JPH04267986A - Flow rate change corresponding type waste water treatment apparatus - Google Patents

Flow rate change corresponding type waste water treatment apparatus

Info

Publication number
JPH04267986A
JPH04267986A JP3078708A JP7870891A JPH04267986A JP H04267986 A JPH04267986 A JP H04267986A JP 3078708 A JP3078708 A JP 3078708A JP 7870891 A JP7870891 A JP 7870891A JP H04267986 A JPH04267986 A JP H04267986A
Authority
JP
Japan
Prior art keywords
filtration
aeration tank
wastewater
filtration module
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3078708A
Other languages
Japanese (ja)
Inventor
Osamu Futamura
修 二村
Masami Kitagawa
政美 北川
Yasunari Kojima
康成 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Corp
Ebara Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Ebara Research Co Ltd filed Critical Ebara Corp
Priority to JP3078708A priority Critical patent/JPH04267986A/en
Publication of JPH04267986A publication Critical patent/JPH04267986A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE:To continue filtration with low filtering resistance over a long period of time by performing filtration without exerting effect on the operation cycle of the suction filtering and suction stop of the filter module in an aeration tank even when the inflow amount of waste water to the aeration tank changes. CONSTITUTION:A plurality of filter module groups 2a, 2b, 2c are arranged in an aeratio tank 1 and opening and closing valves 5, 6, 7 are respectively provided to the treated water outflow pipes 5, 6, 7 connected to the filter module groups and the number of the opening and closing valves opened corresponding to the inflow amount of waste water to the aeration tank 1 is adjusted and the opening order of the opening and closing valves is altered successively.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、下水、し尿、産業排水
等有機性汚濁物を含む排水を曝気槽で生物学的に処理す
るとともに、ろ過モジュールによりろ過水を取り出せる
ようにした排水処理装置に関し、特に曝気槽への排水の
流入量の変動に対応できるようにした上記の構成をもつ
排水処理装置に関する。
[Industrial Application Field] The present invention is a wastewater treatment device that biologically treats wastewater containing organic pollutants such as sewage, human waste, and industrial wastewater in an aeration tank, and also allows filtered water to be taken out using a filtration module. In particular, the present invention relates to a wastewater treatment device having the above-mentioned configuration that can cope with fluctuations in the amount of wastewater flowing into the aeration tank.

【0002】0002

【従来の技術】有機性汚濁物を含む排水を生物学的に処
理する曝気槽にろ過モジュール、特に中空糸膜モジュー
ルを投入し、処理水を曝気槽内から直接吸引ろ過する方
法は既に知られている(第21回水質汚濁学会講演集第
39頁)。この際、吸引ろ過をただ単に継続して行くと
目詰りを生じるので、吸引ろ過を5分運転、5分停止を
繰り返すサイクル運転を行うことで、長時間にわたって
中空糸膜を洗浄することなく運転することが可能であり
、その処理装置の運転管理も容易となることから、有機
性汚濁水を対象にこうした技術を適用しようとする試み
がなされている。
[Prior Art] A method is already known in which a filtration module, especially a hollow fiber membrane module, is placed in an aeration tank for biologically treating wastewater containing organic pollutants, and the treated water is directly suction-filtered from within the aeration tank. (21st Water Pollution Society Conference Proceedings, p. 39). At this time, if the suction filtration is simply continued, clogging will occur, so by running the suction filtration in a cycle of repeating 5-minute operation and 5-minute stop, the hollow fiber membrane can be operated for a long time without cleaning. Attempts have been made to apply such technology to organic polluted water because it is possible to do so and the operation and management of the treatment equipment is easy.

【0003】0003

【発明が解決しようとする課題】ろ過モジュールの吸引
を間欠的に行うことで長期間膜洗浄を行うことなく運転
できることは実験的には知られていたが、実際の排水で
吸引及び吸引停止のサイクルをどのように設定したらど
の程度の膜寿命が維持できるかについて殆ど不明であっ
た。曝気槽には通常、排水が連続的に流入しているから
、前記吸引及び吸引停止があると、曝気槽内の液量が変
化し、液面も上下し、曝気槽内の生物学的処理の条件も
変るし、吸引再開時のろ過状態に影響を及ぼす。特に排
水の流入量に変動がある場合、吸引ろ過の運転法を間違
えると数日にしてろ過抵抗が急上昇し、運転が不可能に
なることがあった。
[Problem to be solved by the invention] It has been experimentally known that the filtration module can be operated for a long period of time without membrane cleaning by performing suction intermittently. It was largely unclear how the cycle could be set and how long the membrane life could be maintained. Normally, wastewater flows into the aeration tank continuously, so when the suction and suction stop, the amount of liquid in the aeration tank changes, the liquid level rises and falls, and the biological treatment in the aeration tank changes. conditions will also change, which will affect the filtration state when suction is restarted. Particularly when there are fluctuations in the amount of inflow of wastewater, if the suction filtration operation method is incorrect, the filtration resistance will rise sharply within a few days, making operation impossible.

【0004】本発明は、こうした従来の技術の問題点を
改善、改良するためになされたものであって、排水の流
入量に変動がある場合でも長期に亘り安定して運転する
ことが可能な排水処理装置を提供しようとするものであ
る。
[0004] The present invention has been made to improve and improve the problems of the conventional technology, and is capable of stable operation over a long period of time even when there are fluctuations in the amount of inflow of wastewater. The aim is to provide a wastewater treatment device.

【0005】[0005]

【課題を解決するための手段】本発明者は、上記の問題
点を改善するため、流量に変動がある排水にろ過モジュ
ールを長期間に渡り運転して鋭意検討した結果、複数の
ろ過モジュールに対してできるだけ均一に水量負荷を与
えること、及び高水量で吸引した場合、必ず吸引停止時
間が長くなるような条件をその膜モジュールに与えるこ
とで長期的に安定な運転が可能になることを見出し、本
発明を完成したものである。
[Means for Solving the Problems] In order to improve the above-mentioned problems, the inventor of the present invention has conducted intensive studies by operating a filtration module for wastewater with fluctuations in flow rate over a long period of time, and has developed a system for using multiple filtration modules. We have discovered that long-term stable operation is possible by applying a water load as uniformly as possible to the membrane module, and by providing the membrane module with conditions that ensure a long suction stop time when suctioning at a high water volume. , has completed the present invention.

【0006】すなわち、本発明は、次に示す手段により
上記の目的を達成した。有機性汚濁物を含む排水を生物
学的に処理する曝気槽内に、ろ過機能を有するろ過モジ
ュールを少なくとも2つ以上設置してポンプ及び/又は
水位のヘッド差によりろ過する排水処理装置において、
前記ろ過モジュールを1つ又は2つ以上のろ過モジュー
ルを有する複数のろ過モジュール群に分け、各ろ過モジ
ュール群からの処理水流出管にそれぞれ開閉弁を設け、
曝気槽への排水の流入量に応じて開いた開閉弁の数を調
整すると共に、開閉弁を開ける順番を順次変更するよう
にしたことを特徴とする流量変動対応型排水処理装置。
That is, the present invention has achieved the above object by the following means. In a wastewater treatment device in which at least two or more filtration modules having a filtration function are installed in an aeration tank for biologically treating wastewater containing organic pollutants and filtered by a pump and/or a head difference in water level,
The filtration module is divided into a plurality of filtration module groups each having one or more filtration modules, and each of the treated water outflow pipes from each filtration module group is provided with an on-off valve,
A wastewater treatment device capable of responding to flow rate fluctuations, characterized in that the number of opened on-off valves is adjusted according to the amount of wastewater flowing into an aeration tank, and the order in which the on-off valves are opened is sequentially changed.

【0007】また、本発明の処理装置では、前記の開い
た開閉弁の数に応じて吸引を行うポンプの台数を制御し
、あるいはそのポンプの回転数を制御することによって
、ろ過モジュールにかかっているろ過水量の負荷をでき
るだけ均一にすることができる。
Furthermore, in the processing apparatus of the present invention, the number of pumps that perform suction is controlled according to the number of opened on-off valves, or the number of rotations of the pumps is controlled, thereby reducing the amount of water applied to the filtration module. It is possible to make the load of the amount of filtered water as uniform as possible.

【0008】さらに、排水の流入量を曝気槽内の水位レ
ベルもしくは曝気槽外に設けた堰レベルで検知すること
により、上記の制御を行うことができる。本発明で用い
るろ過モジュールとしては中空糸膜からなるものを用い
るのが好ましい。中空糸膜としてポリエチレン、ポリプ
ロピレンなどでつくられたものを用いるのが好ましく、
これをU字状として例えば5000本まとめて固定部材
で固定して、中空糸膜ろ過モジュールを形成して用いる
。このろ過モジュールの集液室を処理水流出管に連結し
、そのさいこの処理水流出管にはろ過モジュールの一つ
又はそれ以上を一つの群として連結し、この処理水流出
管に開閉弁を設け、さらにポンプを設けて、開閉弁を開
けてポンプを駆動することにより、ろ過モジュールで吸
引ろ過してろ過水を得る。この場合、ポンプによらなく
ても、水位のヘッド差によってもろ過することができる
が、そのろ過量(透過流束)は小さいので、両者を併用
する方式をとることが好ましい。
Furthermore, the above control can be performed by detecting the amount of inflow of wastewater at the water level in the aeration tank or at the level of a weir provided outside the aeration tank. As the filtration module used in the present invention, it is preferable to use one made of hollow fiber membranes. It is preferable to use a hollow fiber membrane made of polyethylene, polypropylene, etc.
For example, 5000 fibers are fixed together in a U-shape using a fixing member to form a hollow fiber membrane filtration module. The collection chamber of this filtration module is connected to a treated water outflow pipe, and one or more of the filtration modules are connected as a group to the treated water outflow pipe, and an on-off valve is installed in this treated water outflow pipe. In addition, a pump is provided, and by opening an on-off valve and driving the pump, filtered water is obtained by suction filtration with a filtration module. In this case, filtration can be performed by using a head difference in water level instead of using a pump, but since the amount of filtration (permeation flux) is small, it is preferable to use both methods in combination.

【0009】前記のろ過モジュール群は二つ以上用いる
。ろ過モジュール全体によるろ過量は排水の流入量に対
応させるのが好ましいが、前述したようにろ過モジュー
ルの吸引ろ過、吸引停止の周期は自由に変動させない方
がよいので、排水の流入量の変動に応じて開閉弁を開け
て吸引ろ過を行わせるろ過モジュール群の数を増減させ
る。また、その吸引ろ過を行っている中に吸引停止を行
うべき周期に入ったろ過モジュール群についてはポンプ
を止めて開閉弁を閉めて吸引停止とし、代りに別のろ過
モジュール群の開閉弁を開けてポンプを駆動して吸引ろ
過を行わせるようにして、開閉弁を開けておく順番を変
更することにより、処理水を連続的に得ることができる
。前記の開閉弁の開閉はコントローラを用いて自動的に
制御するのが好ましい。その制御については処理槽内に
設けた水位レベル検知装置などにより排水の流入量の変
動を検知して行うことができる。
Two or more of the above filtration module groups are used. It is preferable that the amount of filtration by the entire filtration module corresponds to the amount of inflow of wastewater, but as mentioned above, it is better not to freely change the cycle of suction filtration and suction stop of the filtration module, so the amount of filtration by the entire filtration module should correspond to the amount of inflow of wastewater. Accordingly, the number of filtration module groups for performing suction filtration is increased or decreased by opening the on-off valve. In addition, for a filtration module group that enters a cycle in which suction should be stopped while performing suction filtration, the pump is stopped and the on-off valve is closed to stop the suction, and instead, the on-off valve of another filtration module group is opened. By driving the pump to perform suction filtration and changing the order in which the on-off valves are opened, treated water can be obtained continuously. Preferably, the opening and closing of the on-off valve is automatically controlled using a controller. The control can be performed by detecting fluctuations in the amount of wastewater flowing in using a water level detection device installed in the treatment tank.

【0010】0010

【作用】曝気槽内に複数のろ過モジュールを設置して吸
引した場合、一つのろ過モジュールに汚泥が付着し、ろ
過抵抗が増加するとそのろ過モジュールのろ過量が減少
し、その分まだろ過抵抗の少ない他のろ過モジュールに
水量負荷が増加する。この際、水量負荷が増加すると表
面に付着する汚泥の圧密性も増し、長期間運転すると付
着汚泥がろ過面で固まりやすくなった。汚泥が固まると
さらにろ過抵抗が増し、それが全体のろ過モジュールに
伝搬して全体の吸引ろ過の急激なろ過抵抗の上昇をもた
らすことが見出された。一方、汚泥が付着しても吸引を
停止することで、曝気槽内の流動により付着汚泥が剥離
する事が見出されたが、圧密性の高い付着汚泥ほど剥離
に要する時間がかかることも見出された。これらの観察
結果を基に、ろ過モジュールを長期的に安定して運転す
るためには汚泥が付着し、ろ過抵抗が増加したろ過モジ
ュールの影響をできるだけ他のろ過モジュールに伝搬さ
せないこと、及び一日の吸引操作の中で、吸引停止時間
を長くするサイクルを入れることによりろ過抵抗の急激
の上昇を防ぎ、長期的に安定な運転ができるようにする
ことが好ましい。こうした運転は特に水量変動のある排
水を処理する場合、効果的な運転方法となる。
[Effect] When multiple filtration modules are installed in an aeration tank and suction is performed, if sludge adheres to one filtration module and the filtration resistance increases, the filtration amount of that filtration module decreases, and the filtration amount of that filtration module decreases. Less water load will increase on other filtration modules. At this time, as the water load increased, the compaction of the sludge adhering to the surface also increased, and during long-term operation, the adhering sludge became more likely to solidify on the filtration surface. It was found that when the sludge hardens, the filtration resistance increases further, and this propagates to the entire filtration module, resulting in a rapid increase in the filtration resistance of the entire suction filtration. On the other hand, it was found that even if sludge adhered, by stopping the suction, the adhered sludge could be peeled off due to the flow in the aeration tank, but it was also found that the more compacted the adhered sludge, the longer it took to peel off. Served. Based on these observation results, in order to operate the filtration module stably over a long period of time, it is important to prevent the effects of sludge adhesion and increased filtration resistance from propagating to other filtration modules as much as possible. During the suction operation, it is preferable to include a cycle that lengthens the suction stop time to prevent a sudden increase in filtration resistance and to enable stable operation over a long period of time. This type of operation is particularly effective when treating wastewater that fluctuates in water volume.

【0011】[0011]

【実施例】以下、実施例によって本発明の特徴と効果を
具体的に説明する。ただし、本発明はこの実施例のみに
限定されるものではない。 実施例1 図1及び図2は、本発明の一例である排水処理装置を示
したもので、図1はこの処理装置の模式的正面図を示し
、図2はその模式的平面図を示す。この処理装置では容
量4m3 の曝気槽1に中空糸膜ろ過モジュール(1膜
モジュール当り本数12000本、膜面積10m2 、
孔径0.2μm、ポリエチレン系)を9本(図2の2a
,……4c)投入し、図2に示すように3本毎に一組と
し、それぞれに処理水流出管5,6,7を接続し、各管
にそれぞれ電磁式開閉弁(以下「電磁弁」という)8,
9,10を設置し、かつその後にポンプ11,12,1
3を設置した。なお、図2では電磁弁8についてはスペ
ースの関係で(弁「8」と示した。曝気槽1内には低低
水位LL、低水位L、中水位M、高水位Hを検知できる
レベル計14を設置し、この信号を線15でコントロー
ラ16に送り、コントローラ16から各電磁弁8,9,
10に線17で、また各ポンプ11,12,13に線1
8で信号を送り、低水位では1本の電磁弁を開け、中水
位では2本、高水位では全部(3本)の電磁弁を開ける
ようにした。また低低水位では全ての電磁弁を閉じた。 ポンプは、上の電磁弁の開閉に対応して低水位で1台、
中水位で2台、高水位で3台運転したが、1台のポンプ
で回転数制御を行ってろ過水量を調整することもできる
。流入排水19は曝気槽1に入り、上記のように吸引ろ
過されて、各処理水流出管5,6,7から処理水20と
して取り出される。
[Examples] Hereinafter, the features and effects of the present invention will be specifically explained using examples. However, the present invention is not limited to this example. Example 1 FIGS. 1 and 2 show a wastewater treatment device which is an example of the present invention, with FIG. 1 showing a schematic front view of this treatment device, and FIG. 2 showing a schematic plan view thereof. In this treatment equipment, an aeration tank 1 with a capacity of 4 m3 is equipped with hollow fiber membrane filtration modules (12,000 membranes per membrane module, a membrane area of 10 m2,
Nine (2a in Figure 2)
,...4c), and as shown in Figure 2, each three pipes are made into a set, and the treated water outflow pipes 5, 6, and 7 are connected to each pipe. )8,
9, 10, and then pumps 11, 12, 1
3 was installed. In Fig. 2, the solenoid valve 8 is shown as "valve 8" due to space limitations.In the aeration tank 1, there is a level meter that can detect low water level LL, low water level L, medium water level M, and high water level H. 14 is installed, and this signal is sent to the controller 16 via a line 15, and from the controller 16 each solenoid valve 8, 9,
10 with line 17, and each pump 11, 12, 13 with line 1.
8, a signal was sent to open one solenoid valve at low water levels, two solenoid valves at medium water levels, and all (three) solenoid valves at high water levels. In addition, all solenoid valves were closed at low water levels. There is one pump at low water level, corresponding to the opening and closing of the upper solenoid valve.
Two pumps were operated at medium water level and three at high water level, but it is also possible to adjust the amount of filtered water by controlling the rotation speed with one pump. The inflow wastewater 19 enters the aeration tank 1, is suction-filtered as described above, and is taken out as treated water 20 from each treated water outflow pipe 5, 6, 7.

【0012】この処理装置を用いて、図3に示す流量変
動で、家庭下水を対象に10m3 /日の処理を行った
。 図3で横軸は一日の時刻であり、流量の増減をはっきり
させるために朝の6時を始点としている。流入量の変動
は相対流量(縦軸)で示している。
Using this treatment apparatus, domestic sewage was treated at a rate of 10 m3/day with the flow rate fluctuations shown in FIG. In FIG. 3, the horizontal axis represents the time of day, and the starting point is 6 o'clock in the morning to make it clear whether the flow rate increases or decreases. Fluctuations in inflow are shown as relative flow (vertical axis).

【0013】Run.1では低水位で開ける電磁弁を8
、中水位では8と9に固定し、長期的に運転した。Ru
n.2では最初の流量サイクルに対し、低水位で8、中
水位で8,9、高水位で8,9,10の弁を開け、次に
低水位で10、中水位で10,9、高水位で10,9,
8を開け、その次では低水位で9、中水位で9,10、
高水位9,10,8を開けと、順次開閉する弁の順番を
変更して運転した。開く電磁弁を固定したRun.1で
は運転開始後一ケ月目当りからろ過抵抗が上昇し、その
後急速に増加し運転が困難となった。これに対し、Ru
n.2では運転開始後2ケ月たってもろ過抵抗の値は低
く、安定した運転が可能であった。
Run. In 1, the solenoid valve that opens at low water level is 8.
, fixed at 8 and 9 at medium water level, and operated for a long period of time. Ru
n. 2, for the first flow cycle, open valves 8 at low water level, 8, 9 at medium water level, 8, 9, 10 at high water level, then open valves 10 at low water level, 10, 9 at medium water level, and 10 at high water level. So 10,9,
Open 8, then 9 at low water level, 9, 10 at medium water level,
The operation was performed by opening high water levels 9, 10, and 8, and changing the order in which the valves were opened and closed in sequence. Run with a fixed solenoid valve to open. In No. 1, the filtration resistance increased from the first month after the start of operation, and then rapidly increased, making operation difficult. On the other hand, Ru
n. In No. 2, the value of filtration resistance was low even after two months after the start of operation, and stable operation was possible.

【0014】なお、曝気槽1内に設けたレベル計14で
は発泡によりレベルの検知を誤動作する現象が認められ
ることもあった。そこで、流入水管渠に流入堰を設け、
そのレベルで制御したところ安定した制御が行えた。
[0014] In some cases, the level meter 14 provided in the aeration tank 1 has a phenomenon in which the level detection malfunctions due to foaming. Therefore, an inflow weir was installed in the inflow water pipe,
When controlled at that level, stable control was achieved.

【0015】[0015]

【発明の効果】本発明では、曝気槽に入る排水量に変動
があっても複数のろ過モジュール群を動作させる開閉弁
の開閉を制御することにより、各ろ過モジュールのろ過
の運転法を変えることなく、排水の流入量の変動に対応
できて、長期間ろ過抵抗が少ない状態でろ過を行うこと
ができる。
[Effects of the Invention] In the present invention, even if the amount of wastewater entering the aeration tank fluctuates, by controlling the opening and closing of the on-off valves that operate multiple filtration module groups, the filtration operation method of each filtration module does not need to be changed. , it is possible to respond to fluctuations in the amount of inflow of wastewater and perform filtration for a long period of time with little filtration resistance.

【0016】開閉弁の開閉により使用するろ過モジュー
ル群の数を変え、また開閉弁の開閉する順番を変更する
ことによりろ過モジュール群のろ過、ろ過停止の運転す
る周期に影響を与えることも少ない。さらに、低流入量
のさいには、ポンプの回転数を変えられるようにして流
入量に応じたろ過量を保持することもできる。
By changing the number of filtration module groups to be used by opening and closing the on-off valves, and by changing the order in which the on-off valves open and close, there is little effect on the cycle of filtration and filtration stop of the filtration module groups. Furthermore, when the inflow rate is low, the rotation speed of the pump can be changed to maintain the filtration rate in accordance with the inflow rate.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一例である排水処理装置の模式的正面
図を示す。
FIG. 1 shows a schematic front view of a wastewater treatment device that is an example of the present invention.

【図2】図1に示す排水処理装置の模式的平面図を示す
FIG. 2 shows a schematic plan view of the wastewater treatment device shown in FIG. 1.

【図3】実施例1における排水処理装置での流入排水の
一日の流量変動を表わすグラフを示す。
FIG. 3 shows a graph showing daily flow rate fluctuations of inflow wastewater in the wastewater treatment device in Example 1.

【符号の説明】[Explanation of symbols]

1  曝気槽 2a,3a,4a  ろ過モジュール 2c,3c  ろ過モジュール 4b,4c  ろ過モジュール 5,6,7  処理水流出管 8,9,10  電磁弁 11,12,13  ポンプ 14  レベル計 15,17,18  線 16  コントローラ 19  流入排水 20  処理水 1 Aeration tank 2a, 3a, 4a filtration module 2c, 3c filtration module 4b, 4c filtration module 5, 6, 7 Treated water outflow pipe 8,9,10 Solenoid valve 11, 12, 13 Pump 14 Level meter 15, 17, 18 lines 16 Controller 19 Inflow wastewater 20 Treated water

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  有機性汚濁物を含む排水を生物学的に
処理する曝気槽内に、ろ過機能を有するろ過モジュール
を少なくとも2つ以上設置してポンプ及び/又は水位の
ヘッド差によりろ過する排水処理装置において、前記ろ
過モジュールを1つ又は2つ以上のろ過モジュールを有
する複数のろ過モジュール群に分け、各ろ過モジュール
群からの処理水流出管にそれぞれ開閉弁を設け、曝気槽
への排水の流入量に応じて開いた開閉弁の数を調整する
と共に、開閉弁を開ける順番を順次変更するようにした
ことを特徴とする流量変動対応型排水処理装置。
Claim 1: Wastewater that is filtered using a pump and/or water level head difference by installing at least two filtration modules each having a filtration function in an aeration tank that biologically treats wastewater containing organic pollutants. In the treatment equipment, the filtration module is divided into a plurality of filtration module groups each having one or more filtration modules, and an on-off valve is provided in each of the treated water outflow pipes from each filtration module group to control drainage to the aeration tank. A wastewater treatment device that responds to flow rate fluctuations, characterized in that the number of opened on-off valves is adjusted according to the inflow amount, and the order in which the on-off valves are opened is sequentially changed.
【請求項2】  開いた開閉弁の数に応じて吸引するポ
ンプの台数を制御し、あるいはさらにそのポンプの回転
数を制御することを特徴とする請求項1記載の流量変動
対応型排水処理装置。
2. The wastewater treatment device according to claim 1, wherein the number of suction pumps is controlled according to the number of opened on-off valves, or the number of rotations of the pumps is further controlled. .
【請求項3】  流入排水量を曝気槽内の水位レベルも
しくは曝気槽外に設けた堰レベルで検知することを特徴
とする請求項1又は2に記載の流量変動対応型排水処理
装置。
3. The wastewater treatment device responsive to flow rate fluctuations according to claim 1 or 2, wherein the amount of inflowing wastewater is detected at the water level in the aeration tank or at the level of a weir provided outside the aeration tank.
【請求項4】  ろ過モジュールとして中空糸膜から構
成されたものを用いることを特徴とする請求項1ないし
請求項3のいずれか1項に記載の流量変動対応型排水処
理装置。
4. The wastewater treatment device responsive to flow rate fluctuations according to claim 1, wherein the filtration module is constructed from a hollow fiber membrane.
JP3078708A 1991-02-22 1991-02-22 Flow rate change corresponding type waste water treatment apparatus Pending JPH04267986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3078708A JPH04267986A (en) 1991-02-22 1991-02-22 Flow rate change corresponding type waste water treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3078708A JPH04267986A (en) 1991-02-22 1991-02-22 Flow rate change corresponding type waste water treatment apparatus

Publications (1)

Publication Number Publication Date
JPH04267986A true JPH04267986A (en) 1992-09-24

Family

ID=13669367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3078708A Pending JPH04267986A (en) 1991-02-22 1991-02-22 Flow rate change corresponding type waste water treatment apparatus

Country Status (1)

Country Link
JP (1) JPH04267986A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07328393A (en) * 1994-06-07 1995-12-19 Kubota Corp Membrane separator and operation method thereof
JPH11663A (en) * 1997-06-10 1999-01-06 Mitsubishi Heavy Ind Ltd Raw water treatment method and apparatus therefor
JPH1119679A (en) * 1997-06-30 1999-01-26 Sanyo Electric Co Ltd Sewage treatment device
JPH11314097A (en) * 1998-05-06 1999-11-16 Kubota Corp Operation of membrane separator
JP2007167827A (en) * 2005-12-26 2007-07-05 Mitsubishi Rayon Eng Co Ltd Apparatus for treating activated sludge
WO2016178366A1 (en) * 2015-05-07 2016-11-10 住友電気工業株式会社 Membrane separation active sludge treatment method and membrane separation active sludge treatment system
WO2017057501A1 (en) * 2015-10-01 2017-04-06 住友電気工業株式会社 Membrane-separated activated sludge treatment method and membrane-separated activated sludge treatment system
JP2017109156A (en) * 2015-12-15 2017-06-22 メタウォーター株式会社 Control method of water purification system and water purification system
JP2018034077A (en) * 2016-08-29 2018-03-08 株式会社クボタ Method for operating membrane separation device and membrane separation device
JP2019202317A (en) * 2019-08-01 2019-11-28 メタウォーター株式会社 Control method of water purification system and water purification system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07328393A (en) * 1994-06-07 1995-12-19 Kubota Corp Membrane separator and operation method thereof
JPH11663A (en) * 1997-06-10 1999-01-06 Mitsubishi Heavy Ind Ltd Raw water treatment method and apparatus therefor
JPH1119679A (en) * 1997-06-30 1999-01-26 Sanyo Electric Co Ltd Sewage treatment device
JPH11314097A (en) * 1998-05-06 1999-11-16 Kubota Corp Operation of membrane separator
JP2007167827A (en) * 2005-12-26 2007-07-05 Mitsubishi Rayon Eng Co Ltd Apparatus for treating activated sludge
CN107531529A (en) * 2015-05-07 2018-01-02 住友电气工业株式会社 Film separated activated sludge processing method and film separated activated sludge processing system
WO2016178366A1 (en) * 2015-05-07 2016-11-10 住友電気工業株式会社 Membrane separation active sludge treatment method and membrane separation active sludge treatment system
WO2017057501A1 (en) * 2015-10-01 2017-04-06 住友電気工業株式会社 Membrane-separated activated sludge treatment method and membrane-separated activated sludge treatment system
CN107922227A (en) * 2015-10-01 2018-04-17 住友电气工业株式会社 UF membrane formula activated sludge treatment method and UF membrane formula active sludge processing system
JP2017109156A (en) * 2015-12-15 2017-06-22 メタウォーター株式会社 Control method of water purification system and water purification system
JP2018034077A (en) * 2016-08-29 2018-03-08 株式会社クボタ Method for operating membrane separation device and membrane separation device
WO2018043154A1 (en) * 2016-08-29 2018-03-08 株式会社クボタ Method for operating membrane separation device, and membrane separation device
US11452971B2 (en) 2016-08-29 2022-09-27 Kubota Corporation Method for operating membrane separation device with halt process
JP2019202317A (en) * 2019-08-01 2019-11-28 メタウォーター株式会社 Control method of water purification system and water purification system

Similar Documents

Publication Publication Date Title
KR100303811B1 (en) Biological aerated filter system
JPH04267986A (en) Flow rate change corresponding type waste water treatment apparatus
JPH1015574A (en) Sewage treatment apparatus
JPH0698275B2 (en) Liquid concentrator
JP2722108B2 (en) Sewage treatment equipment with hollow fiber membrane bundle
JP2753852B2 (en) Sewage treatment method and apparatus using hollow fiber membrane
CN209906532U (en) Contain ammonia nitrogen effluent disposal system
JPH05154362A (en) Membrane filter
CN208545138U (en) The middle-size and small-size more single arrangement systems in lattice filter tank of distributing
JPH04267998A (en) Waste-water treatment apparatus respondent to flow rate alteration
JPH07251042A (en) Membrane separation apparatus
JPH10290983A (en) Operation of membrane treating device
JPH022895A (en) Waste water treating device
CN219839573U (en) Denitrification deep bed filter tank
JP2699108B2 (en) Sewage treatment method by hollow fiber membrane
KR101541654B1 (en) Alternative Driving Reverse Osmosis Membrane Filtering Apparatus and Method
CN219709332U (en) Integrated inclined plate oxidation ditch bioreactor
JPH07289813A (en) Waste water treatment device
JPH06114388A (en) Biological filtering method
JPH1147511A (en) Filtration pond and method for operation thereof
JP3106063B2 (en) Membrane separation equipment
JPH04222696A (en) Method and device for intermittently aerated biological treatment of organic waste liquid
JPH11114563A (en) Water treating device
JPH11104690A (en) Septic tank
JPH10151483A (en) Purifying tank