JP2018024645A - プロテインホスファターゼ阻害剤 - Google Patents
プロテインホスファターゼ阻害剤 Download PDFInfo
- Publication number
- JP2018024645A JP2018024645A JP2017142869A JP2017142869A JP2018024645A JP 2018024645 A JP2018024645 A JP 2018024645A JP 2017142869 A JP2017142869 A JP 2017142869A JP 2017142869 A JP2017142869 A JP 2017142869A JP 2018024645 A JP2018024645 A JP 2018024645A
- Authority
- JP
- Japan
- Prior art keywords
- ppm1d
- disulfide
- bis
- cancer
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- PZQGLCGLPMWYBT-UHFFFAOYSA-N COc(cc1)ccc1SSc(cc1)ccc1OC Chemical compound COc(cc1)ccc1SSc(cc1)ccc1OC PZQGLCGLPMWYBT-UHFFFAOYSA-N 0.000 description 1
- ZIXXRXGPBFMPFD-UHFFFAOYSA-N Clc(cc1)ccc1SSc(cc1)ccc1Cl Chemical compound Clc(cc1)ccc1SSc(cc1)ccc1Cl ZIXXRXGPBFMPFD-UHFFFAOYSA-N 0.000 description 1
- JMQANWHMOHXBEA-UHFFFAOYSA-N Clc1cc(SSc2cc(Cl)cc(Cl)c2)cc(Cl)c1 Chemical compound Clc1cc(SSc2cc(Cl)cc(Cl)c2)cc(Cl)c1 JMQANWHMOHXBEA-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Abstract
【課題】がん治療等の標的となるPPM1Dに対する新たな阻害剤及びその用途を提供することを課題とする。
【解決手段】有機硫黄化合物又は有機セレン化合物からなるPPM1D阻害剤が提供される。具体的な化合物としてビス(3−ニトロフェニル)ジスルフィドが例示される。
【選択図】なし
【解決手段】有機硫黄化合物又は有機セレン化合物からなるPPM1D阻害剤が提供される。具体的な化合物としてビス(3−ニトロフェニル)ジスルフィドが例示される。
【選択図】なし
Description
本発明はプロテインホスファターゼ阻害剤に関する。詳細には、PPM1D(Protein phosphatase 1D)阻害剤及びその用途に関する。
プロテインホスファターゼはタンパク質のアミノ酸残基のうち、セリン(Ser)、スレオニン(Thr)、チロシン(Tyr)残基の脱リン酸化反応に触媒として働く酵素である(非特許文献1)。プロテインホスファターゼは生体内でプロテインキナーゼとの相互関係により、細胞の増殖、分化、生存、運動、アポトーシスに関わるシグナル伝達経路の制御に関与している。プロテインセリン/スレオニンホスファターゼは、PPPファミリーとPPMファミリーに分類されている。このうちPPMファミリーは以前、PP2C(プロテインホスファターゼ2C)と呼ばれていたもので、生体内では基本的に単量体として存在し、酵素活性にMg2+を要求することが分かっている。現在、哺乳類のPPMファミリーメンバーとしてはPPM1A、PPM1B、PPM1D(Wip1プロテインホスファターゼ)、PPM1E、PPM1F、PPM1G、PPM1H、PPM1J、PPM1K、PPM1L、PPM1M、ILKAP、PHLPP1、PHLPP2を含む17種類が確認されている(非特許文献2)。
PPM1D(Wip1プロテインホスファターゼ)は、DNA損傷後にp53によって発現誘導される、二価イオン要求性のPPMファミリーのプロテインSer/Thrホスファターゼとして見出された。PPM1Dの基質としてはp53を始め、細胞内のストレス反応に関与するChk1、Chk2、ATM、p38 MAPキナーゼなど様々な分子が知られ、いずれもPPM1Dによって脱リン酸化され、不活性化されることが報告されている(例えば非特許文献3、4を参照)。また乳癌を始め、神経芽腫、髄芽腫、卵巣明細胞腺癌、膵臓腺癌など様々なヒトのがんでは、PPM1D遺伝子が増幅し、発現が上昇していること、PPM1D遺伝子欠損マウスは腫瘍に対する高い抵抗性を持つことが明らかになっている(例えば、非特許文献5を参照)。このようなPPM1Dのがん遺伝子としての機能から、近年は抗がん剤開発の標的の1つとして注目され、阻害剤の研究開発が盛んに行われている(例えば、非特許文献6〜9を参照)。尚、本発明者らは先の特許出願において、特定の有機セレン化合物が特異的且つ効果的にPPM1Dを阻害することを報告した(特許文献1)。
ホスファターゼ研究新章 〜創薬につながる新機能と第四の脱リン酸化酵素の発見〜 的崎 尚、細胞工学 (2011) Vol.30 No.6
哺乳類動物細胞のPPMファミリーの多彩な機能.小林孝安.Journal of Japanese Biochemical Society 87(5): 525-530 (2015)
Tiffin P, Gaut BS. Molecular evolution of the wound-induced serine protease inhibitor wip1 in Zea and related genera. Mol Biol Evol. 2001 Nov;18(11):2092-101.
Lu X, Nannenga B, Donehower LA. PPM1D dephosphorylates Chk1 and p53 and abrogates cell cycle checkpoints. Genes Dev. 2005 May 15;19(10):1162-74.
Harrison M, Li J, Degenhardt Y, Hoey T, Powers S. Wip1-deficient mice are resistant to common cancer genes. Trends Mol Med. 2004 Aug;10(8):359-61.
Yagi H, Chuman Y, Kozakai Y, Imagawa T, Takahashi Y, Yoshimura F, Tanino K, Sakaguchi K. A small molecule inhibitor of p53-inducible protein phosphatase PPM1D. Bioorg Med Chem Lett. 2012 Jan 1;22(1):729-32. Epub 2011 Oct 31.
Hayashi R, Tanoue K, Durell SR, Chatterjee DK, Jenkins LM, Appella DH, Appella E. Optimization of a cyclic peptide inhibitor of Ser/Thr phosphatase PPM1D (Wip1). Biochemistry. 2011 May 31;50(21):4537-49.
Workman P, Aherne W, Lord CJ, Ashworth A. A chemical inhibitor of PPM1D that selectively kills cells overexpressing PPM1D. Rayter S, Elliott R, Travers J, Rowlands MG, Richardson TB, Boxall K, Jones K, Linardopoulos S, Oncogene. 2008 Feb 14;27(8):1036-44.
Bioorganic & Medicinal Chemistry Vol. 23(19) 2015 p6246-6249
以上の背景の下、本発明の課題は、がん治療等の標的となるPPM1Dに対する新たな阻害剤及びその用途を提供することにある。
先の研究においてPPM1D阻害物質として見出されたジフェニルジセレニド(diphenyl diselenide)の構造をもとに、より阻害効果の高い化合物を探索するため、ジフェニルジセレニドと類似構造を持つ26種類の化合物についてPPM1Dに対する阻害効果を詳細に検討した。その結果、各種有機セレン化合物及び有機硫黄化合物に阻害効果が確認された。また、ビス(3−ニトロフェニル)ジスルフィドに最も高い阻害効果が認められ、ニトロ基が導入されていると効果が高まること、及び高い効果を発揮するためにはメタ(m-)位に導入するとよいことが示唆された。更には、その利用・応用を図る上で重要かつ有益な知見として、生理的な基質に対するビス(3−ニトロフェニル)ジスルフィドの阻害様式も明らかとなった。
ところで、PPM1D阻害化合物として、最近、アミノ酸誘導体、環状ペプチド、低分子有機ケイ素化合物などが報告されている(非特許文献9)。今回の検討によって阻害活性を有することが見出された有機硫黄化合物は、既報の化合物の最も阻害効果が高いものと同等のKi値やIC50値を示し、PPM1Dを効果的に限害する。一方、環状ペプチドや有機化合物(CCT071835、CCT010971)は細胞膜の透過性が低く、分子標的薬としての実用化には適さないことが報告されているが、阻害活性を有することが明らかとなった有機硫黄化合物は脂溶性があり、膜透過性も期待できる。さらに、合成の容易さや安定性の面からも、これまでに報告されている阻害化合物よりも優れていると考えられる。
以下に示す発明は、主として上記の知見及び考察に基づく。
[1]以下の化学式で表される化合物を有効成分とする、PPM1D(Protein phosphatase 1D)阻害剤:
但し、式中のR及びR'は、それぞれ独立に、官能基を有してもよい炭化水素基、芳香族炭化水素基又は複素環基である。
[2]以下の化学式で表される化合物を有効成分とする、PPM1D(Protein phosphatase 1D)阻害剤:
但し、式中のEはS、Se又はTeであり、
R及びR'は、それぞれ独立に、ニトロ基又はブロモ基を官能基として有する炭化水素基、芳香族炭化水素基又は複素環基である。
[3]前記ニトロ基がメタ位に存在する、[2]に記載のPPM1D阻害剤。
[4]前記ブロモ基がパラ位に存在する、[2]に記載のPPM1D阻害剤。
[5]有効成分が、ビス(3-フルオロフェニル)ジスルフィド、4,4'-ジクロロジフェニルジスルフィド、3,3',5,5'-テトラクロロジフェニルジスルフィド、ビス(4-メトキシフェニル)ジスルフィド、ビス(3-ニトロフェニル)ジスルフィド、又は2,2'-ジチオビス(5-ニトロピリジン)である、[1]に記載のPPM1D阻害剤。
[6]有効成分が、ビス(4-ブロモフェニル)ジセレニド、又はビス(3-ニトロフェニル)ジセレニドである、[2]に記載のPPM1D阻害剤。
[7][1]〜[6]のいずれか一項に記載のPPM1D阻害剤を含有する、がん治療薬。
[8]がんが、乳癌、卵巣明細胞腺癌、神経芽腫、髄芽腫、胃癌又は膵臓癌である、[7]に記載のがん治療薬。
[1]以下の化学式で表される化合物を有効成分とする、PPM1D(Protein phosphatase 1D)阻害剤:
[2]以下の化学式で表される化合物を有効成分とする、PPM1D(Protein phosphatase 1D)阻害剤:
R及びR'は、それぞれ独立に、ニトロ基又はブロモ基を官能基として有する炭化水素基、芳香族炭化水素基又は複素環基である。
[3]前記ニトロ基がメタ位に存在する、[2]に記載のPPM1D阻害剤。
[4]前記ブロモ基がパラ位に存在する、[2]に記載のPPM1D阻害剤。
[5]有効成分が、ビス(3-フルオロフェニル)ジスルフィド、4,4'-ジクロロジフェニルジスルフィド、3,3',5,5'-テトラクロロジフェニルジスルフィド、ビス(4-メトキシフェニル)ジスルフィド、ビス(3-ニトロフェニル)ジスルフィド、又は2,2'-ジチオビス(5-ニトロピリジン)である、[1]に記載のPPM1D阻害剤。
[6]有効成分が、ビス(4-ブロモフェニル)ジセレニド、又はビス(3-ニトロフェニル)ジセレニドである、[2]に記載のPPM1D阻害剤。
[7][1]〜[6]のいずれか一項に記載のPPM1D阻害剤を含有する、がん治療薬。
[8]がんが、乳癌、卵巣明細胞腺癌、神経芽腫、髄芽腫、胃癌又は膵臓癌である、[7]に記載のがん治療薬。
本発明の第1の局面はPPM1D阻害剤に関する。プロテインホスファターゼはPPMファミリー、PPPファミリー及びFCP/SCPファミリーに大別される。PPMD1はWip1又はPP2Cδとも呼ばれる。PPM1DはPPMファミリーの他のメンバーと同様にPP2Cドメインを有する。PPM1DのN末端側には核移行シグナルペプチド(NLS)が存在する。PPM1Dのアミノ酸配列は公共のデータベースに登録されている(GenBank、ACCESSION; BC051966、PROTEIN ID; AAB61637.1、DEFINITION; Mus musculus protein phosphatase 1D magnesium-dependent, delta isoform protein)。本発明ではこのアミノ酸配列のN末端にHis-Tagを結合し、C末端の179アミノ酸残基を欠損させた組換えタンパク質を、PPM1Dとして実験に用いた。
好ましくは、有効成分が置換ジフェニルジスルフィド又は置換ジピリジルジスルフィドである。置換ジフェニルジスルフィドは以下の化学式で表すことができる。
但し、式中のR1〜R10は、それぞれ独立に、水素原子、水酸基、ハロゲン原子、又は官能基を有してもよい炭化水素基、芳香族炭化水素基若しくは複素環基である。
置換ジピリジルジスルフィドは以下の化学式で表すことができる。
但し、式中のR1〜R8は、それぞれ独立に、水素原子、水酸基、ハロゲン原子、又は官能基を有してもよい炭化水素基、芳香族炭化水素基若しくは複素環基である。
置換ジフェニルジスルフィドと置換ジピリジルジスルフィドの具体例を図14に示す。
本発明のPPM1D阻害剤の別の態様は、以下の化学式で表される化合物(ジアリールジカルコゲニド)を有効成分とする。
但し、式中のEはS、Se又はTeであり、R及びR'は、それぞれ独立に、ニトロ基又はブロモ基を官能基として有する炭化水素基、芳香族炭化水素基又は複素環基である。ニトロ基による置換位置は特に限定されないが、好ましくは、R、R'を構成する炭化水素基、芳香族炭化水素基又は複素環基において、ニトロ基はメタ位に存在する(即ちm-ニトロ置換体)。同様に、好ましくは、ブロモ基はパラ位に存在する(即ちp-ブロモ置換体)。2箇所以上がニトロ基又はブロモ基で置換されていてもよい。尚、上記化学式で表される化合物(ジアリールジカルコゲニド)の例を図15、図17に示す。
本明細書において炭化水素基は環式又は非環式脂肪族炭化水素基であってもよい。炭化水素基は例えばアルキル基、アルケニル基、シクロアルキル基等である。一方、芳香族炭化水素基及び複素環基は単環であっても、或いは多環であってもよい。芳香族炭化水素基の例はフェニル基、ナフチル基、アントラニル基である。アルキル、シクロアルキル、アルケニル、フェニル等の炭化水素基を結合した構造であってもよい。複素環基の例はピリジル基、ピリミジニル基、スルホニル基、オキサゾリル基、オキサジアゾリル基、チエニル基、チアゾリル基、チアジアゾリル基、カルバゾリル基、アクリジニル基、フェナントロリル基である。官能基も特に限定されない。官能基の例はヒドロキシ基、アルデヒド基、カルボニル基、カルボキシル基、アミノ基、ニトロ基、スルホ基である。
本発明のPPM1D阻害剤の有効成分として、上掲の各種化合物の薬理学的に許容される塩を用いても良い。「薬理学的に許容される塩」は、広義に解釈されるべきであり、酸付加塩、金属塩、アンモニウム塩、有機アミン付加塩、アミノ酸付加塩等、各種の塩を含む用語である。酸付加塩の例としてはトリフルオロ酢酸塩、塩酸塩、硫酸塩、硝酸塩、リン酸塩、臭化水素酸塩などの無機酸塩、酢酸塩、マレイン酸塩、フマル酸塩、クエン酸塩、ベンゼンスルホン酸塩、安息香酸塩、リンゴ酸塩、シュウ酸塩、メタンスルホン酸塩、酒石酸塩などの有機酸塩が挙げられる。金属塩の例としてはナトリウム塩、カリウム塩、リチウム塩などのアルカリ金属塩、マグネシウム塩、カルシウム塩などのアルカリ土類金属塩、アルミニウム塩、亜鉛塩が挙げられる。アンモニウム塩の例としてはアンモニウム、テトラメチルアンモニウムなどの塩が挙げられる。有機アミン付加塩の例としてはモルホリン付加塩、ピペリジン付加塩が挙げられる。アミノ酸付加塩の例としてはグリシン付加塩、フェニルアラニン付加塩、リジン付加塩、アスパラギン酸付加塩、グルタミン酸付加塩が挙げられる。
以上の各化合物はそれ自体、PPM1D阻害剤として有用であるが、活性の向上、溶解特性の改変又は向上、毒性の低減、代謝特性の改変又は向上などを目的として、各種の修飾、置換、保護などを行ってもよい。即ち、本願明細書が開示する化合物は、より有効なPPM1D阻害剤を得るための出発材料(シード化合物、リード化合物)としても有用である。
過去の報告によれば、乳癌(腺癌)、卵巣明細胞腺癌、神経芽腫、髄芽腫、胃癌、膵臓癌(腺癌)などの悪性腫瘍においてPPM1D(Wip1)遺伝子の増幅や過剰発現が認められている。また、PPM1Dがp53、ARF及びp16INK4Aなどのがん抑制遺伝子の働きを阻害すること、PPM1DがDNA損傷応答システムや細胞周期チェックポイントの働きを抑制すること、PPM1Dが乳腺腫瘍の発がん感受性モデルで腫瘍形成を促進すること、及びPPM1D遺伝子の増幅や過剰発現を認める場合は予後不良を伴うことが多いこと、が知られている。更には、PPM1D欠損の初代胎生繊維芽細胞はがん遺伝子によるがん化に対して抵抗性を示すこと、PPM1D欠損マウスは自然発症性のがん及びがん遺伝子誘導型のがんの両方に対して抵抗性を示すことも知られている。これらの報告ないし知見を考慮すれば、PPM1Dの活性阻害はがんに対する有効な治療戦略となる。特に、PPM1Dに特異性の高い阻害剤には高い治療効果に加え、副作用が少ないことを期待できる。そこで、本発明の第2の局面は、PPM1Dの活性を特異的且つ効果的に阻害できる本発明のPPM1D阻害剤の用途として、がん治療薬を提供する。
本発明において用語「がん」は「悪性腫瘍」と互換的に使用される。また、病理学的に診断が確定される前の段階、すなわち腫瘍としての良性、悪性のどちらかが確定される前には、良性腫瘍、良性悪性境界病変、悪性腫瘍を総括的に含む場合もあり得る。がんはその発生の母体となった臓器の名、もしくは発生母組織の名で呼ばれ、主なものを列記すると、舌癌、歯肉癌、咽頭癌、上顎癌、喉頭癌、唾液腺癌、食道癌、胃癌、小腸癌、大腸癌、直腸癌、肝臓癌、胆道癌、胆嚢癌、膵臓癌、肺癌、乳癌、甲状腺癌、副腎癌、脳下垂体腫瘍、松果体腫瘍、子宮癌、卵巣癌、膣癌、膀胱癌、腎臓癌、前立腺癌、尿道癌、網膜芽細胞腫、結膜癌、神経芽腫、神経膠腫、神経膠芽細胞腫、皮膚癌、髄芽種、白血病、悪性リンパ腫、睾丸腫瘍、骨肉腫、横紋筋肉腫、平滑筋肉腫、血管肉腫、脂肪肉腫、軟骨肉腫、ユーイング肉腫などである。そして、さらに発生臓器の部位の特徴によって、上・中・下咽頭癌、上部・中部・下部食道癌、胃噴門癌、胃幽門癌、子宮頚癌、子宮体癌などと細分類されているが、これらが限定的ではなく本発明の「がん」としての記載に含まれる。
様々ながんを、本発明の治療薬の標的とすることができる。好ましい標的は、PPM1D遺伝子の増幅や過剰発現など(換言すれば、PPM1Dの活性化)を伴うことが判明しているがん、例えば、乳癌(腺癌)、卵巣明細胞腺癌、神経芽腫、髄芽腫、胃癌、膵臓癌(腺癌)である。
ここで、「治療薬」とは標的の疾病ないし病態に対する治療的又は予防的効果を示す医薬のことをいう。治療的効果には症状を緩和すること(軽症化)、症状の悪化を阻止ないし遅延すること等が含まれる。症状の悪化を阻止ないし遅延については、重症化を予防するという点において予防的効果の一つと捉えることができる。このように、治療的効果と予防的効果は一部において重複する概念であることから、明確に区別して捉えることは困難であり、またそうすることの実益は少ない。
本発明の治療薬の製剤化は常法に従って行うことができる。製剤化する場合には、製剤上許容される他の成分(例えば、担体、賦形剤、崩壊剤、緩衝剤、乳化剤、懸濁剤、無痛化剤、安定剤、保存剤、防腐剤、生理食塩水など)を含有させることができる。賦形剤としては乳糖、デンプン、ソルビトール、D-マンニトール、白糖等を用いることができる。崩壊剤としてはデンプン、カルボキシメチルセルロース、炭酸カルシウム等を用いることができる。緩衝剤としてはリン酸塩、クエン酸塩、酢酸塩等を用いることができる。乳化剤としてはアラビアゴム、アルギン酸ナトリウム、トラガント等を用いることができる。懸濁剤としてはモノステアリン酸グリセリン、モノステアリン酸アルミニウム、メチルセルロース、カルボキシメチルセルロース、ヒドロキシメチルセルロース、ラウリル硫酸ナトリウム等を用いることができる。無痛化剤としてはベンジルアルコール、クロロブタノール、ソルビトール等を用いることができる。安定剤としてはプロピレングリコール、アスコルビン酸等を用いることができる。保存剤としてはフェノール、塩化ベンザルコニウム、ベンジルアルコール、クロロブタノール、メチルパラベン等を用いることができる。防腐剤としては塩化ベンザルコニウム、パラオキシ安息香酸、クロロブタノール等と用いることができる。
製剤化する場合の剤形も特に限定されない。剤形の例は錠剤、散剤、細粒剤、顆粒剤、カプセル剤、シロップ剤、注射剤、外用剤、及び座剤である。本発明の治療薬には、期待される治療効果(又は予防効果)を得るために必要な量(即ち治療上有効量)の有効成分が含有される。本発明の治療薬中の有効成分量は一般に剤形によって異なるが、所望の投与量を達成できるように有効成分量を例えば約0.1重量%〜約95重量%の範囲内で設定する。
本発明の治療薬はその剤形に応じて経口投与又は非経口投与(静脈内、動脈内、皮下、皮内、筋肉内、又は腹腔内注射、経皮、経鼻、経粘膜など)によって治療対象に適用される。これらの投与経路は互いに排他的なものではなく、任意に選択される二つ以上を併用することもできる(例えば、経口投与と同時に又は所定時間経過後に静脈注射等を行う等)。全身投与によらず、局所投与することにしてもよい。局所投与として、目的の組織への直接注入又は塗布を例示することができる。ここでの「治療対象」は特に限定されず、ヒト及びヒト以外の哺乳動物(ペット動物、家畜、実験動物を含む。具体的には例えばマウス、ラット、モルモット、ハムスター、サル、ウシ、ブタ、ヤギ、ヒツジ、イヌ、ネコ、ニワトリ、ウズラ等である)を含む。好ましい一態様では本発明の治療薬はヒト(患者)に対して適用される。
本発明の治療薬の投与量及び投与スケジュールは、期待される治療効果が得られるように設定される。治療上有効な投与量の設定においては一般に治療対象の症状、年齢、性別、及び体重などが考慮される。尚、当業者であればこれらの事項を考慮して適当な投与量を設定することが可能である。
以上の記述から明らかな通り本出願は、がん(例えば乳癌(腺癌)、卵巣明細胞腺癌、神経芽腫、髄芽腫、胃癌、膵臓がん(腺癌))を罹患する患者に対して本発明の治療薬を治療上有効量投与することを特徴とする治療法も提供する。
本発明の治療薬による治療と並行して、既存の治療法を適用することにしてもよい。既存の治療法として化学療法、ホルモン療法、放射線治療、外科的治療(手術)を挙げることができる。二以上の既存の治療法を組み合わせて適用することにしてもよい。本発明の治療薬の作用メカニズム(即ち、PPM1Dの活性阻害による薬効の発揮)と異なる作用メカニズムの医薬を併用すれば、複合的治療効果を期待できる。従って、作用メカニズムの異なる医薬(例えば、シスプラチン、カルボプラチン、オキサリプラチン等のプラチナ製剤、サイクロフォスファミド、フルオロウラシル(5-FU)、エトポシド、ドキソルビシン、ブレオマイシン、マイトマイシン等の抗がん剤)の併用投与は、本発明の治療薬による治療成績の向上を図るための手段の一つとして特に好ましい。
先の研究においてPPM1D(Wip1プロテインホスファターゼ)阻害物質として見出されたジフェニルジセレニド(diphenyl diselenide)の構造をもとに、より阻害効果の高い化合物の探索を行った。
A.PPM1D(プロテインSer/ThrホスファターゼWip1)に対する低分子阻害剤の探索
1.実験方法
実験には、N末端にHis-tagを付加し、C末端179アミノ酸残基を欠損させたPPM1D組換えタンパク質を用いた。PPM1Dの活性はα-カゼインを基質として以下のマラカイトグリーンアッセイ(Malachite Green Assay)で測定した。酵素反応は0.04 UのPPM1Dと0.4μg/μlのα-カゼイン及び20 mMのMgCl2を96ウェルプレートの各ウェルに加え、37℃、60分間で行なった。
1.実験方法
実験には、N末端にHis-tagを付加し、C末端179アミノ酸残基を欠損させたPPM1D組換えタンパク質を用いた。PPM1Dの活性はα-カゼインを基質として以下のマラカイトグリーンアッセイ(Malachite Green Assay)で測定した。酵素反応は0.04 UのPPM1Dと0.4μg/μlのα-カゼイン及び20 mMのMgCl2を96ウェルプレートの各ウェルに加え、37℃、60分間で行なった。
<マラカイトグリーンアッセイ(阻害効果の検証)>
1.5mlチューブに1ウェルあたり1M Tris-HCl (pH7.5) 10μl、1M MgCl2 2μl、ゲル濾過クロマトグラフィーにより精製済みのα-カゼイン(5.0mg/ml) 8μlを混合し、基質溶液を調製した。蒸留水77μl、阻害剤サンプル1μl、基質溶液20μl、酵素希釈溶液または酵素溶媒2μlの順に96ウェルプレート(1)に分注して混合した。この時、酵素希釈溶液または酵素溶媒を分注する操作から氷上で行なった。この96ウェルプレート(1)を37℃で1時間インキュベートを行ない、酵素反応を開始させた。ガラスビーカーに1ウェルあたりMalachite Green Dye Solution 200μl、Tween20 0.02μlを混合して染色液を調製し、96ウェルプレート(2)に200μlずつ分注した。インキュベート終了後、96ウェルプレート(1)を氷上におき、96ウェルプレート(1)から反応液の上清70μlを96ウェルプレート(2)に移し、染色液と混合させた。検量線を調製したウェルにも染色液を200μl分注し、室温で15分静置し、発色反応を行なった。その後、分光光度計で640nmの吸光度を測定し、酵素を含むときのOD値から酵素を含まないときのOD値を引き、真のOD値を算出し、阻害剤サンプルを含まない時のOD値を活性率100%として、各阻害剤サンプルの活性率を算出した。
1.5mlチューブに1ウェルあたり1M Tris-HCl (pH7.5) 10μl、1M MgCl2 2μl、ゲル濾過クロマトグラフィーにより精製済みのα-カゼイン(5.0mg/ml) 8μlを混合し、基質溶液を調製した。蒸留水77μl、阻害剤サンプル1μl、基質溶液20μl、酵素希釈溶液または酵素溶媒2μlの順に96ウェルプレート(1)に分注して混合した。この時、酵素希釈溶液または酵素溶媒を分注する操作から氷上で行なった。この96ウェルプレート(1)を37℃で1時間インキュベートを行ない、酵素反応を開始させた。ガラスビーカーに1ウェルあたりMalachite Green Dye Solution 200μl、Tween20 0.02μlを混合して染色液を調製し、96ウェルプレート(2)に200μlずつ分注した。インキュベート終了後、96ウェルプレート(1)を氷上におき、96ウェルプレート(1)から反応液の上清70μlを96ウェルプレート(2)に移し、染色液と混合させた。検量線を調製したウェルにも染色液を200μl分注し、室温で15分静置し、発色反応を行なった。その後、分光光度計で640nmの吸光度を測定し、酵素を含むときのOD値から酵素を含まないときのOD値を引き、真のOD値を算出し、阻害剤サンプルを含まない時のOD値を活性率100%として、各阻害剤サンプルの活性率を算出した。
2.結果
阻害効果を検証する化合物に、ジスルフィド結合を有する22種類の有機硫黄化合物(図1〜4)と4種類の有機セレン化合物(図5)をDMSOに溶解したものを用いてPPM1Dのホスファターゼ反応を行ない、マラカイトグリーンアッセイによって阻害効果の検討を行なった。まず初めに有機硫黄化合物22種類と有機セレン化合物4種類、コントロールとしてジフェニルジセレニド(diphenyl diselenide)を、終濃度が1μMになるようにPPM1Dのホスファターゼ反応液に加えて、溶媒のDMSOのみを加えた時の活性を100%として、化合物が含まれる時の活性率の変化を調べた。その結果、有機硫黄化合物の内、ビス(3-フルオロフェニル)ジスルフィド(bis(3-fluorophenyl) disulfide)(CAS:63930-17-6)、4,4'-ジクロロジフェニルジスルフィド(4,4'-dichlorodiphenyl disulfide)(CAS:1142-19-4)、3,3',5,5'-テトラクロロジフェニルジスルフィド(3,3',5,5'-tetrachlorodiphenyl disulfide)(CAS:137897-99-5)、ビス(4-メトキシフェニル)ジスルフィド(bis(4-methoxyphenyl) disulfide)(CAS:5335-87-5)、ビス(3-ニトロフェニル)ジスルフィド(bis(3-nitrophenyl) disulfide)(CAS:537-91-7)、2,2'-ジチオビス(5-ニトロピリジン)(2,2'-dithiobis(5-nitropyridine))(CAS:2127-10-8)の6種類にジフェニルジセレニドと同等の、あるいはそれ以上の阻害効果があることが示唆された(図6)。次にこの6種類の化合物について、その阻害効果を確認すると共に、阻害効果が濃度依存的に増加するのかを検討した。その結果、6種類全ての化合物で濃度依存的に阻害効果は増加し、その阻害効果が確かなものであることが分かり(図7)、その中でもビス(3-ニトロフェニル)ジスルフィドに最も高い阻害効果があることが確認された(図8)。次にビス(3-ニトロフェニル)ジスルフィドのPPM1Dに対する特異性を検討するため、PPM1D以外のPPMファミリーの酵素であるPPM1A、PPM1B、PPM1Lに対してどのような影響を及ぼすのかを検討した。その結果、ジフェニルジセレニドでは約50%まで阻害されたPPM1D以外のPPMファミリーの酵素に対して、ビス(3-ニトロフェニル)ジスルフィドはほとんど影響を示さなかったのに対し、PPM1Dだけには低濃度で強力に阻害していることが確認された(図9)。そこでビス(3-ニトロフェニル)ジスルフィドのPPM1Dに対する阻害の強さを検討するため、IC50の算出を行ない、ジフェニルジセレニドとの比較を行なったところ、それぞれのIC50はジフェニルジセレニドが0.28μM、ビス(3-ニトロフェニル)ジスルフィドが0.11μMとなった(図10)。さらにIC50の算出に加えて、より詳しくビス(3-ニトロフェニル)ジスルフィドのPPM1Dに対する阻害の強さを検討するため、「Dixonプロット」の式により、Ki値の算出を行なったところ、Ki値は0.45μMであることが分かった(図11)。
阻害効果を検証する化合物に、ジスルフィド結合を有する22種類の有機硫黄化合物(図1〜4)と4種類の有機セレン化合物(図5)をDMSOに溶解したものを用いてPPM1Dのホスファターゼ反応を行ない、マラカイトグリーンアッセイによって阻害効果の検討を行なった。まず初めに有機硫黄化合物22種類と有機セレン化合物4種類、コントロールとしてジフェニルジセレニド(diphenyl diselenide)を、終濃度が1μMになるようにPPM1Dのホスファターゼ反応液に加えて、溶媒のDMSOのみを加えた時の活性を100%として、化合物が含まれる時の活性率の変化を調べた。その結果、有機硫黄化合物の内、ビス(3-フルオロフェニル)ジスルフィド(bis(3-fluorophenyl) disulfide)(CAS:63930-17-6)、4,4'-ジクロロジフェニルジスルフィド(4,4'-dichlorodiphenyl disulfide)(CAS:1142-19-4)、3,3',5,5'-テトラクロロジフェニルジスルフィド(3,3',5,5'-tetrachlorodiphenyl disulfide)(CAS:137897-99-5)、ビス(4-メトキシフェニル)ジスルフィド(bis(4-methoxyphenyl) disulfide)(CAS:5335-87-5)、ビス(3-ニトロフェニル)ジスルフィド(bis(3-nitrophenyl) disulfide)(CAS:537-91-7)、2,2'-ジチオビス(5-ニトロピリジン)(2,2'-dithiobis(5-nitropyridine))(CAS:2127-10-8)の6種類にジフェニルジセレニドと同等の、あるいはそれ以上の阻害効果があることが示唆された(図6)。次にこの6種類の化合物について、その阻害効果を確認すると共に、阻害効果が濃度依存的に増加するのかを検討した。その結果、6種類全ての化合物で濃度依存的に阻害効果は増加し、その阻害効果が確かなものであることが分かり(図7)、その中でもビス(3-ニトロフェニル)ジスルフィドに最も高い阻害効果があることが確認された(図8)。次にビス(3-ニトロフェニル)ジスルフィドのPPM1Dに対する特異性を検討するため、PPM1D以外のPPMファミリーの酵素であるPPM1A、PPM1B、PPM1Lに対してどのような影響を及ぼすのかを検討した。その結果、ジフェニルジセレニドでは約50%まで阻害されたPPM1D以外のPPMファミリーの酵素に対して、ビス(3-ニトロフェニル)ジスルフィドはほとんど影響を示さなかったのに対し、PPM1Dだけには低濃度で強力に阻害していることが確認された(図9)。そこでビス(3-ニトロフェニル)ジスルフィドのPPM1Dに対する阻害の強さを検討するため、IC50の算出を行ない、ジフェニルジセレニドとの比較を行なったところ、それぞれのIC50はジフェニルジセレニドが0.28μM、ビス(3-ニトロフェニル)ジスルフィドが0.11μMとなった(図10)。さらにIC50の算出に加えて、より詳しくビス(3-ニトロフェニル)ジスルフィドのPPM1Dに対する阻害の強さを検討するため、「Dixonプロット」の式により、Ki値の算出を行なったところ、Ki値は0.45μMであることが分かった(図11)。
3.考察
ジフェニルジセレニドと比較するとジフェニルジスルフィド(化合物22)にはPPM1Dに対する阻害効果はないが(図12A)、ジフェニルジスルフィドのm-位にニトロ基が置換することで、PPM1Dを強く阻害することができた(図12B、C)。化合物のm-位にニトロ基が結合することにより、化合物自体の大きさや、ベンゼン環内の電子のかたより方に影響を与え、化合物が酵素の活性部位に結合しやすい形へと変化し、PPM1Dを強く阻害することができた可能性が考えられる。また、今回PPM1Dの阻害物質として見出されたビス(3-ニトロフェニル)ジスルフィドはジフェニルジセレニドよりも強力にPPM1Dを阻害し、更にはジフェニルジセレニド以上にPPMファミリーの酵素の中からPPM1Dを特異的に阻害することができるという点で、ジフェニルジセレニドよりも効果の高い阻害物質であるといえる。また、PPM1Dに対する特異的な阻害物質の中には、IC50やKi値が今回見出されたビス(3-ニトロフェニル)ジスルフィドの約10分の1の濃度である化合物も報告されている(Allosteric Wip1 phosphatase inhibition through flap-subdomain interaction, aidan G Gilmartin, nature chemical biology (2014) Vol.10 P181-187)。しかし、本研究で化合物に化学的な修飾をすることで、PPM1Dに対する阻害効果が増加するということを明らかにしたように、今後さらにビス(3-ニトロフェニル)ジスルフィドの構造をもとに構造活性相関などの検討を重ねていくことで、より効果的なPPM1D阻害物質を見出すことができる可能性は十分にある。
ジフェニルジセレニドと比較するとジフェニルジスルフィド(化合物22)にはPPM1Dに対する阻害効果はないが(図12A)、ジフェニルジスルフィドのm-位にニトロ基が置換することで、PPM1Dを強く阻害することができた(図12B、C)。化合物のm-位にニトロ基が結合することにより、化合物自体の大きさや、ベンゼン環内の電子のかたより方に影響を与え、化合物が酵素の活性部位に結合しやすい形へと変化し、PPM1Dを強く阻害することができた可能性が考えられる。また、今回PPM1Dの阻害物質として見出されたビス(3-ニトロフェニル)ジスルフィドはジフェニルジセレニドよりも強力にPPM1Dを阻害し、更にはジフェニルジセレニド以上にPPMファミリーの酵素の中からPPM1Dを特異的に阻害することができるという点で、ジフェニルジセレニドよりも効果の高い阻害物質であるといえる。また、PPM1Dに対する特異的な阻害物質の中には、IC50やKi値が今回見出されたビス(3-ニトロフェニル)ジスルフィドの約10分の1の濃度である化合物も報告されている(Allosteric Wip1 phosphatase inhibition through flap-subdomain interaction, aidan G Gilmartin, nature chemical biology (2014) Vol.10 P181-187)。しかし、本研究で化合物に化学的な修飾をすることで、PPM1Dに対する阻害効果が増加するということを明らかにしたように、今後さらにビス(3-ニトロフェニル)ジスルフィドの構造をもとに構造活性相関などの検討を重ねていくことで、より効果的なPPM1D阻害物質を見出すことができる可能性は十分にある。
B.p38α由来リン酸化ペプチドを用いた酵素阻害反応の解析
以上の検討によって見出された、最も阻害活性の高いビス(3-ニトロフェニル)ジスルフィドについて、PPM1Dの生理的な基質の1つとして知られているp38α由来のリン酸化ペプチドを基質として、PPM1Dに対する阻害様式を解析した。即ちヒトp38αの175〜185番目の11個のアミノ酸配列「TDDEMTGYVAT」(配列番号1)のうち180番目のスレオニン(180 T)と182番目のチロシン(182 Y)のリン酸化サイトにリン酸基を修飾させたペプチド(分子量1358.2Da)をPPM1Dの基質として、検討に用いた。
以上の検討によって見出された、最も阻害活性の高いビス(3-ニトロフェニル)ジスルフィドについて、PPM1Dの生理的な基質の1つとして知られているp38α由来のリン酸化ペプチドを基質として、PPM1Dに対する阻害様式を解析した。即ちヒトp38αの175〜185番目の11個のアミノ酸配列「TDDEMTGYVAT」(配列番号1)のうち180番目のスレオニン(180 T)と182番目のチロシン(182 Y)のリン酸化サイトにリン酸基を修飾させたペプチド(分子量1358.2Da)をPPM1Dの基質として、検討に用いた。
1.方法
以下のマラカイトグリーンアッセイでPPM1Dの活性を測定した。
<マラカイトグリーンアッセイ(阻害効果の検証)>
0.01 UのPPM1Dと100〜700μMのp38αリン酸化ペプチド、30 mMのMgCl2および化合物溶液を全量25μlとなるようhalf volume 96ウェルプレートの各ウェルに加え、37℃、20分間で、酵素反応を行なった。検討に用いた化合物はDMSOに溶解し、酵素反応液中に加えた。half volume 96ウェルプレートには滅菌水、酵素反応用buffer、化合物溶液またはDMSO、精製済みPPM1D(0.01 U)の順に分注して混合した。この時、精製済みPPM1D(0.0 1U)を分注する操作から氷上で行ない、精製済みPPM1D(0.01 U)は一定の間隔でウェルに加えた。このhalf volume 96ウェルプレートにふたをして、37℃で20分間インキュベートを行ない、酵素反応を開始させた。インキュベート終了5分前にガラスビーカーに1ウェルあたりMalachite Green Dye Solution 50μl、Tween20 0.005μlを混合して染色液を調製した。インキュベート終了後、half volume 96ウェルプレートを氷上におき、全てのウェルに染色液を直接50μlずつ、一定の間隔で分注し、酵素反応を停止させた。室温で15分静置し、発色反応を行なった。検量線はK3PO4溶液を用いて作成した。その後、分光光度計で620nmの吸光度を測定し、酵素を含むときのOD値から酵素を含まないときのOD値を引き、真のOD値を算出し、検量線から遊離リン酸量(pmol)を求めた。
以下のマラカイトグリーンアッセイでPPM1Dの活性を測定した。
<マラカイトグリーンアッセイ(阻害効果の検証)>
0.01 UのPPM1Dと100〜700μMのp38αリン酸化ペプチド、30 mMのMgCl2および化合物溶液を全量25μlとなるようhalf volume 96ウェルプレートの各ウェルに加え、37℃、20分間で、酵素反応を行なった。検討に用いた化合物はDMSOに溶解し、酵素反応液中に加えた。half volume 96ウェルプレートには滅菌水、酵素反応用buffer、化合物溶液またはDMSO、精製済みPPM1D(0.01 U)の順に分注して混合した。この時、精製済みPPM1D(0.0 1U)を分注する操作から氷上で行ない、精製済みPPM1D(0.01 U)は一定の間隔でウェルに加えた。このhalf volume 96ウェルプレートにふたをして、37℃で20分間インキュベートを行ない、酵素反応を開始させた。インキュベート終了5分前にガラスビーカーに1ウェルあたりMalachite Green Dye Solution 50μl、Tween20 0.005μlを混合して染色液を調製した。インキュベート終了後、half volume 96ウェルプレートを氷上におき、全てのウェルに染色液を直接50μlずつ、一定の間隔で分注し、酵素反応を停止させた。室温で15分静置し、発色反応を行なった。検量線はK3PO4溶液を用いて作成した。その後、分光光度計で620nmの吸光度を測定し、酵素を含むときのOD値から酵素を含まないときのOD値を引き、真のOD値を算出し、検量線から遊離リン酸量(pmol)を求めた。
2.結果
PPM1Dに対する阻害物質として見出されたビス(3-ニトロフェニル)ジスルフィドについて、PPM1Dの生理的な基質であるp38αとのホスファターゼ反応における阻害様式を検討した。様々な濃度のビス(3-ニトロフェニル)ジスルフィドを含む反応液において、基質であるp38αリン酸化ペプチドの濃度を変化させて酵素反応を行ない、基質濃度ごとに反応速度を算出したところ、化合物濃度に依存して阻害効果が高くなっていることが確認された(結果を図示せず)。また、Lineweaver-Burkプロットにより阻害様式を確認したところ、混合型非拮抗阻害型であることが分かった(図13)。
PPM1Dに対する阻害物質として見出されたビス(3-ニトロフェニル)ジスルフィドについて、PPM1Dの生理的な基質であるp38αとのホスファターゼ反応における阻害様式を検討した。様々な濃度のビス(3-ニトロフェニル)ジスルフィドを含む反応液において、基質であるp38αリン酸化ペプチドの濃度を変化させて酵素反応を行ない、基質濃度ごとに反応速度を算出したところ、化合物濃度に依存して阻害効果が高くなっていることが確認された(結果を図示せず)。また、Lineweaver-Burkプロットにより阻害様式を確認したところ、混合型非拮抗阻害型であることが分かった(図13)。
3.考察
ビス(3-ニトロフェニル)ジスルフィドは、PPM1Dの生理的な基質であるp38αに対する混合型非拮抗阻害剤であることが分かった。このことからビス(3-ニトロフェニル)ジスルフィドが酵素の活性部位以外の部位に結合する際には、酵素単体と酵素−基質複合体の両方に結合することが示唆された。
ビス(3-ニトロフェニル)ジスルフィドは、PPM1Dの生理的な基質であるp38αに対する混合型非拮抗阻害剤であることが分かった。このことからビス(3-ニトロフェニル)ジスルフィドが酵素の活性部位以外の部位に結合する際には、酵素単体と酵素−基質複合体の両方に結合することが示唆された。
C.MCF-7乳がん細胞株に対する増殖抑制効果
PPM1Dに対する高い阻害活性を示したビス(3-ニトロフェニル)ジスルフィドのがん細胞に対する効果を検討した。
PPM1Dに対する高い阻害活性を示したビス(3-ニトロフェニル)ジスルフィドのがん細胞に対する効果を検討した。
1.方法
PPM1Dの活性に対する阻害効果が確認された化合物2種類とGSK2830371をそれぞれの終濃度が0、0.1、1、10、50、100μMになるように培地を調整し、48時間化合物を添加して培養し、プロリファレーションアッセイを行った。
<プロリファレーションアッセイ>
96穴プレートに500cells/wellでMCF-7細胞を播種し、10%(v/v)FBS(JRH Bioscience社Lot#3D0731)を含むD-MEM 2mlで3時間、5%(v/v)CO2、37℃の条件で培養した。D-MEM10%(v/v)FBS に1/1000希釈になるようにジフェニルジセレニド溶液およびビス(3-ニトロフェニル)ジスルフィド溶液を加え、化合物添加培地を調整した。化合物濃度0μMのプレートではDMSOをD-MEM10%(v/v)FBS に1/1000希釈になるように加えたものを使用した。3時間後、96穴プレートの培地を除去し、事前に調整した化合物濃度0.01、0.1、1、3、6、10、20、50μMを含むD-MEM10%(v/v)FBSを200μl/well加え、48時間、5%(v/v)CO2、37℃の条件で培養した。D-MEM10%(v/v)FBS 100μlに対してCell counting kit-8 10μlになるように調整した培地に、化合物添加から48時間後に培地交換を行い2時間培養した。その後、培地を別のプレートへ100μlずつ移し、分光光度計により450nmの吸光度を測定した。Cell counting kit-8を加えた培地の吸光度をブランクとした。
PPM1Dの活性に対する阻害効果が確認された化合物2種類とGSK2830371をそれぞれの終濃度が0、0.1、1、10、50、100μMになるように培地を調整し、48時間化合物を添加して培養し、プロリファレーションアッセイを行った。
<プロリファレーションアッセイ>
96穴プレートに500cells/wellでMCF-7細胞を播種し、10%(v/v)FBS(JRH Bioscience社Lot#3D0731)を含むD-MEM 2mlで3時間、5%(v/v)CO2、37℃の条件で培養した。D-MEM10%(v/v)FBS に1/1000希釈になるようにジフェニルジセレニド溶液およびビス(3-ニトロフェニル)ジスルフィド溶液を加え、化合物添加培地を調整した。化合物濃度0μMのプレートではDMSOをD-MEM10%(v/v)FBS に1/1000希釈になるように加えたものを使用した。3時間後、96穴プレートの培地を除去し、事前に調整した化合物濃度0.01、0.1、1、3、6、10、20、50μMを含むD-MEM10%(v/v)FBSを200μl/well加え、48時間、5%(v/v)CO2、37℃の条件で培養した。D-MEM10%(v/v)FBS 100μlに対してCell counting kit-8 10μlになるように調整した培地に、化合物添加から48時間後に培地交換を行い2時間培養した。その後、培地を別のプレートへ100μlずつ移し、分光光度計により450nmの吸光度を測定した。Cell counting kit-8を加えた培地の吸光度をブランクとした。
2.結果
ビス(3-ニトロフェニル)ジスルフィドはMCF-7乳がん細胞株の増殖を強く阻害した(図16)。阻害効果は、GSK2830371を凌駕するものであった。
ビス(3-ニトロフェニル)ジスルフィドはMCF-7乳がん細胞株の増殖を強く阻害した(図16)。阻害効果は、GSK2830371を凌駕するものであった。
D.ビス(3-ニトロフェニル)ジスルフィド構造類似化合物の阻害効果
阻害活性が更に高い化合物の同定を目指し、新たに約30のビス(3-ニトロフェニル)ジスルフィドの類似セレン化合物を合成し、PPM1D阻害活性を調べることにした。尚、高い阻害効果を認めた2つの化合物、ビス(4-ブロモフェニル)ジセレニド(bis(4-bromophenyl)とビス(3-ニトロフェニル)ジセレニド(disulfide、bis(3-nitorophenyl) diselenide)(図17)は以下の方法で合成した。
阻害活性が更に高い化合物の同定を目指し、新たに約30のビス(3-ニトロフェニル)ジスルフィドの類似セレン化合物を合成し、PPM1D阻害活性を調べることにした。尚、高い阻害効果を認めた2つの化合物、ビス(4-ブロモフェニル)ジセレニド(bis(4-bromophenyl)とビス(3-ニトロフェニル)ジセレニド(disulfide、bis(3-nitorophenyl) diselenide)(図17)は以下の方法で合成した。
(1)ビス(4-ブロモフェニル)ジセレニドの合成
既報(M. A. Rizvi, S. Guru, T. Naqvi, M. Kumar, N. Kumbhar, S. Akhoon, S. Banday, S. K. Singh, S. Bhushan, G. M. Peerzada, B. A. Shah, Bioorg. Med. Chem. Lett. 2014, 24, 3440-3446.)の合成法を参考にして合成した。水酸化ナトリウム(0.1437 g, 3.59 mmol)、セレン(0.1891 g, 2.39 mmol)を50 mL二ッ口フラスコに入れ、アルゴン置換した。これにDMF 9.4 mLを加え、撹拌しながらヒドラジン一水和物0.06 mLを滴下し、室温で4時間撹拌した。そこに、p-ジブロモベンゼン(0.5730 g, 2.43 mmol)をDMF 6 mLに溶かして加え、120℃で19.5時間加熱撹拌した。これを室温まで冷却した後、水90 mLを加え、酢酸エチルで抽出し(20 mL × 2)、有機層を無水硫酸ナトリウムで脱水後、濃縮したところ、黄色油状物質(0.6322 g)を得た。これをクーゲルロール蒸留(5 mmHg, 90℃)、シリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン)、続いてヘキサンから再結晶することによりビス(4-ブロモフェニル)ジセレニドを黄色固体(64.3 mg, 収率11%)として得た。
(2)ビス(3-ニトロフェニル)ジセレニドの合成
既報(N. S.-Hansen, T. I. Solling, L. Henriksen, Tetrahedron 2011, 67, 2633-2643.)の合成法に従って合成した。ベンゼンセレニン酸(0.1379 g, 0.729 mmol)を50 mL二ッ口フラスコに入れ、アルゴン置換した。そこに、濃硫酸0.4 mLと濃硝酸0.4 mLの混酸を加え、120℃で2時間加熱撹拌した。室温まで冷却し、白色固体を得た。これに水6 mLを加え、ヒドラジン水溶液(ヒドラジン一水和物0.07 mL, 水2 mL)を滴下し、黄橙色懸濁溶液と橙色オイルを得た。これをジエチルエーテルを用いて抽出(10 mL×5)し、アルミナ濾過の後、濃縮し、橙色オイル(0.1397 g)を得た。これを酢酸エチル/ヘキサン(3:7)混合溶媒から再結晶することによりビス(3-ニトロフェニル) ジセレニドを黄色固体(42.4 mg, 収率29%)として得た。
1.方法
His-hPPM1DΔCに対して阻害効果を持つ化合物の探索を行うためにその阻害効果を調べた。有機セレン化合物27種類とコントロールとしてGSK2830371、ビス(3-ニトロフェニル)ジスルフィドを終濃度100μMになるようにHis-hPPM1DΔCのホスファターゼ反応に加えて、酵素活性を測定した。酵素反応は酵素0.03 U用いて、基質にはカゼインを0.4μg/μlとなるように調製し、37℃で60分間インキュベートすることにより行った。活性測定はマラカイトグリーンアッセイで行い、波長640nmの吸光度を分光光度計で測定した。酵素を含む時のOD値から酵素を含まない時のOD値を引き真のOD値を算出した。溶媒であるDMSOを加えた時のOD値を100%として、酵素活性はそれに対する割合で表した。
His-hPPM1DΔCに対して阻害効果を持つ化合物の探索を行うためにその阻害効果を調べた。有機セレン化合物27種類とコントロールとしてGSK2830371、ビス(3-ニトロフェニル)ジスルフィドを終濃度100μMになるようにHis-hPPM1DΔCのホスファターゼ反応に加えて、酵素活性を測定した。酵素反応は酵素0.03 U用いて、基質にはカゼインを0.4μg/μlとなるように調製し、37℃で60分間インキュベートすることにより行った。活性測定はマラカイトグリーンアッセイで行い、波長640nmの吸光度を分光光度計で測定した。酵素を含む時のOD値から酵素を含まない時のOD値を引き真のOD値を算出した。溶媒であるDMSOを加えた時のOD値を100%として、酵素活性はそれに対する割合で表した。
2.結果
ビス(4-ブロモフェニル)ジセレニド及びビス(3-ニトロフェニル)ジセレニドはコントロール(GSK2830371、ビス(3-ニトロフェニル)ジスルフィド)よりも遙かに高い阻害活性を示した(図18)。
ビス(4-ブロモフェニル)ジセレニド及びビス(3-ニトロフェニル)ジセレニドはコントロール(GSK2830371、ビス(3-ニトロフェニル)ジスルフィド)よりも遙かに高い阻害活性を示した(図18)。
本発明のPPM1D阻害剤は特異的且つ効果的にPPM1Dを阻害する。本発明のPPM1D阻害剤には、例えば、がん治療への適用が期待される。また、研究用途(例えばPPM1Dの機能解析)への利用も期待できる。
がん治療のために分子標的薬が用いられるようになったのは、1990年代末からであり、世界で承認されている低分子医薬品はその種類が限られている。現在、ある種の乳癌や大腸癌、白血病などには効果を発揮する分子標的治療薬が開発されたが、いまだ卵巣癌や膵臓癌などに対する効果的な治療薬は開発されておらず、新たな分子標的治療薬開発へのニーズは高い。新たに見出された阻害化合物は、このような要望に対する解決策を提供し得るものであり、その意義は大きい。また、新たに見出された阻害化合物は、極めて特異性が高く、PPM1Dを選択的に阻害する。尚、PPMID遺伝子欠損マウスは免疫機能と精子形成に多少の欠陥を持つ他は、ほとんど問題無く生存するため、特異性の高いPPM1D阻害剤は、副作用の極めて少ない悪性腫湯治療薬のシード化合物であるといえる。
この発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。本明細書の中で明示した論文、公開特許公報、及び特許公報などの内容は、その全ての内容を援用によって引用することとする。
Claims (8)
- 前記ニトロ基がメタ位に存在する、請求項2に記載のPPM1D阻害剤。
- 前記ブロモ基がパラ位に存在する、請求項2に記載のPPM1D阻害剤。
- 有効成分が、ビス(3-フルオロフェニル)ジスルフィド、4,4'-ジクロロジフェニルジスルフィド、3,3',5,5'-テトラクロロジフェニルジスルフィド、ビス(4-メトキシフェニル)ジスルフィド、ビス(3-ニトロフェニル)ジスルフィド、又は2,2'-ジチオビス(5-ニトロピリジン)である、請求項1に記載のPPM1D阻害剤。
- 有効成分が、ビス(4-ブロモフェニル)ジセレニド、又はビス(3-ニトロフェニル)ジセレニドである、請求項2に記載のPPM1D阻害剤。
- 請求項1〜6のいずれか一項に記載のPPM1D阻害剤を含有する、がん治療薬。
- がんが、乳癌、卵巣明細胞腺癌、神経芽腫、髄芽腫、胃癌又は膵臓癌である、請求項7に記載のがん治療薬。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016153591 | 2016-08-04 | ||
JP2016153591 | 2016-08-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2018024645A true JP2018024645A (ja) | 2018-02-15 |
Family
ID=61194979
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017142869A Pending JP2018024645A (ja) | 2016-08-04 | 2017-07-24 | プロテインホスファターゼ阻害剤 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2018024645A (ja) |
-
2017
- 2017-07-24 JP JP2017142869A patent/JP2018024645A/ja active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9926293B2 (en) | Multivalent RAS binding compounds | |
JP6193268B2 (ja) | Cdk8/cdk19選択的阻害剤、ならびに癌のための抗転移および化学防御の方法におけるそれらの使用 | |
WO2005060956A1 (en) | IMMUNOMODULATORY COMPOUNDS THAT TARGET AND INHIBIT THE pY+3 BINDING SITE OF TYROSENE KINASE p56 LCK SH2 DOMAIN | |
JP6512714B2 (ja) | 低分子C−Myc阻害剤 | |
ES2742192T3 (es) | Derivados del bencimidazol | |
MX2012005342A (es) | Uso de derivados benzo-heterociclico para prevenir y tratar el cancer o para inhibir metastasis de cancer. | |
BRPI1008651B1 (pt) | compostos ativadores de procaspase, medicamento que os compreende e uso dos mesmos | |
Avdieiev et al. | Bradykinin antagonists and thiazolidinone derivatives as new potential anti-cancer compounds | |
JP2020015670A (ja) | Enpp1阻害剤及びその用途 | |
JP2021176820A (ja) | キナゾリン化合物を有効成分とする医薬組成物 | |
EP3497083B1 (en) | Heterocyclic naphthoquinones derivatives for use in the treatment of cancers including cushing disease | |
KR20210038906A (ko) | 비정상적 acvr1 발현과 연관된 질환을 치료하는 방법 및 그에 사용하기 위한 acvr1 억제제 | |
Fan et al. | Design, synthesis, and biological evaluation of a novel indoleamine 2, 3-dioxigenase 1 (IDO1) and thioredoxin reductase (TrxR) dual inhibitor | |
US20170283402A1 (en) | Poly(ADP-Ribose) Polymerase 1 Inhibitors Structurally Unrelated to NAD | |
AU2015225828B2 (en) | Mcl-1 modulating compounds for cancer treatment | |
EP3429572B1 (en) | Combination therapy for proliferative diseases | |
WO2016090350A1 (en) | Inhibitors of kidney-type glutaminase, gls-1 | |
US8431529B2 (en) | Bi-dentate compounds as kinase inhibitors | |
JP2018024645A (ja) | プロテインホスファターゼ阻害剤 | |
WO2022249120A1 (ko) | 신규한 벤조인돌론 화합물 및 이를 포함하는 약학적 조성물 | |
US9457016B2 (en) | Methods for treating polycystic kidney disease | |
JP2015514754A (ja) | 新規アミノピリジン誘導体の癌予防又は治療用途 | |
JP5958753B2 (ja) | Wip1プロテインホスファターゼ阻害剤及びその用途 | |
ES2307059T3 (es) | Bisindolilmaleimidas utiles para tratar el cancer de prostata y enfermedades mediadas por akt. | |
KR20210146498A (ko) | 이노시톨 다인산 멀티키나아제 억제제를 유효성분으로 포함하는 암의 예방 또는 치료용 약제학적 조성물 |