JP4734160B2 - Septic tank - Google Patents

Septic tank Download PDF

Info

Publication number
JP4734160B2
JP4734160B2 JP2006110802A JP2006110802A JP4734160B2 JP 4734160 B2 JP4734160 B2 JP 4734160B2 JP 2006110802 A JP2006110802 A JP 2006110802A JP 2006110802 A JP2006110802 A JP 2006110802A JP 4734160 B2 JP4734160 B2 JP 4734160B2
Authority
JP
Japan
Prior art keywords
filtration
tank
flow rate
sludge
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006110802A
Other languages
Japanese (ja)
Other versions
JP2007283170A (en
Inventor
民行 江口
信夫 林
尚樹 村上
敏翁 島
英夫 沖津
健司 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikko Co Ltd
GS Yuasa International Ltd
Yuasa Membrane Systems Co Ltd
Original Assignee
Nikko Co Ltd
GS Yuasa International Ltd
Yuasa Membrane Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Co Ltd, GS Yuasa International Ltd, Yuasa Membrane Systems Co Ltd filed Critical Nikko Co Ltd
Priority to JP2006110802A priority Critical patent/JP4734160B2/en
Publication of JP2007283170A publication Critical patent/JP2007283170A/en
Application granted granted Critical
Publication of JP4734160B2 publication Critical patent/JP4734160B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Treatment Of Biological Wastes In General (AREA)
  • Activated Sludge Processes (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は活性汚泥処理槽に浸漬型膜分離装置を埋設した膜分離型合併処理浄化槽に関し、さらに詳しくは、所定の水位を超えた活性汚泥処理槽の汚泥を、濾過能力の低下を防止若しくは抑制するための装置を経て前段の処理槽に戻す膜分離型合併処理浄化槽に関する。   The present invention relates to a membrane separation type combined treatment septic tank in which an immersion sludge separation device is embedded in an activated sludge treatment tank. More specifically, the sludge in an activated sludge treatment tank that exceeds a predetermined water level is prevented or suppressed from being reduced in filtration capacity. The present invention relates to a membrane separation type combined treatment septic tank that is returned to a previous treatment tank through an apparatus for performing the process.

環境汚染防止のために生活排水を総合的に浄化することは社会的にも重要であり、浄化槽へ浸漬型膜濾過法を適用することもその一つの手段として開発に注力されている(例えば、(財)日本環境整備教育センター「膜処理法を導入した小型生活排水処理装置の実用化に関する研究報告書」平成4〜平成7年度、参照)。
ここで、浸漬型膜濾過法とは、従来の沈殿分離に代わって、浄化槽の活性汚泥処理槽に埋設した浸漬型膜分離装置よって活性汚泥処理液を濾過する方法であり、曝気によって活性汚泥に酸素を供給しながら、気泡の上昇に随伴する流れをクロスフローに利用して膜面上での濾過抵抗層の成長を抑制する。
It is socially important to comprehensively purify domestic wastewater to prevent environmental pollution, and the application of the submerged membrane filtration method to the septic tank is also focused on development (for example, Japan Environmental Education Center "Research Report on Practical Use of Small Domestic Wastewater Treatment System Introducing Membrane Treatment Method", see 1992-1995).
Here, the submerged membrane filtration method is a method in which the activated sludge treatment liquid is filtered by a submerged membrane separator embedded in the activated sludge treatment tank of the septic tank, instead of the conventional sedimentation separation. While supplying oxygen, the flow accompanying the rise of bubbles is used for cross flow to suppress the growth of the filtration resistance layer on the film surface.

上述の報告書でも指摘されているように、濾過能力を維持するためには、活性汚泥処理槽における汚泥の濃度としてMLSS濃度でおよそ3000mg/L以上(以下、下限濃度と呼ぶ)が必要で、浸漬型膜分離装置の運転を開始する前には下限濃度以上になるように種汚泥が投入される。
一方、運転開始後については、MLSS濃度がおよそ15000mg/L(以下、上限濃度と呼ぶ)を超えても濾過能力は低下するために(環境省浄化槽対策室監修「窒素除去型・膜分離型小型合併処理浄化槽維持管理ガイドライン・同解説」、(財)日本環境整備教育センター、平成13年11月発行、参照)、活性汚泥処理槽の汚泥を前処理槽に返送して、あるいは別途設けた汚泥貯留槽へ引き抜いて、上限濃度以下に抑えられる。
As pointed out in the above-mentioned report, in order to maintain the filtration capacity, the concentration of sludge in the activated sludge treatment tank requires an MLSS concentration of approximately 3000 mg / L or more (hereinafter referred to as the lower limit concentration). Before starting the operation of the submerged membrane separator, seed sludge is introduced so that the concentration is above the lower limit.
On the other hand, after the start of operation, even if the MLSS concentration exceeds approximately 15000 mg / L (hereinafter referred to as the upper limit concentration), the filtration capacity decreases (supervised by the Ministry of the Environment Septic Tank Countermeasures Office, “Nitrogen removal type / membrane separation type small The merger processing septic tank maintenance management guideline and commentary ”, Japan Environmental Education Center, issued in November 2001), sludge from the activated sludge treatment tank is returned to the pretreatment tank, or sludge provided separately It is pulled out to the storage tank and is kept below the upper limit concentration.

しかしながら、何らかの原因で濾過能力が低下し、活性汚泥処理槽の汚泥が前処理槽に大量にオーバーフローしたために、僅か1日でMLSS濃度が半減し、数日すると下限濃度をはるかに下回り、濾過能力のさらなる低下が急速に進んで生物処理されなかった排水が流出することも珍しくはない。それにもかかわらず、この方法が実用化されてから数年を経た現在に至っても、オーバーフローによって下限濃度以下になるのを防止或いは抑制する手段は特に講じられてはいない。   However, the filtration capacity declined for some reason, and the sludge from the activated sludge treatment tank overflowed a large amount into the pretreatment tank. It is not uncommon for wastewater that has not been biologically treated to flow out rapidly as the further decline of the wastewater continues. Nevertheless, even when several years have passed since this method was put to practical use, no means for preventing or suppressing the concentration below the lower limit concentration due to overflow has been taken.

このような事態に至ると、濾過能力が自然に回復することはほとんどないので、従来では、次亜塩素酸ソーダの水溶液などで膜を洗浄して濾過能力を回復させ、さらに種汚泥を再投入するか、あるいは汚泥を全量入れ替えてから運転を再開する必要があった。しかしながら、このような方法は維持管理上の負担があまりにも大きい。尚、上記した先行技術に関する文献の存在については不知である。   In such a situation, the filtration capacity rarely recovers naturally, so conventionally, the membrane was washed with an aqueous solution of sodium hypochlorite to restore the filtration capacity, and seed sludge was re-introduced. Or it was necessary to restart the operation after replacing the entire amount of sludge. However, such a method is too burdensome to maintain. In addition, it is unknown about the existence of the literature regarding the above-mentioned prior art.

かくして、本発明によって解決すべき課題は、生物処理されなかった排水が流出しないように、オーバーフローによるMLSS濃度の低下がもたらす濾過流量の低下を抑制する簡単で経済的な手段を提供することである。   Thus, the problem to be solved by the present invention is to provide a simple and economical means for suppressing a decrease in filtration flow rate caused by a decrease in MLSS concentration due to overflow, so that wastewater that has not been biologically treated does not flow out. .

未だに必ずしも確定してはいないようであるが、前記した報告書などによれば、下限濃度の根拠は生活排水中の濾過抵抗物質を吸着するために必要な活性汚泥の最少濃度であり、上限濃度の根拠は粘度の急上昇である。後者に関連して、汚泥の高分子分泌物に濾過抵抗物質が含まれるならば(例えば、浜谷 慎一郎、他、第38回下水道研究発表会講演集、7-94(2001)、参照)、汚泥の濃度とともにこの濾過抵抗物質の濃度も増加することになる。適正範囲である下限濃度と上限濃度の間では、これらの濾過抵抗成分の大部分が汚泥に吸着されるために濾過流量が安定すると考えられる。   Although it has not yet been confirmed, according to the reports mentioned above, the basis of the lower limit concentration is the minimum concentration of activated sludge necessary for adsorbing filtration resistance substances in domestic wastewater, and the upper limit concentration The basis for this is a sudden rise in viscosity. In relation to the latter, if the sludge polymer secretion contains a filtration resistance substance (see, for example, Shinichiro Hamaya, et al., 38th Sewerage Research Conference Lecture, 7-94 (2001)), sludge The concentration of the filtration resistance substance increases with the concentration of. It is considered that the filtration flow rate is stabilized between the lower limit concentration and the upper limit concentration, which are in an appropriate range, because most of these filtration resistance components are adsorbed by the sludge.

しかしながら、運転開始後について、従来の装置では下限濃度以下になるのを防止あるいは抑制する手段が特に講じられなかった理由として、オーバーフローによって下限濃度以下になると実際に濾過流量が低下するのか、逆に下限濃度以上に維持さえすれば実際に濾過流量の低下が抑制されるのか、すなわち、濾過抵抗物質の濃度がMLSS濃度によって一律に決まるのか、と言った点が必ずしも明らかではなかったことが挙げられる。
そこで、本発明者らは、濾過流量とMLSS濃度の関係を様々な視点から、あらためて詳しく調べてみた。
However, after the start of operation, the reason why the conventional apparatus did not take any measures to prevent or suppress the concentration below the lower limit concentration is that the filtration flow rate actually decreases when the concentration falls below the lower limit concentration due to overflow. The fact that the decrease in the filtration flow rate is actually suppressed if it is maintained above the lower limit concentration, that is, whether the concentration of the filtration resistance substance is uniformly determined by the MLSS concentration is not necessarily clear. .
Therefore, the present inventors have examined the relationship between the filtration flow rate and the MLSS concentration again in detail from various viewpoints.

下限濃度に関して、活性汚泥は濾過抵抗物質を含む生活排水中のBOD成分を細胞外酵素反応の過程で吸着するであろうから、その反応活性と強い相関があると考えられる。
一方、上限濃度に関しては、細胞外酵素反応が活発である間は排水中の濾過抵抗物質が汚泥に積極的に吸着されるが、汚泥の濃度が高くなると、粘度の上昇によって汚泥が均一に循環しなくなり、酸素の供給が滞るために反応活性が低下して、遊離の濾過抵抗物質が残るようになるだけでなく、沈殿層も形成されると考えられる。したがって、沈殿層を形成した汚泥が濾過抵抗物質を分泌するならば、この層には吸着されなかった排水中の濾過抵抗物質と分泌された濾過抵抗物質が次第に蓄積されると考えられる。
Regarding the lower limit concentration, activated sludge will adsorb BOD components in domestic wastewater containing filtration resistance substances in the process of extracellular enzyme reaction, and it is considered that there is a strong correlation with the reaction activity.
On the other hand, with regard to the upper limit concentration, while the extracellular enzyme reaction is active, the filtration resistance substance in the wastewater is actively adsorbed to the sludge, but when the sludge concentration increases, the sludge circulates uniformly due to the increase in viscosity. It is considered that not only does the supply of oxygen stagnate, the reaction activity decreases, and a free filtration resistance substance remains, but also a precipitate layer is formed. Therefore, if the sludge which formed the sedimentation layer secretes the filtration resistance substance, it is considered that the filtration resistance substance in the waste water and the secreted filtration resistance substance which are not adsorbed in this layer are gradually accumulated.

細胞外酵素反応が活発ならば、窒素を含む成分は硝酸性窒素(以下、NO3-Nで示す)まで酸化されるから、濾過液中の全窒素濃度(以下、TNで示す)に対するNO3-Nの割合は細胞外酵素反応の活性を表すはずである。この比を用いて上記の下限濃度に関する推定を検証してみると、実際に、この比が小さくなるほど濾過流量は低くなり、逆に、この比が1に近いときには、MLSS濃度が3000未満であっても濾過流量は高かった、あるいは3000未満になっても濾過流量の低下は比較的軽微であった。   If the extracellular enzyme reaction is active, nitrogen-containing components are oxidized to nitrate nitrogen (hereinafter referred to as NO3-N), so NO3-N relative to the total nitrogen concentration in the filtrate (hereinafter referred to as TN) The ratio should represent the activity of the extracellular enzyme reaction. Using this ratio to verify the above estimate of the lower limit concentration, in fact, the smaller this ratio, the lower the filtration flow rate. Conversely, when this ratio is close to 1, the MLSS concentration is less than 3000. However, the filtration flow rate was high, or even if it was less than 3000, the decrease in the filtration flow rate was relatively small.

一方、上限濃度に関する上記の推定を検証すために、まずMLSS濃度とNO3-N/TN比および汚泥の濃度分布との関係を調べた。その結果、よく循環している上層MLSS濃度が槽の構造や曝気量によってやや異なるある値を超えると、実際に、NO3-N/TN比が低下し、上層の汚泥の濃度の増加速度が鈍くなるとともに濃度の高い下層の領域が上層に向かって広がった。さらにMLSS濃度が上昇すると、上層の汚泥の濃度は頭打ち状態に達し、ほとんど循環しない沈殿層の割合が急速に増加した。   On the other hand, in order to verify the above estimation regarding the upper limit concentration, the relationship between the MLSS concentration, the NO3-N / TN ratio and the sludge concentration distribution was first examined. As a result, if the concentration of the upper layer MLSS circulating well exceeds a certain value that differs slightly depending on the tank structure and aeration volume, the NO3-N / TN ratio actually decreases, and the increase rate of the upper layer sludge concentration slows down. At the same time, the lower layer region with high concentration spreads toward the upper layer. As the MLSS concentration further increased, the upper layer sludge concentration reached a peak, and the proportion of the sediment layer that hardly circulated increased rapidly.

このようなMLSS濃度の変化に付随して濾過流量は低下した。すなわち、よく循環しているNO3-N/TN比の高い層には濾過抵抗物質は少なく、この層の割合が大きいときには濾過流量も大きいが、濾過抵抗物質が多く含まれる沈殿層の割合が増えるとともに濾過流量が低下した。
したがって、頭打ち状態の汚泥あるいはそれに近い汚泥からオーバーフローによって上層が流出すると、沈殿していた層の割合がさらに大きくなるだけでなく、粘度の低下によって再び分散した沈殿層から濾過抵抗物質が流出するために濾過流量が急速に低下する。その結果、オーバーフロー量がさらに増加し、活性化した汚泥がますます少なくなるために濾過流量の低下が加速される。
The filtration flow rate decreased with such a change in MLSS concentration. That is, there are few filtration resistance substances in the well-circulated layer with high NO3-N / TN ratio, and when the ratio of this layer is large, the filtration flow rate is large, but the ratio of the precipitation layer containing a lot of filtration resistance substances increases. At the same time, the filtration flow rate decreased.
Therefore, if the upper layer flows out of the sludge at or near the top due to overflow, not only the ratio of the layer that has settled increases, but also the filtration resistance material flows out of the precipitated layer that has been dispersed again due to a decrease in viscosity. The filtration flow rate decreases rapidly. As a result, the amount of overflow is further increased and the activated sludge is further reduced, so that the reduction of the filtration flow rate is accelerated.

ところが、オーバーフローの際に濾過抵抗物質を多く含む沈殿層の汚泥を選択的に流出させることができれば、活性の高い層の割合が増えるので、濾過流量の低下が収まり、さらには濾過流量が回復することさえも期待できる。
かくして、MLSS濃度の低下がもたらす濾過流量の低下によって生物処理されない排水が流出する問題は解決され、本発明に至った。
すなわち、本発明は浸漬型膜分離装置を設置した活性汚泥処理槽において、該活性汚泥処理槽の液面が所定の水位を超えたときに、該活性汚泥処理槽内に設置した下端が該活性汚泥処理槽の底近傍にある幹管と該水位の位置で該幹管から分岐した枝管からなるリターン装置を用いて、該底近傍の汚泥を活性汚泥処理槽より前段の処理槽に返送するように構成し、前記前段の処理槽の液は、移送ポンプによって前記リターン装置の幹管の中へ移送するように構成することを特徴とする(請求項1)。具体的には、移送ポンプの出口をリターン装置の幹管内に流入配置する。尚、本浄化槽は対象人数が10人以下の家庭排水を合併処理する規模に好適である。
However, if the sludge in the sediment layer containing a large amount of filtration resistance substance can be selectively discharged at the time of overflow, the ratio of the high active layer increases, so the decrease in the filtration flow rate is reduced, and the filtration flow rate is recovered. You can even expect that.
Thus, the problem of drainage of untreated biological wastewater due to the decrease in the filtration flow rate caused by the decrease in the MLSS concentration has been solved, and the present invention has been achieved.
That is, the present invention provides an activated sludge treatment tank equipped with a submerged membrane separator, and when the liquid level of the activated sludge treatment tank exceeds a predetermined water level, the lower end installed in the activated sludge treatment tank has the activated sludge treatment tank. Using a return device consisting of a trunk pipe near the bottom of the sludge treatment tank and a branch pipe branched from the trunk pipe at the water level, the sludge near the bottom is returned to the treatment tank upstream of the activated sludge treatment tank. It is comprised so that the liquid of the said processing tank of the front | former stage may be comprised so that it may transfer in the trunk | pipe of the said return apparatus with a transfer pump (Claim 1). Specifically, the outlet of the transfer pump is arranged to flow into the trunk pipe of the return device. In addition, this septic tank is suitable for the scale which carries out the merge processing of the domestic wastewater whose object number is 10 or less.

上記した手段によって、オーバーフローの際には、濾過抵抗成分を大量に含む汚泥が選択的に前段の槽に戻され、濾過抵抗物質を積極的に吸着する汚泥が残されるので、濾過流量のさらなる低下が抑制されるだけでなく、しばしば濾過流量の回復さえも見られる。
その結果、オーバーフローによる濾過流量の低下によって生物処理されない排水が流出する問題は解決され、次亜塩素酸ソーダの水溶液などで膜を洗浄して濾過流量を回復させ、さらに種汚泥を再投入するか、あるいは汚泥を全量入れ替えてから運転を再開する、従来行われてきた維持管理上の負担も著しく軽減される。
By the above means, in the case of overflow, the sludge containing a large amount of filtration resistance component is selectively returned to the previous tank, and the sludge that actively adsorbs the filtration resistance substance remains, so that the filtration flow rate is further reduced. Not only is suppressed, but often even filtration flow recovery is seen.
As a result, the problem of drainage of non-biologically treated wastewater due to a decrease in filtration flow rate due to overflow is solved. Is it possible to recover the filtration flow rate by washing the membrane with an aqueous solution of sodium hypochlorite and re-entering seed sludge? Alternatively, the burden on maintenance that has been performed in the past, in which the operation is resumed after replacing the entire amount of sludge, is remarkably reduced.

本発明の浄化槽は、オーバーフローが発生した際にも、MLSS濃度が濾過流量の急激な低下を招く下限濃度以下になることはなくなるので、濾過流量の低下が抑制されるだけでなく、一度低下した濾過流量が自然に回復することも多い。したがって、維持管理面での効果はとりわけ大きい。
又、間欠運転方式には、消費エネルギーが少ないだけでなく、停止中に汚泥が嫌気化するので窒素成分が除去される利点もあるが、濾過時間が短くなるので濾過性能が低下しやすい欠点もある。そのため、間欠運転方式の膜分離型合併処理浄化槽は未だに上市されていない。しかしながら、本発明によってこの欠点は大きく改善される。
更に、本発明の汚泥の循環装置は、単純な構造で、かつ経済的であり、ほとんどの浄化槽に適用することが可能である。
In the septic tank of the present invention, even when an overflow occurs, the MLSS concentration does not become lower than the lower limit concentration that causes a rapid decrease in the filtration flow rate. The filtration flow often recovers naturally. Therefore, the maintenance effect is particularly great.
In addition, the intermittent operation method not only consumes less energy, but also has the advantage of removing nitrogen components because sludge is anaerobic during stoppage, but also has the disadvantage that the filtration performance tends to decrease because the filtration time is shortened. is there. Therefore, an intermittent operation type membrane separation type combined treatment septic tank has not been put on the market yet. However, this disadvantage is greatly improved by the present invention.
Furthermore, the sludge circulation device of the present invention has a simple structure and is economical, and can be applied to most septic tanks.

以下、本発明の実施の形態を図1を参照しながら説明する。但し、本図は本発明を説明するためのものであって、本発明を限定するものではない。
図1に示す膜分離型合併処理浄化槽1は、固液分離槽2と、活性汚泥処理槽3および消毒槽4の三槽からなり、この浄化槽における前段の処理槽は固液分離槽2である。
本発明を適用する浄化槽の規模を限定する理由は特にないが、一般的に小型になるほど生活排水の水質変動が激しく、濾過流量が急に低下する事態が発生することも多くなる。このような浄化槽に対して本発明は顕著な効果を発揮する。したがって、本発明の特に効果的な適用対象は凡そ10人以下の浄化槽である。
Hereinafter, an embodiment of the present invention will be described with reference to FIG. However, this figure is for explaining the present invention, and does not limit the present invention.
The membrane separation type combined treatment septic tank 1 shown in FIG. 1 comprises a solid-liquid separation tank 2, an activated sludge treatment tank 3 and a disinfection tank 4, and the preceding treatment tank in this septic tank is the solid-liquid separation tank 2. .
Although there is no particular reason for limiting the scale of the septic tank to which the present invention is applied, generally, as the size of the septic tank is reduced, the water quality of the domestic effluent changes more severely, and the situation where the filtration flow rate suddenly decreases increases. The present invention exerts a remarkable effect on such a septic tank. Therefore, a particularly effective application target of the present invention is a septic tank of about 10 people or less.

はじめに、排水処理フローを説明する。流入口11から固液分離槽2に流入した生活排水は、自然沈殿と濾材9によって夾雑物が除かれたのち、仕切り板5によって固液分離槽2と仕切られた活性汚泥処理槽3に移送ポンプ7で移送される。浸漬型膜分離装置6で濾過された活性汚泥処理液は、濾過液ポンプ10で消毒槽4に送られ、流出口12から外界に放流される。活性汚泥処理槽3のオーバーフローは、リターン装置8を経て固液分離槽2に返送される。以下に、構造と機能について詳しく説明する。   First, the wastewater treatment flow will be described. The domestic wastewater flowing into the solid-liquid separation tank 2 from the inlet 11 is transferred to the activated sludge treatment tank 3 separated from the solid-liquid separation tank 2 by the partition plate 5 after removing impurities by natural precipitation and the filter medium 9. It is transferred by the pump 7. The activated sludge treatment liquid filtered by the submerged membrane separator 6 is sent to the disinfection tank 4 by the filtrate pump 10 and discharged from the outlet 12 to the outside. The overflow of the activated sludge treatment tank 3 is returned to the solid-liquid separation tank 2 via the return device 8. The structure and function will be described in detail below.

移送ポンプ7には、通常、ポンプ室に一定量貯まった液体を空気圧で押し出す半定量ポンプが用いられる。そのサクション管71の入り口は、粗い点描で表した水位の変動範囲16の下限位置にあり、水位が下限以下になると自動的に移送が止まる。
移送ポンプ7の出口72は、定期点検などの作業の邪魔にならず、落下する移送液が浸漬型膜分離装置6の膜モジュール61に直接当たらない位置が好ましい。移送流量は、通常、排水の平均流入流量の1.5〜3倍に設定される。
図示を省略したが、固液分離槽2の水位が変動範囲16の上限を超えると、生物処理されないまま消毒槽4へ流れ、外界に放流される。
As the transfer pump 7, a semi-quantitative pump that normally pushes out a certain amount of liquid stored in the pump chamber by air pressure is used. The entrance of the suction pipe 71 is at the lower limit position of the fluctuation range 16 of the water level represented by rough stippling, and the transfer automatically stops when the water level falls below the lower limit.
The outlet 72 of the transfer pump 7 is preferably located at a position where it does not interfere with operations such as periodic inspections, and the falling transfer liquid does not directly hit the membrane module 61 of the submerged membrane separation device 6. The transfer flow rate is normally set to 1.5 to 3 times the average inflow flow rate of waste water.
Although illustration is omitted, when the water level of the solid-liquid separation tank 2 exceeds the upper limit of the fluctuation range 16, it flows to the disinfection tank 4 without being biologically treated and is discharged to the outside.

活性汚泥処理槽3には、膜モジュール61と気泡の案内筒62からなる浸漬型膜分離装置6が設置されている。膜モジュール61としては、公知の中空糸型、プレート型など、いずれも本発明に使用できるが、本発明者らによって開発された多数の管状膜からなる膜モジュールは、コンパクト性と経済性において格段に優れているので、特に好ましい(特願2000−363389、同2000−363461参照)。また、管状膜自身にエアリフト作用があるので、このモジュールは活性汚泥液からかなり露出した状態でも使用することができる。そのため、活性汚泥処理槽3の容量を比較的小さくすることもできる。従って、図1ではこのモジュールが用いられている。   The activated sludge treatment tank 3 is provided with a submerged membrane separation device 6 comprising a membrane module 61 and a bubble guide tube 62. As the membrane module 61, any of known hollow fiber type and plate type can be used in the present invention. However, the membrane module composed of a number of tubular membranes developed by the present inventors is remarkably compact and economical. It is particularly preferable (see Japanese Patent Application Nos. 2000-363389 and 2000-363461). Further, since the tubular membrane itself has an air lift action, this module can be used even when it is considerably exposed from the activated sludge liquid. Therefore, the capacity of the activated sludge treatment tank 3 can be made relatively small. Therefore, this module is used in FIG.

管状膜には、孔径が0.1〜1μm程度の公知の精密濾過膜が使用される。例えば、特公昭56−35483に記載されている方法では、不織布で補強したテープ状の膜を、内径を規定する心棒に螺旋状に巻きつけながら、その長手方向の互いに重ね合わせた周辺部を超音波溶着することによって任意の孔径や内径の管状膜が連続的に製造される。
内径が小さいと汚泥で閉塞しやすく、大きいとモジュールの単位体積あたりの膜面積が小さくなるので、本発明に適した内径は8〜15mm、より好ましくは10〜13mmである。
管状膜モジュールは非常に軽量・コンパクトであり、例えば、内径11mm、厚さ0.2mmの管状膜を、有効長が約50cmとなるように内径約30cm長さ約57cmの塩ビ製円筒に約600本集束固定すると、重量は約3kg、有効膜面積は少なくとも10人槽まで対応できる約10m2になる。
As the tubular membrane, a known microfiltration membrane having a pore diameter of about 0.1 to 1 μm is used. For example, in the method described in Japanese Examined Patent Publication No. 56-35483, a tape-like film reinforced with a non-woven fabric is wound around a mandrel that defines an inner diameter in a spiral manner while superimposing the peripheral portions that are overlapped with each other in the longitudinal direction. A tubular membrane having an arbitrary hole diameter or inner diameter is continuously produced by sonic welding.
If the inner diameter is small, it is likely to be clogged with sludge. If the inner diameter is large, the membrane area per unit volume of the module is small, so the inner diameter suitable for the present invention is 8 to 15 mm, more preferably 10 to 13 mm.
Tubular membrane module is very lightweight and compact. For example, about 600 pipe membranes with an inner diameter of 11 mm and a thickness of 0.2 mm in a PVC cylinder with an inner diameter of about 30 cm and a length of about 57 cm so that the effective length is about 50 cm. When focused and fixed, the weight is about 3 kg and the effective membrane area is about 10 m 2 that can accommodate at least 10 tanks.

気泡の案内筒62の中には、すべての管状膜にほぼ均等に気泡を送る散気装置64と管状膜の活性汚泥処理液の流路を閉塞させる汚泥の塊などを細分化するための目開きが約6mmのネット63が装着されている。気泡の案内筒62から膜モジュール61全体にほぼ均一に送り込まれた気泡は、活性汚泥液を随伴しながら膜モジュールを上昇した後、その上端から放出される。従って、曝気中、活性汚泥液は膜モジュールの内外を循環し、この間に濾過が行われる。
濾過方式として、吸引濾過、サイホン濾過、及び重力濾過のいずれも本発明に使用できるが、設備が単純で所要エネルギーも少ないことから重力濾過方式が好ましく、本例においては、重力濾過方式が用いられている。
In the bubble guide cylinder 62, there are an air diffuser 64 that sends bubbles almost uniformly to all the tubular membranes, and an eye for subdividing sludge masses that block the flow path of the activated sludge treatment liquid in the tubular membranes. A net 63 with an opening of about 6 mm is attached. Bubbles sent almost uniformly from the bubble guide cylinder 62 to the entire membrane module 61 are raised from the upper end of the membrane module after ascending with the activated sludge liquid. Therefore, during aeration, the activated sludge liquid circulates inside and outside the membrane module, and filtration is performed during this time.
As the filtration method, suction filtration, siphon filtration, and gravity filtration can all be used in the present invention. However, the gravity filtration method is preferable because the equipment is simple and less energy is required. In this example, the gravity filtration method is used. ing.

濾過液ラインは濾過圧の基準点を決める位置65で二つに分岐し、一方のライン67は先端で大気に開放され、他方のライン66(図面では直線的に描かれているが、実際には、浸漬型膜分離装置6を簡単に着脱できるようにホースが用いられている)は、濾過液ポンプ10に接続されている。この濾過液ポンプ10には、通常、エアリフト型のポンプが用いられる。
分岐点65と活性汚泥処理液の液面の位置との差が濾過圧力になる。活性汚泥処理液の液面は、密な点描で示した範囲17で変動し、上限水位で濾過流量は最大になる。濾過流量が0になる下限の水位が分岐点65よりも低いのは、前記のように、管状膜が持つエアリフト作用によって活性汚泥処理液の液面よりも高い位置まで活性汚泥処理液が持ち上げられるためである。
The filtrate line branches into two at a position 65 that determines the reference point of the filtration pressure, one line 67 is open to the atmosphere at the tip, and the other line 66 (drawn linearly in the drawing, actually The hose is used so that the submerged membrane separation device 6 can be easily attached and detached) is connected to the filtrate pump 10. As the filtrate pump 10, an air lift type pump is usually used.
The difference between the branch point 65 and the position of the activated sludge treatment liquid level is the filtration pressure. The liquid level of the activated sludge treatment liquid fluctuates in the range 17 shown by the dense stippling, and the filtration flow rate becomes maximum at the upper limit water level. The lower limit water level at which the filtration flow rate becomes 0 is lower than the branch point 65, as described above, the activated sludge treatment liquid is lifted to a position higher than the liquid level of the activated sludge treatment liquid by the air lift action of the tubular membrane. Because.

移送ポンプ7、散気装置64、および濾過液ポンプ10には、空気が1台のエアポンプ13から供給され、それぞれの空気流量はバルブ14と15で調整される。勿論、複数のエアポンプを使って、それぞれの空気流量を精密に制御してもよい。
オーバーフローは活性汚泥処理槽3の上限水位を超えると発生し、本発明の一例を示すリターン装置8の幹管82から枝管81を経て固液分離槽2の排水の流入口11近傍に戻される。ここで、オーバーフロー中の汚泥や濾過抵抗物質は沈殿分離されるので、活性汚泥処理槽3に移送される液はこれらをほとんど含まない。
Air is supplied from one air pump 13 to the transfer pump 7, the air diffuser 64, and the filtrate pump 10, and the respective air flow rates are adjusted by valves 14 and 15. Of course, each air flow rate may be precisely controlled using a plurality of air pumps.
The overflow occurs when the upper limit water level of the activated sludge treatment tank 3 is exceeded, and is returned from the trunk pipe 82 of the return device 8 showing an example of the present invention to the vicinity of the drainage inlet 11 of the solid-liquid separation tank 2 through the branch pipe 81. . Here, since the overflowing sludge and the filtration resistance substance are precipitated and separated, the liquid transferred to the activated sludge treatment tank 3 hardly contains them.

オーバーフローが発生する条件は、日々変化する排水の流入パターンにもよるので、正確に特定することはできないが、概ね、最大濾過流量が平均移送流量以下になったときである。最大濾過流量がさらに低下して、排水の平均流入流量以下になると、固液分離槽2の水位が粗い点描で表した変動範囲16の上限を超え、図示されてはいないが、生物処理されないまま消毒槽4へ流れ、外界に放流される。但し、前述のように、平均移送流量は排水の平均流入流量の1.5〜3倍であるから、オーバーフローが発生しても、直ちに未処理の排水が流出することにはならない。   The condition for the occurrence of overflow depends on the inflow pattern of the waste water that changes every day, and thus cannot be specified accurately, but is generally when the maximum filtration flow rate is less than the average transfer flow rate. If the maximum filtration flow rate is further reduced to below the average inflow flow rate of the wastewater, the water level in the solid-liquid separation tank 2 exceeds the upper limit of the fluctuation range 16 indicated by rough sketch, and although not shown, the biological treatment is not performed. It flows into the disinfection tank 4 and is released to the outside world. However, as described above, since the average transfer flow rate is 1.5 to 3 times the average inflow flow rate of waste water, even if an overflow occurs, untreated waste water does not immediately flow out.

幹管82と枝管81には、通常JIS規格の塩化ビニル製パイプなどが用いられる。その内径は、オーバーフローが滞りなく流れさえすればよく、5人槽でおよそ25mm、10人槽でおよそ30mm以上である。幹管82の内面にスカムが付着しやすい汚泥の場合には、枝管81よりも太くしてもよいが、定期点検等の作業の障害になるほど太くする必要はなく、およそ100mm以下が好ましい。また、製造上有利であるならば、幹管82を槽とともに成型し、枝管81を後に取り付けてもよい。   For the main pipe 82 and the branch pipe 81, pipes made of JIS standard vinyl chloride are usually used. The inner diameter of the tank is about 25 mm for a 5-person tank and about 30 mm or more for a 10-person tank. In the case of sludge in which scum is likely to adhere to the inner surface of the trunk pipe 82, it may be thicker than the branch pipe 81, but it does not need to be thick enough to obstruct work such as periodic inspection, and is preferably about 100 mm or less. Further, if it is advantageous in manufacturing, the trunk pipe 82 may be molded together with the tank, and the branch pipe 81 may be attached later.

幹管82の上端については、オーバーフローが枝管81を滞りなく流れるので、枝管81が分岐する位置から数cm伸びていればよい。一方、幹管82の下端は、濾過抵抗物質を積極的に吸着する汚泥をできるだけ含まず、濾過抵抗物質を多量に含む汚泥が選択的に固液分離槽2に戻るように、できるだけ底に近いことが望ましい。しかしながら、あまりに近いと沈着した汚泥による閉塞や流動性の低下が生じるので、現実的には底から3〜7cm程度離す必要がある。   About the upper end of the trunk pipe 82, since overflow flows through the branch pipe 81 without stagnation, it only needs to extend several cm from the position where the branch pipe 81 branches. On the other hand, the lower end of the trunk pipe 82 is as close to the bottom as possible so that the sludge that actively adsorbs the filtration resistance substance is not included as much as possible, and the sludge containing a large amount of the filtration resistance substance selectively returns to the solid-liquid separation tank 2. It is desirable. However, if it is too close, the sludge that has been deposited will be clogged and the fluidity will be lowered, so it is practically necessary to be 3 to 7 cm away from the bottom.

図2は、比較的太い幹管82内に移送液を送り、その中の汚泥を流動させることによってオーバーフローが長期間発生しないときに生じやすい汚泥やスカムの付着・成長による閉塞を防止する本発明のリターン装置の他の例である。
枝管81の先端は、オーバーフロー中の汚泥や濾過抵抗物質が再び活性汚泥処理槽3に移送されないように、移送ポンプ7のサクション管71から離れた位置に置かれている。しかし、濾材9の上にオーバーフローした汚泥などが貯まらないように、この方法においても枝管81の先端を図1ように流入口11近傍まで伸ばす方が好ましい。
FIG. 2 shows the present invention for preventing clogging due to adhesion / growth of sludge and scum that is likely to occur when an overflow does not occur for a long period of time by sending the transfer liquid into a relatively thick trunk pipe 82 and flowing the sludge therein. It is another example of the return device.
The tip of the branch pipe 81 is placed at a position away from the suction pipe 71 of the transfer pump 7 so that the sludge and the filtration resistance substance that are overflowing are not transferred to the activated sludge treatment tank 3 again. However, also in this method, it is preferable to extend the tip of the branch pipe 81 to the vicinity of the inlet 11 as shown in FIG. 1 so that the overflowing sludge or the like does not accumulate on the filter medium 9.

この方法によって汚泥やスカムによる幹管82の閉塞を簡単に防止できるが、移送液の一部も固液分離槽2に戻るために、大量のオーバーフローが長期間続くと、次第に固液分離槽2のBOD成分などの濃度が高くなり、濾過液の濃度も高くなる恐れがある。しかしながら、このような事態は現実的にはほとんど発生せず、むしろ維持管理面での効果の方がはるかに大きい。   Although this method can easily prevent the main pipe 82 from being blocked by sludge or scum, since a part of the transferred liquid also returns to the solid-liquid separation tank 2, if a large amount of overflow continues for a long period of time, the solid-liquid separation tank 2 gradually increases. There is a risk that the concentration of the BOD component and the like will increase, and the concentration of the filtrate will also increase. However, such a situation hardly occurs in reality, but rather the effect on maintenance is much greater.

BOD成分だけでなく窒素除去も目的とした膜分離型合併処理浄化槽には、槽の構成、運転方式、および処理フローに種々の組み合わせがあり、オーバーフローが異なる機能を持つ二つの槽に向かうものもある(例えば、前出の(財)日本環境整備教育センター「膜処理法を導入した小型生活排水処理装置の実用化に関する研究報告書」平成4〜平成7年度、および、矢橋 毅、他、月刊浄化槽、No. 267、33、1998、など参照)。
このような浄化槽にも本発明は適用可能であるが、その際に、本発明の目的である活性汚泥処理浄化槽におけるMLSS濃度の低下の防止もしくは抑制が効率的に行われるように、オーバーフローを二つの槽に適切に分配する工夫も必要になる。
Membrane-separated combined treatment septic tanks not only for BOD components but also for nitrogen removal have various combinations of tank configuration, operation method, and processing flow, and some are directed to two tanks with different overflow functions. Yes (for example, the above-mentioned Japan Environmental Improvement Education Center "Research Report on Practical Use of Small Wastewater Treatment Equipment Introducing Membrane Treatment Method", Heisei 1992-1995, Akira Yabashi, et al., Monthly Septic tank, No. 267, 33, 1998, etc.)
The present invention is also applicable to such a septic tank, but at that time, the overflow is reduced so that the reduction or reduction of the MLSS concentration in the activated sludge treatment septic tank, which is the object of the present invention, is efficiently performed. It is also necessary to devise proper distribution to the two tanks.

浄化槽の運転方式は、連続運転と間欠運転に大別され、いずれにも本発明を適用することが可能である。連続運転は文字通り24時間連続的に運転する方式を意味するが、間欠運転は運転と停止を周期的に繰り返す運転方式で、停止中は生活排水の流入以外の動作が停止される。図1の浄化槽では、唯一の動力源であるエアポンプ13を停止することによって生活排水の流入以外の動作がすべて停止される。
停止時間の割合が大きすぎると、濾過時間が短くなるだけでなく、曝気による膜面の洗浄効果が低下するためか、MLSS濃度によらず濾過流量の低下も早くなる。従って、本発明においても、運転時間と停止時間の比はおよそ0.7以上であることが望ましい。また、停止時間が長すぎると、一時的或いは突発的に大量の生活排水が流入したときには生物処理されずに生活排水が流出するリスクが高くなるので、凡そ60分間以内、好ましくは40分間以内に止めるべきである。
The operation method of the septic tank is roughly divided into continuous operation and intermittent operation, and the present invention can be applied to both. Although continuous operation literally means a system that operates continuously for 24 hours, intermittent operation is an operation system that periodically repeats operation and stoppage, and operations other than the inflow of domestic wastewater are stopped during the stoppage. In the septic tank of FIG. 1, all operations other than the inflow of domestic wastewater are stopped by stopping the air pump 13, which is the only power source.
If the ratio of the stop time is too large, not only will the filtration time be shortened, but the membrane surface cleaning effect by aeration will decrease, or the filtration flow rate will decrease quickly regardless of the MLSS concentration. Therefore, also in the present invention, it is desirable that the ratio between the operation time and the stop time is approximately 0.7 or more. Also, if the stop time is too long, there is a high risk that the domestic wastewater will flow out without being biologically treated if a large amount of domestic wastewater flows in temporarily or suddenly, so within 60 minutes, preferably within 40 minutes. Should stop.

連続運転に比べて、濾過時間が短いために間欠運転の濾過能力の余裕は少なく、MLSS濃度によらない何らかの原因で濾過流量が低下したときや短時間で多量の汚水が流入したときには未処理の排水が流出するリスクが高くなる。
このような突発的な事態に対して、固液分離槽2若しくは活性汚泥処理槽の水位が上限水位に達すると連続運転になり、該水位未満になると再び間欠運転に戻るようにすれば、濾過能力がフルに利用され、未処理の排水が流出するリスクは格段に低下する。公知の技術の範囲でこのような機能を付与することは容易であり、詳しい説明は不要であろう。
Compared to continuous operation, the filtration time is shorter, so there is less margin of filtration capacity for intermittent operation. When the filtration flow rate decreases for some reason not depending on the MLSS concentration, or when a large amount of sewage flows in a short time, it is untreated. The risk of drainage is increased.
For such an unexpected situation, if the water level of the solid-liquid separation tank 2 or the activated sludge treatment tank reaches the upper limit water level, the continuous operation is performed, and if the water level falls below the water level, the intermittent operation is resumed. The capacity is fully utilized and the risk of spillage of untreated wastewater is greatly reduced. It is easy to give such a function within the range of known techniques, and detailed description will not be necessary.

次に、図1の浄化槽で、集合住宅の総合家庭排水を処理した参考例と3邸の戸別住宅の生活排水を処理した実験例によって本発明をさらに具体的に説明する。
5人対象の浄化槽1と膜モジュール61の主な仕様を表1に示す。管状膜の孔径は約0.4μmである。また、濾過方式は重力濾過、運転方式は連続運転、曝気量は約140L/minである。
Next, the present invention will be described in more detail with reference examples in which the general household wastewater of the apartment house is treated in the septic tank of FIG.
Table 1 shows the main specifications of the septic tank 1 and membrane module 61 for five persons. The pore diameter of the tubular membrane is about 0.4 μm. The filtration method is gravity filtration, the operation method is continuous operation, and the amount of aeration is about 140 L / min.

Figure 0004734160
Figure 0004734160

参考例における1日あたりの排水処理量は1m3で、(財)日本建築センター「浄化槽の性能評価方法(追記・解説版)」Verl.05(2001.10.19更新)で定められたパターンで浄化槽1に流入させた。移送流量は設計最大日処理量である3m3に相当する最大2.1L/分(ただし、移送ポンプ7の流量は固液分離槽の水位によって変化し、平均で約1.5L/分であった)である。この槽にはリターン装置8は設置されていない。 The wastewater treatment amount per day in the reference example is 1 m 3 , and the septic tank has the pattern defined in the Japan Building Center “Septic tank performance evaluation method (additional commentary version)” Verl.05 (updated on October 19, 2001) 1 was allowed to flow. The transfer flow rate is 2.1 L / min, which corresponds to the design maximum daily throughput of 3 m 3 (however, the flow rate of the transfer pump 7 varies depending on the water level of the solid-liquid separation tank, and was about 1.5 L / min on average) It is. The return device 8 is not installed in this tank.

3邸の排水量は1日あたり概ね1m3で、移送流量を参考例と同様に設定した。オーバーフローが発生する条件は、日々変化する排水の流入パターンにもよるので、正確に特定することはできないが、概ね、最大濾過流量が平均移送流量以下になったときである。
リターン装置8の幹管82と枝管81は、ともに内径が約50mmのパイプからなり、幹管82の下端は底から約5cmの位置である。
はじめに、3邸ともに、リターン装置8を設置しないで試験を開始した。オーバーフローが発生しても、最大濾過流量が排水の平均流入流量以上である間は固液分離槽から生物処理されない排水は流出しなかった。
測定結果を示す図における最大濾過流量、MLSS濃度、および溶存酸素濃度(DO)の意味は次の通りである。
The amount of water discharged from the three houses was approximately 1 m 3 per day, and the transfer flow rate was set in the same way as in the reference example. The condition for the occurrence of overflow depends on the inflow pattern of the waste water that changes every day, and thus cannot be specified accurately, but is generally when the maximum filtration flow rate is less than the average transfer flow rate.
Both the trunk pipe 82 and the branch pipe 81 of the return device 8 are pipes having an inner diameter of about 50 mm, and the lower end of the trunk pipe 82 is at a position of about 5 cm from the bottom.
First, the test was started without installing the return device 8 in all three houses. Even when overflow occurred, wastewater that was not biologically treated did not flow out from the solid-liquid separation tank while the maximum filtration flow rate was higher than the average inflow rate of wastewater.
The meanings of the maximum filtration flow rate, MLSS concentration, and dissolved oxygen concentration (DO) in the graph showing the measurement results are as follows.

浸漬型膜分離装置6の濾過フラックスf〔m/d〕は、濾過圧P(図1の分岐点65から液面までの距離をkPaの単位に換算したもの)と近似的にf=a×(P+c)の関係にあり、aは透過係数〔m/d/kPa〕、cは0.5〔kPa〕の定数である。したがって、フラックスと濾過圧の測定値からこの式で計算した透過係数を使って、最大濾過流量〔L/min〕をa×(103/24/60)×4.5×膜面積(=10.9)で計算した。また、MLSS濃度とDOは、液面と浸漬型膜分離装置6のほぼ中間で採取された汚泥で測定された値である。 The filtration flux f [m / d] of the submerged membrane separator 6 is approximately equal to the filtration pressure P (the distance from the branching point 65 to the liquid level in FIG. 1 is converted to a unit of kPa) f = a × There is a relationship of (P + c), where a is a transmission coefficient [m / d / kPa] and c is a constant of 0.5 [kPa]. Therefore, using the permeation coefficient calculated by this formula from the measured values of flux and filtration pressure, the maximum filtration flow rate [L / min] is a × (10 3 /24/60)×4.5×membrane area (= 10.9). Calculated. The MLSS concentration and DO are values measured with sludge collected approximately halfway between the liquid level and the submerged membrane separator 6.

(参考例1)
この例によって、MLSS濃度および汚泥の濃度分布と濾過流量もしくは濾過抵抗物質との関係について検証する。
図3と図4に最大濾過流量、MLSS濃度、DO、および濾過液のNO3-N/TN比の約200日間に渉る変化を示す。
運転開始に先立って通常の合併処理浄化槽の汚泥が、MLSS濃度が約4000mg/Lになるように活性汚泥処理槽3に投入された。
103日目に活性汚泥処理槽3の汚泥が引き抜かれ、202日目には汚泥の引き抜きと0.6%次亜塩素酸ソーダを用いた膜の洗浄が行われた。この例では、オーバーフローは発生しなかった。
(Reference Example 1)
This example verifies the relationship between the MLSS concentration and sludge concentration distribution and the filtration flow rate or filtration resistance substance.
Figures 3 and 4 show the changes in maximum filtration flow rate, MLSS concentration, DO, and NO3-N / TN ratio of the filtrate over about 200 days.
Prior to the start of operation, the sludge from the ordinary combined treatment septic tank was charged into the activated sludge treatment tank 3 so that the MLSS concentration was about 4000 mg / L.
On the 103rd day, the sludge in the activated sludge treatment tank 3 was extracted, and on the 202th day, the sludge was extracted and the membrane was washed with 0.6% sodium hypochlorite. In this example, no overflow occurred.

はじめに、下限濃度の視点から運転開始初期を見ると、汚泥のシーディング量は十分であるにもかかわらず、濾過流量はしばらくの間低下している。この間は、NO3-N/TN比が低く、DOが高いので汚泥の活性は低い。約30日経過すると、NO3-N/TN比が立ち上がるとともに濾過流量の低下が止まり、回復が始まった。したがって、排水中の濾過抵抗物質は活性化した汚泥に吸着されることが分かる。   First, from the viewpoint of the lower limit concentration, when the operation is started, the filtration flow rate has decreased for a while even though the amount of sludge seeding is sufficient. During this time, the NO3-N / TN ratio is low and the DO is high, so the sludge activity is low. After about 30 days, the NO3-N / TN ratio rose and the filtration flow stopped decreasing and recovery started. Therefore, it turns out that the filtration resistance substance in waste_water | drain is adsorb | sucked by activated sludge.

次に、103日目の汚泥の引抜き後の変化について調べる。この作業で浄化槽の底に近い汚泥を掻き回しながら引き抜いた。引き抜かれた上層の汚泥量は少ないので、NO3/TN比の低下は僅かであるが、濾過抵抗物質が沈殿層から放出されたために、濾過流量が急に低下している。その後、しばらく安定したが、MLSS濃度が約12000mg/Lを超えると濾過流量の低下が再び始まった。同時に、MLSS濃度の増加速度が鈍化し、濾過抵抗物質を多量に含む沈殿層の割合が増え、NO3-N/TN比も低下した。   Next, the change after the extraction of sludge on the 103rd day is examined. In this work, the sludge near the bottom of the septic tank was pulled out while stirring. Since the amount of sludge in the extracted upper layer is small, the NO3 / TN ratio decreases slightly, but the filtration flow rate suddenly decreases because the filtration resistance substance is released from the sedimentation layer. After that, it stabilized for a while, but when the MLSS concentration exceeded about 12000 mg / L, the decrease in the filtration flow rate began again. At the same time, the rate of increase in MLSS concentration slowed down, the proportion of precipitated layers containing a large amount of filtration resistance substances increased, and the NO3-N / TN ratio also decreased.

活性汚泥処理槽3における汚泥の濃度分布は、槽の構造や曝気量などによって当然ながら変化し、例えば、浸漬型膜分離装置6の位置がいずれかに偏っていたり、曝気量が少ないときには大きくなる。図5は、浸漬型膜分離装置6が活性汚泥処理槽3のほぼ中央に設置された本例における代表的な濃度分布を示す。
横軸の水深は液面からの距離を意味し、破線は浄化槽の底の水深である。最も浅い測定点は浸漬型膜分離装置6から液面までのほぼ中間で、最も深い測定点は浄化槽の底から約5cm離れた浸漬型膜分離装置6の周辺3箇所である。もう一つの測定点はこれらのほぼ中間の水深にある浸漬型膜分離装置6の周辺3箇所である。図のプロットは各水深において吸引採取した汚泥のMLSS濃度の平均値である。(課題を解決するための手段)で述べた上層のMLSS濃度は、最も浅い水深における汚泥のMLSS濃度にほぼ該当する。
The concentration distribution of the sludge in the activated sludge treatment tank 3 naturally changes depending on the tank structure and the amount of aeration. For example, the sludge concentration distribution increases when the position of the submerged membrane separation device 6 is biased or the amount of aeration is small. . FIG. 5 shows a typical concentration distribution in the present example in which the submerged membrane separation device 6 is installed at substantially the center of the activated sludge treatment tank 3.
The water depth on the horizontal axis means the distance from the liquid surface, and the broken line is the water depth at the bottom of the septic tank. The shallowest measurement points are approximately in the middle from the submerged membrane separator 6 to the liquid level, and the deepest measurement points are three locations around the submerged membrane separator 6 that are about 5 cm away from the bottom of the septic tank. The other measurement points are three places around the submerged membrane separation apparatus 6 at a water depth approximately between these. The plot in the figure is the average value of MLSS concentration of sludge collected by suction at each water depth. The MLSS concentration in the upper layer described in (Means for Solving the Problems) almost corresponds to the MLSS concentration of sludge at the shallowest water depth.

図には上層の濃度が異なる三つの曲線が描かれており、すべての曲線が大きい濃度分布を示しているが、濃度が高くなるとともに下に凸から上に凸へ変化し、下層域が広がっている。また、上層と下層の濃度がともに頭打ち状態に近づいていることから、上層はよく循環しているものの、下層域は流動性の乏しい沈殿状態になっていると推定される。
図6は、すべてのサンプルのMLSS濃度とB型粘度計で測定した粘度をプロットしたものであり、この図からもMLSS濃度の上昇とともに下層の汚泥が循環し難くなることが容易に推定される。
The figure shows three curves with different concentrations in the upper layer, and all the curves show a large concentration distribution. However, as the concentration increases, the curve changes from downward to upward and the lower layer expands. ing. Further, since the concentrations of the upper layer and the lower layer are both approaching the peak state, it is presumed that the upper layer is well circulated, but the lower layer is in a precipitated state with poor fluidity.
FIG. 6 is a plot of the MLSS concentration of all the samples and the viscosity measured with a B-type viscometer. From this figure, it is easily estimated that the lower layer of sludge becomes difficult to circulate as the MLSS concentration increases. .

(実験例1)
図7と図8は、A邸における約1年間の最大濾過流量、MLSS濃度、DO、及び濾過液のNO3-N/TN比の推移を示す。
A邸では56日目から固液分離槽2と活性汚泥処理槽3の仕切り板5を越えるオーバーフローが始まり、このとき4500mg/LであったMLSS濃度が64日目には360mg/Lまで低下し、最大濾過流量も0.5L/分まで低下した。その後、次亜塩素酸ソーダ水溶液による膜洗浄や汚泥の全量入れ替えなどを行ったが、MLSS濃度の増加と濾過流量の回復は一時的で、87日目にはMLSS濃度が170mg/L、最大濾過流量は0.4L/分まで再び低下した。そのため次亜塩素酸ソーダ水溶液で再び洗浄したが、その後も似たような経過が繰り返された。
(Experimental example 1)
7 and 8 show changes in the maximum filtration flow rate, MLSS concentration, DO, and NO3-N / TN ratio of the filtrate for about one year in House A.
In House A, overflow from the partition plate 5 of the solid-liquid separation tank 2 and the activated sludge treatment tank 3 started from the 56th day, and the MLSS concentration, which was 4500 mg / L, dropped to 360 mg / L on the 64th day. The maximum filtration flow rate was also reduced to 0.5 L / min. Thereafter, membrane washing with sodium hypochlorite aqueous solution and replacement of all sludge were performed, but the increase in MLSS concentration and recovery of filtration flow rate were temporary, and on day 87, MLSS concentration was 170 mg / L, maximum filtration. The flow rate decreased again to 0.4 L / min. Therefore, it was washed again with an aqueous sodium hypochlorite solution, but a similar process was repeated thereafter.

図8矢印で示す108日目にリターン装置8を設置すると、450mg/LであったMLSS濃度の上昇が始まった。しかしながら、250日目頃まではNO3-N/TN比が低く、汚泥の活性が低い状態が続いたので濾過流量の低下が続き、しばしば未処理の排水が流出した。その後、活性化とともに濾過流量も急速に回復し、270日目頃からは最大濾過流量が1.5L/分以上になり、オーバーフローも発生しなくなった。
濾過液のBODについては、リターン装置の有無に関わり無く、希に5mg/Lを超えることはあったが、ほとんど3mg/L以下であった。
When the return device 8 was installed on the 108th day indicated by the arrow in FIG. 8, the MLSS concentration started to rise from 450 mg / L. However, until about day 250, the NO3-N / TN ratio was low and the sludge activity remained low, so the filtration flow rate continued to decline, and untreated wastewater often flowed out. After that, the filtration flow rate recovered rapidly with activation, and the maximum filtration flow rate became 1.5L / min or more from around day 270, and no overflow occurred.
The BOD of the filtrate rarely exceeded 5 mg / L, regardless of the presence or absence of the return device, but was almost 3 mg / L or less.

(実験例2)
図9と図10に示すように、B邸では35日目頃からオーバーフローが始まり、42日目にはMLSS濃度は1500mg/L、最大濾過流量は0.98L/minまで低下した。そこで45日目に汚泥を全量入れ替え、膜を次亜塩素酸ソーダ水溶液で洗浄してから再開すると、A邸と異なり、最大濾過流量は約2.5L/分でほぼ安定し、MLSS濃度も増加し続けた。
87日目にリターン装置を設置した。100日目頃から移送ポンプやエアポンプの故障が相次いで発生したために、最大濾過流量が1L/分まで低下し、オーバーフローが発生した。その時点のMLSS濃度はおよそ10000mg/Lであった。しかしながら、このようなトラブルが発生したにもかかわらずMLSS濃度が5000mg/L以下になることはなく、120日目に移送ポンプの故障を直し、エアポンプを交換した後は、濾過流量も徐々に回復し、180日目からはオーバーフローが発生しなくなった。
(Experimental example 2)
As shown in FIG. 9 and FIG. 10, overflow began at about 35 days in House B. On day 42, the MLSS concentration decreased to 1500 mg / L and the maximum filtration flow rate decreased to 0.98 L / min. Therefore, when the entire amount of sludge was replaced on the 45th day and the membrane was washed with sodium hypochlorite aqueous solution and restarted, the maximum filtration flow rate was almost stable at about 2.5L / min, and the MLSS concentration increased. Continued.
On the 87th day, a return device was installed. Since the failure of the transfer pump and air pump occurred one after another from around the 100th day, the maximum filtration flow rate dropped to 1L / min and overflow occurred. The MLSS concentration at that time was approximately 10000 mg / L. However, despite the occurrence of such trouble, the MLSS concentration never drops below 5000 mg / L. After fixing the pump failure on the 120th day and replacing the air pump, the filtration flow rate gradually recovered. From the 180th day, overflow no longer occurred.

さらに補足すると、120日目から、排水がほとんど流入しない午前1時から6時の間は運転10分間−停止50分間の間欠運転を行った。205日目には汚泥を固液分離槽2に返送し、活性汚泥処理槽3のMLSS濃度を約5000mg/Lにした。211日目には固液分離槽2の沈殿汚泥を引き抜いた。247日目からは、間欠運転条件を変更し、比較的排水量の多い午後1時から6時の間を運転30分間−停止30分間とした。
上述のように、180日目からオーバーフローを実際に確認することはできなかったが、図を詳細に見ると、200日目、250日目、310日目、および340日目頃にオーバーフローが発生したはずである。しかしながら、リターン装置の効果によって濾過流量の低下が抑制されたので、短時間かつ少量に止まり、確認できるまでには至らなかったと考えられる。
濾過液のBODについては、A邸と同様であった。
In addition, from the 120th day, intermittent operation was performed for 10 minutes from the start of 1 am to 6 pm when the waste water hardly flows, and for 50 minutes of stoppage. On the 205th day, the sludge was returned to the solid-liquid separation tank 2, and the MLSS concentration in the activated sludge treatment tank 3 was adjusted to about 5000 mg / L. On day 211, the precipitated sludge in the solid-liquid separation tank 2 was extracted. From the 247th day, the intermittent operation conditions were changed, and the period between 1 pm and 6 pm with a relatively large amount of drainage was set to 30 minutes for operation and 30 minutes for stop.
As mentioned above, it was not possible to actually confirm the overflow from the 180th day, but if you look closely at the figure, an overflow occurred around the 200th, 250th, 310th, and 340th days. Should have been. However, since the reduction of the filtration flow rate was suppressed by the effect of the return device, it was considered that the flow rate stopped in a short amount of time and could not be confirmed.
The BOD of the filtrate was the same as that of House A.

(実験例3)
C邸では114日目にリターン装置を設置したが、図11と12が示すように、MLSS濃度が約11000mg/Lを超えた120日目頃までオーバーフローは発生しなかった。その後、少量のオーバーフローの発生が繰り返されたが、リターン装置の効果によって濾過流量のさらなる低下が抑制され、MLSS濃度は再び上昇した。
168日目に少量の汚泥を返送し、次亜塩素酸ソーダ水溶液による膜洗浄ってからは、最大濾過流量はおよそ2.7L/minで安定した。
210日目に固液分離槽2の沈殿汚泥を引き抜いた。その際に沈殿汚泥をかき混ぜる操作を行ったためか、濾過流量が急に低下し、220日目頃にオーバーフローが発生した。しかしながら、リターン装置の効果によって、この場合も最大濾過流量は1L/min程度に止まり、230日目頃からは急速に回復した。
この邸では、濾過液のBODが3mg/L以上になることはなかった。
(Experimental example 3)
In house C, a return device was installed on day 114, but as shown in FIGS. 11 and 12, no overflow occurred until around day 120 when the MLSS concentration exceeded about 11000 mg / L. Thereafter, the occurrence of a small amount of overflow was repeated, but the further decrease in the filtration flow rate was suppressed by the effect of the return device, and the MLSS concentration increased again.
On day 168, a small amount of sludge was returned and the membrane was washed with an aqueous sodium hypochlorite solution, and the maximum filtration flow rate was stabilized at approximately 2.7 L / min.
On day 210, the precipitated sludge in the solid-liquid separation tank 2 was extracted. At that time, the filtration flow rate suddenly decreased due to the operation of stirring the precipitated sludge, and an overflow occurred around the 220th day. However, due to the effect of the return device, the maximum filtration flow rate was stopped at about 1 L / min in this case, and it recovered rapidly from around day 230.
In this mansion, the BOD of the filtrate never exceeded 3 mg / L.

本発明に係る浄化槽の実施の一例を示す膜分離型合併処理浄化槽の概略図。Schematic of the membrane separation type merger processing septic tank showing an example of the implementation of the septic tank according to the present invention. 浄化槽に装備するリターン装置の他の構成を示す説明図。Explanatory drawing which shows the other structure of the return apparatus with which a septic tank is equipped. 参考例の試験結果を示す線図。The diagram which shows the test result of a reference example. 参考例の試験結果を示す線図。The diagram which shows the test result of a reference example. 参考例における代表的な濃度分布を示す線図。The diagram which shows the typical density distribution in a reference example. 参考例におけるMLSS濃度と粘度の関係を示す線図。The diagram which shows the relationship between the MLSS density | concentration in a reference example, and a viscosity. 戸別住宅A邸での本発明の評価実験の結果を示す線図。The diagram which shows the result of the evaluation experiment of this invention in the door-to-door residence A residence. 戸別住宅A邸での本発明の評価実験の結果を示す線図。The diagram which shows the result of the evaluation experiment of this invention in the door-to-door residence A residence. 戸別住宅B邸での本発明の評価実験の結果を示す線図。The diagram which shows the result of the evaluation experiment of this invention in the door-to-door residence B residence. 戸別住宅B邸での本発明の評価実験の結果を示す線図。The diagram which shows the result of the evaluation experiment of this invention in the door-to-door residence B residence. 戸別住宅C邸での本発明の評価実験の結果を示す線図。The diagram which shows the result of the evaluation experiment of this invention in the door-to-door residence C residence. 戸別住宅C邸での本発明の評価実験の結果を示す線図。The diagram which shows the result of the evaluation experiment of this invention in the door-to-door residence C residence.

符号の説明Explanation of symbols

1…膜分離型合併処理浄化槽 2…固液分離槽(前処理槽)
3…活性汚泥処理槽 4…消毒槽
6…浸漬型膜分離装置 7…移送ポンプ
8…リターン装置 81…枝管
82…幹管 9…濾材
10…濾過液ポンプ 13…エアポンプ
DESCRIPTION OF SYMBOLS 1 ... Membrane separation type combined treatment septic tank 2 ... Solid-liquid separation tank (pretreatment tank)
3 ... Activated sludge treatment tank 4 ... Disinfection tank 6 ... Submerged membrane separator 7 ... Transfer pump 8 ... Return device 81 ... Branch pipe
82 ... Stem pipe 9 ... Filter material
10 ... Filtrate pump 13 ... Air pump

Claims (1)

浸漬型膜分離装置を設置した活性汚泥処理槽において、該活性汚泥処理槽の液面が所定の水位を超えたときに、該活性汚泥処理槽内に設置した下端が該活性汚泥処理槽の底近傍にある幹管と該水位の位置で該幹管から分岐した枝管からなるリターン装置を用いて、該底近傍の汚泥を活性汚泥処理槽より前段の処理槽に返送すること、及び前記前段の処理槽の液を、前記リターン装置の幹管の中へ移送することを特徴とする浄化槽。 In the activated sludge treatment tank provided with the submerged membrane separation device, when the liquid level of the activated sludge treatment tank exceeds a predetermined water level, the lower end installed in the activated sludge treatment tank is the bottom of the activated sludge treatment tank. Using a return device consisting of a trunk pipe in the vicinity and a branch pipe branched from the trunk pipe at the position of the water level, returning the sludge in the vicinity of the bottom to the treatment tank upstream from the activated sludge treatment tank ; and A septic tank characterized in that the liquid in the treatment tank is transferred into the trunk pipe of the return device .
JP2006110802A 2006-04-13 2006-04-13 Septic tank Expired - Fee Related JP4734160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006110802A JP4734160B2 (en) 2006-04-13 2006-04-13 Septic tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006110802A JP4734160B2 (en) 2006-04-13 2006-04-13 Septic tank

Publications (2)

Publication Number Publication Date
JP2007283170A JP2007283170A (en) 2007-11-01
JP4734160B2 true JP4734160B2 (en) 2011-07-27

Family

ID=38755435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006110802A Expired - Fee Related JP4734160B2 (en) 2006-04-13 2006-04-13 Septic tank

Country Status (1)

Country Link
JP (1) JP4734160B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6070443B2 (en) * 2013-06-28 2017-02-01 株式会社明電舎 Wastewater treatment method
CN106517490B (en) * 2016-11-15 2019-06-07 胡明成 A kind of external MBR sewage disposal system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5366857U (en) * 1976-11-08 1978-06-05
JPH0361993U (en) * 1989-10-17 1991-06-18
JPH04114792A (en) * 1990-09-03 1992-04-15 Kubota Corp Private sewage system
JPH08141585A (en) * 1994-10-12 1996-06-04 Kubota Corp Purifying tank
JP2000271580A (en) * 1999-03-26 2000-10-03 Matsushita Electric Works Ltd Septic tank
JP2002166137A (en) * 2000-11-29 2002-06-11 Yuasa Corp Tubular filter membrane module for submerged membrane filtration system
JP2002166138A (en) * 2000-11-29 2002-06-11 Yuasa Corp Tubular filter membrane module for submerged membrane filtration system
JP2002336854A (en) * 2001-05-18 2002-11-26 Yuasa Corp Immersion type membrane filtration apparatus for septic tank
JP2003103279A (en) * 2001-09-28 2003-04-08 Yuasa Corp Septic tank

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5366857A (en) * 1976-11-26 1978-06-14 Toyota Motor Co Ltd Jig for pipe bend work device
JPH0361993A (en) * 1989-07-28 1991-03-18 Nec Corp Method and device for inspecting liquid crystal display element

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5366857U (en) * 1976-11-08 1978-06-05
JPH0361993U (en) * 1989-10-17 1991-06-18
JPH04114792A (en) * 1990-09-03 1992-04-15 Kubota Corp Private sewage system
JPH08141585A (en) * 1994-10-12 1996-06-04 Kubota Corp Purifying tank
JP2000271580A (en) * 1999-03-26 2000-10-03 Matsushita Electric Works Ltd Septic tank
JP2002166137A (en) * 2000-11-29 2002-06-11 Yuasa Corp Tubular filter membrane module for submerged membrane filtration system
JP2002166138A (en) * 2000-11-29 2002-06-11 Yuasa Corp Tubular filter membrane module for submerged membrane filtration system
JP2002336854A (en) * 2001-05-18 2002-11-26 Yuasa Corp Immersion type membrane filtration apparatus for septic tank
JP2003103279A (en) * 2001-09-28 2003-04-08 Yuasa Corp Septic tank

Also Published As

Publication number Publication date
JP2007283170A (en) 2007-11-01

Similar Documents

Publication Publication Date Title
JP4920990B2 (en) Separation membrane cleaning method
WO2001072643A1 (en) Method and apparatus for treating waste water
CN107151053A (en) A kind of aerobic membrane module processing unit of anoxic anaerobic/anoxic
CN107473378A (en) The aerobic membrane module processing method of anoxic anaerobic/anoxic
US20190091632A1 (en) Method for operating membrane separation device, and membrane separation device
JP4734160B2 (en) Septic tank
JP6613323B2 (en) Water treatment apparatus and water treatment method
US20190160396A1 (en) Foldable and removable partition assembly for septic tank
CN209143980U (en) A kind of water-jet loom waste water treatment system
JP2004141724A (en) Solid-liquid separator and washing method therefor
CN206940544U (en) A30+MBR processing units
JP4844825B2 (en) Sewage treatment plant at satellite treatment plant
JP4892390B2 (en) Water treatment apparatus having a solid-liquid separator
WO2018051630A1 (en) Membrane-separation activated sludge treatment system
KR101415678B1 (en) Membrane separation activated sewage treatment method and treatment device
JP2002361049A (en) Apparatus for treating waste water when car is washed
RU70512U1 (en) COMPACT INSTALLATION OF BIOLOGICAL CLEANING AND DISINFECTION OF SEWAGE WATER USING MEMBRANE FILTRATION
JP4335193B2 (en) Method and apparatus for treating organic wastewater
JP3506603B2 (en) Mobile immersion type membrane separation sewage treatment equipment
KR20120005804A (en) Filtration membrane and apparatus and method for treating waste water using the same
CN202808473U (en) Membrane bioreactor capable of effectively treating sewage
CN110451659A (en) A kind of novel Round Sump MBBR-MBR reactor
JP4124957B2 (en) Filter body washing method and apparatus
JP2016117016A (en) Recovery filtration unit
KR101644966B1 (en) Controlling System and method for versatile ecological water storage and linked treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090408

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090602

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110217

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees