2015231591A (en) * 2014-06-09 2015-12-24 三菱レイヨン株式会社 Remote supervisory control system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1015573A (en) 1996-07-09 1998-01-20 Kubota Corp Sewage treatment apparatus

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04267986A (en) * 1991-02-22 1992-09-24 Ebara Corp Flow rate change corresponding type waste water treatment apparatus
JPH10118684A (en) * 1996-10-17 1998-05-12 Tokyu Constr Co Ltd Immersion type membrane separation and activated sludge apparatus
JPH11156360A (en) * 1997-11-25 1999-06-15 Kubota Corp Method for operation of water treatment plant
JP2001334130A (en) * 2000-05-30 2001-12-04 Kubota Corp Membrane separation unit having flow rate regulating function
JP2004188255A (en) * 2002-12-09 2004-07-08 Hitachi Kiden Kogyo Ltd Oxidation ditch
JP2007526115A (en) * 2004-02-26 2007-09-13 ハンス、フーバー、アクチェンゲゼルシャフト、マシーネン−、ウント、アンラーゲンバウ Apparatus and method for treating sludge containing feces and thin film unit
JP2007167827A (en) * 2005-12-26 2007-07-05 Mitsubishi Rayon Eng Co Ltd Apparatus for treating activated sludge
US20070289362A1 (en) * 2006-06-19 2007-12-20 David Brian Ross Air scouring for immersed membranes
JP2012528717A (en) * 2009-06-02 2012-11-15 シーメンス インダストリー インコーポレイテッド Membrane cleaning with pulsed gas slag and global aeration
US20130153493A1 (en) * 2010-08-13 2013-06-20 University Of Regina Moving bed membrane bioreactor
JP2015231591A (en) * 2014-06-09 2015-12-24 三菱レイヨン株式会社 Remote supervisory control system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022009833A1 (en) * 2020-07-06 2022-01-13 株式会社クボタ Method of administering coagulant
CN115803292A (en) * 2020-07-06 2023-03-14 株式会社久保田 Coagulant feeding method

Also Published As

Publication number Publication date
EP3505497B1 (en) 2023-06-21
ES2953620T3 (en) 2023-11-14
JP7103728B2 (en) 2022-07-20
EP3505497A1 (en) 2019-07-03
US20190091632A1 (en) 2019-03-28
EP3505497A4 (en) 2020-04-22
US11452971B2 (en) 2022-09-27
WO2018043154A1 (en) 2018-03-08

Similar Documents

Publication Publication Date Title
JP4920990B2 (en) Separation membrane cleaning method
WO2018043154A1 (en) Method for operating membrane separation device, and membrane separation device
JP2018079442A (en) Siphon type diffuser pipe, membrane separation activated sludge device, and water treatment method
JP5822264B2 (en) Operation method of membrane separation activated sludge treatment equipment
JP5467793B2 (en) Operation method of submerged membrane separator
KR20090028737A (en) Apparatus having a bioreactor and membrane filtration module for treatment of an incoming fluid
JP2007130579A (en) Filtration membrane cleaning apparatus and method for membrane filtration unit in activated sludge treatment
JP5181987B2 (en) Cleaning method for submerged membrane module
JP2006205119A (en) Method for using immersion type membrane separation apparatus and immersion type membrane separation apparatus
JP5648387B2 (en) Aeration device and method of operating membrane separation device
JP6212436B2 (en) Water treatment apparatus and water treatment method
JP2010089079A (en) Method for operating immersed membrane separator and immersed membrane separator
JP2011078889A (en) Filter member cleaning system
JP2014172014A (en) Membrane separation device and membrane separation method
JP5120106B2 (en) Method and apparatus for treating organic alkaline wastewater
JP2007209949A (en) Filtrate recovery device of solid-liquid mixed/processed liquid
JP2009039677A (en) Cleaning method of immersion type membrane module and immersion type membrane filtering apparatus
US20200289988A1 (en) Filtering membrane cleaning method
JP3773360B2 (en) Septic tank with membrane separation
JP5016827B2 (en) Membrane separation activated sludge treatment method
JP4734160B2 (en) Septic tank
JP5251472B2 (en) Membrane module cleaning method
JP2000210660A (en) Immersion type membrane filter, and production of clarified water
JP2019166424A (en) Wastewater treatment device and wastewater treatment method
JP2016137469A (en) Method and device for cleaning air diffusion pipe, and activated sludge treatment method and activated sludge treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200616

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201208

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210305

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220329

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220510

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220524

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220621

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220706

R150 Certificate of patent or registration of utility model

Ref document number: 7103728

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150