JP2018031920A - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
JP2018031920A
JP2018031920A JP2016165024A JP2016165024A JP2018031920A JP 2018031920 A JP2018031920 A JP 2018031920A JP 2016165024 A JP2016165024 A JP 2016165024A JP 2016165024 A JP2016165024 A JP 2016165024A JP 2018031920 A JP2018031920 A JP 2018031920A
Authority
JP
Japan
Prior art keywords
value
light source
luminance
signal
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016165024A
Other languages
English (en)
Other versions
JP6718336B2 (ja
Inventor
和彦 迫
Kazuhiko Sako
和彦 迫
冨沢 一成
Kazunari Tomizawa
一成 冨沢
勉 原田
Tsutomu Harada
勉 原田
直之 高崎
Naoyuki Takasaki
直之 高崎
多惠 黒川
Tae Kurokawa
多惠 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Display Inc
Original Assignee
Japan Display Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Display Inc filed Critical Japan Display Inc
Priority to JP2016165024A priority Critical patent/JP6718336B2/ja
Priority to US15/677,326 priority patent/US10297231B2/en
Publication of JP2018031920A publication Critical patent/JP2018031920A/ja
Application granted granted Critical
Publication of JP6718336B2 publication Critical patent/JP6718336B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/10Intensity circuits
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/90Dynamic range modification of images or parts thereof
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/342Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0452Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0271Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • G09G2320/0646Modulation of illumination source brightness and image signal correlated to each other
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/066Adjustment of display parameters for control of contrast
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/06Colour space transformation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/16Calculation or use of calculated indices related to luminance levels in display data
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3607Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals for displaying colours or for displaying grey scales with a specific pixel layout, e.g. using sub-pixels

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

【課題】任意の画像入力に対して高輝度画素の利得を増加させて表示画像のダイナミックレンジを拡大することが可能な表示装置を提供する。【解決手段】表示装置は、複数の画素48が配列され、画像を表示する画像表示パネル30と、画像の入力信号である第1信号RGBに含まれる、画素48を構成する複数の副画素の信号値に利得を乗じて第2信号rgbを生成する信号処理部20と、を備える。信号処理部20は、画素48に含まれる複数の副画素の信号値に基づき、当該画素48における輝度Yinを算出し、輝度Yinが第1の輝度閾値Yth1を超えた画素48において、副画素の信号値に乗じる利得を、当該画素48の輝度Yinに応じて大きくする。【選択図】図28

Description

本発明は、表示装置に関する。
近年、液晶表示パネルや有機エレクトロルミネッセンス発光を用いた有機ELディスプレイパネル(OLED:Organic Electro−Luminescence Display)を用いた表示装置において、表示画像のダイナミックレンジを拡大することが考えられている。例えば特許文献1には、液晶表示パネルの表示領域を複数の領域に分けて複数の光源を設け、各領域毎に光源の発光量を制御することでコントラスト比の向上を図るローカルディミング技術が開示されている。
特開2010−44389号公報
表示画像のダイナミックレンジを拡大する際、表示画像によっては、低輝度部分の輝度も上がってしまい、十分なコントラスト感が得られない可能性がある。
本態様は、任意の画像入力に対して高輝度画素の利得を増加させて表示画像のダイナミックレンジを拡大することができる表示装置を提供することを目的とする。
本発明の一態様に係る表示装置は、複数の画素が配列され、画像を表示する画像表示パネルと、前記画像の入力信号である第1信号に含まれる、前記画素を構成する複数の副画素の信号値に利得を乗じて第2信号を生成する信号処理部と、を備え、前記信号処理部は、前記画素に含まれる複数の副画素の信号値に基づき、当該画素における輝度を算出し、前記輝度が第1の輝度閾値を超えた画素において、前記副画素の信号値に乗じる利得を、当該画素の前記輝度に応じて大きくする。
図1は、実施形態に係る表示装置の構成の一例を示すブロック図である。 図2は、実施形態に係る画像表示パネルの画素配列を示す図である。 図3は、実施形態に係る導光板及びサイドライト光源の説明図である。 図4は、実施形態に係るサイドライト光源の1つの光源が作用する光の強度分布の一例を説明する説明図である。 図5は、実施形態に係るサイドライト光源の1つの光源が作用する光の強度分布の一例を説明する説明図である。 図6は、実施形態の表示装置で再現可能な再現HSV色空間の概念図である。 図7は、再現HSV色空間の色相と彩度との関係を示す概念図である。 図8は、実施形態に係る信号処理部を説明するためのブロック図である。 図9は、実施形態に係る表示装置の駆動方法のフローチャートである。 図10は、実施形態に係る輝度判定ブロックの一例を示す図である。 図11は、特定の光源から入射する入射光が導光板から画像表示パネルの平面に照射される光強度分布の情報を説明するための模式図である。 図12は、ルックアップテーブルを説明するための模式図である。 図13は、線形補間の演算を説明するための説明図である。 図14は、多項式補間の演算を説明するための説明図である。 図15は、実施形態に係る画像解析及び光源駆動値演算ステップの詳細なフローチャートである。 図16は、実施形態に係る各光源の駆動値を決定するステップを説明するフローチャートである。 図17は、実施形態に係る識別(フラグ)された輝度判定ブロックを説明するための説明図である。 図18は、実施形態に係る輝度判定ブロックのうち入光部の輝度が高い場合を説明する説明図である。 図19は、図18に示す輝度判定ブロックの実際の輝度を説明する説明図である。 図20は、実施形態に係る輝度判定ブロックのうち中央部の輝度が高い場合を説明する説明図である。 図21は、図20に示す輝度判定ブロックの実際の輝度を説明する説明図である。 図22は、図20に示す輝度判定ブロックの実際の輝度を説明する説明図である。 図23は、実施形態に係る不足輝度を補う光源点灯量の増加について説明する概念図である。 図24は、実施形態に係る識別(フラグ)された輝度判定ブロックを説明するための説明図である。 図25は、輝度判定ブロックの実際の輝度を説明する説明図である。 図26は、1つの輝度補正の対象とする輝度判定ブロックに対する各光源の影響を説明するための説明図である。 図27は、実施形態に係るルックアップテーブルの絶対座標値の一例を示す図である。 図28は、実施形態に係るトーンカーブ変換処理特性の一例を示す図である。 図29は、実施形態に係るトーンカーブ変換処理における利得特性の一例を示す図である。 図30は、実施形態に係るトーンカーブ変換処理における利得係数特性の一例を示す図である。 図31は、実施形態に係るトーンカーブ変換部の一構成例を示すブロック図である。 図32は、トーンカーブ変換処理の一例を示すフローチャートである。 図33は、第1領域における利得係数k1を1に固定(k1=1)した場合のトーンカーブ変換処理特性の一例を示す図である。 図34は、第1領域における利得係数k1を1に固定(k1=1)した場合のトーンカーブ変換処理における利得特性の一例を示す図である。 図35は、第1領域における利得係数k1を1に固定(k1=1)した場合のトーンカーブ変換処理における利得係数特性の一例を示す図である。 図36は、第1領域における基準利得Ae及び利得係数k1を1に固定(Ae=1,k1=1)した場合のトーンカーブ変換処理特性の一例を示す図である。 図37は、第1領域における基準利得Ae及び利得係数k1を1に固定(Ae=1,k1=1)した場合のトーンカーブ変換処理における利得特性の一例を示す図である。 図38は、高輝度画素比率演算部を省略した実施形態に係るトーンカーブ変換部の一構成例を示すブロック図である。 図39は、高輝度画素比率演算部を省略した構成におけるトーンカーブ変換処理特性の一例を示す図である。 図40は、高輝度画素比率演算部を省略した構成におけるトーンカーブ変換処理における利得特性の一例を示す図である。 図41は、高輝度画素比率演算部を省略した構成におけるトーンカーブ変換処理の一例を示すフローチャートである。 図42は、実施形態に係るトーンカーブ変換部への入力信号の輝度が原画像の輝度に対して所定のカーブ特性γを有している場合の原画像の輝度と第1信号の輝度との関係を示す図である。 図43は、原画像における画像表示領域が複数の領域に分割され、各分割領域において、実施形態に係るトーンカーブ変換部への入力信号の輝度が原画像の輝度に対してそれぞれ異なるカーブ特性γを有している例を示す図である。 図44Aは、実施形態に係る表示装置を赤、緑、青、白の4色の副画素で構成される液晶表示パネルに適用した一例を示す図である。 図44Bは、実施形態に係る表示装置を赤、緑、青の3色の副画素で構成される液晶表示パネルに適用した一例を示す図である。 図44Cは、実施形態に係る表示装置をOLEDに適用した一例を示す図である。 図45Aは、実施形態に係る表示装置を赤、緑、青、白の4色の副画素で構成される液晶表示パネルに適用した図44Aとは異なる一例を示す図である。 図45Bは、実施形態に係る表示装置を赤、緑、青の3色の副画素で構成される液晶表示パネルに適用した図44Bとは異なる一例を示す図である。 図45Cは、実施形態に係る表示装置をOLEDに適用した図44Cとは異なる一例を示す図である。
以下、発明を実施するための形態について、図面を参照して詳細に説明する。以下の実施形態に記載した内容により本発明が限定されるものではない。また、以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに、以下に記載した構成要素は適宜組み合わせることが可能である。なお、開示はあくまで一例にすぎず、当業者において、発明の主旨を保っての適宜変更について容易に想到し得るものについては、当然に本発明の範囲に含有されるものである。また、図面は説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して前述したものと同様の要素には、同一の符号を付して、詳細な説明を適宜省略することがある。
(実施形態)
(表示装置の構成)
図1は、実施形態に係る表示装置の構成の一例を示すブロック図である。図2は、実施形態に係る画像表示パネルの画素配列を示す図である。
図1に示すように、表示装置10は、制御装置11からの原画像の入力信号である第1信号RGB及びトーンカーブ設定値(後述)が入力され、表示装置10の各部に出力信号である第3信号RGBWを送り、動作を制御する信号処理部20と、信号処理部20から出力された第3信号RGBWに基づいて画像を表示させる画像表示パネル(表示部)30と、画像表示パネル30の駆動を制御する画像表示パネル駆動部40と、画像表示パネル30を背面から照明する面状光源装置50と、面状光源装置50の駆動を制御する面状光源装置制御部60と、を備える。制御装置11、信号処理部20、及び面状光源装置制御部60は、例えば半導体集積回路(IC)で構成される。なお、制御装置11、信号処理部20、及び面状光源装置制御部60は、1つの半導体集積回路(IC)に構成されていても良いし、それぞれが異なる半導体集積回路(IC)に構成されていても良い。制御装置11、信号処理部20、及び面状光源装置制御部60の構成により本発明が限定されるものではない。
信号処理部20は、画像表示パネル30及び面状光源装置50の動作を制御する演算処理部である。信号処理部20は、画像表示パネル30を駆動するための画像表示パネル駆動部40、及び、面状光源装置50を駆動するための面状光源装置制御部60と接続されている。信号処理部20は、制御装置11から入力される第1信号RGBを処理して第3信号RGBW及び面状光源装置制御信号BLを生成する。つまり、信号処理部20は、第1信号RGBの入力HSV色空間の入力値(第1信号)を、第1の色、第2の色、第3の色及び第4の色で再現される再現HSV色空間の再現値(第3信号)に変換して生成し、生成した第3信号RGBWを画像表示パネル30に出力する。信号処理部20は、生成した第3信号RGBWを画像表示パネル駆動部40に出力し、生成した面状光源装置制御信号BLを面状光源装置制御部60に出力する。
図1に示すように、画像表示パネル30は、画素48が、P×Q個(行方向にP個、列方向にQ個)、2次元のマトリクス状(行列状)に配列されている。図1に示す例は、XYの2次元座標系に複数の画素48がマトリクス状に配列されている例を示している。この例において、行方向がX方向、列方向はY方向である。
図2に示すように、画素48は、第1副画素49Rと、第2副画素49Gと、第3副画素49Bと、第4副画素49Wとを有する。第1副画素49Rは、第1原色(例えば、赤色)を表示する。第2副画素49Gは、第2原色(例えば、緑色)を表示する。第3副画素49Bは、第3原色(例えば、青色)を表示する。第4副画素49Wは、第4の色(具体的には白色)を表示する。このように、画像表示パネル30に行列状に配列された画素48は、第1の色を表示する第1副画素49R、第2の色を表示する第2副画素49G、第3の色を表示する第3副画素49B及び第4の色を表示する第4副画素49Wを含む。第1の色、第2の色、第3の色及び第4の色は、第1原色、第2原色、第3原色及び白色に限られず、補色など色が異なっていればよい。第4の色を表示する第4副画素49Wは、同じ光源点灯量で照射された場合、第1の色を表示する第1副画素49R、第2の色を表示する第2副画素49G、第3の色を表示する第3副画素49Bよりも明るいことが好ましい。以下の説明において、第1副画素49Rと、第2副画素49Gと、第3副画素49Bと、第4副画素49Wとをそれぞれ区別する必要がない場合、副画素49という。
表示装置10は、より具体的には、透過型のカラー液晶表示装置である。図2に示すように、画像表示パネル30は、カラー液晶表示パネルであり、第1副画素49Rと画像観察者との間に第1原色を通過させる第1カラーフィルタが配置され、第2副画素49Gと画像観察者との間に第2原色を通過させる第2カラーフィルタが配置され、第3副画素49Bと画像観察者との間に第3原色を通過させる第3カラーフィルタが配置されている。また、画像表示パネル30は、第4副画素49Wと画像観察者との間にカラーフィルタが配置されていない。この場合には、第4副画素49Wに大きな段差が生じることとなる。このため、第4副画素49Wには、カラーフィルタの代わりに透明な樹脂層が備えられていてもよい。これにより、第4副画素49Wに大きな段差が生じることを抑制することができる。
図1及び図2に示す画像表示パネル駆動部40は、本実施形態の制御部に含まれ、信号出力回路41及び走査回路42を備えている。画像表示パネル駆動部40は、信号出力回路41によって映像信号を保持し、順次、画像表示パネル30に出力する。信号出力回路41は、信号線DTLによって画像表示パネル30と電気的に接続されている。画像表示パネル駆動部40は、走査回路42によって、画像表示パネル30における副画素49を選択し、副画素49の動作(光透過率)を制御するためのスイッチング素子(例えば、薄膜トランジスタ(TFT:Thin Film Transistor))のオン及びオフを制御する。走査回路42は、走査線SCLによって画像表示パネル30と電気的に接続されている。
面状光源装置50は、画像表示パネル30の背面に配置され、画像表示パネル30に向けて光を照射することで、画像表示パネル30を照明する。図3は、実施形態に係る導光板及びサイドライト光源の説明図である。導光板54には、導光板54の両側面に、第1入射面E1、第2入射面E2を有している。面状光源装置50は、この第1入射面E1に対向する位置に、複数の光源56A、56B、56C、56D、56E及び56Fを配列した第1サイドライト光源52Aを備えている。
また、面状光源装置50は、第2入射面E2に対向する位置に、複数の光源57A、57B、57C、57D、57E及び57Fを配列した第2サイドライト光源52B、を備えている。
第1サイドライト光源52Aと、第2サイドライト光源52Bとは、複数の光源56A、56B、56C、56D、56E及び56Fと、複数の光源57A、57B、57C、57D、57E及び57Fとが、入光方向LXの中心線LXcに対して線対称となるように配置されている。
複数の光源56A、56B、56C、56D、56E、56F、57A、57B、57C、57D、57E及び57Fは、例えば、同色(例えば、白色)の発光ダイオード(LED:Light Emitting Diode)である。
複数の光源56A、56B、56C、56D、56E及び56Fは、導光板54の一側面に沿って並んでいる。光源56A、56B、56C、56D、56E及び56Fが並ぶ光源配列方向をLYとした場合、光源配列方向LYに直交する入光方向LXに沿って、導光板54の第1入射面E1へ光源56A、56B、56C、56D、56E及び56Fの入射光が入光する。
同様に、複数の光源57A、57B、57C、57D、57E及び57Fは、導光板54の他側面に沿って並んでいる。光源57A、57B、57C、57D、57E及び57Fが並ぶ光源配列方向をLYとした場合、光源配列方向LYに直交する入光方向LXに沿って、導光板54の第2入射面E2へ光源57A、57B、57C、57D、57E及び57Fの入射光が入光する。
面状光源装置制御部60は、面状光源装置50から出力する光の光量等を制御する。面状光源装置制御部60は、本実施形態の制御部に含まれる。具体的には、面状光源装置制御部60は、信号処理部20から出力される面状光源装置制御信号BLに基づいて面状光源装置50に供給する電流値を調整することで、画像表示パネル30を照射する光量(光の強度)を制御する。
面状光源装置50に供給する電流値の調整は、例えば、複数の光源56A、56B、56C、56D、56E、56F、57A、57B、57C、57D、57E及び57Fに印加する電圧あるいは電流のオンオフデューティ比(duty比)を調整することでなされる。すなわち、面状光源装置制御部60は、図3に示す複数の光源56A、56B、56C、56D、56E、56F、57A、57B、57C、57D、57E及び57Fに対して個々に印加する電圧あるいは電流のオンオフデューティ比(duty比)を独立して制御し、各光源56A、56B、56C、56D、56E、56F、57A、57B、57C、57D、57E及び57Fの照射する光の光源点灯量(光の強度)を個々に制御する、光源の分割駆動制御をすることができる。
以上説明したように、面状光源装置制御部60は、第1サイドライト光源52Aの光源毎に独立して明るさを制御し、かつ第2サイドライト光源52Bの光源毎に独立して明るさを制御する。
ここで、画像表示パネル30の表示面の全面を入光方向LXの中心線LXcを境界として仮想的に2分割した領域を、第1表示面31と第2表示面32として面状光源装置制御部60が処理する。第1表示面31は、第1サイドライト光源52Aに近い画像表示パネル30の表示面の領域である。第1表示面31には、第2サイドライト光源52Bから照射される光よりも第1サイドライト光源52Aから照射される光の方が影響を受ける。逆に、第2表示面32は、第2サイドライト光源52Bに近い画像表示パネル30の表示面の領域である。第2表示面32には、第1サイドライト光源52Aから照射される光よりも第2サイドライト光源52Bから照射される光の方が影響を受ける。
そこで、以下の説明では、第1サイドライト光源52Aの1つの光源が、図3に示す第1表示面31に対して作用する例について説明する。第1サイドライト光源52Aと、第2サイドライト光源52Bとは、複数の光源56A、56B、56C、56D、56E及び56Fと、複数の光源57A、57B、57C、57D、57E及び57Fとが、入光方向LXの中心線LXcに対して線対称となるように配置されている。このため、複数の光源56A、56B、56C、56D、56E及び56Fと、複数の光源57A、57B、57C、57D、57E及び57Fとを置き換えて説明すれば、同じ説明となるので、第2サイドライト光源52Bの1つの光源が、図3に示す第2表示面32に対して作用する例については、詳細な説明を省略することがある。
図4及び図5は、実施形態に係るサイドライト光源の1つの光源が作用する光の強度分布の一例を説明する説明図である。図4は、図3に示す光源56Aのみが点灯した場合、光源56Aから導光板54に入射する入射光が導光板54から画像表示パネル30の平面に照射される光強度分布の情報である。光源配列方向LYに直交する入光方向LXに沿って、導光板54の第1入射面E1へ光源56Aの入射光が入ると、導光板54は、画像表示パネル30を背面から照明する照明方向LZへ照射する。本実施形態において、照明方向LZは、光源配列方向LYと、入光方向LXとに直交する。
図5は、図3に示す光源56Cのみが点灯した場合、光源56Cから導光板54に入射する入射光が導光板54から画像表示パネル30の平面に照射される光強度分布の情報である。光源配列方向LYに直交する入光方向LXに沿って、導光板54の第1入射面E1へ光源56Cの入射光が入ると、導光板54は、画像表示パネル30を背面から照明する照明方向LZへ照射する。
導光板54は、光源配列方向LYにおける両端面で光の反射が生じるため、光源配列方向LYにおける両端面に近い、光源56A及び光源56Fが照射する光の強度分布と、光源56A及び光源56Fの間に配置される、例えば光源56Cが照射する光の強度分布が異なっている。このため、後述するように、本実施形態に係る面状光源装置制御部60は、図3に示す複数の光源56A、56B、56C、56D、56E及び56Fに対して個々に独立して電流又はオンオフデューティ比(duty比)を制御し、各光源56A、56B、56C、56D、56E及び56Fの光強度分布に応じて照射する光の光源点灯量(光の強度)を制御する必要がある。次に、表示装置10、より具体的には信号処理部20が実行する処理動作について説明する。
(表示装置の処理動作)
図6は、実施形態の表示装置で再現可能な再現HSV色空間の概念図である。図7は、再現HSV色空間の色相と彩度との関係を示す概念図である。図8は、実施形態に係る信号処理部を説明するためのブロック図である。図1に示すように、信号処理部20は、制御装置11から第1信号RGBが入力される。図9は、実施形態に係る表示装置の駆動方法のフローチャートである。第1信号RGBは、各画素48に対して、その位置で表示する画像(色)の情報を含んでいる。具体的には、P×Q個の画素48がマトリクス状に配置された画像表示パネル30において、第(p、q)番目の画素48(ただし、1≦p≦P、1≦q≦Q)に対して、各第1副画素49Rの信号値R(p、q)、各第2副画素49Gの信号値G(p、q)、及び各第3副画素49Bの信号値B(p、q)が含まれる第1信号RGBが信号処理部20に入力される。図8に示すように、信号処理部20は、タイミング生成部21と、画像処理部22と、画像解析部23と、光源駆動値演算部24と、光源データ記憶部25と、光源駆動値決定部26と、トーンカーブ変換部27とを含む。
図1及び図8に示す信号処理部20は、図9に示すように、第1信号RGBを検出する(ステップS11)。トーンカーブ変換部27は、第1信号RGBのトーンカーブを変換して第2信号rgbを出力する(ステップS12)。第2信号rgbは、各第1副画素49Rの信号値x1−(p、q)、各第2副画素49Gの信号値x2−(p、q)、及び各第3副画素49Bの信号値x3−(p、q)を含む。そして、タイミング生成部21は、第2信号rgbを処理することで、1フレーム毎に画像表示パネル駆動部40と、面状光源装置制御部60とのタイミングを同期する同期信号TMを画像表示パネル駆動部40及び面状光源装置制御部60へ送出する。ステップS12のトーンカーブ変換部27におけるトーンカーブ変換処理については後述する。
信号処理部20の画像処理部22は、第2信号rgbを処理することで、第1副画素49Rの表示階調を決定するための第1副画素49Rの第3信号(信号値X1−(p、q))、第2副画素49Gの表示階調を決定するための第2副画素49Gの第3信号(信号値X2−(p、q))、第3副画素49Bの表示階調を決定するための第3副画素49Bの第3信号(信号値X3−(p、q))、及び第4副画素49Wの表示階調を決定するための第4副画素49Wの第3信号(信号値X4−(p、q))を含む第3信号RGBWを生成し、画像表示パネル駆動部40に出力する表示データの演算ステップ(ステップS17)を処理する。以下、本実施形態に係る表示データの演算ステップ(ステップS17)について詳細に説明する。
表示装置10は、画素48に第4の色(白色)を出力する第4副画素49Wを備えることで、図6に示すように、HSV色空間(再現HSV色空間)における明度のダイナミックレンジを広げることができる。つまり、図6に示すように、第1副画素49R、第2副画素49G及び第3副画素49Bが表示することのできる円柱形状のHSV色空間に、彩度Sが高くなるほど明度Vの最大値が低くなる略円錐台形状となる立体が載っている形状となる。
信号処理部20の画像処理部22は、第4の色(白色)を加えることで、拡大されたHSV色空間における彩度Sを変数とした明度の最大値Vmax(S)が、信号処理部20に記憶されている。つまり、信号処理部20は、図6に示すHSV色空間の立体形状について、彩度S及び色相Hの座標(値)毎に明度の最大値Vmax(S)の値を記憶している。第2信号は、第1副画素49R、第2副画素49G及び第3副画素49Bの第2信号を有するため、第2信号のHSV色空間は、円柱形状、つまり、再現HSV色空間の円柱形状部分と同じ形状となる。
次に、信号処理部20の画像処理部22は、少なくとも第1副画素49Rの第2信号(信号値x1−(p、q))及び伸張係数αに基づいて、第1副画素49Rの第3信号(信号値X1−(p、q))を算出し、第1副画素49Rへ出力する。また、信号処理部20は、少なくとも第2副画素49Gの第2信号(信号値x2−(p、q))及び伸張係数αに基づいて第2副画素49Gの第3信号(信号値X2−(p、q))を算出し、第2副画素49Gへ出力する。また、信号処理部20は、少なくとも第3副画素49Bの第2信号(信号値x3−(p、q))及び伸張係数αに基づいて第3副画素49Bの第3信号(信号値X3−(p、q))を算出し、第3副画素49Bへ出力する。さらに、信号処理部20は、第1副画素49Rの第2信号(信号値x1−(p、q))、第2副画素49Gの第2信号(信号値x2−(p、q))及び第3副画素49Bの第2信号(信号値x3−(p、q))に基づいて第4副画素49Wの第3信号(信号値X4−(p、q))を算出し、第4副画素49Wへ出力する。
具体的には、信号処理部20の画像処理部22は、第1副画素49Rの伸張係数α及び第4副画素49Wの第3信号に基づいて第1副画素49Rの第3信号を算出し、第2副画素49Gの伸張係数α及び第4副画素49Wの第3信号に基づいて第2副画素49Gの第3信号を算出し、第3副画素49Bの伸張係数α及び第4副画素49Wの第3信号に基づいて第3副画素49Bの第3信号を算出する。
つまり、信号処理部20は、χを表示装置に依存した定数としたとき、第(p、q)番目の画素48(又は第1副画素49R、第2副画素49G及び第3副画素49Bの組)への第1副画素49Rの第3信号である信号値X1−(p、q)、第2副画素49Gの第3信号である信号値X2−(p、q)及び第3副画素49Bの第3信号である信号値X3−(p、q)を、次に示す式(1)〜式(3)から求める。
1−(p、q)=α・x1−(p、q)−χ・X4−(p、q)・・・(1)
2−(p、q)=α・x2−(p、q)−χ・X4−(p、q)・・・(2)
3−(p、q)=α・x3−(p、q)−χ・X4−(p、q)・・・(3)
信号処理部20は、第4の色を加えることで拡大されたHSV色空間における彩度Sを変数とした明度の最大値Vmax(S)を求め、複数の画素48における副画素49の第2信号値に基づき、これらの複数の画素48における彩度S及び明度V(S)を求める。
彩度S及び明度V(S)は、S=(Max−Min)/Max及びV(S)=Maxで表される。彩度Sは0から1までの値をとることができ、明度V(S)は0から(2−1)までの値をとることができる。nは、表示階調ビット数である。また、Maxは、画素48への第1副画素49Rの第2信号値、第2副画素49Gの第2信号値及び第3副画素49Bの第2信号値のうち、最大値である。Minは、画素48への第1副画素49Rの第2信号値、第2副画素49Gの第2信号値及び第3副画素49Bの第2信号値のうち、最小値である。また、色相Hは、図7に示すように0°から360°で表される。0°から360°に向かって、赤(Red)、黄色(Yellow)、緑(Green)、シアン(Cyan)、青(Blue)、マゼンタ(Magenta)、赤(Red)となる。
本実施形態において、信号値X4−(p、q)は、Min(p、q)と伸張係数αとの積に基づき求めることができる。具体的には、下記の式(4)に基づいて信号値X4−(p、q)を求めることができる。式(4)では、Min(p、q)と伸張係数αとの積をχで除しているが、これに限定するものではない。χについては後述する。
4−(p、q)=Min(p、q)・α/χ・・・(4)
一般に、第(p、q)番目の画素において、第1副画素49Rの第2信号(信号値x1−(p、q))、第2副画素49Gの第2信号(信号値x2−(p、q))及び第3副画素49Bの第2信号(信号値x3−(p、q))に基づき、円柱のHSV色空間における彩度(Saturation)S(p、q)及び明度(Brightness)V(S)(p、q)は、次の式(5)、式(6)から求めることができる。
(p、q)=(Max(p、q)−Min(p、q))/Max(p、q)・・・(5)
V(S)(p、q)=Max(p、q)・・・(6)
ここで、Max(p、q)は、(x1−(p、q)、x2−(p、q)、x3−(p、q))の3個の副画素49の第2信号値の最大値であり、Min(p、q)は、(x1−(p、q)、x2−(p、q)、x3−(p、q))3個の副画素49の第2信号値の最小値である。
白色を表示する第4副画素49Wには、カラーフィルタが配置されていない。第4の色を表示する第4副画素49Wは、同じ光源点灯量で照射された場合、第1の色を表示する第1副画素49R、第2の色を表示する第2副画素49G、第3の色を表示する第3副画素49Bよりも明るい。第1副画素49Rに第1副画素49Rの第3信号の最大信号値に相当する値を有する信号が入力され、第2副画素49Gに第2副画素49Gの第3信号の最大信号値に相当する値を有する信号が入力され、第3副画素49Bに第3副画素49Bの第3信号の最大信号値に相当する値を有する信号が入力されたときの、画素48又は画素48の群が備える第1副画素49R、第2副画素49G及び第3副画素49Bの集合体の輝度をBN1−3とする。また、画素48又は画素48の群が備える第4副画素49Wに、第4副画素49Wの第3信号の最大信号値に相当する値を有する信号が入力されたときの第4副画素49Wの輝度をBNとしたときを想定する。すなわち、第1副画素49R、第2副画素49G及び第3副画素49Bの集合体によって最大輝度の白色が表示され、この白色の輝度がBN1−3で表される。すると、χを表示装置に依存した定数としたとき、定数χは、χ=BN/BN1−3で表される。
具体的には、第1副画素49R、第2副画素49G及び第3副画素49Bの集合体に、次の表示階調の値を有する第2信号として、信号値x1−(p、q)の最大値、信号値x2−(p、q)の最大値、信号値x3−(p、q)の最大値が入力されたときにおける白色の輝度BN1−3に対して、第4副画素49Wに表示階調の最大値を有する第2信号が入力されたと仮定したときの輝度BNは、例えば、1.5倍である。すなわち、本実施形態にあっては、χ=1.5である。
ところで、信号値X4−(p、q)が、上述した式(4)で与えられる場合、明度の最大値Vmax(S)は、次の式(7)、式(8)で表すことができる。
S≦Sの場合、
Vmax(S)=(χ+1)・(2−1)・・・(7)
<S≦1の場合、
Vmax(S)=(2−1)・(1/S)・・・(8)
ここで、S=1/(χ+1)である。言い換えれば、Sは、彩度Sに対する閾値である。第2信号値の彩度SがS以下である場合、第4副画素49Rを最大限点灯した場合の明度を再現でき、第2信号値の彩度SがSより高い場合、第4副画素49Rを最大限点灯した場合の明度を再現することができなくなる。
このようにして得られた、第4の色を加えることによって拡大されたHSV色空間における彩度Sを変数とした明度の最大値Vmax(S)が、例えば、信号処理部20に一種のルックアップテ−ブルとして記憶されている。あるいは、拡大されたHSV色空間における彩度Sを変数とした明度の最大値Vmax(S)は、都度、信号処理部20において求められる。
次に、第(p、q)番目の画素48における第3信号である信号値X1−(p、q)、X2−(p、q)、X3−(p、q)、X4−(p、q)の求め方(伸張処理)を説明する。次の処理は、(第1副画素49R+第4副画素49W)によって表示される第1原色の輝度、(第2副画素49G+第4副画素49W)によって表示される第2原色の輝度、(第3副画素49B+第4副画素49W)によって表示される第3原色の輝度の比を保つように行われる。しかも、色調を保持(維持)するように行われる。さらには、階調−輝度特性(ガンマ特性、γ特性)を保持(維持)するように行われる。また、いずれかの画素48又は画素48の群において、第2信号値の全てが0である場合又は小さい場合、このような画素48又は画素48の群を含めることなく、伸張係数αを求めればよい。
(第1工程)
まず、信号処理部20は、複数の画素48における副画素49の第2信号値に基づき、これらの複数の画素48における彩度S及び明度V(S)を求める。具体的には、第(p、q)番目の画素48への第1副画素49Rの第2信号である信号値x1−(p、q)、第2副画素49Gの第2信号である信号値x2−(p、q)、第3副画素49Bの第2信号である信号値x3−(p、q)に基づき、式(7)及び式(8)からS(p、q)、V(S)(p、q)を求める。信号処理部20は、この処理を、全ての画素48に対して行う。
(第2工程)
次いで、信号処理部20は、複数の画素48において求められたVmax(S)/V(S)に基づき、次式(9)を用いて伸張係数α(S)を求める。
α(S)=Vmax(S)/V(S)・・・(9)
(第3工程)
次に、信号処理部20は、第(p、q)番目の画素48における信号値X4−(p、q)を、少なくとも、信号値x1−(p、q)、信号値x2−(p、q)及び信号値x3−(p、q)に基づいて求める。本実施形態にあっては、信号処理部20は、信号値X4−(p、q)を、Min(p、q)、伸張係数α及び定数χに基づいて決定する。より具体的には、信号処理部20は、上述したとおり、信号値X4−(p、q)を、上記の式(4)に基づいて求める。信号処理部20は、P×Q個の全画素48において信号値X4−(p、q)を求める。
(第4工程)
その後、信号処理部20は、第(p、q)番目の画素48における信号値X1−(p、q)を、信号値x1−(p、q)、伸張係数α及び信号値X4−(p、q)に基づき求め、第(p、q)番目の画素48における信号値X(p、q)を、信号値x(p、q)、伸張係数α及び信号値X4−(p、q)に基づき求め、第(p、q)番目の画素48における信号値X3−(p、q)を、信号値x3−(p、q)、伸張係数α及び信号値X4−(p、q)に基づき求める。具体的には、信号処理部20は、第(p、q)番目の画素48における信号値X1−(p、q)、信号値X2−(p、q)及び信号値X3−(p、q)を、上記の式(1)〜(3)に基づいて求める。
信号処理部20は、式(4)に示したとおり、Min(p、q)の値を伸張係数αによって伸張する。このように、Min(p、q)の値が伸張係数αによって伸張されることで、白色表示副画素(第4副画素49W)の輝度が増加するだけでなく、上記式に示すとおり、赤色表示副画素、緑色表示副画素及び青色表示副画素(それぞれ第1副画素49R、第2副画素49G及び第3副画素49Bに対応する)の輝度も増加する。このため、色のくすみが発生するといった問題を回避することができる。すなわち、Min(p、q)の値が伸張されていない場合と比較して、Min(p、q)の値が伸張係数αによって伸張されることで、画像全体として輝度はα倍となる。従って、例えば、静止画等の画像表示を高輝度で行うことができ、好適である。
図9に示すように、信号処理部20は、表示データの演算ステップ(ステップS17)を処理するとともに、第2信号rgbの画像解析を行う(ステップS13)。ここでは、画像解析部23における第2信号rgbの画像解析(ステップS13)について説明する。
画像解析部23は、第2信号rgbに基づいて、輝度判定ブロック(画像表示パネル30の表示領域を複数の分割領域に分割したブロック)毎の伸張係数αを求め、画像処理部22に出力する。ここで、輝度判定ブロックについて説明する。図10は、実施形態に係る輝度判定ブロックの一例を示す図である。
本実施形態では、複数の光源56A、56B、56C、56D、56E及び56Fに対して個々に独立してパネル輝度の制御を行う。このため、本実施形態では、画像解析部23において、輝度判定ブロック毎に、輝度判定ブロック内の画素48の第2信号値に基づく伸張係数及びその逆数が算出される。以下では、輝度判定ブロック毎の伸張係数をαと表記し、その逆数を(1/α)と表記する。
本実施形態において、輝度判定ブロック(単にブロックともいう)とは、図10に示すように、入光方向LXに順に並ぶ入光部Lin、中央部Lmid、反入光部Loutの列が光源配列方向LYに複数配列されている。入光部Lin、中央部Lmid、反入光部Loutは、画像表示パネル30の第1表示面31(図3参照)を光源配列方向LY及び入光方向LXにマトリクス状に仮想的に複数分割して得られる輝度判定ブロックである。本実施形態に係る輝度判定ブロックは、光源配列方向LYに6列、入光方向LXに3行配置されている。図10に示す入光部Lin、中央部Lmid、反入光部Loutからなる輝度判定ブロックの列の、光源配列方向LYにおける数は、光源56A、56B、56C、56D、56E及び56Fの数に対応している。図10に示す輝度判定ブロックにおいて、入光方向LXの輝度判定ブロックの数は、入光部Lin、中央部Lmid、反入光部Loutの3つである。入光方向LXの中心線LXcには、入光部Lin、中央部Lmid、反入光部Loutの順に近くなる。本実施形態では、光源配列方向LYの位置が同じ3つのブロック(入光部Lin、中央部Lmid、反入光部Lout)を1つのグループとして扱う。従って、光源配列方向LYに複数のグループが並ぶ。複数のグループのそれぞれを順次注目グループに設定して、後述する処理を行う。
画像解析部23は、各輝度判定ブロックに含まれる画素48の第2信号値に基づいて、各輝度判定ブロック内の画素48に適用される伸張係数α及び各輝度判定ブロックにおける(1/α)値を算出する。
各輝度判定ブロック内の画素48に適用される伸張係数αは、式(9)を変形した下記の式(9)’を用いて算出することができる。式(9)’において、Vmaxは、各輝度判定ブロック内における明度の最大値を示し、Vは、各輝度判定ブロック内における複数の画素48における明度を示している。
α=Vmax/V・・・(9)’
次に、後述する処理において使用されるルックアップテーブルについて説明する。図11は、特定の光源から入射する入射光が導光板から画像表示パネルの平面に照射される光強度分布の情報を説明するための模式図である。図12は、ルックアップテーブルを説明するための模式図である。本実施形態では、光源データ記憶部25は、M×Nの配列要素からなる配列データであって、各配列要素毎に、光の強度の代表値を格納したルックアップテーブル(LUT:Lookup table)を複数記憶している。ここで、Mは、光源配列方向LYの配列要素数(列数)、Nは、入光方向LXの配列要素数(行数)を示す。M×Nの配列要素は例えば、各画素48に対応した配列要素とされるが、各画素48に対応した配列要素を等間隔で間引いて記憶させることも可能である。あるいは、画像表示パネル30の平面を仮想的にM×N個に分割したときの分割領域毎の光の強度の代表値が、各ルックアップテーブルに格納される構成としてもよい。この場合、代表値は、例えば、当該分割領域内の光の強度の平均値、あるいは当該分割領域内の光の強度の中央値、あるいは当該分割領域の何れかの位置の光の強度値であってもよい。また、ここではルックアップテーブルのデータが分割領域毎の代表値である場合を説明したが、これに限定されるものではない。
本実施形態では、図3に示す画像表示パネル30の平面を仮想的にM×N個に分割したときの分割領域毎の光の強度の代表値が、各ルックアップテーブルに格納される。そして、光源毎にルックアップテーブルが光源データ記憶部25に記憶されている。例えば、図12に示すように、光源データ記憶部25には、図3に示す光源56Aのみが所定の光源点灯量で点灯した場合、光源56Aから導光板54に入射する入射光が導光板54から画像表示パネル30の平面に照射される光強度分布の情報(図4参照)をルックアップテーブルLUTAとして記憶している。また、光源データ記憶部25には、図3に示す光源56Bのみが前記所定の光源点灯量で点灯した場合、光源56Bから導光板54に入射する入射光が導光板54から画像表示パネル30の平面に照射される光強度分布の情報をルックアップテーブルLUTBとして記憶している。また、光源データ記憶部25には、図3に示す光源56Cのみが前記所定の光源点灯量で点灯した場合、光源56Cから導光板54に入射する入射光が導光板54から画像表示パネル30の平面に照射される光強度分布の情報をルックアップテーブルLUTCとして記憶している。また、光源データ記憶部25には、図3に示す光源56Dのみが前記所定の光源点灯量で点灯した場合、光源56Dから導光板54に入射する入射光が導光板54から画像表示パネル30の平面に照射される光強度分布の情報をルックアップテーブルLUTDとして記憶している。また、光源データ記憶部25には、図3に示す光源56Eのみが前記所定の光源点灯量で点灯した場合、光源56Eから導光板54に入射する入射光が導光板54から画像表示パネル30の平面に照射される光強度分布の情報をルックアップテーブルLUTEとして記憶している。また、光源データ記憶部25には、図3に示す光源56Fのみが前記所定の光源点灯量で点灯した場合、光源56Fから導光板54に入射する入射光が導光板54から画像表示パネル30の平面に照射される光強度分布の情報をルックアップテーブルLUTFとして記憶している。
本実施形態のルックアップテーブルLUTA、LUTB、LUTC、LUTD、LUTE及びLUTFは、光源56A、56B、56C、56D、56E及び56Fの1つずつに対応する。本実施形態のルックアップテーブルは、光源56A、56B、56C、56D、56E及び56Fのうち、例えば、光源56A、56Bの組、光源56C、56Dの組、光源56E、56Fの組がそれぞれ同時点灯した場合のルックアップテーブルを記憶してもよい。これにより、ルックアップテーブルの作成作業を省力化できるとともに、光源データ記憶部25の記憶容量を低減できる。その結果、光源データ記憶部25を格納する集積回路を小型化できる。
光源駆動値演算部24は、光源データ記憶部25のルックアップテーブルLUTA、LUTB、LUTC、LUTD、LUTE及びLUTFを参照し、各光源点灯量が、ブロック毎の(1/α)倍に近くなるように、ルックアップテーブルLUTA、LUTB、LUTC、LUTD、LUTE及びLUTFを重ね合わせて、光源56A、56B、56C、56D、56E及び56Fの各々の光源点灯量を演算する(ステップS14)。例えば、第(i、j)番目の、ルックアップテーブルLUTA、LUTB、LUTC、LUTD、LUTE及びLUTFを重ね合わせて得られる代表輝度(ただし、1≦i≦N、1≦j≦M)は、下記式(10)で演算できる。
Figure 2018031920
これにより、光源駆動値演算部24は、複雑な演算処理を単純なルックアップテーブルLUTA、LUTB、LUTC、LUTD、LUTE及びLUTFの参照処理で置き換えて、演算量を低減できる。
上述したように、画像表示パネル駆動部40が画像表示パネル30を表示させるには、画素48単位での輝度分布が必要となる。そこで、光源駆動値決定部26は、ステップS14で求めた光源56A、56B、56C、56D、56E及び56Fの光源点灯量と、ルックアップテーブルLUTA、LUTB、LUTC、LUTD、LUTE及びLUTFに基づいて、画素48単位の輝度分布の演算を行う(ステップS15)。画素48単位の輝度分布の演算処理は、画素48単位の輝度の情報を補間演算により演算する。これにより、画素48単位の情報は、非常に情報量が多くなるが、本実施形態では、間引いた代表値でルックアップテーブルLUTA、LUTB、LUTC、LUTD、LUTE及びLUTFを作成しているので、演算負荷を小さくできる。
画素48毎の輝度の情報は、光源配列方向LYの変化が急峻であり、入光方向LXの変化がなだらかな変化である。図13は、線形補間の演算を説明するための説明図である。図14は、多項式補間の演算を説明するための説明図である。入光方向LXの各画素48における輝度の情報は、図13に示す線形補間の処理がされ、光源配列方向LYの各画素48における輝度の情報は、図14に示す多項式補間の処理がされることで補間演算される。多項式補間は、例えば、キュービック補間である。これにより、ルックアップテーブルLUTA、LUTB、LUTC、LUTD、LUTE及びLUTFは、光源配列方向LYに少なくとも光源の光のピーク位置、光源間の位置の光の強度値が格納されていればよい。
図15は、実施形態に係る画像解析及び光源駆動値演算ステップの詳細なフローチャートである。図16は、実施形態に係る各光源の駆動値を決定するステップを説明するフローチャートである。図17は、実施形態に係る識別(フラグ)された輝度判定ブロックを説明するための説明図である。以下、図15から図17を参照して、画像解析及び光源駆動値演算ステップを説明する。
画像解析部23は、各輝度判定ブロックに含まれる第2信号値に基づいて、各輝度判定ブロックの(1/α)値を、前述したように算出する。光源駆動値演算部24は、1つのグループを注目グループに設定した後、図16に示すように、注目グループの各ブロック(入光方向LXに並ぶ各ブロック)の上記算出された(1/α)値を入力(取得)し(ステップS31)、入光部Linの(1/α)値を最大値に設定する(ステップS32)。次に、注目グループ内の中央部Lmid、すなわち、ステップS32で設定した入光部Linと光源配列方向LYにおいて同じ位置にある中央部Lmidの(1/α)値が、最大値より大きい場合(ステップS33、Yes)、中央部Lmidの(1/α)値を最大値に設定する(ステップS34)。注目グループ内の中央部Lmidの(1/α)値が、最大値以下の場合(ステップS33、No)、そのまま入光部Linの(1/α)値を最大値として、ステップS35へ処理を進める。
次に、注目グループ内の反入光部Lout、すなわち、ステップS32で設定した入光部Linと光源配列方向LYにおいて同じ位置にある反入光部Loutの(1/α)値が、最大値より大きい場合(ステップS35、Yes)、反入光部Loutの(1/α)値を最大値に設定する(ステップS36)。注目グループ内の反入光部Loutの(1/α)値が、最大値以下の場合(ステップS35、No)、最大値を変更せずに、ステップS37へ処理を進める。
光源駆動値演算部24は、最大値の(1/α)値を光源駆動値として仮設定し記憶する(ステップS37)。なお、ここでは、前述したように、各輝度判定ブロックの第2信号値に基づいて算出した各輝度判定ブロックの(1/α)値を比較し、注目グループの最大値を特定する例について説明したが、本開示はこれに限定されない。例えば、各輝度判定ブロックの第2信号値に基づいて算出した各輝度判定ブロックの(1/α)値に、ルックアップテーブルに格納された、各輝度判定ブロックに該当する位置の光強度値を乗算し、当該乗算して得られた値を比較して、グループ毎に最大値を特定するようにしてもよい。
光源駆動値を(1/αi−max)とした場合、光源駆動値演算部24は、注目グループの入光部Lin、中央部Lmid、反入光部Loutの輝度指標を下記式(11)〜(13)で算出する(ステップS38)。なお、下記式(11)、(12)、(13)のLUTm(PLin、QLin)はルックアップテーブルmのPLin行目、QLin列目のデータを表すが、PLin行目、QLin列目のデータは画素毎のデータや輝度判定ブロック毎のデータ、あるいは画像表示パネル30を仮想的に所定の領域に分割した分割領域毎のデータでもよい。LUTm(PLmid、QLmid)、及びLUTm(PLout、QLout)も同様である。
Figure 2018031920
Figure 2018031920
Figure 2018031920
光源駆動値演算部24は、ステップS38で得られた入光部Lin、中央部Lmid、反入光部Loutの輝度指標のうち、最も大きい輝度指標を特定する(ステップS39)。
次に、光源駆動値演算部24は、ステップS39で特定した輝度指標に対応する(1/α)を目標(1/α)値として記憶し、かつ注目グループ内の入光部Lin、中央部Lmid、反入光部Loutのうちの1つのブロックであって上記特定した輝度指標に対応するブロックである特定したブロックの位置を記憶する(ステップS40)。これにより、特定したブロックが、輝度補正の対象とする輝度判定ブロックとなり、識別された輝度判定ブロックの(1/α)が、当該輝度判定ブロックが属するグループの目標(1/α)値となる。以下、「輝度補正の対象とするブロック」を、単に「輝度補正対象ブロック」と呼称する場合もある。
これにより、図17に示す例では、丸(○)のフラグで識別された輝度判定ブロックが最大値に設定されている情報を示すことになる。
目標(1/α)値の決定後、図15に示すように、画像解析部23は、輝度判定ブロックのエリア判定を行う(ステップS20)。そして、注目グループを設定し、光源駆動値演算部24は、設定した注目グループにおいて輝度補正対象ブロックの(1/α)値を算出する(ステップS21)。ここで算出される(1/α)値は、上記仮設定された(或いは後述する処理により補正された)光源駆動値の各々により各光源が点灯されたと仮定したときの輝度補正対象ブロックの輝度に対応する値であって、各輝度補正対象ブロック毎(光源毎)の光源駆動値とは異なる。この(1/α)値は、光源56A、56B、56C、56D、56E及び56Fに対応するルックアップテーブルの光強度値を用いて演算できる。例えば、以下の式(14)を用いて、輝度補正対象ブロックの(1/α)値を算出する。
Figure 2018031920
上記式(14)において、(1/α)が、ステップS21における輝度補正対象ブロックの(1/α)値の算出結果を示す。LUTm(P、Q)は、ルックアップテーブルmのP行目、Q列目のデータ(光強度値)を表す。また、(1/α)は、各グループの輝度補正対象ブロックの光源駆動値(1/α)である。また、本例では、各グループは、光源56A、56B、56C、56D、56E及び56Fのいずれかに対応し、ルックアップテーブルLUTA〜LUTFは、各光源56A〜56Fに対応する。したがって、上記式(14)では、まず、各グループの輝度補正対象ブロックの光源駆動値に、各グループ(各光源)に対応するルックアップテーブルにおける当該輝度補正対象ブロックの位置(P、Q)のデータを乗算する。そして、当該乗算して得られた値の合計値を算出することにより、全ての光源からの光の影響が考慮された(1/α)値(上記式(14)では(1/α)値)を算出することができる。また、ここでは、(1/α)として、各グループの輝度補正対象ブロックの最新の(1/α)値を用いる。すなわち、後述する処理を経て注目グループの輝度補正対象ブロックの輝度補正((1/α)値の補正)がなされた後は、当該注目グループより後に輝度補正されるグループの輝度補正対象ブロックについてのステップS21の算出処理において、当該注目グループの輝度補正対象ブロックの(1/α)値として、輝度補正後の(1/α)値が用いられることになる。
次に、図15に示すように、光源駆動値演算部24は、注目グループの目標(1/α)値を取得して(ステップS22)、以下に説明する輝度補正処理(光源駆動値の補正処理)を行う。
図18から図22において、光源配列方向LYの位置が同じ入光部Lin、中央部Lmid、反入光部Loutのそれぞれの照明方向LZへの光源点灯量の大きさが模式的に表されている。光源配列方向LYの位置が同じ入光部Lin、中央部Lmid、反入光部Loutのうち、例えば、入光部Linにおける(1/α)値及び輝度指標が最大値の場合、図18に示すように、理想の光源の光源点灯量を示す曲線Uaは、図19に示す実際の光源の光源点灯量を示す曲線Ubと同じような値を示す。これは、光源から入射された光が第1入射面E1から離れるにしたがって、低減する特性を有しているからである。このため、例えば図20に示すように、光源配列方向LYの位置が同じ入光部Lin、中央部Lmid、反入光部Loutは、例えば、中央部Lmidにおける(1/α)値が最大値の場合、理想の光源の光源点灯量を示す曲線Uaは、単独の光源では、曲線Uaの輝度を確保することが難しく、図21に示す実際の光源の光源点灯量を示す曲線Ubのように、本来不要な入光部Linで輝度を増やし、入光部Linにおける(1/α)値を最大にする必要がある。従って、この場合、中央部Lmidの輝度指標が最大値となる。ここで、中央部Lmidのブロックの最も光源に近い位置の光の強度値を用いて輝度指標を算出すると、光源点灯量を示す曲線Ucのように中央部Lmid及び反入光部Loutにおける(1/α)値が不足する可能性がある。従って、輝度指標は各ブロックにおいて光源から最も遠い位置の光の強度値を用いて算出する必要がある。更に、図22のように、中央部Lmidの1/αが最も大きい場合においても、中央部Lmidが必要とされる輝度になるように光源点灯量を設定したにもかかわらず曲線Ubのような光の特性となり、反入光部Loutに必要な輝度が供給されない場合がある。この場合は曲線Ub2に示される特性になるような光源の点灯量に設定する必要があり、これを判定するのが輝度指標である。すなわちこの場合は反入光部Loutの輝度指標が最大となる。また、本実施形態に係る、第1サイドライト光源52Aは、光源56A、56B、56C、56D、56E及び56Fの分割駆動制御をすることができる。これにより、図23に示すように、光源の光源点灯量を示す曲線Udが曲線Ueに補正される。図23に示すように、光源配列方向LYの少なくとも、輝度の頂点と谷間(D0〜D4)のデータ位置及び輝度を光源配列方向LYに保持しつつ、入光方向LXには、入光部Lin、中央部Lmid、反入光部Loutのそれぞれ少なくとも1つ以上のデータを保持する。そして、図23に示す曲線Udが曲線Ueに補正されると、輝度の頂点と谷間(D0〜D4)のデータ位置及び輝度のうち、輝度の頂点D1及びD3の位置が変更される。
注目グループに含まれる輝度補正対象ブロックの上記ステップS21で算出した(1/α)値が、注目グループの上述した目標(1/α)より小さい場合(ステップS23、Yes)、算出した(1/α)値と目標(1/α)との差分を算出する(ステップS24)。次に、光源駆動値演算部24は、差分の倍率を算出する(ステップS25)。光源駆動値演算部24は、差分がその位置のルックアップテーブルの何倍に当たるか算出する。具体的には、輝度補正の対象とするブロックの光源配列方向LYにおける位置に対応する光源のルックアップテーブルから、輝度補正の対象とするブロックの位置に対応するデータを読み出す。読み出したデータを便宜上Percentageと呼称する。そして、上記算出した(1/α)値と目標(1/α)との差分Subを、Percentageで除算した値がここで算出される倍率である。本実施形態において、ルックアップテーブルLUTA〜LUTFには、光源を最大出力(100%の出力)で点灯させた場合の光強度分布が記憶されている。したがって、上記差分をルックアップテーブルの光強度値で除算すれば、100%の光強度値に対する差分の割合(倍率)が求められる。
次に、上記算出した差分の倍率を、上記第2信号に基づいて算出され、上記ステップS37において仮設定した(1/α)値に加算する(ステップS26)。すなわち、ステップS21で算出した(1/α)値がブロックの目標(1/α)値よりも小さい場合は、差分の倍率を上記仮設定した(1/α)値に加算する(ステップS26)ことで、輝度が不足しているブロックの輝度を補うことが可能となる。次に、処理をステップS27に進める。
一方、ステップS21で算出した(1/α)値が、注目グループの上述した目標(1/α)値以上の場合(ステップS23、No)、ステップS24〜S26をスキップして、処理をステップS27へ進める。次に、輝度補正対象ブロックの(1/α)値が上限値を超えている場合(ステップS27、Yes)、(1/α)値を上限値へ変更するクリッピングを行う(ステップS28)。なお、ステップS27で上限値と比較される輝度補正対象ブロックの(1/α)値は、上記ステップS23で肯定判定された場合には、上記ステップS26で補正された後の光源駆動値(1/α)であり、上記ステップS23で否定判定された場合には、仮設定のままの光源駆動値(1/α)である。また、上限値は、光源制御における光源駆動値の上限値として予め設定しておく。そして、ステップS28の後は、処理をステップS30に進める。一方、輝度補正対象ブロックの(1/α)値が上限値を超えていない場合(ステップS27、No)、ステップS28をスキップして、ステップS30に進む。全グループのスキャンが終了している場合には(ステップS30、Yes)、図15の処理を終了する。また、全グループのスキャンが終了していない場合には(ステップS30、No)、次のグループを注目グループに設定して、ステップS21に戻る。以上の処理により、ステップS37で仮設定された各ブロック毎の光源駆動値(1/α)が補正される。ただし、ステップS23及びS27で否定判定された場合には、仮設定された光源駆動値が補正されない場合もある。この場合には、仮設定された光源駆動値がそのまま光源の光源点灯量の制御に用いられる。こうして得られた各ブロック毎の(1/α)値から光源点灯量が演算される。このように演算された各輝度補正対象ブロックの(1/α)が、各光源の光源駆動値(1/α)として用いられる。そして、複数の光源56A、56B、56C、56D、56E及び56Fの各光源駆動値(1/α)が演算できる。この光源駆動値(1/α)及びルックアップテーブルを用いて、上述した式(10)に示すように代表輝度が演算される。
第2サイドライト光源52Bの複数の光源57A、57B、57C、57D、57E及び57Fのそれぞれについても同様に代表輝度が演算できる。このように、各輝度補正対象ブロックの(1/α)値が各目標(1/α)値となるように、仮設定した各(1/α)値が補正され、補正された各(1/α)値により各光源の光源点灯量が制御される。すなわち、これにより、各輝度補正対象ブロックの輝度が目標輝度を満たすように各光源の光源点灯量が制御される。
以上説明した光源駆動値の演算処理は、図17に示すように、導光板54の片側面の入射面(例えばE1)に対向する位置にのみ、サイドライト光源が設けられた表示装置にも適用可能である。また、図3に示すように、導光板54の両側面の入射面(例えばE1、E2)に対向する位置の各々に、サイドライト光源(第1サイドライト光源52A、第2サイドライト光源52B)が各々配置される表示装置にも適用可能である。この場合には、第1サイドライト光源52A、及び第2サイドライト光源52Bのうちいずれか一方のみを点灯させて画像を表示させる場合に適用できる。更に、第1サイドライト光源52A、第2サイドライト光源52Bの両方を点灯させて画像を表示させる場合にも適用可能である。しかしながら、第1表示面31は、第1サイドライト光源52Aから照射される光だけでなく第2サイドライト光源52Bから照射される光の影響も受け、第2表示面32は、第2サイドライト光源52Bから照射される光だけでなく第1サイドライト光源52Aから照射される光の影響も受ける。従って、2つのサイドライト光源の光源駆動値(1/α)をサイドライト光源毎に求めるのではなく、2つのサイドライト光源の相互の影響を考慮して光源駆動値(1/α)を演算することが好ましい。
以下の実施形態は、第1サイドライト光源52Aの各光源と、第2サイドライト光源52Bの各光源が相互に寄与する光を考慮して、各光源の光源駆動値(1/α)をより精度よく演算する例である。
図24は、本実施形態に係る識別(フラグ)された輝度判定ブロックを説明するための説明図である。ここで、第1サイドライト光源52Aの各光源と、第2サイドライト光源52Bの各光源を用いる場合のブロックの配置について説明する。画像表示パネル30の第2表示面32にも、入光部Lin、中央部Lmid、反入光部Loutが、光源配列方向LY及び入光方向LXにマトリクス状に仮想的に複数分割して設定される。画像表示パネル30の第2表示面32において、入光方向LXの中心線LXcには、入光部Lin、中央部Lmid、反入光部Loutの順に近くなる。これにより、光源配列方向LYの位置が同じ3つのブロック(入光部Lin、中央部Lmid、反入光部Lout)が入光方向LXの中心線LXcで線対称となっている。また、図24に示す第2表示面32において、入光部Lin、中央部Lmid、反入光部Loutからなる輝度判定ブロックの列の、光源配列方向LYにおける数は、光源57A、57B、57C、57D、57E及び57Fの数に対応している。
第2表示面32において、光源配列方向LYの位置が同じ3つのブロック(入光部Lin、中央部Lmid、反入光部Lout)を1つのグループとして扱う。従って、光源配列方向LYに複数のグループが並ぶ。これら第2表示面32の複数のグループは、ステップS30における全グループに含まれる。したがって、図16において、第1表示面31のグループ及び第2表示面32のグループの各々について、光源駆動値が仮設定されると共に目標(1/α)が求められ、かつ、図15においては、第1表示面31のグループのスキャンが終了していても、第2表示面32のグループのスキャンが終了していない場合には(ステップS30、No)、次のグループを注目グループに設定して、ステップS21に戻ることになる。
その結果、図24に示すように、丸(○)のフラグで識別された輝度判定ブロックが第1表示面31と第2表示面32とで独立して、設定される。例えば、図24に示す光源56Aと光源57Aとに対応する2つのグループにおいて、上述した図19に例示したように、それぞれの入光部Linの輝度が高い。図25は、輝度判定ブロックの実際の輝度を説明する説明図である。第1表示面31側の光源56Aの光源点灯量を示す曲線U56Aは、入光部Lin、中央部Lmid、反入光部Loutのそれぞれの光源点灯量差ΔLin1、ΔLmid1、ΔLout1を最小にすることが理想である。同様に、第2表示面32側の光源57Aの光源点灯量を示す曲線U57Aは、入光部Lin、中央部Lmid、反入光部Loutのそれぞれの光源点灯量差ΔLin2、ΔLmid2、ΔLout2を最小にすることが理想である。しかしながら、光源56Aが理想的な曲線U56Aとなるように点灯したとしても、対向する光源57Aからの光が第1表示面31に影響してしまう可能性がある。同様に、光源57Aが理想的な曲線U57Aとなるように点灯したとしても、対向する光源56Aからの光が第2表示面32に影響してしまう可能性がある。例えば図25に示すように、意図しない光源点灯量差ΔLXcを低減するために、光源56Aの光源駆動値(1/α)は、光源56B、56C、56D、56E及び56Fのみならず、光源57A、57B、57C、57D、57E及び57Fの影響も考慮して設定する必要がある。
そこで、本実施形態では、以下のように処理する。まず、画像解析部23は、各輝度判定ブロックに含まれる第2信号値に基づいて、各輝度判定ブロックの(1/α)値を、前述したように算出する。光源駆動値演算部24は、1つのグループを注目グループに設定した後、図16に示すように、注目グループの各ブロック(入光方向LXに並ぶ各ブロック)の上記算出された(1/α)値を入力(取得)し(ステップS31)、入光部Linの(1/α)値を最大値に設定する(ステップS32)。次に、注目グループ内の中央部Lmid、すなわち、ステップS32で設定した入光部Linと光源配列方向LYにおいて同じ位置にある中央部Lmidの(1/α)値が、最大値より大きい場合(ステップS33、Yes)、中央部Lmidの(1/α)値を最大値に設定する(ステップS34)。注目グループ内の中央部Lmidの(1/α)値が、最大値以下の場合(ステップS33、No)、そのまま入光部Linの(1/α)値を最大値として、ステップS35へ処理を進める。
次に、注目グループ内の反入光部Lout、すなわち、ステップS32で設定した入光部Linと光源配列方向LYにおいて同じ位置にある反入光部Loutの(1/α)値が、最大値より大きい場合(ステップS35、Yes)、反入光部Loutの(1/α)値を最大値に設定する(ステップS36)。注目グループ内の反入光部Loutの(1/α)値が、最大値以下の場合(ステップS35、No)、最大値を変更せずに、ステップS37へ処理を進める。
光源駆動値演算部24は、最大値の(1/α)値を光源駆動値として仮設定し記憶する(ステップS37)。このように、第1サイドライト光源52A及び第2サイドライト光源52Bを用いる本例においても、各輝度判定ブロックの第2信号値に基づいて算出した各輝度判定ブロックの(1/α)値を比較し、グループ毎に最大値を特定する。しかしながら、本開示はこれに限定されない。例えば、各輝度判定ブロックの第2信号値に基づいて算出した各輝度判定ブロックの(1/α)値に、ルックアップテーブルに格納された、各輝度判定ブロックに該当する位置の光強度値を乗算し、当該乗算して得られた値を比較して、グループ毎に最大値を特定するようにしてもよい。
第1サイドライト光源52Aのそれぞれの光源の光源駆動値を(1/αi1−max)とし、第2サイドライト光源52Bのそれぞれの光源の光源駆動値を(1/αi2−max)として、光源駆動値演算部24が注目グループの入光部Lin、中央部Lmid、反入光部Loutの輝度指標を上記式(11)〜(13)で算出する(ステップS38)。ここでは、第1サイドライト光源52Aの光源56A〜56F、及び第2サイドライト光源52Bの光源57A〜57Fの各々に対応するルックアップテーブルLUTA、LUTB、LUTC、LUTD、LUTE、LUTF、LUTG、LUTH、LUTI、LUTJ、LUTK、LUTLが予め記憶されているものとする。したがって、本例では、ルックアップテーブルを示すLUTmのmは、A〜Fまでの値ではなく、A〜Lまでの値をとる。これにより、第1サイドライト光源52A及び第2サイドライト光源52Bの各光源からの光の寄与度が反映された輝度指標を算出することができる。なお、下記式のLUTm(PLin、QLin)はルックアップテーブルmのPLin行目、QLin列目のデータを表すが、PLin行目、QLin列目のデータは画素48毎のデータや輝度判定ブロック毎のデータ、あるいは画像表示パネル30を仮想的に所定の領域に分割した分割領域毎のデータでもよい。LUTm(PLmid、QLmid)、及びLUTm(PLout、QLout)も同様である。なお、本例では(PLin、QLin)は、各ルックアップテーブルに共通の絶対座標系で表した座標値を示す。
なお、本開示は、上述したように、光源毎にルックアップテーブルを設ける例に限定されない。例えば、第1サイドライト光源52A、第2サイドライト光源52Bのいずれか一方の光源に対応するルックアップテーブルのみ設けるようにしてもよい。第2入射面E2側の光源の1つのみが点灯して、この光源から入射する入射光が導光板54から画像表示パネル30の平面に照射される場合のルックアップテーブルの光強度分布の情報は、点灯した光源の入光方向LXの中心線LXcに対して線対称の第1入射面E1側の光源のルックアップテーブルの光強度分布の情報と同じとなる。上述したように、本実施形態のルックアップテーブルLUTA、LUTB、LUTC、LUTD、LUTE及びLUTFは、光源56A、56B、56C、56D、56E及び56Fの1つずつに対応する。光源データ記憶部25がルックアップテーブルLUTA、LUTB、LUTC、LUTD、LUTE及びLUTFを記憶していれば、光源駆動値演算部24は、第1サイドライト光源52Aだけでなく、第2サイドライト光源52Bに対しても、光源データ記憶部25のルックアップテーブルLUTA、LUTB、LUTC、LUTD、LUTE及びLUTFを用いて各光源の光源点灯量を演算できる。より具体的には、ルックアップテーブルLUTA、LUTB、LUTC、LUTD、LUTE及びLUTFを中心線LXcに対して線対称に反転した上で重ね合わせて、光源57A、57B、57C、57D、57E及び57Fの光源点灯量を演算することができる。この場合には、上記式(11)、(12)、及び(13)の代わりに、下記式(15−1)、(16−1)、及び(17−1)を用いて輝度指標を算出することができる。
Figure 2018031920
Figure 2018031920
Figure 2018031920
上記式(15−1)、(16−1)、及び(17−1)では、第1サイドライト光源側の光源を点灯したときの光強度分布を示すルックアップテーブルを、第2サイドライト光源52B側の光源を点灯したときの光強度分布を示すルックアップテーブルとしても用いるため、座標変換が行われる。以下、図27を用い、この座標変換について説明する。なお、上記数式では、座標値を(PLin、QLin)、(PLmid、QLmid)、及び (PLout、QLout)のように入光方向LXにおける位置に応じて区別して表したが、座標変換の概念は入光方向によらず共通であるため、以下では、座標値を単に(P、Q)と表して説明する。
ルックアップテーブルmのP行目、Q行目のデータを示すLUTm(P、Q)のPは、光源配列方向LYにおける位置を示し、Qは、入光方向LXにおける位置を示す。また、Pが、0からMAXPの値をとり、Qが、0からMAXQの値をとるものする。この場合、ルックアップテーブルmの配列要素のうち第2サイドライト光源52B側の一方の隅部の配列要素の座標値を(P、Q)=(0、0)と仮定すると、他方の隅部の配列要素の座標値は、(MAXP、0)と表すことができる。さらにまた、第1サイドライト光源52A側の一方の隅部の配列要素の座標値は、(0、MAXQ)と表すことができ、他方の隅部の配列要素の座標値は、(MAXP、MAXQ)と表すことができる。ここで、ルックアップテーブルLUTA、LUTB、LUTC、LUTD、LUTE及びLUTFを中心線LXcに対して反転して用いる場合において、ルックアップテーブルLUTA、LUTB、LUTC、LUTD、LUTE及びLUTF上の絶対座標値が(P、Q)で示される場合には、各ルックアップテーブルLUTA、LUTB、LUTC、LUTD、LUTE及びLUTFから、座標値(P、MAXQ−Q)のデータを読み出して用いる(座標変換)。式(15−1)、(16−1)、及び(17−1)において、当該読み出して用いるデータが、LUTm(P、MAXQ−Q)で表されている。このように、ルックアップテーブルLUTA、LUTB、LUTC、LUTD、LUTE及びLUTFから、中心線LXcに対して処理対象のブロックと線対称の位置にあるデータを読み出すことで、ルックアップテーブルLUTA、LUTB、LUTC、LUTD、LUTE及びLUTFを中心線LXcに対して反転して用いることができる。
光源駆動値演算部24は、ステップS38で得られた入光部Lin、中央部Lmid、反入光部Loutの輝度指標のうち、最も大きい輝度指標を特定する(ステップS39)。
次に、光源駆動値演算部24は、ステップS39で特定した輝度指標に対応する(1/α)を目標(1/α)値として記憶し、かつ注目グループ内の入光部Lin、中央部Lmid、反入光部Loutのうちの1つのブロックであって上記特定した輝度指標に対応するブロックである特定したブロックの位置を記憶する(ステップS40)。これにより、特定したブロックが、輝度補正の対象とする輝度判定ブロックとなり、識別された輝度判定ブロックの(1/α)が、当該輝度判定ブロックが属するグループの目標(1/α)値となる。
これにより、図24に示す例では、丸(○)のフラグで識別された輝度判定ブロックが最大値に設定されている情報を示すことになる。
目標(1/α)値の決定後、図15に示すように、画像解析部23は、輝度判定ブロックのエリア判定を行う(ステップS20)。そして、注目グループを設定し、光源駆動値演算部24は、設定した注目グループにおいて輝度補正対象ブロックの(1/α)値を算出する(ステップS21)。ここで算出される(1/α)値は、上記仮設定された(或いは後述する処理により補正された)光源駆動値の各々により各光源が点灯されたと仮定したときの輝度補正対象ブロックの輝度に対応する値であって、各輝度補正対象ブロック毎(光源毎)の光源駆動値とは異なる。この(1/α)値は、第1サイドライト光源52A及び第2サイドライト光源52Bの各光源に対応するLUTの光強度値を用いて演算できる。ここで、第1サイドライト光源52Aの光源56A〜56F、及び第2サイドライト光源52Bの光源57A〜57Fの各々に対応するルックアップテーブルLUTA、LUTB、LUTC、LUTD、LUTE、LUTF、LUTG、LUTH、LUTI、LUTJ、LUTK、LUTLが予め記憶されている場合には、上記式(14)を用いて、輝度補正対象ブロックの(1/α)値を算出する。ただし、この場合には、ルックアップテーブルを示すLUTmのmは、A〜Fまでの値ではなく、A〜Lまでの値をとる。これにより、全ての光源からの光の影響が考慮された(1/α)値(上記式(14)では(1/α)値)を算出することができる。また、ここでも、上述した式(14)と同様に、(1/α)として、各グループの輝度補正対象ブロックの最新の(1/α)値を用いる。すなわち、後述する処理を経て注目グループの輝度補正対象ブロックの輝度補正((1/α)値の調整)がなされた後は、当該注目グループより後に輝度補正されるグループの輝度補正対象ブロックについてのステップS21の算出処理において、当該注目グループの輝度補正対象ブロックの(1/α)値として、輝度補正後の(1/α)値が用いられることになる。
なお、上述したように、第1サイドライト光源52A側の光源を点灯したときの光強度分布を示すルックアップテーブルを設け、第2サイドライト光源52B側の光源を点灯したときの光強度分布を示すルックアップテーブルは設けないようにしてもよい。この場合には、第1サイドライト光源52A側の光源を点灯したときの光強度分布を示すルックアップテーブルを、第2サイドライト光源52B側の光源を点灯したときの光強度分布を示すルックアップテーブルとしても用いるため、ステップS21では、上記式(14)の代わりに、下記式(18−1)を用いて、輝度補正対象ブロックの(1/α)値を算出する。
Figure 2018031920
上記式(18−1)においても、式(15−1)、(16−1)、及び(17−1)と同様の座標変換が行われる。すなわち、第1サイドライト光源52A側の光源を点灯したときの光強度分布を示すルックアップテーブルを、第2サイドライト光源52B側の光源を点灯したときの光強度分布を示すルックアップテーブルとしても用いる場合において、処理対象のブロックのルックアップテーブル上の絶対座標値が(P、Q)で示される場合には、処理対象のブロックの光源配列方向LYにおける位置に対応するルックアップテーブルから、座標値(P、MAXQ−Q)のデータを読み出して用いる(座標変換)。式(18−1)において、当該読み出して用いるデータは、LUTm(P、MAXQ−Q)で表されている。このように、ルックアップテーブルLUTA、LUTB、LUTC、LUTD、LUTE及びLUTFから、中心線LXcに対して処理対象のブロックと線対称の位置にあるデータを読み出すことで、ルックアップテーブルLUTA、LUTB、LUTC、LUTD、LUTE及びLUTFを中心線LXcに対して反転して用いることができる。
次に、図15に示すように、光源駆動値演算部24は、注目グループの目標(1/α)値を取得して(ステップS22)、以下に説明する輝度補正処理(光源駆動値の補正処理)を行う。
注目グループに含まれる輝度補正対象ブロックの上記ステップS21で算出した(1/α)値が、注目グループの上述した目標(1/α)より小さい場合(ステップS23、Yes)、算出した(1/α)値と目標(1/α)との差分を算出する(ステップS24)。次に、光源駆動値演算部24は、差分の倍率を計算する(ステップS25)。光源駆動値演算部24は、差分がその位置のルックアップテーブルの何倍に当たるか算出する。具体的には、輝度補正対象ブロックの光源配列方向LYにおける位置に対応する光源のルックアップテーブルから、輝度補正対象ブロックの位置に対応するデータを読み出す。読み出したデータを便宜上Percentageと呼称する。そして、上記算出した(1/α)値と目標(1/α)との差分Subを、Percentageで除算した値がここで算出される倍率である。本実施形態において、ルックアップテーブルには、各光源を最大出力(100%の出力)で点灯させた場合の光強度分布が記憶されている。したがって、上記差分をルックアップテーブルの光強度値で除算すれば、100%の光強度値に対する差分の割合(倍率)が求められる。なお、第1サイドライト光源52A側の光源を点灯したときの光強度分布を示すルックアップテーブルを、第2サイドライト光源52B側の光源を点灯したときの光強度分布を示すルックアップテーブルとしても用いる場合には、Percentageを読み出す際に、上記説明したように座標変換を行う。すなわち、輝度補正対象ブロックの絶対座標値が(P、Q)である場合、輝度補正対象ブロックの光源配列方向LYの位置に対応するルックアップテーブルから、座標値(P、MAXQ−Q)のデータをPercentageとして読み出して用いる。
次に、上記算出した差分の倍率を、上記第2信号に基づいて算出され、上記ステップS37において仮設定した(1/α)値に加算する(ステップS26)。すなわち、ステップS21で算出した(1/α)値がブロックの目標(1/α)値よりも小さい場合は、差分の倍率を上記仮設定した(1/α)値に加算する(ステップS26)ことで、輝度が不足しているブロックの輝度を補うことが可能となる。
図26は、1つの輝度補正の対象とする輝度判定ブロックに対する各光源の影響を説明するための説明図である。図26に示す輝度判定ブロックが、光源56Aに最も近い、第1表示面31の入光部Linである場合、この輝度判定ブロックの代表輝度が複数の光源56A、56B、56C、56D、56E、56F、57A、57B、57C、57D、57E及び57Fからのそれぞれ入射する入射光による輝度判定ブロックの輝度I56A、I56B、I56C、I56D、I56E、I56F、I57A、I57B、I57C、I57D、I57E及びI57Fを足し合わせたものになる。例えば、図26に示すように、光源駆動値を求めたい光源56Aと光源56A以外の光源56B、56C、56D、56E、56F、57A、57B、57C、57D、57E及び57Fによる輝度の総和が目標輝度となるように、光源駆動値を再演算し、再演算した光源駆動値を記憶する。具体的には、上述したように、ステップS21で算出した(1/α)値、すなわち光源56A〜56F及び光源57A〜57Fを点灯したと仮定したときの輝度の総和に対応する(1/α)値を、目標(1/α)値から差し引いて、差分Subを算出する。そして当該差分Subを、光源56Aに対応するルックアップテーブルの値Percentageで除算して、倍率を算出する。この倍率を、光源56Aの光源駆動値として仮設定した(1/α)値に加算することにより、光源56Aの光源駆動値を再演算し、記憶する。この処理を、各光源について行う。これにより、例えば、図23に示す曲線Udが曲線Ueに補正されると、輝度の頂点と谷間(D0〜D4)のデータ位置及び輝度のうち、輝度の頂点D1及びD3の位置が変更され、輝度が増加する。次に、処理をステップS27に進める。
一方、ステップS21で算出した(1/α)値が、注目グループの上述した目標(1/α)値以上の場合(ステップS23、No)、ステップS24〜S26をスキップして、処理をステップS27へ進める。次に、輝度補正対象ブロックの(1/α)値が上限値を超えている場合(ステップS27、Yes)、(1/α)値を上限値へ変更するクリッピングを行う(ステップS28)。なお、前述したように、ステップS27で上限値と比較される輝度補正対象ブロックの(1/α)値は、上記ステップS23で肯定判定された場合には、上記ステップS26で補正された後の光源駆動値(1/α)であり、上記ステップS23で否定判定された場合には、仮設定のままの光源駆動値(1/α)である。また、上限値は、光源制御における光源駆動値の上限値として予め設定しておく。そして、ステップS28の後は、処理をステップS30に進める。一方、輝度補正対象ブロックの(1/α)値が上限値を超えていない場合(ステップS27、No)、ステップS28をスキップして、ステップS30に進む。全グループのスキャンが終了している場合には(ステップS30、Yes)、図15の処理を終了する。また、全グループのスキャンが終了していない場合には(ステップS30、No)、次のグループを注目グループに設定して、ステップS21に戻る。以上の処理により、ステップS37で仮設定された各ブロック毎の光源駆動値(1/α)が補正される。ただし、ステップS23及びS27で否定判定された場合には、仮設定された光源駆動値が補正されない場合もある。この場合には、仮設定された光源駆動値がそのまま光源の光源点灯量の制御に用いられる。こうして得られた各ブロック毎の(1/α)値から光源点灯量が演算される。このように演算された各輝度補正対象ブロックの(1/α)が、各光源の光源駆動値(1/α)として用いられる。すなわち、複数の光源56A、56B、56C、56D、56E、56F、57A、57B、57C、57D、57E及び57Fの各光源駆動値(1/α)が演算できる。この光源駆動値(1/α)及びルックアップテーブルを用いて、上述した式(10)に示すように代表輝度が演算される。このように、各輝度補正対象ブロックの(1/α)値が各目標(1/α)値となるように、仮設定した各(1/α)値が補正され、補正された各(1/α)値により各光源の光源点灯量が制御される。すなわち、これにより、各輝度補正対象ブロックの輝度が目標輝度を満たすように各光源の光源点灯量が制御される。
なお、第1サイドライト光源52A側の光源を点灯したときの光強度分布を示すルックアップテーブルを、第2サイドライト光源52B側の光源を点灯したときの光強度分布を示すルックアップテーブルとしても用いる場合には、式(10)においても座標変換の演算を組み入れる必要がある。上記説明したように、代表輝度は、各光源電流と各光源のルックアップテーブルのデータを乗算した乗算値の各々の合計値を求めることにより、演算される。したがって、ルックアップアップテーブルを、第1サイドライト光源52A及び第2サイドライト光源52Bで共有する場合、第1サイドライト光源52Aと第2サイドライト光源52Bの双方について、各光源電流と各光源のルックアップテーブルのデータを乗算した乗算値を求め、これら乗算値の合計値を求める式を用いて代表輝度を演算すればよい。そして、第2サイドライト光源52Bの光源電流に乗算されるルックアップテーブルのデータは、座標値(P,Q)の代わりに、座標値(P、MAXQ−Q)のデータが用いられる。
なお、本実施形態では、第1サイドライト光源52A側の光源を点灯したときの光強度分布を示すルックアップテーブルを設け、第2サイドライト光源52B側の光源を点灯したときの光強度分布を示すルックアップテーブルは設けない例について説明したが、本開示はこの例に限定されない。例えば、第1サイドライト光源52A側の光源を点灯したときの光強度分布を示すルックアップテーブルを設けず、第2サイドライト光源52B側の光源を点灯したときの光強度分布を示すルックアップテーブルを設ける構成としてもよい。
光源の光源駆動値(1/α)が演算される順番(輝度補正処理、すなわち光源駆動値の補正処理がなされる順番)は、光源56A、56B、56C、56D、56E、56F、57A、57B、57C、57D、57E及び57Fの順であってもよい。または、光源の光源駆動値(1/α)が演算される順番は、光源56A、56B、56C、56D、56E、56F、57F、57E、57D、57C、57B及び57Aの順であってもよい。光源の光源駆動値(1/α)が演算される順番は、限定されるものではない。光源56A、56B、56C、56D、56E、56F、57A、57B、57C、57D、57E及び57Fのうち、1つの光源の光源駆動値(1/α)が図15に示すステップS26の処理で輝度補正されると、他の光源の光源駆動値(1/α)が再演算される。すなわち、光源56A、56B、56C、56D、56E、56F、57A、57B、57C、57D、57E及び57Fの光源駆動値(1/α)を順番に演算していき、先に演算された光源の光源駆動値(1/α)を順次、後に演算する光源の光源駆動値(1/α)に反映させていくため、各光源において精度の高い代表輝度を求めることができる。
例えば、光源駆動値の補正順序を、バックライトの特性或いは設定に応じて定めてもよい。例えば、各光源に対し、光源配列方向LYに並ぶ光源(同じサイドライト光源に含まれる光源)からの光の影響が、入光方向LXに対向するサイドライト光源に含まれる光源からの光の影響よりも強い場合には、光源配列方向LYに沿った光源の配列順に光源駆動値を演算してもよい。この場合、例えば、光源56A、56B、56C、56D、56E、56F、57A、57B、57C、57D、57E及び57Fの順、或いは光源56A、56B、56C、56D、56E、56F、57F、57E、57D、57C、57B及び57Aの順で光源駆動値を演算してもよい。
また、例えば、各光源に対し、光源配列方向LYに並ぶ光源(同じサイドライト光源に含まれる光源)からの光の影響が、入光方向LXに対向するサイドライト光源に含まれる光源からの光の影響よりも弱い場合には、第1サイドライト光源52Aの光源の光源駆動値の補正、及び第2サイドライト光源52Bの光源の光源駆動値の補正を交互に行ってもよい。この場合、例えば、光源56A、57A、56B、57B、56C、57C、56D、57D、56E、57E、56F、及び57Fの順で光源駆動値を補正してもよい。
さらにまた、光源駆動値の補正を複数回行うようにしてもよい。例えば、1回目の光源駆動値の補正により補正された光源駆動値を2回目の光源駆動値の補正に反映させれば、より高い精度で光源駆動値を演算できる。また、1回目の光源駆動値の補正では、前述のように輝度を増やす方向に補正し、2回目の光源駆動値の補正では、輝度を減らす方向に補正することもできる。
光源駆動値決定部26は、上述のようにして求めた各光源56A、56B、56C、56D、56E、56F、57A、57B、57C、57D、57E及び57Fの光源駆動値(1/α)を面状光源装置制御部60に送出すると共に、画素48毎の輝度の情報として、各画素48毎の伸張係数αを画像処理部22に送出する(ステップS15)。
次に、トーンカーブ変換部27におけるトーンカーブ変換処理(ステップS12)について説明する。
本実施形態では、上述した図8に示すように、画像処理部22の前段にトーンカーブ変換部27を設けている。本実施形態では、第1信号RGBの画素48毎の各第1副画素49Rの信号値R(p、q)、各第2副画素49Gの信号値G(p、q)、及び各第3副画素49Bの信号値B(p、q)に乗じる利得を、第1信号RGBの画素48毎の輝度に応じた値とすることで、上述した後段の処理で用いる第2信号rgbを求める。
このとき、本実施形態では、第2信号rgbを求める際に、第1信号RGBの画素48毎の各第1副画素49Rの信号値R(p、q)、各第2副画素49Gの信号値G(p、q)、及び各第3副画素49Bの信号値B(p、q)に乗じる利得を、第1信号RGBの画素48毎の輝度に応じて異ならせる。
具体的には、本実施形態では、第1信号RGBの輝度に対して第1の輝度閾値を設け、第1信号RGBの輝度が第1の輝度閾値以下となる第1領域と、第1信号RGBの輝度が第1の輝度閾値よりも大きい第2領域とに分ける。そして、第1信号RGBの画素48毎の輝度が第1の輝度閾値よりも大きい第2領域では、第1信号RGBの画素48毎の各第1副画素49Rの信号値R(p、q)、各第2副画素49Gの信号値G(p、q)、及び各第3副画素49Bの信号値B(p、q)に乗じる利得を、第1信号RGBの画素48毎の輝度に応じて大きくする。
また、本実施形態では、第1信号RGBの1フレームにおける全画素48の数Npixに対して第1信号RGBの画素48毎の輝度が第2の輝度閾値Yth2以上となる画素48の数npix(≧Yth2)の比率P(=npix(≧Yth2)/Npix)に応じて、第1信号RGBの画素48毎の各第1副画素49Rの信号値R(p、q)、各第2副画素49Gの信号値G(p、q)、及び各第3副画素49Bの信号値B(p、q)に乗じる利得を変化させる。以下、第1信号RGBの1フレームにおける全画素48の数Npixに対して第1信号RGBの画素48毎の輝度が第2の輝度閾値Yth2以上となる画素48の数npix(≧Yth2)の比率Pを、「高輝度画素比率」ともいう。
具体的には、上記した高輝度画素比率Pに対し、第1の比率閾値P1と、第1の比率閾値P1よりも大きい第2の比率閾値P2とを設ける。そして、第1領域において第1信号RGBの画素48毎の各第1副画素49Rの信号値R(p、q)、各第2副画素49Gの信号値G(p、q)、及び各第3副画素49Bの信号値B(p、q)に乗じる利得の最大値を第1の最大値とする。第2領域の第1信号RGBの最大輝度における第1信号RGBの画素48毎の各第1副画素49Rの信号値R(p、q)、各第2副画素49Gの信号値G(p、q)、及び各第3副画素49Bの信号値B(p、q)に乗じる利得の最大値を第2の最大値とする。第1領域において第1信号RGBの画素48毎の各第1副画素49Rの信号値R(p、q)、各第2副画素49Gの信号値G(p、q)、及び各第3副画素49Bの信号値B(p、q)に乗じる利得の最小値を第1の最小値とする。第2領域の第1信号RGBの最大輝度における第1信号RGBの画素48毎の各第1副画素49Rの信号値R(p、q)、各第2副画素49Gの信号値G(p、q)、及び各第3副画素49Bの信号値B(p、q)に乗じる利得の最小値を第2の最小値とする。
このとき、高輝度画素比率Pが第1の比率閾値P1よりも小さい場合には(P<P1)、第1領域における利得が第1の最小値となり、第2領域の第1信号RGBの最大輝度における利得が第2の最大値となるようにする。また、高輝度画素比率Pが第2の比率閾値P2よりも大きい場合には(P>P2)、第1領域における利得が第1の最大値となり、第2領域の第1信号RGBの最大輝度における利得が第2の最小値となるようにする。このとき、第1領域における利得が第2領域における利得と等しくなるようにする。また、高輝度画素比率Pが第1の比率閾値P1以上第2の比率閾値P2以下となる場合には(P1≦P≦P2)、高輝度画素比率Pの上昇に応じて、第1領域における利得を徐々に大きくし、第2領域の第1信号RGBの最大輝度における利得を徐々に小さくする。
以下、上述したトーンカーブ変換処理について、より具体的に説明する。
図28は、実施形態に係るトーンカーブ変換処理特性の一例を示す図である。図28に示す例では、トーンカーブ変換部27への入力信号である第1信号RGBの輝度をYinとして横軸に示し、トーンカーブ変換部27におけるトーンカーブ変換処理後の出力信号である第2信号rgbの輝度をYoutとして縦軸に示している。なお、図28に示す例では、第1信号RGBの輝度Yinの最大値(最大輝度Yinmax)で正規化した例を示している。
図29は、実施形態に係るトーンカーブ変換処理における利得特性の一例を示す図である。なお、図29に示す例では、第1信号RGBの輝度Yinの最大値(最大輝度Yinmax=1)における利得Aの最大値をAmaxとした例を示している。
図30は、実施形態に係るトーンカーブ変換処理における利得係数特性の一例を示す図である。なお、図30に示す例では、第1信号RGBの1フレームにおける全画素48の数Npixに対し、第1信号RGBの画素48毎の輝度Yinが第2の輝度閾値Yth2を超える画素の数npix(≧Yth2)の比率P(=npix(≧Yth2)/Npix)を横軸に示し、利得Aにおける利得係数kを縦軸に示している。なお、図30に示す例では、第1領域における利得をA1とした場合の利得係数k1、及び、第2領域における利得をA2とした場合の利得係数k2を示している。
図28及び図29に示すように、本実施形態では、トーンカーブ変換部27への入力信号である第1信号RGBの輝度Yinに対して第1の輝度閾値Yth1を設け、第1信号RGBの輝度Yinが第1の輝度閾値Yth1以下となる第1領域と、第1信号RGBの輝度Yinが第1の輝度閾値Yth1よりも大きい第2領域とに分けている。
本実施形態において、第1領域における第1信号RGBの輝度Yinに対するトーンカーブ変換処理後の輝度Youtの利得A1は、所定の基準利得Aeを用いて下記式(19)で示される。
A1=k1・Ae・・・(19)
また、本実施形態において、第2領域における第1信号RGBの輝度Yinに対するトーンカーブ変換処理後の輝度Youtの利得A2は、下記式(20)で示される。
A2=k2・((Amax−A1)/(1−Yth1)^c)
・((Yin−Yth1)^c)+A1・・・(20)
図30に示すように、高輝度画素比率Pが第1の比率閾値P1よりも小さい場合には(P<P1)、第1領域における第1信号RGBの輝度Yinに対するトーンカーブ変換処理後の輝度Youtの利得k1・A1の係数k1は1となり、第2領域における第1信号RGBの輝度Yinに対するトーンカーブ変換処理後の輝度Youtの利得k2・A2の係数k2は1となる。このときの第1領域における第1信号RGBの輝度Yinに対するトーンカーブ変換処理後の輝度Youtの利得A1は、下記式(21)で示され、第2領域における第1信号RGBの輝度Yinに対するトーンカーブ変換処理後の輝度Youtの利得A2は、下記式(22)で示される。
A1=Ae・・・(21)
A2=(((Amax−A1)/(1−Yth1)^c)
・(Yin−Yth1)^c)+A1・・・(22)
また、図30に示すように、高輝度画素比率Pが第2の比率閾値P2よりも大きい場合には(P>P2)、第1領域における第1信号RGBの輝度Yinに対するトーンカーブ変換処理後の輝度Youtの利得A1の係数k1は1/Aeとなり、第2領域における第1信号RGBの輝度Yinに対するトーンカーブ変換処理後の輝度Youtの利得A2の係数k2は0となる。このときの第1領域における第1信号RGBの輝度Yinに対するトーンカーブ変換処理後の輝度Youtの利得A1、及び、第2領域における第1信号RGBの輝度Yinに対するトーンカーブ変換処理後の輝度Youtの利得A2は、下記式(23)で示される。
A1=A2=1・・・(23)
すなわち、高輝度画素比率Pが第2の比率閾値P2よりも大きい場合には(P>P2)、図29に示すように、第1領域と第2領域とを含む全ての領域において、利得が等しく1となり、図28に示すように、トーンカーブ変換処理前の第1信号RGBの輝度Yinとトーンカーブ変換処理後の第2信号rgbの輝度Youtが等しくなる。
なお、高輝度画素比率Pが第1の比率閾値P1以上第2の比率閾値P2以下となる場合(P1≦P≦P2)の各利得係数k1,k2は、それぞれ下記式(24)、(25)で示される。
k1=(((1/Ae)−1)・P+P2−(1/Ae)・P1)/(P2−P1)
・・・(24)
k2=(P2−P)/(P2−P1)・・・(25)
上記(19)式、(20)式、(21)式、(22)式、(23)式、(24)式、(25)式から分かるように、高輝度画素比率Pが第1の比率閾値P1よりも小さい場合には(P<P1)、第1領域における利得A1が基準利得Aeで最小となり(第1の最小値)、第2領域における第1信号RGBの最大輝度Yinmax(=1)における利得A2が最大となる(第2の最大値)。
また、高輝度画素比率Pが第1の比率閾値P1以上第2の比率閾値P2以下となる場合には(P1≦P≦P2)、高輝度画素比率Pの上昇に応じて、図29に上向き矢印で示すように、第1領域における利得が徐々に大きくなり、これに伴い、図28に上向き矢印で示すように、第1領域におけるトーンカーブ変換処理特性が徐々に大きくなる。また、高輝度画素比率Pの上昇に応じて、図29に下向き矢印で示すように、第2領域における第1信号RGBの最大輝度Yinmax(=1)における利得が徐々に小さくなり、これに伴い、図28に下向き矢印で示すように、第2領域における第1信号RGBの最大輝度Yinmax(=1)におけるトーンカーブ変換処理特性が徐々に小さくなる。
また、高輝度画素比率Pが第1の比率閾値P2よりも大きい場合には(P>P2)、第1領域における利得A1が最大となり(第1の最大値)、第2領域における第1信号RGBの最大輝度Yinmax(=1)における利得A2が最小となる(第2の最小値)。また、このとき、上述したように、第1領域における利得A1と第2領域における利得A2とが共に1となり等しくなる。
また、上記式(20)において指数c=1のとき、下記式(26)が得られる。
A2=k2・((Amax−A1)/(1−Yth1))
・((Yin−Yth1))+A1・・・(26)
すなわち、第2領域における第1信号RGBの輝度Yinに対するトーンカーブ変換処理後の輝度Youtの利得A2は、指数c=1のときにk2・((Amax−A1)/(1−Yth1))の傾きを有する一次関数となる。より具体的には、高輝度画素比率Pが第1の比率閾値P1よりも小さく(P<P1)、k2=1となる場合には、第2領域において図28に一点鎖線で示すような直線の利得特性が得られる。また、これに伴い、第2領域において図29に一点鎖線で示すような直線のトーンカーブ変換処理特性が得られる。
図31は、実施形態に係るトーンカーブ変換部の一構成例を示すブロック図である。図32は、トーンカーブ変換処理の一例を示すフローチャートである。
図31に示すように、本実施形態に係るトーンカーブ変換部27は、輝度解析部271と、輝度調整部272とを含む。輝度調整部272は、トーンカーブ設定値格納部2721と、高輝度画素比率演算部2722と、利得演算部2723と、第2信号生成部2724とを含む。
輝度解析部271は、画像の入力信号である第1信号RGBの情報に基づいて、第1信号RGBの画素48毎の輝度Yinを解析する(ステップS41)。第1信号RGBの画素48毎の輝度Yinは、例えば、下記式(27)を用いて求める。
Yin=Kr・R(p、q)+Kb・G(p、q)+Kg・B(p、q)
・・・(27)
上記(27)式において、各係数Kr,Kg,Kbは、RGB値をXYZ色度系における輝度Yに変換する際の係数である。これら各係数値は、RGB値をXYZ色度系に変換する際の規格によって異なる。例えばsRGB(D65)規格のXYZ色度系に変換する場合には、Kr=0.2126,Kg=0.7152,Kb=0.0722となる。また、例えば、Adobe RGB規格のXYZ色度系に変換する場合には、Kr=0.3070,Kg=0.6170,Kb=0.0761となる。
なお、第1信号RGBの画素48毎の輝度Yinを解析する際に、RGB値をYCbCr表色系における輝度Yに変換することも可能である。この場合には、例えばITU−R BT.601規格のYCbCr表色系に変換する場合には、Kr=0.299,Kg=0.5870,Kb=0.1140となる。また、例えば、ITU−R BT.709規格のYCbCr表色系に変換する場合には、Kr=0.2126,Kg=0.7152,Kb=0.0722となる。また、例えば、ITU−R BT.2020規格のYCbCr表色系に変換する場合には、Kr=0.2627,Kg=0.6780,Kb=0.0593となる。なお、RGB値を輝度Yに変換する方式(規格)により本発明が限定されるものではない。
トーンカーブ設定値格納部2721には、外部の制御装置11から入力されたトーンカーブ設定値が格納されている。トーンカーブ設定値は、上述した図28に示すトーンカーブ変換処理特性を得るための設定値であり、図28に示すトーンカーブ変換処理特性を第1領域と第2領域とに分ける第1の輝度閾値Yth1、第1領域における基準利得Ae、第2領域における第1信号RGBの最大輝度Yinmax(=1)における利得の最大値Amax、上記式(20)等を用いて第2領域における第1信号RGBの輝度Yinに対するトーンカーブ変換処理後の輝度Youtの利得A2を求める際に用いる指数c、高輝度画素比率演算部2722において高輝度画素比率Pを求める際に用いる第2の輝度閾値Yth2、図30に示す利得係数特性における高輝度画素比率Pの第1の比率閾値P1及び第2の比率閾値P2を含む。
表示画像のダイナミックレンジを効果的に拡大するためには、上述した式(27)を用いて第1信号RGBの画素48毎の輝度Yinを求めた際に、少なくとも第1信号RGBの画素48毎の各第1副画素49Rの信号値R(p、q)、各第2副画素49Gの信号値G(p、q)、及び各第3副画素49Bの信号値B(p、q)の全てが0以上となる画素48、すなわち、白成分を含む画素48に対して、利得を増加させるのが好ましい。従って、第1の輝度閾値Yth1は、0.7以上1.0未満の範囲内であるのが好ましい。例えば、sRGB(D65)規格のXYZ色度系に変換する場合は、少なくともKg=0.7152とKb=0.0722とを加算した0.7874よりも大きい値とするのがより好ましい。また、例えば、Adobe RGB規格のXYZ色度系に変換する場合は、少なくともKg=0.6170とKb=0.0761とを加算した0.6931よりも大きい値とするのがより好ましい。また、例えば、ITU−R BT.601規格のYCbCr表色系に変換する場合は、少なくともKg=0.5870とKb=0.1140とを加算した0.7010よりも大きい値とするのがより好ましい。また、例えば、ITU−R BT.709規格のYCbCr表色系に変換する場合は、少なくともKg=0.7152とKb=0.0722とを加算した0.7874よりも大きい値とするのがより好ましい。また、例えば、ITU−R BT.2020規格のYCbCr表色系に変換する場合は、少なくともKg=0.6780とKb=0.0593とを加算した0.7373よりも大きい値とするのがより好ましい。
また、本実施形態では、上述したように、画素48に第4副画素49Wを加え、画像処理部22において、赤、緑、青の3色の第2信号rgbを、赤、緑、青、白の4色の第3信号RGBWに変換する構成である。このため、赤、緑、青の3色の副画素で表示する構成と同じ光源点灯量で照射された場合よりも、例えば1.5倍程度高輝度で表示することが可能である。従って、上述した実施形態に係る構成では、光源点灯量を増加することなく利得の最大値Amaxを1.5倍程度とすることができる。
なお、赤、緑、青の3色の副画素で表示する構成である場合でも、光源点灯量を増加させることで実現可能である。
また、本実施形態では、複数の光源56A、56B、56C、56D、56E及び56Fに対して個々に独立してパネル輝度の制御を行う。このため、単一の光源でパネル輝度の制御を行う場合に再現可能なパネル輝度範囲aよりも広範囲なパネル輝度範囲bで再現可能である(図28参照)。このため、利得の最大値Amaxをより大きな値に設定することも可能である。
また、本実施形態では、第1領域の画素48における基準利得Aeを1以下の値とすることで、第2領域における高輝度の画素48とのコントラスト比を向上させることができ、高輝度画素をより際立たせることができる。
高輝度画素比率演算部2722は、第1信号RGBの1フレームにおける全画素48の数Npixに対し、上記式(27)によって求められた第1信号RGBの画素48毎の輝度が第2の輝度閾値Yth2を超える画素の数npix(≧Yth2)の比率(高輝度画素比率)Pを求める(ステップS42)。高輝度画素比率Pは、下記式(28)を用いて求めることができる。
P=npix(≧Yth2)/Npix・・・(28)
利得演算部2723は、上記式(24)、(25)に対し、基準利得Ae、第1の比率閾値P1、第2の比率閾値P2、及び高輝度画素比率Pを適用して、第1領域における利得係数k1、及び、第2領域における利得係数k2を求めると共に、上記式(19)、(20)に対し、利得係数k1、利得係数k2、基準利得Ae、利得の最大値Amax、指数cを適用して、図29に示すトーンカーブ変換処理における利得特性を求める(ステップS43)。
第2信号生成部2724は、画像の入力信号である第1信号RGBの各画素48毎に、輝度解析部271によって求められた輝度Yinに対応する利得Aを、各第1副画素49Rの信号値R(p、q)、各第2副画素49Gの信号値G(p、q)、及び各第3副画素49Bの信号値B(p、q)に乗じて、第2信号rgbの各画素48毎の各第1副画素49Rの信号値x1−(p、q)、各第2副画素49Gの信号値x2−(p、q)、及び各第3副画素49Bの信号値x3−(p、q)を求め、第2信号rgbを生成する(ステップS44)。具体的には、下記式(29)、(30)、(31)を用いて、第2信号rgbの各画素48毎の各第1副画素49Rの信号値x1−(p、q)、各第2副画素49Gの信号値x2−(p、q)、及び各第3副画素49Bの信号値x3−(p、q)を算出する。
1−(p、q)=A・R(p、q)・・・(29)
2−(p、q)=A・G(p、q)・・・(30)
3−(p、q)=A・B(p、q)・・・(31)
なお、本実施形態では、外部の制御装置11から入力されるトーンカーブ設定値を変更することで、図28に示すトーンカーブ変換処理特性を変更することができる。
第2の輝度閾値Yth2は、例えば第1信号RGBの輝度Yinの最大値(最大輝度Yinmax=1)に対して80%(Yth2=0.8)程度とすることを想定している。また、第1の比率閾値P1は、ここでは、例えば30%程度とすることを想定している。また、第2の比率閾値P2は、ここでは、例えば50%から60%程度とすることを想定している。全体的に明るい画像では、上述したトーンカーブ変換処理によるダイナミックレンジの拡大効果が薄くなる。また、表示装置10の用途や画像ソースの種類によって、得られる効果の度合いが異なる。従って、第2の輝度閾値Yth2、第1の比率閾値P1、第2の比率閾値P2を表示装置10の用途や画像ソースの種類に適した値とすることで、最適な効果を得ることができる。
また、実施形態に係るトーンカーブ変換部の構成、トーンカーブ変換処理、トーンカーブ変換処理における利得特性、及びトーンカーブ変換処理における利得係数特性は、以下の図33から図41に示すように変更することも可能である。
図33は、第1領域における利得係数k1を1に固定(k1=1)した場合のトーンカーブ変換処理特性の一例を示す図である。図34は、第1領域における利得係数k1を1に固定(k1=1)した場合のトーンカーブ変換処理における利得特性の一例を示す図である。図35は、第1領域における利得係数k1を1に固定(k1=1)した場合のトーンカーブ変換処理における利得係数特性の一例を示す図である。
図33、図34、図35に示すように、第1の比率閾値P1及び第2の比率閾値P2に依らず、第1領域における利得係数k1を一定値(ここでは、1)としても良い。この場合には、トーンカーブ設定値として第1領域における利得係数k1を設け、外部の制御装置11から入力された第1領域における利得係数k1をトーンカーブ設定値格納部2721に格納する構成とし、利得演算部2723において、上記式(19)、(20)に対し、利得係数k1を適用して、図34に示すトーンカーブ変換処理における利得特性を求めるようにすれば良い(ステップS43)。
図36は、第1領域における基準利得Ae及び利得係数k1を1に固定(Ae=1,k1=1)した場合のトーンカーブ変換処理特性の一例を示す図である。図37は、第1領域における基準利得Ae及び利得係数k1を1に固定(Ae=1,k1=1)した場合のトーンカーブ変換処理における利得特性の一例を示す図である。
図36、図37に示すように、第1の比率閾値P1及び第2の比率閾値P2に依らず、第1領域における基準利得Ae及び利得係数k1を一定値(ここでは、1)としても良い。
図38は、高輝度画素比率演算部を省略した実施形態に係るトーンカーブ変換部の一構成例を示すブロック図である。図39は、高輝度画素比率演算部を省略した構成におけるトーンカーブ変換処理特性の一例を示す図である。図40は、高輝度画素比率演算部を省略した構成におけるトーンカーブ変換処理における利得特性の一例を示す図である。図41は、高輝度画素比率演算部を省略した構成におけるトーンカーブ変換処理の一例を示すフローチャートである。
図38、図39、図40、図41に示すように、図31に示す構成から高輝度画素比率演算部2722を省略した輝度調整部272aを具備した構成であっても良い。
図38、図39、図40、図41に示す例では、第1領域における利得係数k1及び第2領域における利得係数k2を一定値(ここでは、1)としている。
具体的には、トーンカーブ設定値として第1領域における利得係数k1及び第2領域における利得係数k2を設け、外部の制御装置11から入力された第1領域における利得係数k1及び第2領域における利得係数k2をトーンカーブ設定値格納部2721に格納する構成とし、利得演算部2723において、上記式(19)、(20)に対し、利得係数k1、利得係数k2、基準利得Ae、利得の最大値Amax、指数cを適用して、図40に示すトーンカーブ変換処理における利得特性を求める(ステップS43a)。
図42は、実施形態に係るトーンカーブ変換部への入力信号の輝度が原画像の輝度に対して所定のカーブ特性γを有している場合の原画像の輝度と第1信号の輝度との関係を示す図である。図43は、原画像における画像表示領域が複数の領域に分割され、各分割領域において、実施形態に係るトーンカーブ変換部への入力信号の輝度が原画像の輝度に対してそれぞれ異なるカーブ特性γを有している例を示す図である。
図42に示す例では、原画像の輝度Y1を横軸に示し、実施形態に係る信号処理部20への入力信号である第1信号RGBの輝度Y2(Yin)を縦軸に示している。また、図432に示す例では、原画像の輝度Y1の最大値で正規化した例を示している。
図42に示すように、トーンカーブ変換部27への入力信号である第1信号RGBの輝度Y2(Yin)が原画像の輝度に対して所定のカーブ特性γを有している場合でも、実施形態に係るトーンカーブ変換部27におけるトーンカーブ変換処理を適用することが可能である。
また、図43に示す例では、原画像における画像表示領域100が複数の分割領域100a,100b,100c,100d,100e,100f,100g,100h,100i,100j,100k,100lに分割され、各分割領域100a,100b,100c,100d,100e,100f,100g,100h,100i,100j,100k,100l毎に、実施形態に係るトーンカーブ変換部27への入力信号である第1信号RGBの輝度Y2(Yin)が原画像の輝度Y1に対してそれぞれ異なるカーブ特性γを有している例を示している。
実施形態に係るトーンカーブ変換部27におけるトーンカーブ変換処理は、図42及び図43に示すように、トーンカーブ変換部27への入力信号である第1信号RGBの輝度Yinが原画像の輝度に対して所定のカーブ特性γを有している場合にも適用可能である。
画像処理部22は、第(p、q)番目の画素48における信号値X1−(p、q)、信号値X2−(p、q)、信号値X3−(p、q)及び信号値X4−(p、q)を出力するよう、上述した変換処理を行う同期処理を行う(ステップS16)。画像表示パネル駆動部40は、同期信号TMに基づいて、1フレーム毎に画像表示パネル30に画像を表示し、面状光源装置制御部60は、光源56A、56B、56C、56D、56E、56F、57A、57B、57C、57D、57E又は57Fを独立して駆動する。
なお、本実施形態では、上述したように、画素48に第4副画素49Wを加え、画像処理部22において、赤、緑、青の3色の第2信号rgbを、赤、緑、青、白の4色の第3信号RGBWに変換する構成であり、また、複数の光源56A、56B、56C、56D、56E及び56Fに対して個々に独立してパネル輝度の制御を行う例について説明したが、実施形態に係るトーンカーブ変換部27におけるトーンカーブ変換処理の適用範囲は、上述した構成に限るものではない。
実施形態に係るトーンカーブ変換部27におけるトーンカーブ変換処理は、例えば、赤、緑、青の3色の副画素で表示する構成である場合でも、光源点灯量を増加させることで実現可能であるし、また、有機エレクトロルミネッセンス発光を用いた有機ELディスプレイパネル(OLED:Organic Electro−Luminescence Display)を用いた表示装置においても、OLEDの点灯量における余力を利用することで、高輝度画素における利得を大きくすることが可能である。
図44Aは、実施形態に係る表示装置を赤、緑、青、白の4色の副画素で構成される液晶表示パネルに適用した一例を示す図である。図44Bは、実施形態に係る表示装置を赤、緑、青の3色の副画素で構成される液晶表示パネルに適用した一例を示す図である。図44Cは、実施形態に係る表示装置をOLEDに適用した一例を示す図である。図45Aは、実施形態に係る表示装置を赤、緑、青、白の4色の副画素で構成される液晶表示パネルに適用した図44Aとは異なる一例を示す図である。図45Bは、実施形態に係る表示装置を赤、緑、青の3色の副画素で構成される液晶表示パネルに適用した図44Bとは異なる一例を示す図である。図45Cは、実施形態に係る表示装置をOLEDに適用した図44Cとは異なる一例を示す図である。
図44Aに示す例では、制御装置11が半導体集積回路(IC)200aに構成されている。信号処理部20が半導体集積回路(IC)200aに構成されている。画像表示パネル駆動部40は、信号処理部20からRGBW信号が供給され、画像表示パネル(RGBW液晶表示パネル)30を駆動する。面状光源装置駆動部60は、信号処理部20からBL信号が供給され、面状光源装置50を制御する。このような構成において、画像表示領域100の複数の分割領域100a,100b,100c,100d,100e,100f,100g,100h,100i,100j,100k,100lに対応して、それぞれの領域毎に異なるカーブ特性に応じたトーンカーブ変換処理を行うことで、分割領域100a,100b,100c,100d,100e,100f,100g,100h,100i,100j,100k,100l毎に、aからa’、bからb’、cからc’、dからd’、eからe’、fからf’、gからg’、hからh’、iからi’、jからj’、kからk’、lからl’の変換処理が行われる。
また、図45Aに示すように、制御装置11と信号処理部20とが1つの半導体集積回路(IC)200に構成されていても良い。
図44Bに示す例では、制御装置11が半導体集積回路(IC)200aに構成されている。信号処理部20aが半導体集積回路(IC)200aに構成されている。画像表示パネル駆動部40aは、信号処理部20aからRGB信号が供給され、画像表示パネル(RGB液晶表示パネル)30aを駆動する。面状光源装置駆動部60aは、信号処理部20aからBL信号が供給され、面状光源装置50aを制御する。このような構成において、画像表示領域100の複数の分割領域100a,100b,100c,100d,100e,100f,100g,100h,100i,100j,100k,100lに対応して、それぞれの領域毎に異なるカーブ特性に応じたトーンカーブ変換処理を行うことで、分割領域100a,100b,100c,100d,100e,100f,100g,100h,100i,100j,100k,100l毎に、aからa’、bからb’、cからc’、dからd’、eからe’、fからf’、gからg’、hからh’、iからi’、jからj’、kからk’、lからl’の変換処理が行われる。
また、図45Bに示すように、制御装置11と信号処理部20aとが1つの半導体集積回路(IC)200に構成されていても良い。
図44Cに示す例では、制御装置11が半導体集積回路(IC)200aに構成されている。信号処理部20bが半導体集積回路(IC)200aに構成されている。画像表示パネル駆動部40bは、信号処理部20bからRGB信号が供給され、画像表示パネル(RGB液晶表示パネル)30bを駆動する。このような構成において、画像表示領域100の複数の分割領域100a,100b,100c,100d,100e,100f,100g,100h,100i,100j,100k,100lに対応して、それぞれの領域毎に異なるカーブ特性に応じたトーンカーブ変換処理を行うことで、分割領域100a,100b,100c,100d,100e,100f,100g,100h,100i,100j,100k,100l毎に、aからa’、bからb’、cからc’、dからd’、eからe’、fからf’、gからg’、hからh’、iからi’、jからj’、kからk’、lからl’の変換処理が行われる。
また、図45Cに示すように、制御装置11と信号処理部20bとが1つの半導体集積回路(IC)200に構成されていても良い。
また、上述した例では、XYZ色度系における輝度を指標として、高輝度画素の利得を大きくする例について説明したが、例えば、HSV空間における明度を指標として、高輝度画素における利得を大きくすることもできる。
以上説明したように、実施形態に係る表示装置10によれば、複数の画素48が配列され、画像を表示する画像表示パネル30と、画像の入力信号である第1信号RGBに含まれる、画素48を構成する複数の副画素の信号値に利得を乗じて第2信号rgbを生成する信号処理部20と、を備える。信号処理部20は、画素48に含まれる複数の副画素の信号値に基づき、当該画素48における輝度Yinを算出し、輝度Yinが第1の輝度閾値Yth1を超えた画素48(高輝度画素)において、副画素の信号値に乗じる利得を、当該画素48の輝度Yinに応じて大きくする。これにより、任意の画像入力に対して高輝度画素の利得を増加させることができる。
また、本実施形態では、第1の輝度閾値Yth1は、画素48に含まれる複数の副画素の信号値が全て0以上となる値に設定されている。これにより、白成分を含む画素48に対して、利得を増加させることができる。
また、本実施形態では、第1信号RGBの輝度Yinが第1の輝度閾値Yth1以下の画素48において、副画素の信号値に乗じる利得を下げる。これにより、高輝度画素をより際立たせることができる。
また、本実施形態では、画素48の総数に対し、輝度Yinが第2の輝度閾値Yth2を超える画素48の数の比率(高輝度画素比率)Pを求め、高輝度画素比率Pが第1の比率閾値P1を超えた場合に、輝度Yinが第1の輝度閾値Yth1を超えた画素48において、副画素の信号値に乗じる利得を下げる。これにより、全体的に明るい画像においてダイナミックレンジの拡大効果が薄くなることを防ぐことができる。
また、本実施形態では、高輝度画素比率Pが第1の比率閾値P1よりも大きい第2の比率閾値P2を超えた場合に、副画素の信号値に乗じる利得を所定の一定値とする。これにより、明るい画像におけるコントラスト比を正常に保つことができる。
本実施形態により、任意の画像入力に対して高輝度画素の利得を増加させて表示画像のダイナミックレンジを拡大することが可能な表示装置が得られる。
以上、実施形態について説明したが、上述した内容により本発明が限定されるものではない。また、上述した本発明の構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、上述した構成要素は適宜組み合わせることが可能である。また、本発明の要旨を逸脱しない範囲で構成要素の種々の省略、置換及び変更を行うことができる。
また、本発明は、以下の構成を取ることもできる。
(1)
複数の画素が配列され、画像を表示する画像表示パネルと、
前記画像の入力信号である第1信号に含まれる、前記画素を構成する複数の副画素の信号値に利得を乗じて第2信号を生成する信号処理部と、
を備え、
前記信号処理部は、前記画素に含まれる複数の副画素の信号値に基づき、当該画素における輝度を算出し、前記輝度が第1の輝度閾値を超えた画素において、前記副画素の信号値に乗じる利得を、当該画素の前記輝度に応じて大きくする
表示装置。
(2)
前記第1の輝度閾値は、前記画素に含まれる複数の前記副画素の信号値が全て0以上となる値に設定されている
(1)に記載の表示装置。
(3)
前記第1の輝度閾値は、0.7以上1.0未満の値に設定されている
(1)又は(2)の表示装置。
(4)
前記信号処理部は、
前記輝度が前記第1の輝度閾値以下の画素において、前記副画素の信号値に乗じる利得を下げる
(1)から(3)の表示装置。
(5)
前記信号処理部は、
前記画素の総数に対し、前記輝度が第2の輝度閾値を超える画素の数の比率を求め、当該比率が第1の比率閾値を超えた場合に、前記輝度が第1の輝度閾値を超えた画素において、前記副画素の信号値に乗じる利得を下げる
(1)から(4)に記載の表示装置。
(6)
前記信号処理部は、
前記比率が前記第1の比率閾値よりも大きい第2の比率閾値を超えた場合に、前記副画素の信号値に乗じる利得を所定の一定値とする
(5)の表示装置。
10 表示装置
20,20a,20b 信号処理部
21 タイミング生成部
22 画像処理部
23 画像解析部
24 光源駆動値演算部
25 光源データ記憶部
26 光源駆動値決定部
27 トーンカーブ変換部
271 輝度解析部
272,272a 輝度調整部
2721 トーンカーブ設定値格納部
2722 高輝度画素比率演算部
2723 利得演算部
2724 第2信号生成部
30,30a,30b 画像表示パネル(表示部)
40,40a,40b 画像表示パネル駆動部
41 信号出力回路
42 走査回路
48 画素
49 副画素
49R 第1副画素
49G 第2副画素
49B 第3副画素
49W 第4副画素
50,50a,50b 面状光源装置
52A 第1サイドライト光源
52B 第2サイドライト光源
54 導光板
56A、56B、56C、56D、56E、56F、57A、57B、57C、57D、57E、57F 光源
60,60a 面状光源装置制御部
100 画像表示領域
100a,100b,100c,100d,100e,100f,100g,100h,100i,100j,100k,100l 分割領域
200,200a,200b 半導体集積回路(IC)

Claims (6)

  1. 複数の画素が配列され、画像を表示する画像表示パネルと、
    前記画像の入力信号である第1信号に含まれる、前記画素を構成する複数の副画素の信号値に利得を乗じて第2信号を生成する信号処理部と、
    を備え、
    前記信号処理部は、前記画素に含まれる複数の副画素の信号値に基づき、当該画素における輝度を算出し、前記輝度が第1の輝度閾値を超えた画素において、前記副画素の信号値に乗じる利得を、当該画素の前記輝度に応じて大きくする
    表示装置。
  2. 前記第1の輝度閾値は、前記画素に含まれる複数の前記副画素の信号値が全て0以上となる値に設定されている
    請求項1に記載の表示装置。
  3. 前記第1の輝度閾値は、0.7以上1.0未満の値に設定されている
    請求項1又は請求項2に記載の表示装置。
  4. 前記信号処理部は、
    前記輝度が前記第1の輝度閾値以下の画素において、前記副画素の信号値に乗じる利得を下げる
    請求項1から請求項3の何れか一項に記載の表示装置。
  5. 前記信号処理部は、
    前記画素の総数に対し、前記輝度が第2の輝度閾値を超える画素の数の比率を求め、当該比率が第1の比率閾値を超えた場合に、前記輝度が第1の輝度閾値を超えた画素において、前記副画素の信号値に乗じる利得を下げる
    請求項1から請求項4の何れか一項に記載の表示装置。
  6. 前記信号処理部は、
    前記比率が前記第1の比率閾値よりも大きい第2の比率閾値を超えた場合に、前記副画素の信号値に乗じる利得を所定の一定値とする
    請求項5に記載の表示装置。
JP2016165024A 2016-08-25 2016-08-25 表示装置 Active JP6718336B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016165024A JP6718336B2 (ja) 2016-08-25 2016-08-25 表示装置
US15/677,326 US10297231B2 (en) 2016-08-25 2017-08-15 Display apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016165024A JP6718336B2 (ja) 2016-08-25 2016-08-25 表示装置

Publications (2)

Publication Number Publication Date
JP2018031920A true JP2018031920A (ja) 2018-03-01
JP6718336B2 JP6718336B2 (ja) 2020-07-08

Family

ID=61243144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016165024A Active JP6718336B2 (ja) 2016-08-25 2016-08-25 表示装置

Country Status (2)

Country Link
US (1) US10297231B2 (ja)
JP (1) JP6718336B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110164385A (zh) * 2019-05-31 2019-08-23 厦门天马微电子有限公司 一种背光源亮度的调节方法
WO2020040016A1 (ja) * 2018-08-21 2020-02-27 シャープ株式会社 表示装置および光強度算出方法
JP2021101199A (ja) * 2019-12-24 2021-07-08 セイコーエプソン株式会社 回路装置、表示装置、電子機器、移動体及び制御方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019073990A1 (ja) 2017-10-12 2019-04-18 ソニー株式会社 画像処理装置、画像処理方法、送信装置、送信方法および受信装置
US10645358B2 (en) 2018-02-20 2020-05-05 Gopro, Inc. Saturation management for luminance gains in image processing
JP2019168595A (ja) * 2018-03-23 2019-10-03 株式会社ジャパンディスプレイ 表示装置
JP2019174537A (ja) * 2018-03-27 2019-10-10 株式会社ジャパンディスプレイ 表示装置
CN110136620B (zh) * 2019-06-28 2022-06-28 京东方科技集团股份有限公司 显示面板的驱动时间差确定方法及系统
KR102680091B1 (ko) * 2020-04-17 2024-07-03 삼성디스플레이 주식회사 표시 장치 및 그 구동 방법
KR20220048220A (ko) * 2020-10-12 2022-04-19 엘지디스플레이 주식회사 표시패널과 이를 이용한 표시장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009276462A (ja) * 2008-05-13 2009-11-26 Sharp Corp 映像表示装置
JP2010038954A (ja) * 2008-07-31 2010-02-18 Sony Corp 画像処理回路および画像表示装置
JP2013257477A (ja) * 2012-06-14 2013-12-26 Sony Corp 表示装置、画像処理装置、および表示方法
JP2014178369A (ja) * 2013-03-13 2014-09-25 Japan Display Inc 表示装置、電子機器、表示装置の駆動方法及び信号処理方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5430068B2 (ja) * 2008-02-15 2014-02-26 株式会社ジャパンディスプレイ 表示装置
KR101512047B1 (ko) 2008-08-13 2015-04-16 삼성디스플레이 주식회사 광원 로컬 구동 방법, 이를 수행하기 위한 광원 장치 및 이광원 장치를 포함하는 표시 장치
JP5875423B2 (ja) * 2012-03-19 2016-03-02 株式会社ジャパンディスプレイ 画像処理装置および画像処理方法
JP2016161921A (ja) 2015-03-05 2016-09-05 株式会社ジャパンディスプレイ 表示装置、電子機器及び表示装置の駆動方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009276462A (ja) * 2008-05-13 2009-11-26 Sharp Corp 映像表示装置
JP2010038954A (ja) * 2008-07-31 2010-02-18 Sony Corp 画像処理回路および画像表示装置
JP2013257477A (ja) * 2012-06-14 2013-12-26 Sony Corp 表示装置、画像処理装置、および表示方法
JP2014178369A (ja) * 2013-03-13 2014-09-25 Japan Display Inc 表示装置、電子機器、表示装置の駆動方法及び信号処理方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020040016A1 (ja) * 2018-08-21 2020-02-27 シャープ株式会社 表示装置および光強度算出方法
CN110164385A (zh) * 2019-05-31 2019-08-23 厦门天马微电子有限公司 一种背光源亮度的调节方法
JP2021101199A (ja) * 2019-12-24 2021-07-08 セイコーエプソン株式会社 回路装置、表示装置、電子機器、移動体及び制御方法
JP7500966B2 (ja) 2019-12-24 2024-06-18 セイコーエプソン株式会社 回路装置、表示装置、電子機器、移動体及び制御方法

Also Published As

Publication number Publication date
JP6718336B2 (ja) 2020-07-08
US10297231B2 (en) 2019-05-21
US20180061368A1 (en) 2018-03-01

Similar Documents

Publication Publication Date Title
JP6718336B2 (ja) 表示装置
US8305388B2 (en) Four color display device and method of converting image signal thereof
KR102207464B1 (ko) 표시 장치 및 그 구동 방법
JP6423243B2 (ja) 表示装置、電子機器及び表示装置の駆動方法
JP2017207581A (ja) 表示装置
US20190221171A1 (en) Partitioned backlight display method of red, green, blue, and white (rgbw) display device
KR101971145B1 (ko) 화상 표시 장치 및 화상 표시 방법
JP7311434B2 (ja) 色度補正方法及び装置、デバイス、表示装置、記憶媒体
US10269313B2 (en) Display device and display device drive method
TW201435838A (zh) 有機發光二極體顯示器中將rgb資料訊號轉換成rgbw資料訊號的方法與裝置
US20120293571A1 (en) Image display device
KR20170001885A (ko) 영상처리장치 및 영상처리방법
US8976204B2 (en) Display device
US10803829B2 (en) Display device and display module
WO2018092419A1 (ja) フィールドシーケンシャル方式の画像表示装置および画像表示方法
JP2015194607A (ja) 表示装置及び表示装置の駆動方法
US10089938B2 (en) Display device with sidelight illumination and luminance correction
KR20180034207A (ko) 화상 표시 장치 및 화상 표시 방법
KR20210112690A (ko) 디스플레이 패널 구동을 위한 영상데이터를 처리하는 장치 및 방법
JP2016224398A (ja) 表示装置
US20190287470A1 (en) Field sequential image display device and image display method
KR102587620B1 (ko) 표시장치와 그 휘도 제어 방법
JP2021001928A (ja) 表示制御装置、表示装置及び表示制御方法
JP2015203809A (ja) 表示装置、電子機器及び表示装置の駆動方法
KR101975494B1 (ko) 액정 표시 장치의 로컬 디밍 장치 및 로컬 디밍 방법, 이를 이용한 액정 표시 장치의 구동 장치 및 구동 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200612

R150 Certificate of patent or registration of utility model

Ref document number: 6718336

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250