JP2018031064A - Copper stock for sputtering target - Google Patents

Copper stock for sputtering target Download PDF

Info

Publication number
JP2018031064A
JP2018031064A JP2016165553A JP2016165553A JP2018031064A JP 2018031064 A JP2018031064 A JP 2018031064A JP 2016165553 A JP2016165553 A JP 2016165553A JP 2016165553 A JP2016165553 A JP 2016165553A JP 2018031064 A JP2018031064 A JP 2018031064A
Authority
JP
Japan
Prior art keywords
less
mass
sputtering
copper
sputtering target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016165553A
Other languages
Japanese (ja)
Other versions
JP6900642B2 (en
Inventor
翔一郎 矢野
Shoichiro Yano
翔一郎 矢野
敏夫 坂本
Toshio Sakamoto
敏夫 坂本
志信 佐藤
Shinobu Sato
志信 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2016165553A priority Critical patent/JP6900642B2/en
Priority to PCT/JP2017/027694 priority patent/WO2018037840A1/en
Priority to CN201780031666.5A priority patent/CN109312425B/en
Priority to KR1020187032547A priority patent/KR102426482B1/en
Priority to TW106126537A priority patent/TWI729182B/en
Publication of JP2018031064A publication Critical patent/JP2018031064A/en
Application granted granted Critical
Publication of JP6900642B2 publication Critical patent/JP6900642B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a copper stock for sputtering target that can prevent the occurrence of abnormal discharge for stable deposition, and can be produced at low cost.SOLUTION: A copper stock for sputtering target contains at least one additional element selected from Zr, Ti, Mg, Mn, La, Ca in a range of 0.001 mass% or more and 0.008 mass% or less, with the total of the content of Cu and the content of the additional element being 99.99 mass% or more. The content of S is preferably 0.005 mass% or less.SELECTED DRAWING: None

Description

本発明は、例えば、半導体装置、液晶や有機ELパネルなどのフラットパネルディスプレイ、タッチパネル等において配線膜(銅膜)を成膜する際に用いられるスパッタリングターゲット用銅素材に関するものである。   The present invention relates to a copper material for a sputtering target used when forming a wiring film (copper film) in a semiconductor device, a flat panel display such as a liquid crystal or organic EL panel, a touch panel, and the like.

従来、半導体装置、液晶や有機ELパネルなどのフラットパネルディスプレイ、タッチパネル等の配線膜としてAlが広く使用されている。最近では、配線膜の微細化(幅狭化)および薄膜化が図られており、従来よりも比抵抗の低い配線膜が求められている。
そこで、上述の配線膜の微細化および薄膜化にともない、Alよりも比抵抗の低い材料である銅(Cu)からなる配線膜が提供されている。
Conventionally, Al is widely used as a wiring film for semiconductor devices, flat panel displays such as liquid crystal and organic EL panels, and touch panels. Recently, miniaturization (narrowing) and thinning of the wiring film have been attempted, and a wiring film having a lower specific resistance than before has been demanded.
Accordingly, with the miniaturization and thinning of the wiring film described above, a wiring film made of copper (Cu), which is a material having a specific resistance lower than that of Al, is provided.

ところで、上述の配線膜は、通常、スパッタリングターゲットを用いて真空雰囲気中で成膜される。銅配線膜を成膜するスパッタリングターゲットとしては、例えば特許文献1,2に開示されたものが提案されている。   By the way, the above-described wiring film is usually formed in a vacuum atmosphere using a sputtering target. As a sputtering target for forming a copper wiring film, for example, those disclosed in Patent Documents 1 and 2 have been proposed.

ここで、特許文献1には、純度が99.995wt%以上である純銅において、実質的に再結晶組織を有し、平均結晶粒径が80ミクロン以下であり、かつビッカース硬度が100Hv以下とされたスパッタリング用銅ターゲットが提案されている。
この特許文献1においては、再結晶組織として結晶粒を微細化するとともに歪量を低減することにより、粗大クラスタの発生を抑制し、さらに、銅粒子の方向性を揃えて銅配線を均一に成膜することを目的としている。
Here, in Patent Document 1, pure copper having a purity of 99.995 wt% or more has a substantially recrystallized structure, an average crystal grain size of 80 microns or less, and a Vickers hardness of 100 Hv or less. A copper target for sputtering has been proposed.
In this patent document 1, the generation of coarse clusters is suppressed by refining crystal grains as a recrystallized structure and reducing the amount of strain, and the direction of the copper particles is aligned and the copper wiring is uniformly formed. The purpose is to film.

また、特許文献2には、電気銅からゾーンメルト法により溶解インゴットを作成する工程と、上記溶解インゴットを真空溶解することにより高純度銅インゴットを作成する工程と、上記高純度銅インゴットを100〜600℃で熱処理することにより再結晶させる工程と、熱処理した上記高純度銅インゴットに機械加工を施す工程とを具備することにより、酸素含有量が10ppm以下であり、硫黄含有量が1ppm以下であり、鉄含有量が1ppm以下であり、純度が99.999%以上の高純度銅基材から成るスパッタリングターゲットを得るスパッタリングターゲットの製造方法が提案されている。
この特許文献2においては、成膜時における配線膜の流動性が良好であり、緻密で密着性が良好な配線膜を形成することが可能なスパッタリングターゲットを製造することを目的としている。
Patent Document 2 discloses a step of creating a melting ingot from electrolytic copper by a zone melt method, a step of creating a high purity copper ingot by vacuum melting the melting ingot, and the high purity copper ingot from 100 to 100%. By comprising a step of recrystallization by heat treatment at 600 ° C. and a step of machining the heat-treated high-purity copper ingot, the oxygen content is 10 ppm or less and the sulfur content is 1 ppm or less. There has been proposed a sputtering target manufacturing method for obtaining a sputtering target composed of a high-purity copper base material having an iron content of 1 ppm or less and a purity of 99.999% or more.
This patent document 2 is intended to produce a sputtering target capable of forming a dense wiring film with good fluidity and good dense adhesion at the time of film formation.

特開平11−158614号公報Japanese Patent Laid-Open No. 11-158614 特開2007−023390号公報JP 2007-023390 A

ところで、スパッタリングターゲットを用いて成膜を行う場合、電荷の集中によって異常放電(アーキング)が発生することがあり、そのため均一な配線膜を形成できないことがある。ここで異常放電とは、正常なスパッタリング時と比較して極端に高い電流が突然急激に流れて、異常に大きな放電が急激に発生してしまう現象であり、このような異常放電が発生すれば、パーティクルの発生原因となったり、配線膜の膜厚が不均一となったりしてしまうおそれがある。したがって、成膜時の異常放電はできるだけ回避することが望まれる。
特に最近では、半導体装置、液晶や有機ELパネルなどのフラットパネルディスプレイ、タッチパネル等においては、配線膜のさらなる高密度化が求められており、従来にも増して、微細化および薄膜化された配線膜を安定して形成する必要がある。
By the way, when film formation is performed using a sputtering target, abnormal discharge (arcing) may occur due to concentration of electric charges, and thus a uniform wiring film may not be formed. Here, abnormal discharge is a phenomenon in which an extremely high current suddenly and suddenly flows compared to that during normal sputtering, and an abnormally large discharge occurs suddenly. This may cause generation of particles and / or non-uniform thickness of the wiring film. Therefore, it is desirable to avoid as much as possible abnormal discharge during film formation.
In particular, in recent years, in semiconductor devices, flat panel displays such as liquid crystal and organic EL panels, touch panels, etc., higher density of wiring films has been demanded, and wiring that has been made finer and thinner than before. It is necessary to form the film stably.

ここで、特許文献1に記載されたスパッタリング用銅ターゲットにおいては、再結晶組織として平均結晶粒径を微細化するとともに歪量を低減することが記載されているが、不純物について特に言及されていない。例えば不純物として硫黄(S)を含有している場合には、再結晶の進行が抑制されるため、均一な再結晶組織を得ることができないおそれがあった。このため、全体として平均結晶粒径が小さく歪量が低くても、未再結晶領域が存在し、局所的に歪量が高い領域が存在する場合には、異常放電が発生しやすくなるおそれがあった。   Here, in the copper target for sputtering described in Patent Document 1, it is described that the average crystal grain size is refined and the amount of strain is reduced as a recrystallized structure, but no particular mention is made of impurities. . For example, when sulfur (S) is contained as an impurity, there is a possibility that a uniform recrystallized structure cannot be obtained because the progress of recrystallization is suppressed. For this reason, even if the average crystal grain size is small and the amount of strain is low as a whole, if there is an unrecrystallized region and there is a region where the amount of strain is locally high, abnormal discharge is likely to occur. there were.

また、特許文献2に記載されたスパッタリングターゲットの製造方法においては、ゾーンメルト法によって純度が99.9995%の溶解インゴットを製造しており、不純物量を抑えているが、再結晶挙動について何ら考慮されておらず、歪量についても考慮されていないため、やはり、異常放電が発生しやすくなるおそれがあった。また、ゾーンメルト法を用いているため、生産効率が大幅に低下してしまうといった問題があった。   In addition, in the method for producing a sputtering target described in Patent Document 2, a melted ingot having a purity of 99.9995% is produced by the zone melt method and the amount of impurities is suppressed, but no consideration is given to the recrystallization behavior. In this case, the amount of distortion is not taken into consideration, and therefore, abnormal discharge may easily occur. Further, since the zone melt method is used, there is a problem that the production efficiency is greatly reduced.

この発明は、前述した事情に鑑みてなされたものであって、異常放電の発生を抑制して安定して成膜を行うことができるとともに、低コストで製造可能なスパッタリングターゲット用銅素材を提供することを目的とする。   The present invention has been made in view of the circumstances described above, and provides a copper material for a sputtering target that can stably form a film while suppressing the occurrence of abnormal discharge and can be manufactured at low cost. The purpose is to do.

上記の課題を解決するために、本発明のスパッタリングターゲット用銅素材は、Zr,Ti,Mg,Mn,La,Caから選択される1種または2種以上の添加元素を0.001mass%以上0.008mass%以下の範囲内で含有し、Cuの含有量と前記添加元素の含有量との合計が99.99mass%以上とされていることを特徴としている。   In order to solve the above-mentioned problems, the copper material for a sputtering target of the present invention contains 0.001 mass% or more of one or more additive elements selected from Zr, Ti, Mg, Mn, La, and Ca. 0.008 mass% or less, and the total of the content of Cu and the content of the additive element is 99.99 mass% or more.

この構成のスパッタリングターゲット用銅素材においては、Zr,Ti,Mg,Mn,La,Caから選択される1種または2種以上の添加元素を0.001mass%以上0.008mass%以下の範囲内で含有し、Cuの含有量と前記添加元素の含有量との合計が99.99mass%以上とされており、必要以上に高純度化されていないので、比較的低コストで製造することができる。
また、Zr,Ti,Mg,Mn,La,Caから選択される1種または2種以上の添加元素を0.001mass%以上0.008mass%以下の範囲で含有しているので、Sをこれらの添加元素との化合物として固定することができ、Sによって再結晶の進行が阻害されることを抑制できる。よって、均一な再結晶組織を得ることができ、成膜時の異常放電(アーキング)の発生を抑制することが可能となる。
In the copper material for a sputtering target having this configuration, one or more additive elements selected from Zr, Ti, Mg, Mn, La, and Ca are added in a range of 0.001 mass% to 0.008 mass%. Since the total of the content of Cu and the content of the additive element is 99.99 mass% or more and is not purified more than necessary, it can be manufactured at a relatively low cost.
Further, since one or more additive elements selected from Zr, Ti, Mg, Mn, La, and Ca are contained in the range of 0.001 mass% to 0.008 mass%, S is added to these. It can fix as a compound with an additional element, and can suppress that the progress of recrystallization is inhibited by S. Therefore, a uniform recrystallized structure can be obtained and the occurrence of abnormal discharge (arcing) during film formation can be suppressed.

ここで、本発明のスパッタリングターゲット用銅素材においては、Sの含有量が0.005mass%以下とされていることが好ましい。
この場合、Sの含有量が0.005mass%以下に制限されているので、上述の添加元素によってSを確実に固定することができ、均一な再結晶組織を得ることができ、成膜時の異常放電(アーキング)の発生を抑制することが可能となる。また、導電率の低下を抑制することができる。
Here, in the copper raw material for sputtering targets of this invention, it is preferable that content of S shall be 0.005 mass% or less.
In this case, since the S content is limited to 0.005 mass% or less, S can be reliably fixed by the above-described additive element, a uniform recrystallized structure can be obtained, It is possible to suppress the occurrence of abnormal discharge (arcing). In addition, a decrease in conductivity can be suppressed.

また、本発明のスパッタリングターゲット用銅素材においては、スパッタ面と同一平面内において前記添加元素とSを含む化合物が占める面積率が0.4%以下であることが好ましい。
この場合、前記添加元素とSを含む化合物が占める面積率が0.4%以下に抑えられているので、再結晶温度の高温化を抑制してさらに再結晶の進行を促進することができ、未再結晶領域が生成することをさらに抑制することができる。また、添加元素とSを含む化合物に起因する異常放電の発生を確実に抑制することができる。
Moreover, in the copper raw material for sputtering targets of this invention, it is preferable that the area ratio which the compound containing the said additional element and S occupies in the same plane as a sputtering surface is 0.4% or less.
In this case, since the area ratio occupied by the compound containing the additive element and S is suppressed to 0.4% or less, it is possible to suppress the increase in the recrystallization temperature and further promote the progress of the recrystallization, Generation of non-recrystallized regions can be further suppressed. Moreover, generation | occurrence | production of the abnormal discharge resulting from the compound containing an additive element and S can be suppressed reliably.

さらに、本発明のスパッタリングターゲット用銅素材においては、ビッカース硬度が80Hv以下であることが好ましい。
この場合、均一な再結晶組織を有しており、さらに歪が十分に解放されていることになり、成膜時の異常放電(アーキング)の発生を確実に抑制することが可能となる。
Furthermore, in the copper material for a sputtering target of the present invention, it is preferable that the Vickers hardness is 80 Hv or less.
In this case, it has a uniform recrystallized structure, and the strain is sufficiently released, so that the occurrence of abnormal discharge (arcing) during film formation can be reliably suppressed.

また、本発明のスパッタリングターゲット用銅素材においては、スパッタ面と同一平面内の複数の箇所で測定したビッカース硬度の標準偏差が10以下であることが好ましい。
この場合、歪が均一に解放されているので、局所的に歪量が高い領域がなく、異常放電の発生を確実に抑制することができる。
Moreover, in the copper raw material for sputtering targets of this invention, it is preferable that the standard deviation of the Vickers hardness measured in several places in the same plane as a sputtering surface is 10 or less.
In this case, since the strain is released uniformly, there is no region where the amount of strain is locally high, and the occurrence of abnormal discharge can be reliably suppressed.

本発明のスパッタリングターゲットは、平均結晶粒径が100μm以下であることが好ましい。
この場合、平均結晶粒径が100μm以下と比較的微細とされているので、スパッタが進行した際にスパッタ面に生じる凹凸が小さくなり、異常放電の発生を抑制することができる。
The sputtering target of the present invention preferably has an average crystal grain size of 100 μm or less.
In this case, since the average crystal grain size is 100 μm or less and relatively fine, unevenness generated on the sputtering surface when the sputtering progresses is reduced, and the occurrence of abnormal discharge can be suppressed.

本発明によれば、異常放電の発生を抑制して安定して成膜を行うことができるとともに、低コストで製造可能なスパッタリングターゲット用銅素材を提供することができる。   According to the present invention, it is possible to provide a copper material for a sputtering target that can be stably formed while suppressing the occurrence of abnormal discharge and can be manufactured at low cost.

スパッタ面が円形をなすスパッタリングターゲット用銅素材におけるビッカース硬度の測定位置を示す説明図である。It is explanatory drawing which shows the measurement position of the Vickers hardness in the copper raw material for sputtering targets whose sputtering surface makes a circle. スパッタ面が矩形形をなすスパッタリングターゲット用銅素材におけるビッカース硬度の測定位置を示す説明図である。It is explanatory drawing which shows the measurement position of the Vickers hardness in the copper raw material for sputtering targets whose sputtering surface makes a rectangular shape. スパッタ面が円筒形状をなすスパッタリングターゲット用銅素材におけるビッカース硬度の測定位置を示す説明図である。It is explanatory drawing which shows the measurement position of the Vickers hardness in the copper raw material for sputtering targets whose sputtering surface makes a cylindrical shape. 本発明の実施形態に係るスパッタリングターゲット用銅素材の製造方法の一例を示すフロー図である。It is a flowchart which shows an example of the manufacturing method of the copper raw material for sputtering targets which concerns on embodiment of this invention.

以下に、本発明の一実施形態に係るスパッタリングターゲット用銅素材について説明する。
本実施形態であるスパッタリングターゲット用銅素材は、半導体装置、液晶や有機ELパネルなどのフラットパネルディスプレイ、タッチパネル等において配線膜として使用される銅膜を基板上に成膜する際に用いられるスパッタリングターゲットの素材となるものである。なお、スパッタリングターゲット用銅素材としては、円板状、矩形平板状、円筒形状のものがある。
Below, the copper raw material for sputtering targets which concerns on one Embodiment of this invention is demonstrated.
The copper material for sputtering target according to this embodiment is a sputtering target used when a copper film used as a wiring film in a semiconductor device, a flat panel display such as a liquid crystal or organic EL panel, a touch panel, etc. is formed on a substrate. It will be the material of. In addition, as a copper raw material for sputtering targets, there exist a disk shape, a rectangular flat plate shape, and a cylindrical shape.

そして、本実施形態であるスパッタリングターゲット用銅素材の組成は、Zr,Ti,Mg,Mn,La,Caから選択される1種または2種以上の添加元素を0.001mass%以上0.008mass%以下の範囲内で含有し、Cuの含有量と前記添加元素の含有量との合計が99.99mass%以上とされている。また、本実施形態では、Sの含有量が0.005mass%以下とされている。   And the composition of the copper raw material for sputtering targets which is this embodiment is 0.001 mass% or more and 0.008 mass% of 1 type, or 2 or more types of additional elements selected from Zr, Ti, Mg, Mn, La, and Ca. It contains within the following ranges, and the sum total of content of Cu and content of the said additional element shall be 99.99 mass% or more. In the present embodiment, the S content is 0.005 mass% or less.

また、本実施形態であるスパッタリングターゲット用銅素材は、スパッタ面と同一平面内において前述の添加元素(Zr,Ti,Mg,Mn,La,Caから選択される1種または2種以上)とSを含む化合物が占める面積率が0.4%以下とされている。
さらに、本実施形態であるスパッタリングターゲット用銅素材は、ビッカース硬度が80Hv以下とされている。
また、本実施形態であるスパッタリングターゲット用銅素材は、スパッタ面と同一平面内の複数の箇所で測定したビッカース硬度の標準偏差が10以下とされている。
さらに、本実施形態であるスパッタリングターゲット用銅素材は、平均結晶粒径が100μm以下とされている。
Further, the copper material for sputtering target according to the present embodiment includes the above-described additive elements (one or more selected from Zr, Ti, Mg, Mn, La, and Ca) and S in the same plane as the sputtering surface. The area ratio occupied by the compound containing is 0.4% or less.
Furthermore, the copper material for sputtering targets according to this embodiment has a Vickers hardness of 80 Hv or less.
In addition, the copper material for a sputtering target according to the present embodiment has a standard deviation of Vickers hardness of 10 or less measured at a plurality of locations in the same plane as the sputtering surface.
Furthermore, the copper material for sputtering targets according to this embodiment has an average crystal grain size of 100 μm or less.

以下に、本実施形態であるスパッタリングターゲット用銅素材の組成、スパッタ面における化合物の面積率、ビッカース硬さ、ビッカース硬さの標準偏差、平均結晶粒径を上述のように規定した理由について説明する。   The reason why the composition of the copper material for sputtering target according to the present embodiment, the area ratio of the compound on the sputtering surface, the Vickers hardness, the standard deviation of the Vickers hardness, and the average crystal grain size are defined as described above will be described below. .

(Zr,Ti,Mg,Mn,La,Caから選択される1種または2種以上の添加元素:0.001mass%以上0.008mass%以下)
上述の添加元素は、Cuよりも硫化物生成自由エネルギーが低い元素であることから、S(硫黄)と化合物を形成し、Sを固定することが可能となる。これにより、再結晶を促進することができる。
(One or more additive elements selected from Zr, Ti, Mg, Mn, La, and Ca: 0.001 mass% to 0.008 mass%)
Since the above-mentioned additive element is an element having a lower free energy for sulfide generation than Cu, it is possible to form a compound with S (sulfur) and fix S. Thereby, recrystallization can be promoted.

ここで、Zr,Ti,Mg,Mn,La,Caから選択される1種または2種以上の添加元素の含有量が0.001mass%未満の場合には、銅中のSを十分に固定することができなくなるおそれがある。一方、Zr,Ti,Mg,Mn,La,Caから選択される1種または2種以上の添加元素の含有量が0.008mass%を超えると、添加元素とSを含む化合物が数多く生成し、あるいは化合物が粗大化し、この化合物を起因とした異常放電が発生するおそれがある。   Here, when the content of one or more additive elements selected from Zr, Ti, Mg, Mn, La, and Ca is less than 0.001 mass%, S in copper is sufficiently fixed. There is a risk that it will not be possible. On the other hand, when the content of one or more additive elements selected from Zr, Ti, Mg, Mn, La, and Ca exceeds 0.008 mass%, many compounds containing the additive element and S are produced. Alternatively, the compound may become coarse and abnormal discharge due to this compound may occur.

このため、本実施形態では、Zr,Ti,Mg,Mn,La,Caから選択される1種または2種以上の添加元素の含有量を0.001mass%以上0.008mass%以下の範囲内とする。
なお、銅中のSをさらに十分に固定するためには、Zr,Ti,Mg,Mn,La,Caから選択される1種または2種以上の添加元素の含有量の下限を0.0015mass%以上とすることが好ましく、0.0020mass%以上とすることが好ましい。
また、化合物に起因する異常放電の発生を抑制するためには、Zr,Ti,Mg,Mn,La,Caから選択される1種または2種以上の添加元素の含有量の上限を0.0060mass%以下とすることが好ましく、0.0040mass%以下とすることが好ましい。
For this reason, in the present embodiment, the content of one or more additive elements selected from Zr, Ti, Mg, Mn, La, and Ca is within a range of 0.001 mass% to 0.008 mass%. To do.
In order to more sufficiently fix S in copper, the lower limit of the content of one or more additive elements selected from Zr, Ti, Mg, Mn, La, and Ca is set to 0.0015 mass%. It is preferable to set it as above, and it is preferable to set it as 0.0020 mass% or more.
In order to suppress the occurrence of abnormal discharge due to the compound, the upper limit of the content of one or more additive elements selected from Zr, Ti, Mg, Mn, La, and Ca is set to 0.0060 mass. % Or less, and preferably 0.0040 mass% or less.

(Cuの含有量と添加元素の含有量との合計が99.99mass%以上)
配線膜(高純度銅膜)をスパッタにて成膜する場合、異常放電(アーキング)を抑えるために不純物を極力低減することが好ましい。ただし、Cuの含有量と添加元素の含有量との合計が99.999mass%以上に高純度化するためには、製造工程が複雑となり、製造コストが大幅に上昇することになる。そこで、本実施形態では、Cuの含有量と添加元素の含有量との合計を99.99mass%以上とすることで、製造コストの低減を図っている。また、Cuの含有量と添加元素の含有量との合計の上限は、製造コストの低減の観点から、99.999mass%未満とすることが好ましい。
(Total of Cu content and additive element content is 99.99 mass% or more)
When forming a wiring film (high-purity copper film) by sputtering, it is preferable to reduce impurities as much as possible in order to suppress abnormal discharge (arcing). However, in order to increase the purity of the Cu content and the additive element content to 99.999 mass% or more, the manufacturing process becomes complicated and the manufacturing cost increases significantly. Therefore, in this embodiment, the manufacturing cost is reduced by setting the total of the Cu content and the additive element content to 99.99 mass% or more. Further, the upper limit of the total content of Cu and the content of additive elements is preferably less than 99.999 mass% from the viewpoint of reducing manufacturing costs.

(S:0.005mass%以下)
Sは、銅の再結晶の進行を阻害するとともに、導電率を低下させる元素である。ここで、Sの含有量が0.005mass%を超える場合には、上述の添加元素を添加した場合であっても、Sを十分に固定することができなくなり、再結晶が不十分となって、未再結晶領域が生成し、歪量が局所的に不均一となるおそれがある。また、導電率が低下するおそれがある。
このため、再結晶を十分に進行させて歪量を十分に均一化するとともに、導電率を確保するためには、Sの含有量を0.005mass%以下に制限することが好ましい。なお、Sの含有量は0.003mass%以下とすることが好ましく、0.001mass%以下とすることがさらに好ましい。
(S: 0.005 mass% or less)
S is an element that inhibits the progress of copper recrystallization and lowers the electrical conductivity. Here, when the content of S exceeds 0.005 mass%, even when the above-described additive element is added, S cannot be sufficiently fixed, and recrystallization becomes insufficient. There is a possibility that an unrecrystallized region is generated and the amount of strain is locally non-uniform. Moreover, there exists a possibility that electrical conductivity may fall.
For this reason, it is preferable to limit the S content to 0.005 mass% or less in order to sufficiently advance the recrystallization so as to sufficiently uniform the strain amount and to ensure the electrical conductivity. The S content is preferably 0.003 mass% or less, and more preferably 0.001 mass% or less.

(スパッタ面と同一平面内において添加元素とSを含む化合物が占める面積率:0.4%以下)
Zr,Ti,Mg,Mn,La,Caから選択される1種または2種以上の添加元素を添加することにより、添加元素とSとを含む化合物が生成することになるが、この化合物の一部がスパッタリングターゲット用銅素材に混入することがある。この添加元素とSとを含む化合物の数が多くなった場合、あるいは、化合物が粗大化した場合には、再結晶温度が高温化して再結晶が抑制されるおそれがある。また、成膜時においてこの化合物に起因して異常放電が発生してしまうおそれがある。
このため、本実施形態では、添加元素とSを含む化合物が占める面積率を0.4%以下としている。なお、添加元素とSを含む化合物が占める面積率は0.3%以下とすることが好ましく、0.1%以下とすることがさらに好ましい。
(Area ratio occupied by compound containing additive element and S in the same plane as the sputtering surface: 0.4% or less)
By adding one or more additional elements selected from Zr, Ti, Mg, Mn, La, and Ca, a compound containing the additional element and S is generated. May be mixed in the sputtering target copper material. When the number of compounds containing this additive element and S increases or when the compound becomes coarse, the recrystallization temperature may be increased and recrystallization may be suppressed. In addition, abnormal discharge may occur due to this compound during film formation.
For this reason, in this embodiment, the area ratio which the compound containing an additive element and S occupies is 0.4% or less. Note that the area ratio occupied by the compound containing the additive element and S is preferably 0.3% or less, and more preferably 0.1% or less.

(ビッカース硬度:80Hv以下)
再結晶が促進されて歪が十分に解放された場合にはビッカース硬度は低くなる。
ここで、ビッカース硬度が80Hv以下であれば、十分に再結晶が進行し、歪が解放されていることになる。
このため、本実施形態では、ビッカース硬度を80Hv以下に限定している。なお、ビッカース硬度は65Hv以下とすることが好ましく、50Hv以下とすることがさらに好ましい。
本実施形態では、スパッタ面と同一平面内の複数の箇所で測定したビッカース硬度の平均値が80Hv以下とされている。
(Vickers hardness: 80Hv or less)
When recrystallization is promoted and the strain is sufficiently released, the Vickers hardness becomes low.
Here, if Vickers hardness is 80 Hv or less, recrystallization will fully advance and distortion will be released.
For this reason, in this embodiment, the Vickers hardness is limited to 80 Hv or less. The Vickers hardness is preferably 65 Hv or less, and more preferably 50 Hv or less.
In the present embodiment, the average value of Vickers hardness measured at a plurality of locations in the same plane as the sputtering surface is 80 Hv or less.

(スパッタ面と同一平面内の複数の箇所で測定したビッカース硬度の標準偏差:10以下)
未再結晶領域を有し、局所的に歪が高い領域が存在している場合には、ビッカース硬度にばらつきが生じることになる。
ここで、スパッタ面と同一平面内の複数の箇所で測定したビッカース硬度の標準偏差が10以下であれば、ビッカース硬度のばらつきが小さく、局所的に歪が高い領域がほとんど存在しないことになる。
このため、本実施形態では、スパッタ面と同一平面内の複数の箇所で測定したビッカース硬度の標準偏差を10以下に限定している。なお、スパッタ面と同一平面内の複数の箇所で測定したビッカース硬度の標準偏差は5以下とすることが好ましく、3以下とすることがさらに好ましい。
(Standard deviation of Vickers hardness measured at multiple points in the same plane as the sputtering surface: 10 or less)
In the case where there is an unrecrystallized region and a region having high strain locally exists, the Vickers hardness varies.
Here, if the standard deviation of the Vickers hardness measured at a plurality of locations in the same plane as the sputtering surface is 10 or less, the variation in the Vickers hardness is small, and there is almost no region where the strain is locally high.
For this reason, in this embodiment, the standard deviation of the Vickers hardness measured at a plurality of locations in the same plane as the sputtering surface is limited to 10 or less. The standard deviation of Vickers hardness measured at a plurality of locations in the same plane as the sputtering surface is preferably 5 or less, and more preferably 3 or less.

ここで、本実施形態においては、上述のビッカース硬度の測定位置については、スパッタリングターゲット用銅素材の形状に応じて設定している。   Here, in this embodiment, the measurement position of the above-mentioned Vickers hardness is set according to the shape of the copper material for sputtering targets.

スパッタリングターゲット用銅素材のスパッタ面が円形をなす場合には、図1に示すように、円の中心(1)、及び、円の中心を通過するとともに互いに直交する2本の直線上の外周部分(2)、(3)、(4)、(5)の5箇所においてビッカース硬度を測定し、その平均値及び標準偏差を算出している。   When the sputtering surface of the copper material for the sputtering target is circular, as shown in FIG. 1, the center (1) of the circle and the outer peripheral portion on two straight lines that pass through the center of the circle and are orthogonal to each other Vickers hardness is measured at five locations (2), (3), (4), and (5), and the average value and standard deviation are calculated.

スパッタリングターゲット用銅素材のスパッタ面が矩形をなす場合には、図2に示すように、対角線が交差する交点(1)と、各対角線上の角部(2)、(3)、(4)、(5)の5箇所においてビッカース硬度を測定し、その平均値及び標準偏差を算出している。   When the sputtering surface of the copper material for the sputtering target is rectangular, as shown in FIG. 2, the intersection (1) where the diagonal lines intersect and the corners (2), (3), (4) on each diagonal line , (5) Vickers hardness was measured at five locations, and the average value and standard deviation were calculated.

スパッタリングターゲット用銅素材のスパッタ面が円筒面をなす場合には、図3に示すように、周方向で等間隔に3ケ所の位置においてそれぞれ軸線方向の3ケ所の合計9箇所(A1〜A3、B1〜B3、C1〜C3)でビッカース硬度を測定し、その平均値及び標準偏差を算出している。   When the sputtering surface of the copper material for sputtering target forms a cylindrical surface, as shown in FIG. 3, a total of nine locations (A1 to A3, Bickers hardness is measured by B1-B3, C1-C3), and the average value and standard deviation are calculated.

(平均結晶粒径:100μm以下)
スパッタレートは、結晶方位によって異なることから、スパッタが進行するとスパッタ面に、上述のスパッタレートの違いに起因して結晶粒に応じた凹凸が生じることになる。
ここで、平均結晶粒径が100μmを超えると、結晶方位の異方性が顕著となるため、スパッタ面に生じる凹凸が大きくなり、凸部に電荷が集中して異常放電が発生しやすくなる。
このような理由から、本実施形態であるスパッタリングターゲット用銅素材では、平均結晶粒径を100μm以下に規定している。なお、本実施形態においては、平均結晶粒径を80μm以下とすることが好ましく、50μm以下とすることがさらに好ましい。
(Average crystal grain size: 100 μm or less)
Since the sputtering rate varies depending on the crystal orientation, when the sputtering proceeds, irregularities corresponding to the crystal grains are generated on the sputtering surface due to the above-described difference in the sputtering rate.
Here, when the average crystal grain size exceeds 100 μm, the anisotropy of crystal orientation becomes remarkable, and the unevenness generated on the sputtering surface becomes large, and electric charges are concentrated on the convex part, and abnormal discharge is likely to occur.
For these reasons, the average crystal grain size is regulated to 100 μm or less in the sputtering target copper material of this embodiment. In the present embodiment, the average crystal grain size is preferably 80 μm or less, and more preferably 50 μm or less.

次に、本実施形態であるスパッタリングターゲット用銅素材の製造方法の一例について図4を参照して説明する。   Next, an example of the manufacturing method of the copper material for sputtering targets which is this embodiment is demonstrated with reference to FIG.

(溶解・鋳造工程S01)
まず、銅の純度が99.99mass%以上の銅原料を溶解し、銅溶湯を得る。次いで、得られた銅溶湯に、所定の濃度となるようにZr,Ti,Mg,Mn,La,Caから選択される1種または2種以上の添加元素を添加して、成分調製を行い、銅合金溶湯を得る。
そして、本実施形態では、連続鋳造装置を用いて所定の断面形状(例えば矩形状、円形状、円環形状)の鋳塊を製造する。
(Melting / Casting Process S01)
First, a copper raw material having a copper purity of 99.99 mass% or more is melted to obtain a molten copper. Next, one or more additive elements selected from Zr, Ti, Mg, Mn, La, and Ca are added to the obtained molten copper so as to have a predetermined concentration, and component preparation is performed. Obtain a copper alloy melt.
And in this embodiment, the ingot of predetermined cross-sectional shape (For example, rectangular shape, circular shape, annular shape) is manufactured using a continuous casting apparatus.

(冷間加工工程S02)
次に、所定の断面形状を有する鋳塊に対して冷間加工を行う。この冷間加工における加工率は40.0%以上99.9%以下の範囲内とすることが好ましい。
(Cold processing step S02)
Next, cold working is performed on the ingot having a predetermined cross-sectional shape. The processing rate in this cold working is preferably in the range of 40.0% or more and 99.9% or less.

(熱処理工程S03)
次に、冷間加工後に熱処理を実施する。このときの熱処理温度は100℃以上600℃以下の範囲内、保持時間は30min以上300min以下の範囲内とすることが好ましく、さらには、熱処理温度は150℃以上400℃以下の範囲内、保持時間は60min以上180min以下の範囲内とすることが好ましい。この熱処理工程S03により、再結晶が進行し、冷間加工工程S02で付与された歪が解放される。
(Heat treatment step S03)
Next, heat treatment is performed after cold working. In this case, the heat treatment temperature is preferably in the range of 100 ° C. to 600 ° C., the holding time is preferably in the range of 30 min to 300 min, and the heat treatment temperature is in the range of 150 ° C. to 400 ° C., the holding time. Is preferably in the range of 60 min to 180 min. By this heat treatment step S03, recrystallization proceeds and the strain applied in the cold working step S02 is released.

(機械加工工程S04)
次に、熱処理後に機械加工を行い、表面の酸化膜を除去するとともに所定の形状に仕上げる。
以上のような工程により、本実施形態であるスパッタリングターゲット用銅素材が製造されることになる。
(Machining process S04)
Next, machining is performed after the heat treatment to remove the oxide film on the surface and finish it into a predetermined shape.
Through the steps as described above, the copper material for sputtering target according to the present embodiment is manufactured.

以上のような構成とされた本実施形態であるスパッタリングターゲット用銅素材によれば、Zr,Ti,Mg,Mn,La,Caから選択される1種または2種以上の添加元素を0.001mass%以上0.008mass%以下の範囲内で含有し、Cuの含有量と前記添加元素の含有量との合計が99.99mass%以上とされており、必要以上に高純度化されていないので、比較的低コストで製造することができる。
また、Zr,Ti,Mg,Mn,La,Caから選択される1種または2種以上の添加元素を0.001mass%以上0.008mass%以下の範囲で含有しているので、Sをこれらの添加元素との化合物として固定することができ、Sによって再結晶の進行が阻害されることを抑制できる。よって、均一な再結晶組織を得ることができ、成膜時の異常放電(アーキング)の発生を抑制することが可能となる。
According to the copper material for a sputtering target of the present embodiment configured as described above, one or more additive elements selected from Zr, Ti, Mg, Mn, La, and Ca are added by 0.001 mass. % In the range of 0.008 mass% or less, the sum of the content of Cu and the content of the additive element is 99.99 mass% or more, because it is not highly purified than necessary, It can be manufactured at a relatively low cost.
Further, since one or more additive elements selected from Zr, Ti, Mg, Mn, La, and Ca are contained in the range of 0.001 mass% to 0.008 mass%, S is added to these. It can fix as a compound with an additional element, and can suppress that the progress of recrystallization is inhibited by S. Therefore, a uniform recrystallized structure can be obtained and the occurrence of abnormal discharge (arcing) during film formation can be suppressed.

また、本実施形態では、Sの含有量が0.005mass%以下に制限されているので、Zr,Ti,Mg,Mn,La,Caから選択される1種または2種以上の添加元素によってSを確実に固定することができ、均一な再結晶組織を得ることができ、成膜時の異常放電(アーキング)の発生を抑制することが可能となる。また、導電率の低下を抑制することができる。   In the present embodiment, since the S content is limited to 0.005 mass% or less, the S content can be increased by one or more additive elements selected from Zr, Ti, Mg, Mn, La, and Ca. Can be reliably fixed, a uniform recrystallized structure can be obtained, and the occurrence of abnormal discharge (arcing) during film formation can be suppressed. In addition, a decrease in conductivity can be suppressed.

さらに、本実施形態では、スパッタ面と同一平面内において添加元素とSを含む化合物が占める面積率が0.4%以下に抑えられているので、再結晶温度の高温化を抑制してさらに再結晶を促進することができ、未再結晶領域が生成することをさらに抑制することができる。また、添加元素とSを含む化合物に起因する異常放電の発生を確実に抑制することができる。   Furthermore, in this embodiment, since the area ratio occupied by the compound containing the additive element and S in the same plane as the sputtering surface is suppressed to 0.4% or less, the recrystallization temperature is prevented from being increased and the recrystallization temperature is further increased. Crystallization can be promoted, and generation of an unrecrystallized region can be further suppressed. Moreover, generation | occurrence | production of the abnormal discharge resulting from the compound containing an additive element and S can be suppressed reliably.

さらに、本実施形態では、ビッカース硬度が80Hv以下とされているので、均一な再結晶組織を有し、さらに歪が十分に解放されていることになり、成膜時の異常放電(アーキング)の発生を確実に抑制することが可能となる。
また、本実施形態では、スパッタ面と同一平面内の複数の箇所で測定したビッカース硬度の標準偏差が10以下とされているので、歪が均一に解放されており、局所的に歪量が高い領域がなく、異常放電の発生を確実に抑制することができる。
Furthermore, in this embodiment, since the Vickers hardness is 80 Hv or less, it has a uniform recrystallized structure, and further, the strain is sufficiently released, and abnormal discharge (arcing) during film formation occurs. Occurrence can be reliably suppressed.
In this embodiment, since the standard deviation of the Vickers hardness measured at a plurality of locations in the same plane as the sputtering surface is 10 or less, the strain is released uniformly and the amount of strain is locally high. There is no region, and the occurrence of abnormal discharge can be reliably suppressed.

さらに、本実施形態では、図1から図3に示すように、スパッタリングターゲット用銅素材の形状に応じて、ビッカース硬度の測定箇所を規定しているので、スパッタ面と同一平面内の複数の箇所で測定したビッカース硬度の平均値及び標準偏差を適切に算出することができ、均一な歪を有するスパッタリングターゲット用銅素材を得ることができる。   Furthermore, in this embodiment, as shown in FIGS. 1 to 3, since the measurement locations of the Vickers hardness are defined according to the shape of the copper material for the sputtering target, a plurality of locations in the same plane as the sputtering surface The average value and standard deviation of the Vickers hardness measured in (1) can be appropriately calculated, and a copper material for a sputtering target having uniform strain can be obtained.

また、本実施形態では、平均結晶粒径が100μm以下と比較的微細とされているので、スパッタが進行した際にスパッタ面に生じる凹凸が小さくなり、異常放電の発生を抑制することができる。   Further, in this embodiment, since the average crystal grain size is made relatively small as 100 μm or less, the unevenness generated on the sputtering surface when the sputtering proceeds is reduced, and the occurrence of abnormal discharge can be suppressed.

さらに、本実施形態では、溶解・鋳造工程S01の後に冷間加工工程S02、熱処理工程S03を実施しているが、上述のように、Zr,Ti,Mg,Mn,La,Caから選択される1種または2種以上の添加元素によってS(硫黄)が固定され、再結晶の進行が促進されているので、均一な再結晶組織を得ることが可能となる。   Further, in the present embodiment, the cold working step S02 and the heat treatment step S03 are performed after the melting / casting step S01, and as described above, selected from Zr, Ti, Mg, Mn, La, and Ca. Since S (sulfur) is fixed by one or more additive elements and the progress of recrystallization is promoted, a uniform recrystallized structure can be obtained.

以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
本実施形態では、配線膜として高純度銅膜を形成するスパッタリングターゲットを例に挙げて説明したが、これに限定されることはなく、他の用途で銅膜を用いる場合であっても適用することができる。
As mentioned above, although embodiment of this invention was described, this invention is not limited to this, It can change suitably in the range which does not deviate from the technical idea of the invention.
In the present embodiment, the sputtering target for forming a high-purity copper film as the wiring film has been described as an example. However, the present invention is not limited to this, and the present invention is applicable even when the copper film is used for other purposes. be able to.

スパッタリングターゲット用銅素材の製造方法については、本実施形態に限定されることはなく、他の製造方法によって製造されたものであってもよい。例えば、溶解・鋳造工程後に熱間加工工程を備えていてもよい。また、連続鋳造装置を用いることなく鋳塊を得てもよい。   About the manufacturing method of the copper raw material for sputtering targets, it is not limited to this embodiment, The thing manufactured by the other manufacturing method may be used. For example, a hot working process may be provided after the melting / casting process. Moreover, you may obtain an ingot without using a continuous casting apparatus.

以下に、前述した本実施形態であるスパッタリングターゲット用銅素材について評価した評価試験の結果について説明する。   Below, the result of the evaluation test evaluated about the copper raw material for sputtering targets which is this embodiment mentioned above is demonstrated.

純度が99.99mass%以上の銅原料を準備し、表1に示す組成となるように銅溶湯を溶製し、連続鋳造装置を用いて、50mm×200mmの矩形状断面を有する鋳塊を得た。
得られた鋳塊に対して表2に示す加工率で冷間圧延を実施した。その後、表2に示す条件で熱処理を実施した。
その後、切削加工を行い、10mm×130mm×140mmの矩形状をなすスパッタリングターゲット用銅素材を得た。
Prepare a copper raw material having a purity of 99.99 mass% or more, melt a molten copper so as to have the composition shown in Table 1, and obtain an ingot having a rectangular cross section of 50 mm × 200 mm using a continuous casting apparatus. It was.
The obtained ingot was cold-rolled at the processing rates shown in Table 2. Thereafter, heat treatment was performed under the conditions shown in Table 2.
Thereafter, cutting was performed to obtain a copper material for a sputtering target having a rectangular shape of 10 mm × 130 mm × 140 mm.

得られたスパッタリングターゲット用銅素材について、スパッタ面と同一平面内における添加元素とSを含む化合物が占める面積率、ビッカース硬度の平均値と標準偏差、平均結晶粒径、導電率、異常放電発生回数について、以下の手順で評価した。評価結果を表2に示す。   About the obtained copper material for sputtering targets, the area ratio occupied by the additive element and the compound containing S in the same plane as the sputtering surface, the average value and standard deviation of Vickers hardness, the average crystal grain size, the electrical conductivity, the number of abnormal discharge occurrences Was evaluated by the following procedure. The evaluation results are shown in Table 2.

(化合物の面積率)
SEM−EPMAにて視野60μm×80μmにおける面分析を実施し、添加元素MとSが同一箇所で検出された場合をM−S化合物とみなし、「検出領域(全数)÷観察領域(60μm×80μm)×100」により、面積率を算出した。
(Area ratio of compound)
Surface analysis at a visual field of 60 μm × 80 μm was performed with SEM-EPMA, and the case where the additive elements M and S were detected at the same location was regarded as an MS compound. ) × 100 ”, the area ratio was calculated.

(ビッカース硬度)
スパッタリングターゲット用銅素材のスパッタ面と同一平面内において、図2に示す位置で、JIS Z 2244に準拠してビッカース硬さ試験機にてビッカース硬度を測定し、その平均値及び標準偏差を算出した。評価結果を表2に示す。
(Vickers hardness)
In the same plane as the sputtering surface of the copper material for the sputtering target, Vickers hardness was measured with a Vickers hardness tester in accordance with JIS Z 2244 at the position shown in FIG. 2, and the average value and standard deviation were calculated. . The evaluation results are shown in Table 2.

(平均結晶粒径)
スパッタリングターゲット用銅素材のスパッタ面と同一平面において、図2に示す位置から観察用試験片を採取し、光学顕微鏡を使用してミクロ組織観察を行い、JIS H 0501:1986(切断法)に基づき、結晶粒径を測定し、平均結晶粒径を算出した。評価結果を表2に示す。
(Average crystal grain size)
A specimen for observation is taken from the position shown in FIG. 2 on the same plane as the sputtering surface of the copper material for the sputtering target, and the microstructure is observed using an optical microscope, based on JIS H 0501: 1986 (cutting method). The crystal grain size was measured, and the average crystal grain size was calculated. The evaluation results are shown in Table 2.

(成膜条件)
得られたスパッタリングターゲット用銅素材をバッキングプレートに接合し、以下の条件で銅の薄膜を成膜した。
スパッタ電圧:3000W
到達真空度:5×10−4Pa
スパッタガス:Ar、0.4Pa
上記成膜条件において1時間のスパッタリングを行い、異常放電の発生回数をスパッタ電源装置に付属したアーキングカウンターにて自動的にその回数を計測した。評価結果を表2に示す。
(Deposition conditions)
The obtained copper material for sputtering target was joined to a backing plate, and a copper thin film was formed under the following conditions.
Sputtering voltage: 3000W
Ultimate vacuum: 5 × 10 −4 Pa
Sputtering gas: Ar, 0.4 Pa
Sputtering was performed for 1 hour under the above film formation conditions, and the number of occurrences of abnormal discharge was automatically measured by an arcing counter attached to the sputtering power supply. The evaluation results are shown in Table 2.

Figure 2018031064
Figure 2018031064

Figure 2018031064
Figure 2018031064

Zr,Ti,Mg,Mn,La,Caから選択される1種または2種以上の添加元素を添加しなかった比較例1においては、ビッカース硬度の標準偏差が大きく、異常放電発生回数が比較的多くなった。Sによって再結晶の進行が妨げられて未再結晶領域が存在し、局所的に歪が高い領域が存在したためと推測される。
Zr,Ti,Mg,Mn,La,Caから選択される1種または2種以上の添加元素を0.008mass%を超えて添加した比較例2においては、化合物の面積率が高く、異常放電発生回数が比較的多くなった。また、導電率も低くなった。
Cuの含有量と前記添加元素の含有量との合計が99.99mass%未満とされた比較例3においては、ビッカース硬度が高く、標準偏差も大きかった。また、平均結晶粒径も大きく、異常放電の発生回数が多くなった。再結晶が不十分であり、歪が高かったためと推測される。
In Comparative Example 1 in which one or more additive elements selected from Zr, Ti, Mg, Mn, La, and Ca were not added, the standard deviation of Vickers hardness was large, and the number of abnormal discharge occurrences was relatively high. Increased. It is presumed that the progress of recrystallization was hindered by S, an unrecrystallized region was present, and a region with high strain was present locally.
In Comparative Example 2 in which one or more additive elements selected from Zr, Ti, Mg, Mn, La, and Ca are added in excess of 0.008 mass%, the area ratio of the compound is high, and abnormal discharge occurs. The number of times has become relatively large. Also, the conductivity was lowered.
In Comparative Example 3 in which the total of the Cu content and the additive element content was less than 99.99 mass%, the Vickers hardness was high and the standard deviation was large. In addition, the average crystal grain size was large, and the number of abnormal discharges increased. It is presumed that the recrystallization was insufficient and the strain was high.

これに対して、Zr,Ti,Mg,Mn,La,Caから選択される1種または2種以上の添加元素を0.001mass%以上0.008mass%以下の範囲内で含有し、Cuの含有量と前記添加元素の含有量との合計が99.99mass%以上とされた本発明例1−23によれば、異常放電の発生回数が少なかった。再結晶が促進され、歪が均一に解放されたためと推測される。
以上のことから、本発明のスパッタリングターゲット用銅素材によれば、異常放電の発生を抑制して安定して成膜可能であることが確認された。
On the other hand, it contains one or more additive elements selected from Zr, Ti, Mg, Mn, La, and Ca within a range of 0.001 mass% to 0.008 mass%, and contains Cu. According to Invention Example 1-23, in which the total of the amount and the content of the additive element was 99.99 mass% or more, the number of occurrences of abnormal discharge was small. It is presumed that recrystallization was promoted and the strain was released uniformly.
From the above, it was confirmed that according to the copper material for sputtering target of the present invention, it is possible to stably form a film while suppressing the occurrence of abnormal discharge.

Claims (6)

Zr,Ti,Mg,Mn,La,Caから選択される1種または2種以上の添加元素を0.001mass%以上0.008mass%以下の範囲内で含有し、Cuの含有量と前記添加元素の含有量との合計が99.99mass%以上とされていることを特徴とするスパッタリングターゲット用銅素材。   One or more additive elements selected from Zr, Ti, Mg, Mn, La, and Ca are contained within a range of 0.001 mass% to 0.008 mass%, and the Cu content and the additive elements A copper material for a sputtering target, wherein the total content of the sputtering target is 99.99 mass% or more. Sの含有量が0.005mass%以下とされていることを特徴とする請求項1に記載のスパッタリングターゲット用銅素材。   The copper material for a sputtering target according to claim 1, wherein the S content is 0.005 mass% or less. スパッタ面と同一平面内において前記添加元素とSを含む化合物が占める面積率が0.4%以下であることを特徴とする請求項1又は請求項2に記載のスパッタリングターゲット用銅素材。   3. The copper material for a sputtering target according to claim 1, wherein an area ratio occupied by the additive element and the compound containing S in the same plane as the sputtering surface is 0.4% or less. 4. ビッカース硬度が80Hv以下であることを特徴とする請求項1から請求項3のいずれか一項に記載のスパッタリングターゲット用銅素材。   Vickers hardness is 80 Hv or less, The copper raw material for sputtering targets as described in any one of Claims 1-3 characterized by the above-mentioned. スパッタ面と同一平面内の複数の箇所で測定したビッカース硬度の標準偏差が10以下であることを特徴とする請求項1から請求項4のいずれか一項に記載のスパッタリングターゲット用銅素材。   The copper material for a sputtering target according to any one of claims 1 to 4, wherein the standard deviation of Vickers hardness measured at a plurality of locations in the same plane as the sputtering surface is 10 or less. 平均結晶粒径が100μm以下であることを特徴とする請求項1から請求項5のいずれか一項に記載のスパッタリングターゲット用銅素材。   6. The copper material for a sputtering target according to claim 1, wherein an average crystal grain size is 100 μm or less.
JP2016165553A 2016-08-26 2016-08-26 Copper material for sputtering targets Active JP6900642B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016165553A JP6900642B2 (en) 2016-08-26 2016-08-26 Copper material for sputtering targets
PCT/JP2017/027694 WO2018037840A1 (en) 2016-08-26 2017-07-31 Copper material for sputtering target, and sputtering target
CN201780031666.5A CN109312425B (en) 2016-08-26 2017-07-31 Copper material for sputtering target and sputtering target
KR1020187032547A KR102426482B1 (en) 2016-08-26 2017-07-31 Copper material and sputtering target for sputtering target
TW106126537A TWI729182B (en) 2016-08-26 2017-08-07 Cupper material for a spattering target and sputtering target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016165553A JP6900642B2 (en) 2016-08-26 2016-08-26 Copper material for sputtering targets

Publications (2)

Publication Number Publication Date
JP2018031064A true JP2018031064A (en) 2018-03-01
JP6900642B2 JP6900642B2 (en) 2021-07-07

Family

ID=61245698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016165553A Active JP6900642B2 (en) 2016-08-26 2016-08-26 Copper material for sputtering targets

Country Status (5)

Country Link
JP (1) JP6900642B2 (en)
KR (1) KR102426482B1 (en)
CN (1) CN109312425B (en)
TW (1) TWI729182B (en)
WO (1) WO2018037840A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020122230A1 (en) * 2018-12-13 2020-06-18 三菱マテリアル株式会社 Pure copper sheet, member for electronic/electric device, and member for heat dissipation
JP2020105563A (en) * 2018-12-27 2020-07-09 三菱マテリアル株式会社 Copper stock for sputtering target

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3705589A4 (en) * 2017-10-30 2021-08-11 Mitsubishi Materials Corporation Superconductivity stabilizing material, superconducting wire, and superconducting coil

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11176769A (en) * 1997-12-15 1999-07-02 Toshiba Corp Sputtering target and copper wiring film
JP2002294438A (en) * 2001-04-02 2002-10-09 Mitsubishi Materials Corp Copper alloy sputtering target
JP2009535519A (en) * 2006-05-01 2009-10-01 ハネウェル・インターナショナル・インコーポレーテッド Hollow cathode magnetron sputtering target and method for forming hollow cathode magnetron sputtering target
JP2010502841A (en) * 2006-09-08 2010-01-28 トーソー エスエムディー,インク. Copper sputtering target having very small crystal grain size and high electromigration resistance and method for producing the same
JP2015203125A (en) * 2014-04-11 2015-11-16 三菱マテリアル株式会社 Production method of material for cylindrical sputtering target

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3975414B2 (en) 1997-11-28 2007-09-12 日立金属株式会社 Sputtering copper target and method for producing the same
JP4421586B2 (en) 2006-09-21 2010-02-24 株式会社東芝 Method for producing sputtering target and method for producing copper wiring film
JP6727749B2 (en) * 2013-07-11 2020-07-22 三菱マテリアル株式会社 Copper material for high purity copper sputtering target and high purity copper sputtering target
JP5783293B1 (en) * 2014-04-22 2015-09-24 三菱マテリアル株式会社 Material for cylindrical sputtering target
JP2016079450A (en) * 2014-10-15 2016-05-16 Jx金属株式会社 Cu-Ga alloy sputtering target

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11176769A (en) * 1997-12-15 1999-07-02 Toshiba Corp Sputtering target and copper wiring film
JP2002294438A (en) * 2001-04-02 2002-10-09 Mitsubishi Materials Corp Copper alloy sputtering target
JP2009535519A (en) * 2006-05-01 2009-10-01 ハネウェル・インターナショナル・インコーポレーテッド Hollow cathode magnetron sputtering target and method for forming hollow cathode magnetron sputtering target
JP2010502841A (en) * 2006-09-08 2010-01-28 トーソー エスエムディー,インク. Copper sputtering target having very small crystal grain size and high electromigration resistance and method for producing the same
JP2015203125A (en) * 2014-04-11 2015-11-16 三菱マテリアル株式会社 Production method of material for cylindrical sputtering target

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020122230A1 (en) * 2018-12-13 2020-06-18 三菱マテリアル株式会社 Pure copper sheet, member for electronic/electric device, and member for heat dissipation
JP2020094241A (en) * 2018-12-13 2020-06-18 三菱マテリアル株式会社 Pure copper material, member for electronic and electrical device, member for heat release
JP2020105563A (en) * 2018-12-27 2020-07-09 三菱マテリアル株式会社 Copper stock for sputtering target

Also Published As

Publication number Publication date
KR102426482B1 (en) 2022-07-27
TWI729182B (en) 2021-06-01
WO2018037840A1 (en) 2018-03-01
JP6900642B2 (en) 2021-07-07
CN109312425B (en) 2022-01-14
CN109312425A (en) 2019-02-05
TW201816134A (en) 2018-05-01
KR20190042491A (en) 2019-04-24

Similar Documents

Publication Publication Date Title
JP5612147B2 (en) Silver alloy sputtering target for forming conductive film and method for producing the same
TWI429762B (en) Silver alloy sputtering target for forming conductive film, and method for manufacturing the same
JP6727749B2 (en) Copper material for high purity copper sputtering target and high purity copper sputtering target
WO2017033694A1 (en) High purity copper sputtering target material
JP2015061943A (en) High-purity copper manganese alloy sputtering target
JP7131376B2 (en) Copper material for sputtering targets
JP2018031064A (en) Copper stock for sputtering target
WO2013105285A1 (en) Silver-alloy sputtering target for conductive-film formation, and method for producing same
JP6435981B2 (en) Copper alloy sputtering target
KR20150114584A (en) Titanium target for sputtering
JP6661951B2 (en) High purity copper sputtering target material
JP6661953B2 (en) High purity copper sputtering target material
JP5669014B2 (en) Silver alloy sputtering target for forming conductive film and method for producing the same
JP5830908B2 (en) Silver alloy sputtering target for forming conductive film and method for producing the same
JP6375829B2 (en) Ag alloy sputtering target
JP2013133491A (en) Copper target material for sputtering and method for producing the same
JP6651737B2 (en) High purity copper sputtering target material
JP5669015B2 (en) Silver alloy sputtering target for forming conductive film and method for producing the same
JP6662087B2 (en) High purity copper sputtering target material
JP2018145518A (en) Cu-Ni alloy sputtering target
JP6661952B2 (en) High purity copper sputtering target material
JP2016156097A (en) Sputtering target
JP6331824B2 (en) Copper alloy sputtering target
JP2013185238A (en) Sputtering target

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181012

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210531

R150 Certificate of patent or registration of utility model

Ref document number: 6900642

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150