JP2018021954A - 顕微鏡及び観察方法 - Google Patents

顕微鏡及び観察方法 Download PDF

Info

Publication number
JP2018021954A
JP2018021954A JP2016151141A JP2016151141A JP2018021954A JP 2018021954 A JP2018021954 A JP 2018021954A JP 2016151141 A JP2016151141 A JP 2016151141A JP 2016151141 A JP2016151141 A JP 2016151141A JP 2018021954 A JP2018021954 A JP 2018021954A
Authority
JP
Japan
Prior art keywords
spots
image
illumination
sample surface
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016151141A
Other languages
English (en)
Inventor
正泰 西澤
Masayasu Nishizawa
正泰 西澤
允 鳥澤
Makoto Torisawa
允 鳥澤
寿幸 轟
Hisayuki Todoroki
寿幸 轟
常仁 幸山
Tsunehito Koyama
常仁 幸山
楠瀬 治彦
Haruhiko Kususe
治彦 楠瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lasertec Corp
Original Assignee
Lasertec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lasertec Corp filed Critical Lasertec Corp
Priority to JP2016151141A priority Critical patent/JP2018021954A/ja
Publication of JP2018021954A publication Critical patent/JP2018021954A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Microscoopes, Condenser (AREA)

Abstract

【課題】空間分解能及び時間分解能を向上させた顕微鏡を提供する。【解決手段】本発明に係る顕微鏡100は、試料13の試料面13aを、複数のスポット23を含む照明光15で照明する照明光学系と、照明光15で照明された試料面13aからの光を結像する結像光学系と、結像された試料面13aからの光を検出して試料面13aの画像を撮像する撮像部14と、を備え、複数のスポット23は、試料面13aにおける一方向には、共焦点顕微鏡法による観察が可能な所定の第1周期で配置され、一方向と交差する他方向には、構造化照明法による観察が可能な所定の第2周期で配置される。【選択図】図1

Description

本発明は、顕微鏡及び観察方法に関し、特に、時間分解能及び空間分解能を向上させた顕微鏡及び観察方法に関する。
モアレを利用して解像度を高める構造化照明法を用いることにより、解像限界を超えた空間分解能(超解像)での顕微鏡観察が実現されている。
特許文献1には、帯状の透明領域が周期的に配置された視野絞りを用いる撮像装置が記載されており、このような視野絞りに照明光を透過させることにより、構造化照明として機能する帯状の照明パターンを生成している。そして、照明パターンによる照明位置を少しずつずらした複数の画像を合成することにより、高分解能の画像を取得している。
特許文献2には、超音波空間光変調器を有する構造化照明装置が記載されている。超音波空間光変調器における超音波伝播路に、超音波の平面定常波を生起し、照明光を、0次、+1次及び−1次の回折光に分岐することによって、縞ピッチが一様なストライプ状の照明パターンを生成している。この照明パターンを用いることにより、高分解能の画像を取得している。
一方、試料面にスポット光を照射し、その反射光を結像面に置かれたピンホール(またはスリット)を通して検出することにより、焦点の合っていない箇所からの不要散乱光を除去し、焦点の合った部分の解像度を向上させる共焦点顕微鏡観察が実現されている。
特許文献3には、複数のピンホールが形成されたディスクを回転させ、複数のピンホールを透過させた画像を結合することにより、コントラスト及び解像度を向上させた画像をリアルタイムで撮像する共焦点画像生成方法が記載されている。
特許文献4には、複数のピンホールが形成された微小ミラー網を透過させた共焦点効果を示す光束を、ガルバノメーターミラーを用いて試料面をスキャンすることにより、高分解能な画像を取得する共焦点用光学走査装置が記載されている。
特許文献5には、多色光源が生成するマトリクス状の複数の光束を用いた共焦点三次元計測装置が記載されており、複数の光束を試料に照射し、試料からの光をスペクトル分離することにより、試料の三次元形状を計測することが記載されている。
特許文献6には、照明光を線状に整形した構造化照明法において、超解像化の方向を120°毎に異なる3方向に設定して観察することにより、超解像の画像を取得することが記載されている。特許文献6では、構造化照明法により取得した画像をフーリエ変換し、波数空間において、構造化照明の空間周波数だけ構造化方向へシフトさせ、それによって得た画像データを逆フーリエ変換することにより超解像の画像を取得している。
特表2009−543101号公報 国際公開第2013/011680号 特表2002−517774号公報 特表2004−509370号公報 特表2009−526216号公報 国際公開第2007/043313号
構造化照明法では、解像度を向上させたい方向に周期的に強度変調させた照明を用いることが必要であるため、二次元の全方向について解像度を向上させるためには、変調方向の異なる照明を用いて、多数の画像を撮影することが必要となる。このため、構造化照明法では、多数の画像の撮像に時間を要し、時間分解能を向上させることが困難である。
本発明は、このような問題を解決するためになされたものであり、空間分解能及び時間分解能を向上させた顕微鏡を提供することを目的とする。
本発明に係る顕微鏡は、試料の試料面を、複数のスポットを含む照明光で照明する照明光学系と、前記照明光で照明された前記試料面からの光を結像する結像光学系と、結像された前記試料面からの光を検出して前記試料面の画像を撮像する撮像部と、を備え、前記複数のスポットは、前記試料面における一方向には、共焦点顕微鏡法による観察が可能な所定の第1周期で配置され、前記一方向と交差する他方向には、構造化照明法による観察が可能な所定の第2周期で配置されている。このような構成により、空間分解能及び時間分解能を向上させることができる。
また、前記他方向に一列に配置した複数の前記スポットを1つの行とし、前記一方向に配置した複数の前記行に対して、前記一方向に順にN個ずつをそれぞれ1つのグループとし、各前記グループに含まれるN個の各前記行に、前記一方向に順に1番目からN番目まで番号をつけたとき、前記1番目の前記行に配置された複数の前記スポットの前記他方向における位置は、各前記グループにおいて一致し、各前記グループにおける2番目からN番目までの前記行に配置された複数の前記スポットの前記他方向における位置は、前記行の番号をK番目としたとき、前記1番目の前記行に配置された各前記スポットよりも、((K−1)×第2周期/N)だけ前記他方向にシフトさせている。このような構成とすることにより、一度の走査によって、構造化照明された試料面13aの複数の画像を取得することができるので、画像を取得する時間を短縮し、時間分解能を向上させることができる。
さらに、前記照明光学系は、前記複数のスポットを走査する照明光走査手段を有し、前記照明光走査手段は、前記複数のスポットを前記一方向に走査し、前記撮像部は、各前記グループの前記1番目の前記行に配置された複数の前記スポットを走査させた第1画像から、各前記グループの前記N番目の前記行に配置された複数の前記スポットを走査させた第N画像までのN個の画像を取得する。このような構造とすることにより、N行分だけ一方向に走査させればよいので、画像を取得する時間を短縮することができ、時間分解能を向上させることができる。
また、前記撮像部が撮像した前記画像を処理する処理部をさらに備え、前記処理部は、前記N個の各前記画像をフーリエ変換し、フーリエ変換した前記N個の各前記画像から、構造化照明の空間周波数よりも高空間周波数の成分と、低空間周波数の成分を抽出し、高空間周波数の成分のみを前記他方向における構造化照明の波数ベクトル方向に(±1/第2周期)だけシフトさせたフーリエ画像を合成し、合成した前記フーリエ画像を逆フーリエ変換して実空間内の前記画像を取得する。このような構成とすることにより、解像限界を超える空間周波数成分を含む実空間画像が得られるため、空間分解能を向上させることができる。
前記結像光学系は、照明された前記試料面からの光を集光する対物レンズを有し、前記照明光学系は、前記対物レンズの焦点と共役な位置に配置されたアパーチャーを有し、前記アパーチャーには複数の孔が形成され、前記複数の孔を光源からの光が通過することによって、前記複数のスポットを含む照明光が形成される。このような構成とすることにより、共焦点顕微鏡による観察が可能になり、空間分解能を向上させることができる。
また、各前記スポットの前記一方向の長さは、前記対物レンズの開口数及び前記照明光の波長に基づいて決定される解像限界と同じ長さであり、各前記スポットの前記他方向の長さは、顕微鏡のコントラストトランスファーファンクションに基づいて決定される構造化照明法が可能な長さとする。このような構成により、構造化照明法及び共焦点顕微鏡法の分解能を向上させることができる。
前記第2周期は、顕微鏡のコントラストトランスファーファンクションに基づいて決定される構造化照明法が可能な長さのうち、前記解像限界の2倍と同じか、それよりも長い。
また、前記照明光学系は、前記結像光学系の倍率に合わせて前記第1周期及び第2周期を変更する照明倍率調整レンズを有する。このような構成とすることにより、対物レンズの変更のたびにアパーチャー3を交換する必要がなく、倍率の変更が容易である。
本発明に係る観察方法は、試料の試料面を、複数のスポットを含む照明光で照明する手順と、前記照明光で照明された前記試料面からの光を結像する手順と、結像された前記試料面からの光を検出して前記試料面の画像を撮像する手順と、を備え、前記照明する手順において、前記複数のスポットを、前記試料面における一方向には、共焦点顕微鏡法による観察が可能な所定の第1周期で配置し、前記一方向と交差する他方向には、構造化照明法による観察が可能な所定の第2周期で配置する。このような構成とすることにより、空間分解能及び時間分解能を向上させることができる。
また、前記照明する手順において、前記他方向に一列に配置した複数の前記スポットを1つの行とし、前記一方向に配置した複数の前記行に対して、前記一方向に順にN個ずつをそれぞれ1つのグループとし、各前記グループに含まれるN個の各前記行に、前記一方向に順に1番目からN番目まで番号をつけたとき、前記1番目の前記行に配置された複数の前記スポットの前記他方向における位置を、各前記グループにおいて一致させ、各前記グループにおける2番目からN番目までの前記行に配置された複数の前記スポットの前記他方向における位置を、前記行の番号をK番目としたとき、前記1番目の前記行に配置された各前記スポットよりも、((K−1)×第2周期/N)だけ前記他方向にシフトさせる。このような構成とすることにより、一度の走査によって、構造化照明された複数の画像を取得することができるので、画像を取得する時間を短縮し、時間分解能を向上させることができる。
さらに、前記照明する手順において、前記複数のスポットを前記一方向に走査し、前記撮像する手順において、各前記グループの前記1番目の前記行に配置された複数の前記スポットを走査させた第1画像から、各前記グループの前記N番目の前記行に配置された複数の前記スポットを走査させた第N画像までのN個の画像を取得する。このような構成とすることにより、N行分だけ一方向に走査させればよいので、画像を取得する時間を短縮することができ、時間分解能を向上させることができる。
また、撮像した前記画像を処理する手順をさらに備え、前記処理する手順において、前記N個の各前記画像をフーリエ変換し、フーリエ変換した前記N個の各前記画像から構造化照明の空間周波数よりも高空間周波数の成分と、低空間周波数の成分を抽出し、さらに、高空間周波数の成分のみを前記他方向における構造化照明の波数ベクトル方向に(±1/第2周期)だけシフトさせたフーリエ画像を合成し、合成した前記フーリエ画像を逆フーリエ変換して実空間内の前記画像を取得する。このような構成とすることにより、解像限界を超える空間周波数成分を含む実空間画像が得られるため、空間分解能を向上させることができる。
本発明によれば、空間分解能及び時間分解能を向上させた顕微鏡を提供することができる。
実施形態に係る顕微鏡の光学系の構成を例示した構成図である。 実施形態に係る顕微鏡のアパーチャーを例示した図である。 実施形態に係る試料面に投影された複数のスポットを例示した図である。 (a)は、実施形態に係る試料面に投影された複数のスポットの強度を例示した図であり、縦軸は行方向における位置を示し、横軸は照明光の強度を示し、(b)は、縞状の構造化照明を構成する縞の周期と、CTFとの関係を例示したグラフであり、横軸は空間周波数を示し、縦軸はCTFを示す。 (a)〜(f)は、実施形態に係る顕微鏡により撮像した画像を例示した図である。 (a)〜(d)は、実施形態に係る顕微鏡により撮像した画像を例示した図である。 実施形態に係る顕微鏡の処理部が行う画像の処理を例示したフローチャート図である。 (a)及び(b)は、実施形態に係るフーリエ変換した画像の情報をイメージとして例示した図であり、横軸は列方向の波数ベクトルを示し、縦軸は行方向の波数ベクトルを示す。
以下、本実施形態の具体的構成について図面を参照して説明する。以下の説明は、本発明の好適な実施の形態を示すものであって、本発明の範囲が以下の実施の形態に限定されるものではない。以下の説明において、同一の符号が付されたものは実質的に同様の内容を示している。
(実施形態)
本実施形態に係る顕微鏡の構成を説明する。
図1は、実施形態に係る顕微鏡の光学系の構成を例示した構成図である。図1に示すように、顕微鏡100は、照明光学系として、光源1、コリメーションレンズ2、アパーチャー3、照明倍率調整レンズ4及び5、ビームスプリッタ7、中間レンズ8、走査ミラー9、リレーレンズ10及び11、対物レンズ12を有している。照明光学系は、試料13の試料面13aを照明光15で照明するように設定されている。
また、顕微鏡100は、結像光学系として、対物レンズ12、リレーレンズ10及び11、走査ミラー9、中間レンズ8、ビームスプリッタ7を有している。結像光学系は、照明光15で照明された試料面13aからの光を結像するように設定されている。さらに、顕微鏡100は、結像された試料面13aからの光を検出して試料面13aの画像を撮像する撮像部14と、撮像部14が撮像した画像を処理する処理部16とを有している。なお、顕微鏡100には、必要に応じて、適宜、その他の光学素子を追加してもよいし、上記の光学素子のいずれかを他の光学素子と交換してもよいし、省いてもよい。
光源1は、試料13の照明光15となる光を生成する。光源1は、照明光15として、例えば、白色光を生成する。光源1は、例えば、光軸17を中心軸にして、照明光15を射出する。光源1は、照明光15として、レーザ光を生成してもよい。
コリメーションレンズ2は、入射した光を平行光に整形する。コリメーションレンズ2は、入射した照明光15を平行光に整形し、整形した照明光15をアパーチャー3に対して入射させる。
図2は、実施形態に係る顕微鏡100のアパーチャー3を例示した図である。図1及び図2に示すように、アパーチャー3は板状の部材である。アパーチャー3は、板面を光源1に対向するように配置されている。また、アパーチャー3は、対物レンズ12の焦点と共役な位置に配置されている。なお、共役な位置には、対物レンズ12及びその他のレンズの収差、光学系における設計事項等を考慮して共役となった位置も含まれている。以下で示す共役な位置も同様である。
アパーチャー3には、光源1側の面3aから光源1側の面3aと反対側の対物レンズ12側の面3bまで貫通し、照明光15を通過させる複数の孔33が形成されている。複数の孔33は、例えば、光源1側の面3aにおいて、所定の位置に配置されている。例えば、光源1側の面3aにおいて、直交する2つの方向に所定の周期で配置されている。複数の孔33を光源1からの光が通過することによって、複数のスポットを含む照明光15が形成される。複数のスポットを含む照明光15の光軸17に直交する断面を照明パターンという。照明パターンは、試料面13aの観察領域全面を覆うことができる十分な大きさとなっている。
図3は、実施形態に係る試料面13aに投影された複数のスポットを例示した図である。図3に示すように、複数のスポット23は、試料面13aに投影される。図2で示したように、アパーチャー3の個々の孔33は、光源1側の面3aから見て、例えば、矩形となっている。よって、試料面13a上の個々のスポット23も矩形となっている。なお、スポット23の形状は、矩形(正方形、長方形)に限らず、円形その他の形状でもよい。
試料面13aにおける一方向を、行方向24とし、一方向と交差する他方向を、列方向25とする。例えば、行方向24と列方向25は直交している。複数のスポット23は、試料面13aにおける行方向24(一方向)には、共焦点顕微鏡法による観察が可能な所定の周期L(第1周期)で配置され、列方向25(他方向)には、構造化照明法による観察が可能な所定の周期P(第2周期)で配置されている。
次に、行方向24におけるスポット23の周期L及び長さ24aを説明する。その後、列方向25におけるスポット23の周期P及び長さ25aを説明する。
共焦点顕微鏡法による観察では、試料面13aにおいて、焦点のあった位置のみの光を検出する。焦点以外からの反射光は、カットされ、焦点位置のみの情報が得られる。したがって、試料面13aの焦点位置を2次元的に操作することにより、焦点のあった位置のみの情報が得られる。これにより、コントラストのよい、クリアな画像を形成することが可能となり、分解能を向上させることができる。周期L(第1周期)は、共焦点顕微鏡法による観察を可能とするために十分な周期としている。
図4(a)は、実施形態に係る試料面13aに投影された複数のスポット23の強度を例示した図であり、縦軸は行方向24における位置を示し、横軸は照明光15の強度を示している。
図4(a)に示すように、スポット23の強度は、スポット23の周辺部に向かって減少する。そして、スポット23の端部で、裾を有するように、少しずつ減少しながら周辺に広がっている。共焦点顕微鏡法による観察を可能とするためには、スポット23の強度の裾が、相互に重ならないような周期Lとする。
図3に示すように、スポット23の行方向24の長さ24aは、結像光学系の解像限界R、例えば、対物レンズ12の解像限界Rと同程度の幅となっている。例えば、長さ24aは、解像限界Rと同じ長さとなっている。解像限界Rは、対物レンズ12の開口数(NA)及び照明光15の波長(λ)等に基づいて決定され、(1)式で求められる。
R=(k・λ)/NA (1)
ここで、kは係数である。例えば、解像限界Rは、200nmである。その場合には、スポット23の行方向24の長さ24aを、200nmとする。また、周期Lは、光学系の設計によって変化するが、例えば、解像限界Rの3倍の長さとする。
次に、スポット23の列方向25における周期P及び長さ25aを説明する。
図4(b)は、縞状の構造化照明を構成する縞の周期Pと、コントラストトランスファーファンクション(Contrast Transfer Function:CTF)との関係を例示したグラフであり、横軸は空間周波数を示し、縦軸はCTFを示している。
図4(b)に示すように、縞状の構造化照明を構成する縞の周期を大きくする、すなわち、周期の逆数である空間周波数を小さくすると、CTFは大きくなる。一方、周期を小さくすると、CTFは小さくなる。周期を解像限界R(例えば、200nm)まで小さくすると、CTFは、非常に小さくなる。解像限界Rを超えると、コントラストが極端に低下し観察できなくなる。
そこで、縞状の構造化照明の縞の周期としては、顕微鏡のCTFに基づいて決定される構造化照明法に最適な長さとする。したがって、解像限界Rよりも小さい空間周波数、すなわち、解像限界Rよりも大きな周期を用いる。構造化照明の縞の周期は、光学系の設計によって変化するが、CTFが得られる可能な限り解像限界Rに近い大きさを有する周期を用いることが望ましい。したがって、例えば、スポット23の列方向25の周期Pを、CTFに基づいて決定される構造化照明法が可能な長さのうち、解像限界Rの長さ以上、例えば、解像限界Rの2倍と同じ長さか、それよりも長くする。
スポット23の列方向25の長さ25aは、顕微鏡のCTFに基づいて決定される構造化照明法に最適な長さであり、構造化照明法が可能な長さとする。例えば、周期Pcの半分の長さとなっている。したがって、スポット23の列方向25の長さ25aは、光学系の設計によって変化するが、例えば、解像限界R同じ長さか、それよりも長くなっている。
スポット23の形状が矩形の場合において、スポット23が列方向25に周期的に配列した時は、矩形波とみなすことができる。また、矩形波は、正弦波の高調波成分を含んでいるとみなすことができるが、対物レンズ12の解像限界Rにより、高調波成分は透過しない。よって、この場合の矩形波を正弦波とみなすことができる。または他の解釈として、矩形波は、回折効果によって、正弦波とみなすこともできるといえる。このようなことにより、試料面13aにおける解像限界R以下の周期を有する微細な構造に、正弦波の照明光15を照明することにより、スポット23の周期との差に対応した微細な構造をモアレとして観察することができる。
次に、試料面13aにおける複数のスポット23の配列を説明する。
図3に示すように、列方向25(他方向)に一列に配置した複数のスポット23を1つの行とする。行方向24(一方向)に配置した複数の行に対して、行方向24に順にN個ずつをそれぞれ1つのグループGとする。例えば、図3では、N=3として、3個ずつをそれぞれ1つのグループGとしている。そして、各グループGに含まれるN個の各行(行A1〜行AN)に、行方向24に順に1番目からN番目まで番号をつける。例えば、図3では、各グループに含まれる3個の各行に、行方向24に1番目から3番目まで番号をつける。
このとき、1番目の行A1に配置された複数のスポット23の列方向25における位置は、各グループにおいて一致している。
各グループGにおける2番目からN番目までの行A2〜行ANに配置された複数のスポット23の列方向25における位置は、行の番号をK番目としたとき、1番目の行A1に配置された各スポット23よりも、((K−1)×周期P/N)だけ列方向にシフトしている。例えば、2番目の行A2に配置された複数のスポット23の列方向における位置は、1番目の行A1に配置された各スポット23よりも、(1×周期P/3)だけ列方向にシフトし、3番目の行A3に配置された複数のスポット23の列方向における位置は、1番目の行A1に配置された各スポット23よりも、(2×周期P/3)だけ列方向にシフトしている。
アパーチャー3の孔33は、上述したように複数のスポット23が試料面13a上に配置するように形成され、対物レンズ12の焦点と共役な位置に配置されている。
引き続き、顕微鏡100の構成を説明する。図1に示すように、照明倍率調整レンズ4及び5は、照明パターンの倍率を調整するレンズである。複数のスポット23を含む照明光15は、照明倍率調整レンズ4及び5に入射することにより、照明パターンの倍率が調整される。例えば、照明倍率調整レンズ4及び5は、結像光学系の倍率に合わせて、試料面13a上の複数のスポット23の周期L(第1周期)及び周期P(第2周期)を変更する。照明倍率調整レンズ4及び5は、相互の間の距離、アパーチャー3との間の距離、倍率の異なるレンズへの交換等により、照明倍率調整レンズ4及び5に入射する照明光の倍率を調整する。
ビームスプリッタ7は、入射した光の一部を反射し、一部を透過させる。ビームスプリッタ7には、照明倍率調整レンズ4及び5により倍率が調整された照明光15が入射する。照明光15は、共役面6を通過した後で、ビームスプリッタ7に入射する。共役面6は、アパーチャー3の位置と共役な位置であるとともに、対物レンズ12の焦点と共役な位置である。ビームスプリッタ7は、入射した照明光15の一部を透過させる。また、ビームスプリッタ7は、照明された試料面13aからの光を反射して、撮像部14に入射させる。
撮像部14は、例えば、2次元イメージセンサである。撮像部14は、共役面6と共役な位置に配置されている。よって、撮像部14は、対物レンズ12の焦点と共役な位置に配置されている。撮像部14は、対物レンズ12により集光された試料13からの光を検出して、試料13の画像を撮像する。なお、撮像部14は、CCD、カメラ等でもよい。
処理部16は、撮像部14が撮像した画像を処理する。処理部16は、画像のフーリエ変換、画像の合成、画像の逆フーリエ変換等の処理を行う。
中間レンズ8は、焦点距離を調整するレンズである。中間レンズ8は、ビームスプリッタ7を透過した照明光15の焦点距離を調整して走査ミラー9に到達させる。また、中間レンズ8は、照明された試料面13aからの光の焦点距離を調整してビームスプリッタ7に入射させる。
走査ミラー9は、光を走査するための鏡である。走査ミラー9は、試料面13aの画像を取得するために、照明光15を試料面13a上で走査させる。よって、走査ミラー9は、複数のスポット23を試料面13a上で走査する照明光走査手段となっている。走査ミラー9は、例えば、複数のスポット23を試料面13a上で一方向に走査する。また、走査ミラー9は、照明された試料面13aからの光を中間レンズ8及びビームスプリッタ7を介して撮像部14に到達させる。
リレーレンズ10及び11は、照明光15を対物レンズ12まで導くレンズであるとともに、照明された試料面13aからの光を走査ミラー9まで導くレンズである。
対物レンズ12は、リレーレンズ10及び11を透過した照明光15を集光して、試料13を照明する。また、対物レンズ12は、照明された試料面13aからの光を集光する。対物レンズ12は、集光した試料面13aからの光をリレーレンズ10及び11に対して入射させる。
次に、本実施形態に係る顕微鏡100の動作として、顕微鏡100による観察方法を説明する。
光源1により生成された照明光15を、コリメーションレンズ2に入射させる。コリメーションレンズ2に入射した照明光15は、コリメーションレンズ2によって、平行光線に整形され、アパーチャー3に入射する。アパーチャー3の複数の孔33を照明光15が通過することによって、複数のスポット23を含む照明光15が形成される。
複数のスポット23を含む照明光15は、照明倍率調節レンズ4及び5によって、倍率が調整され、ビームスプリッタ7に入射する。ビームスプリッタ7を透過した照明光15は、中間レンズ8を介して走査ミラー9に入射する。
走査ミラー9で反射した照明光15は、リレーレンズ10及び11を介して対物レンズ12で集光され、試料13における試料面13aを照明する。例えば、図3に示すように、試料面13aを、複数のスポット23を含む照明光15で照明する。
照明された試料面13aからの光は、対物レンズ12、リレーレンズ10及び11を介して走査ミラー9に入射する。走査ミラー9で反射した光は、中間レンズ8を介して、ビームスプリッタ7で反射され、撮像部14に入射する。
図5(a)〜(f)及び図6(a)〜(d)は、実施形態に係る顕微鏡100の撮像部14で撮像した画像を例示した図である。図5(a)に示すように、撮像部14は、複数のスポット23を含む照明光15により照明された試料13からの光を検出して、試料面13aの画像を撮像する。試料面13aの画像は、照明パターンに相似したパターンとなっている。
図5(b)に示すように、撮像部14は、各グループGの各1番目の行A1の画像を撮像して第1画像I1を取得する。同様に、撮像部14は、各グループGの各2番目の行A2の画像を撮像して第2画像(図示せず)を取得し、各グループGの各N番目の行ANの画像を撮像して第N画像(図示せず)を取得する。
次に、図5(c)に示すように、走査ミラー9を駆動させて、複数のスポット23を含む照明光15を行方向24に走査する。例えば、走査ミラー9をスポット23の長さ24aだけ行方向に走査する。
図5(d)に示すように、撮像部14は、各グループGの各1番目の行A1の画像を撮像し、この画像データを第1画像I1に付加する。同様に、撮像部14は、各グループGの各2番目の行A2の画像を撮像し、この画像データを第2画像(図示せず)に付加する。各グループGの各N番目の行ANの画像を撮像し、この画像データを第N画像(図示せず)に付加する。
次に、図5(e)に示すように、走査ミラー9を駆動させて、複数のスポット23を含む照明光15を行方向24に走査する。例えば、走査ミラー9をスポット23の長さ24aだけ行方向に走査する。
図5(f)に示すように、撮像部14は、各グループGの各1番目の行A1の画像を撮像し、この画像データを第1画像I1に付加する。同様に、撮像部14は、各グループGの各2番目の行A2の画像を撮像し、この画像データを第2画像(図示せず)に付加する。各グループGの各N番目の行ANの画像を撮像し、この画像データを第N画像(図示せず)に付加する。
図6(a)に示すように、走査ミラー9を駆動させることにより、複数のスポット23を含む照明光15を行方向に、1グループG分の長さだけ走査させる。これにより、図6(b)〜(d)に示すように、撮像部14は、各グループGの各1番目の行A1に配置された複数のスポット23を走査させた第1画像I1から、各グループGのN番目の行ANに配置された複数のスポット23を走査させた第N画像INまでのN個の画像を取得する。なお、試料面13aにおいて、第1画像I1から第N画像INは、行方向に周期Lの所定の倍数だけ相互にずれが生じ、列方向に周期(P/N)の所定の倍数だけ相互にずれが生じているため、試料面13aにおける観察領域は、第1画像I1〜第N画像INの重なった部分に含まれるようにする。
図7は、実施形態に係る顕微鏡100の処理部が行う画像の処理を例示したフローチャート図である。図8(a)及び(b)は、実施形態に係るフーリエ変換した画像の情報をイメージして例示した図であり、横軸Kは列方向25の波数ベクトルを示し、縦軸Kは行方向24の波数ベクトルを示す。
図7のステップS1に示すように、処理部16は、撮像部14から、N個の構造化照明画像を取得する。N個の構造化照明画像は、具体的には、第1画像I1から第N画像INである。例えば、図6(b)〜(d)の第1画像I1から第3画像I3の3個の画像である。
次に、ステップS2に示すように、処理部16は、N個の各画像をフーリエ変換する。具体的には、第1画像I1から第3画像I3までをフーリエ変換し、第1逆空間画像から第3逆空間画像までを取得する。
ステップS2で得られた逆空間画像には、図8(a)に示すように、横軸Kにおいて、空間周波数1/Pからその2倍(2/P)までの情報と、−1/Pから(−2/P)までの情報とを含む高空間周波数成分が、横軸K=0から1/Rまでの情報を含む低空間周波数成分に重なるように含まれている。なお、図8(a)において、横軸K方向は、他方向における波数ベクトル方向であり、構造化照明法による観察によって高分解能化される方向である。
ステップS3に示すように、ステップS2で得られたN個のフーリエ変換した画像から、構造化照明の空間周波数よりも高空間周波数の成分と、構造化照明の空間周波数よりも低空間周波数の成分とを抽出する。具体的には、横軸K=0から1/Rまでの情報と、空間周波数1/Pから2/Pまでの情報、および、−1/Pから(−2/P)までの情報を分離して抽出する。
次に、ステップS4に示すように、ステップS3で抽出した空間周波数1/Pから2/Pまでの情報、および、−1/Pから(−2/P)までの情報を含む高空間周波数成分のみを、他方向における構造化照明の波数ベクトル方向(横軸K)に(±1/周期P)だけシフトさせる。すなわち、空間周波数1/Pから2/Pまでの情報は、横軸Kの+方向に1/Pだけシフトさせ、−1/Pから(−2/P)までの情報は横軸Kの−方向に1/Pだけシフトさせる。そうすると、図8(b)に示すように、高空間周波数成分の情報は、横軸Kにおいて、±1/Pだけシフトする。
これにより、ステップS5に示すように、逆フーリエ変換した時に、実空間で最大2倍の分解能を示す高空間分解能画像とすることができる(ステップS6)。
次に、本実施形態に係る顕微鏡100及び観察方法の効果を説明する。
本実施形態の顕微鏡100は、試料面13aにおける一方向には、共焦点顕微鏡法による観察が可能であり、他方向には、構造化照明法による観察が可能である。これにより、空間分解能を向上させることができる。
これに対して、例えば、他方向に延びた一本の線状の光を、他方向と直交する一方向に走査させる方法で観察した場合には、一方向には共焦点顕微鏡法による観察となるが、他方向には共焦点顕微鏡法による観察とならないので空間分解能を向上させることができない。
また、特許文献6に記載された構造化照明法による観察では、縞が延びる方向と垂直な方向にだけ構造化照明されるので、この方向のみ分解能が向上する。したがって、特許文献6の方法では、2次元上で120度の角度で変化させた3方向で撮像している。また、縞と縞との間の照明されない部分の情報を得ることができないので、縞状のパターンをずらした、例えば、3個の画像を取得している。よって、特許文献6では、少なくとも、9個の画像の情報を必要とする。さらに、各3方向においてフーリエ変換による処理を必要としている。このように、特許文献6の方法では、時間分解能を向上させることができない。
一方、本実施形態では、行方向には、共焦点顕微鏡法による観察によって高分解能化しているので、列方向25に照明パターンをずらした例えば3個の画像の情報を取得すればよい。よって、空間分解能及び時間分解能を向上させることができる。
また、本実施形態の顕微鏡100は、他方向に一列に配置した複数のスポットを1つの行とし、一方向に配置した複数の行のN個ずつを1つのグループGとしている。そして、各グループGに含まれる各行を少しずつずらして配置させている。これにより、一度の走査によって、構造化照明された試料面13aの複数の画像を取得することができる。画像を取得する時間を短縮することができ、時間分解能を向上させることができる。
さらに、複数のスポット23は、N行分だけ一方向に走査されればよいので、走査させる長さを短くすることができる。これにより、画像を取得する時間を短縮することができ、時間分解能を向上させることができる。
複数の孔33が形成されたアパーチャー3により、複数のスポット23を形成している。そして、アパーチャー3を対物レンズ12の焦点と共役な位置に配置させている。よって、共焦点顕微鏡による観察が可能になり、空間分解能を向上させることができる。
顕微鏡100は、結像光学系の倍率に合わせて周期L及び周期Pを変更する照明倍率調整レンズ4及び5を有している。複数のスポット23を形成するアパーチャー3の孔33の配列周期は、使用する対物レンズ12に合わせて、本来は、変更する必要があるが、顕微鏡100では、照明倍率調整レンズ4及び5を有しているので、対物レンズ12の変更のたびにアパーチャー3を交換する必要がなく、倍率の変更を容易にすることができる。
試料面13a上における一方向及び他方向のスポットの長さを、解像限界Rと同じ長さとすることにより、構造化照明法による観察及び共焦点顕微鏡法による観察を高分解能とすることができる。
以上、本発明の実施形態を説明したが、本発明はその目的と利点を損なうことのない適宜の変形を含み、更に、上記の実施形態よる限定は受けない。
1 光源
2 コリメーションレンズ
3 アパーチャー
3a、3b 面
4、5 照明倍率調節レンズ
6 共役面
7 ビームスプリッタ
8 中間レンズ
9 走査ミラー
10、11 リレーレンズ
12 対物レンズ
13 試料
13a 試料面
14 撮像部
15 照明光
16 処理部
17 光軸
23 スポット
24 行方向(一方向)
24a 長さ
25 列方向(他方向)
25a 長さ
33 孔
100 顕微鏡
周期
周期
R 解像限界

Claims (12)

  1. 試料の試料面を、複数のスポットを含む照明光で照明する照明光学系と、
    前記照明光で照明された前記試料面からの光を結像する結像光学系と、
    結像された前記試料面からの光を検出して前記試料面の画像を撮像する撮像部と、
    を備え、
    前記複数のスポットは、
    前記試料面における一方向には、共焦点顕微鏡法による観察が可能な所定の第1周期で配置され、
    前記一方向と交差する他方向には、構造化照明法による観察が可能な所定の第2周期で配置された顕微鏡。
  2. 前記他方向に一列に配置した複数の前記スポットを1つの行とし、前記一方向に配置した複数の前記行に対して、前記一方向に順にN個ずつをそれぞれ1つのグループとし、各前記グループに含まれるN個の各前記行に、前記一方向に順に1番目からN番目まで番号をつけたとき、
    前記1番目の前記行に配置された複数の前記スポットの前記他方向における位置は、各前記グループにおいて一致し、
    各前記グループにおける2番目からN番目までの前記行に配置された複数の前記スポットの前記他方向における位置は、前記行の番号をK番目としたとき、前記1番目の前記行に配置された各前記スポットよりも、((K−1)×第2周期/N)だけ前記他方向にシフトした、
    請求項1に記載の顕微鏡。
  3. 前記照明光学系は、前記複数のスポットを走査する照明光走査手段を有し、
    前記照明光走査手段は、
    前記複数のスポットを前記一方向に走査し、
    前記撮像部は、
    各前記グループの前記1番目の前記行に配置された複数の前記スポットを走査させた第1画像から、各前記グループの前記N番目の前記行に配置された複数の前記スポットを走査させた第N画像までのN個の画像を取得する、
    請求項2に記載の顕微鏡。
  4. 前記撮像部が撮像した前記画像を処理する処理部をさらに備え、
    前記処理部は、
    前記N個の各前記画像をフーリエ変換し、フーリエ変換した前記N個の各前記画像から、構造化照明の空間周波数よりも高空間周波数の成分と、低空間周波数の成分とを抽出し、前記高空間周波数の成分のみを前記他方向における前記構造化照明の波数ベクトル方向に(±1/第2周期)だけシフトさせたフーリエ画像を合成し、合成した前記フーリエ画像を逆フーリエ変換して実空間内の前記画像を取得する、
    請求項3に記載の顕微鏡。
  5. 前記結像光学系は、照明された前記試料面からの光を集光する対物レンズを有し、
    前記照明光学系は、前記対物レンズの焦点と共役な位置に配置されたアパーチャーを有し、
    前記アパーチャーには複数の孔が形成され、前記複数の孔を光源からの光が通過することによって、前記複数のスポットを含む照明光が形成される、
    請求項1〜4のいずれか一項に記載の顕微鏡。
  6. 各前記スポットの前記一方向の長さは、前記対物レンズの開口数及び前記照明光の波長に基づいて決定される解像限界と同じ長さであり、各前記スポットの前記他方向の長さは、コントラストトランスファーファンクションに基づいて決定される構造化照明法が可能な長さである、
    請求項5に記載の顕微鏡。
  7. 前記第2周期は、コントラストトランスファーファンクションに基づいて決定される構造化照明法が可能な長さのうち、前記解像限界の2倍と同じ長さか、それよりも長い、
    請求項6に記載の顕微鏡。
  8. 前記照明光学系は、前記結像光学系の倍率に合わせて前記第1周期及び第2周期を変更する照明倍率調整レンズを有する、
    請求項1〜7のいずれか一項に記載の顕微鏡。
  9. 試料の試料面を、複数のスポットを含む照明光で照明する手順と、
    前記照明光で照明された前記試料面からの光を結像する手順と、
    結像された前記試料面からの光を検出して前記試料面の画像を撮像する手順と、
    を備え、
    前記照明する手順において、前記複数のスポットを、
    前記試料面における一方向には、共焦点顕微鏡法による観察が可能な所定の第1周期で配置し、
    前記一方向と交差する他方向には、構造化照明法による観察が可能な所定の第2周期で配置する観察方法。
  10. 前記照明する手順において、
    前記他方向に一列に配置した複数の前記スポットを1つの行とし、前記一方向に配置した複数の前記行に対して、前記一方向に順にN個ずつをそれぞれ1つのグループとし、各前記グループに含まれるN個の各前記行に、前記一方向に順に1番目からN番目まで番号をつけたとき、
    前記1番目の前記行に配置された複数の前記スポットの前記他方向における位置を、各前記グループにおいて一致させ、
    各前記グループにおける2番目からN番目までの前記行に配置された複数の前記スポットの前記他方向における位置を、前記行の番号をK番目としたとき、前記1番目の前記行に配置された各前記スポットよりも、((K−1)×第2周期/N)だけ前記他方向にシフトさせた、
    請求項9に記載の観察方法。
  11. 前記照明する手順において、
    前記複数のスポットを前記一方向に走査し、
    前記撮像する手順において、
    各前記グループの前記1番目の前記行に配置された複数の前記スポットを走査させた第1画像から、各前記グループの前記N番目の前記行に配置された複数の前記スポットを走査させた第N画像までのN個の画像を取得する、
    請求項10に記載の観察方法。
  12. 撮像した前記画像を処理する手順をさらに備え、
    前記処理する手順において、
    前記N個の各前記画像をフーリエ変換し、フーリエ変換した前記N個の各前記画像から構造化照明の空間周波数よりも高空間周波数の成分と、低空間周波数の成分とを抽出し、前記高空間周波数の成分のみを前記他方向における前記構造化照明の波数ベクトル方向に(±1/第2周期)だけシフトさせたフーリエ画像を合成し、合成した前記フーリエ画像を逆フーリエ変換して実空間内の前記画像を取得する、
    請求項11に記載の観察方法。
JP2016151141A 2016-08-01 2016-08-01 顕微鏡及び観察方法 Pending JP2018021954A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016151141A JP2018021954A (ja) 2016-08-01 2016-08-01 顕微鏡及び観察方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016151141A JP2018021954A (ja) 2016-08-01 2016-08-01 顕微鏡及び観察方法

Publications (1)

Publication Number Publication Date
JP2018021954A true JP2018021954A (ja) 2018-02-08

Family

ID=61165942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016151141A Pending JP2018021954A (ja) 2016-08-01 2016-08-01 顕微鏡及び観察方法

Country Status (1)

Country Link
JP (1) JP2018021954A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022527827A (ja) * 2019-04-02 2022-06-06 サーモ エレクトロン サイエンティフィック インストルメンツ リミテッド ライアビリティ カンパニー 構造化照明顕微鏡法を使用した高度な試料画像化

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022527827A (ja) * 2019-04-02 2022-06-06 サーモ エレクトロン サイエンティフィック インストルメンツ リミテッド ライアビリティ カンパニー 構造化照明顕微鏡法を使用した高度な試料画像化

Similar Documents

Publication Publication Date Title
CN108254909B (zh) 光学显微镜和用于利用光学显微镜记录图像的方法
CN107850767B (zh) 用于使多个物面同时成像的光片显微镜
US8019136B2 (en) Optical sectioning microscopy
JP4123305B2 (ja) 画像作成方法および顕微鏡装置
US9599805B2 (en) Optical imaging system using structured illumination
JP5888416B2 (ja) 構造化照明顕微鏡装置
JP4600476B2 (ja) 微細構造物の欠陥検査方法及び欠陥検査装置
US20120019647A1 (en) Method and configuration for the optical detection of an illuminated specimen
EP3350643B1 (en) Ptychography system
JP2010539469A (ja) 周期パターン照明及びtdiによる結像測定システム
JP6000010B2 (ja) レーザー走査型顕微鏡
US9715096B2 (en) Microscope apparatus
JP2014010216A (ja) 多焦点共焦点顕微鏡
CN113484296A (zh) 基于结构光照明的超分辨扫描光场成像系统和方法
JPWO2016199179A1 (ja) 構造化照明顕微鏡システム、方法及びプログラム
JP6918395B1 (ja) 撮像装置
JP2009098215A (ja) 顕微鏡装置、及び顕微鏡装置における位相変化量の算出方法。
US11947098B2 (en) Multi-focal light-sheet structured illumination fluorescence microscopy system
JP4312775B2 (ja) 分散光学系を用いた実時間共焦点顕微鏡
JP2004191240A (ja) 3次元形状測定装置
CN111413791A (zh) 高分辨率扫描显微术
CN109870441A (zh) 基于移频的三维超分辨光切片荧光显微成像方法和装置
US9507137B2 (en) Microscope with structured illumination using displaceable grid structures
JP2018021954A (ja) 顕微鏡及び観察方法
JP7126257B2 (ja) 光学計測装置