JP2018018728A - リチウムイオン二次電池正極用バインダー組成物、リチウムイオン二次電池正極、及びリチウムイオン二次電池 - Google Patents

リチウムイオン二次電池正極用バインダー組成物、リチウムイオン二次電池正極、及びリチウムイオン二次電池 Download PDF

Info

Publication number
JP2018018728A
JP2018018728A JP2016149073A JP2016149073A JP2018018728A JP 2018018728 A JP2018018728 A JP 2018018728A JP 2016149073 A JP2016149073 A JP 2016149073A JP 2016149073 A JP2016149073 A JP 2016149073A JP 2018018728 A JP2018018728 A JP 2018018728A
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
lithium ion
ion secondary
meth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016149073A
Other languages
English (en)
Other versions
JP6737045B2 (ja
Inventor
大地 森田
Daichi Morita
大地 森田
友健 矢野
Tomotake Yano
友健 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Synthetic Chemical Industry Co Ltd
Original Assignee
Nippon Synthetic Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Synthetic Chemical Industry Co Ltd filed Critical Nippon Synthetic Chemical Industry Co Ltd
Priority to JP2016149073A priority Critical patent/JP6737045B2/ja
Publication of JP2018018728A publication Critical patent/JP2018018728A/ja
Application granted granted Critical
Publication of JP6737045B2 publication Critical patent/JP6737045B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】耐酸化性に優れ、リチウムイオン二次電池を形成した場合に高温下での充放電のサイクル特性が良好となるリチウムイオン二次電池正極用バインダー組成物の提供。【解決手段】エチレン性不飽和単量体に由来する重合体粒子(A)がポリビニルアルコール系樹脂(B)で分散安定化されたエマルジョン[I]を含むリチウムイオン二次電池正極用バインダー組成物であって、重合体粒子(A)とポリビニルアルコール系樹脂(B)の含有割合(A/B)が、固形分の重量比にて、1/99〜40/60であることを特徴とするリチウムイオン二次電池正極用バインダー組成物。【選択図】なし

Description

本発明は、リチウムイオン二次電池正極用バインダー組成物、リチウムイオン二次電池正極、及びリチウムイオン二次電池に関する。詳細には、リチウムイオン二次電池の正極を構成するために、活物質とともに用いられ、耐酸化性に優れ、リチウムイオン二次電池を形成した場合に高温下での充放電のサイクル特性が良好となるバインダー組成物、当該バインダー組成物を用いて得られるリチウムイオン二次電池正極、及び当該リチウムイオン二次電池正極を有するリチウムイオン二次電池に関する。
リチウムイオン二次電池は、軽量でエネルギー密度が高いこと、繰り返し充放電に対する耐久性が高いことから、携帯電話やノートパソコンなどの電子デバイスの電源として用いられている。また、電気自動車等の電動車両においても、放電・充電できる電源装置として活用されている。特に、近年の電池の大型化に伴い、高容量であり且つ急速充放電対応可能であるなど、性能の更に高い電池が要求されている。
リチウムイオン二次電池は、一般に、正極活物質を含む正極活物質層が正極集電体の両面に形成された正極と、負極活物質を含む負極活物質層が負極集電体の両面に形成された負極とが、電解質層を介して接続され、電池ケースに収納される構成を有している。このような電極は、活物質と電極用バインダーとの混合スラリーを集電体表面に塗布、乾燥することにより形成される。
ここで電極用バインダーは、活物質同士を結着するとともに、集電体である金属箔と活物質とを結着する働きをしている。バインダーが十分な量の活物質を集電体に結着できないか、又は、活物質同士を結着できないと、容量の大きな電池は得られない。また、充放電を繰り返すことによってバインダーが徐々に酸化され、活物質の集電体への結着力が低下し、集電体から活物質が脱落して電池の容量が低下するおそれがある。
また電極の製造工程はロール・ツー・ロールでの成形工程を含むので、作製された電極には高い柔軟性や可とう性が求められる。もし電極が十分な柔軟性や可とう性を有していないと、合剤層の割れ、活物質の剥離・脱落が発生して電池容量が低下するおそれがある。そのため、結着力と柔軟性の両方を兼ね備えたバインダーが要求されている。
この問題を解決する方法として、ポリフッ化ビニリデン(PVDF)のような柔軟なフッ素系樹脂をバインダーに使用する方法が知られている。しかしPVDFは結着力が弱いので、バインダーを多く使用しないと結着力が低下するおそれがあった。
また、リチウムイオン二次電池電極用バインダー組成物として、負極の場合にはポリビニルアルコール系樹脂等の水溶性バインダーを用いることが提案されている。例えば、高い充放電容量を発現し、かつ柔軟性の高い電極を得るために、エチレン性不飽和単量体に由来する重合体粒子が、粘度平均重合度400〜3000のポリビニルアルコール系樹脂の水溶液中に分散しているエマルジョンを含むリチウムイオン二次電池電極用バインダー組成物が提案されている(例えば、特許文献1参照)。
特開2016−66601号公報
しかしながら、上記特許文献1には、実施例において負極用のバインダー組成物が記載されているものの、正極用のバインダー組成物については具体的な評価までは記載されていない。
リチウムイオン二次電池正極用バインダー組成物は、厳しい酸化条件にさらされるため耐酸化性に優れることが重要であり、例えば、バインダー組成物を用いて作製したリチウムイオン二次電池は、50℃といった高温での充放電のサイクル特性が良好であることが望まれるが、上記特許文献1に開示のバインダー組成物では、このような高温下での耐酸化性の点でまだまだ満足のいくものではなかった。
そこで、本発明はこのような背景下において、耐酸化性に優れ、リチウムイオン二次電池を形成した場合に高温下での充放電のサイクル特性が良好となるリチウムイオン二次電池正極用バインダー組成物、当該バインダー組成物を用いて得られるリチウムイオン二次電池正極、及び当該リチウムイオン二次電池正極を有するリチウムイオン二次電池を提供することを目的とするものである。
しかるに、本発明者らは、かかる事情に鑑み鋭意研究を重ねた結果、エチレン性不飽和単量体に由来する重合体粒子(A)がポリビニルアルコール系樹脂(B)で分散安定化されたエマルジョン[I]をリチウムイオン二次電池正極用バインダー組成物に用いる場合に、重合体粒子(A)よりもポリビニルアルコール系樹脂(B)の含有割合を多くすることによって、耐酸化性に優れ、リチウムイオン二次電池を形成した場合に、高温下での充放電のサイクル特性が良好となることを見出し、本発明を完成した。
すなわち、本発明の要旨は、エチレン性不飽和単量体に由来する重合体粒子(A)がポリビニルアルコール系樹脂(B)で分散安定化されたエマルジョン[I]を含むリチウムイオン二次電池正極用バインダー組成物であって、重合体粒子(A)とポリビニルアルコール系樹脂(B)の含有割合(A/B)が、固形分の重量比にて、1/99〜40/60であることを特徴とするリチウムイオン二次電池正極用バインダー組成物に関するものである。
また、本発明の要旨は、本発明のリチウムイオン二次電池正極用バインダー組成物を用いて得られるリチウムイオン二次電池正極、更に、本発明のリチウムイオン二次電池正極を有するリチウムイオン二次電池にも関するものである。
なお、以下では、「リチウムイオン二次電池正極用バインダー組成物」を単に「正極用バインダー組成物」と略称することがある。また、「ポリビニルアルコール系樹脂」を「PVA系樹脂」と表記することがある。
本発明のリチウムイオン二次電池正極用バインダー組成物は、エチレン性不飽和単量体に由来する重合体粒子(A)がPVA系樹脂(B)で分散安定化されたエマルジョン[I]を含み、PVA系樹脂(B)が重合体粒子(A)よりも多く含有しているので、当該バインダー組成物を用いて得られる正極は耐酸化性に優れ、高温下での充放電のサイクル特性が良好なリチウムイオン二次電池を得ることができる。
本発明において、正極用バインダー組成物の耐酸化性が優れる理由は、明らかではないが、親水性の高いPVA系樹脂(B)が多く含有されることにより、電解液(有機溶媒)に対して正極が膨潤し難くなり、活物質と集電体との結着性が維持でき、バインダー組成物上での副反応(酸化反応)が起き難くなり、重合体粒子(A)の酸化が抑制されるためであると推測される。
以下、本発明の構成につき詳細に説明するが、これらは望ましい実施態様の一例を示すものであり、本発明はこれらの内容に特定されるものではない。
なお、本明細書において、アクリルとメタクリルを特段区別しない場合には、(メタ)アクリルと総称し、アクリレートとメタクリレートを特段区別しない場合には(メタ)アクリレートと総称する。
本発明において固形分とは、対象物を105℃、3時間の乾燥減量法に供することにより得られるものを意味する。
<リチウムイオン二次電池正極用バインダー組成物>
本発明のリチウムイオン二次電池正極用バインダー組成物は、エチレン性不飽和単量体に由来する重合体粒子(A)がPVA系樹脂(B)で分散安定化されたエマルジョン[I]を含むものである。
前記重合体粒子(A)は、前記PVA系樹脂(B)を分散剤として、水分散媒中で、エチレン性不飽和単量体を乳化重合することにより得ることができる。以下に詳述する。
〔重合体粒子の説明:エチレン性不飽和単量体〕
重合体粒子(A)における重合体は、エチレン性不飽和単量体の重合体である。エチレン性不飽和単量体としては、例えば、下記の(a)〜(m)等が挙げられる。これらは単独で用いても良く、又は2種以上を併せて用いても良い。
(a)(メタ)アクリル酸アルキルエステル。
(b)ヒドロキシル基含有エチレン性不飽和単量体。
(c)カルボキシル基含有エチレン性不飽和単量体。
(d)エポキシ基含有エチレン性不飽和単量体。
(e)メチロール基含有エチレン性不飽和単量体。
(f)アルコキシアルキル基含有エチレン性不飽和単量体。
(g)シアノ基含有エチレン性不飽和単量体。
(h)ラジカル重合性の二重結合を2個以上有しているエチレン性不飽和単量体。
(i)アミノ基を有するエチレン性不飽和単量体。
(j)スルホン酸基を有するエチレン性不飽和単量体。
(k)リン酸基を有するエチレン性不飽和単量体。
(l)芳香族エチレン性不飽和単量体。
(m)脂肪酸エステル系不飽和単量体。
上記(a)〜(m)以外に、ビニルピロリドン、メチルビニルケトン、ブタジエン、エチレン、プロピレン、塩化ビニル、塩化ビニリデン等の単量体も、所望に応じて適宜使用することができる。
つぎに、上記(a)〜(m)に例示された単量体について詳述する。
上記(メタ)アクリル酸アルキルエステル(a)としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、n−ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート等の脂肪族(メタ)アクリレートが挙げられ、好ましくはアルキル基の炭素数が1〜20の脂肪族(メタ)アクリレートや、ベンジル(メタ)アクリレート、フェニル(メタ)アクリレート等の芳香族(メタ)アクリレート等が挙げられる。これらは単独で用いても良く、又は2種以上を併せて用いても良い。
これらのなかでも特に好ましくは、ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、メチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート等のアルキル基の炭素数が1〜10の脂肪族(メタ)アクリレートである。
上記ヒドロキシル基含有エチレン性不飽和単量体(b)としては、例えば、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート等のポリアルキレングリコール(メタ)アクリレート等が挙げられる。これらは単独で用いても良く、又は2種以上を併せて用いても良い。
なかでも好ましくは、炭素数2〜4のヒドロキシアルキル基を有するヒドロキシアルキル(メタ)アクリレートや、炭素数2〜4のアルキレン基を有するポリアルキレングリコール(メタ)アクリレートであり、特に好ましくはヒドロキシエチル(メタ)アクリレートである。
上記カルボキシル基含有エチレン性不飽和単量体(c)としては、例えば、(メタ)アクリル酸、クロトン酸、ウンデシレン酸等のモノカルボン酸モノマー、マレイン酸、フマル酸、イタコン酸等のジカルボン酸およびその無水物モノマー等が挙げられる。好ましくは(メタ)アクリル酸である。これらは単独で用いても良く、又は2種以上を併せて用いても良い。
これらのなかでも、(メタ)アクリル酸、イタコン酸が特に好ましい。なお、マレイン酸、フマル酸、イタコン酸のようなジカルボン酸には、これらのモノエステルやモノアマイドが含まれる。
上記エポキシ基含有エチレン性不飽和単量体(d)としては、例えば、グリシジル(メタ)アクリレート、アリルグリシジルエーテル、メチルグリシジル(メタ)アクリレート等が挙げられる。これらは単独で用いても良く、又は2種以上を併せて用いても良い。なかでも好ましくはグリシジル(メタ)アクリレートである。
上記メチロール基含有エチレン性不飽和単量体(e)としては、例えば、N−メチロール(メタ)アクリルアミド、ジメチロール(メタ)アクリルアミド等が挙げられる。これらは単独で用いても良く、又は2種以上を併せて用いても良い。
上記アルコキシアルキル基含有エチレン性不飽和単量体(f)としては、例えば、N−メトキシメチル(メタ)アクリルアミド、N−ブトキシメチル(メタ)アクリルアミド、メトキシエチル(メタ)アクリレート、メトキシプロピル(メタ)アクリレート、エトキシエチル(メタ)アクリレート、エトキシプロピル(メタ)アクリレート等のアルコキシアルキル(メタ)アクリレート、ポリエチレングリコールモノメトキシ(メタ)アクリレート等のポリアルキレングリコールモノアルコキシ(メタ)アクリレート等が挙げられる。これらは単独で用いても良く、又は2種以上を併せて用いても良い。
上記シアノ基含有エチレン性不飽和単量体(g)としては、例えば、α,β−不飽和ニトリル化合物が用いられる。具体的には、アクリロニトリル、メタクリロニトリル、α−クロロアクリロニトリル、α−エチルアクリロニトリル等のアクリロニトリル系モノマー;シアン化ビニリデン等のシアノ基2置換ビニルモノマー;メチルシアノアクリレート、エチルシアノアクリレート、ブチルシアノアクリレート等の不飽和基含有シアノアクリレートやテトラシアノキノジメタン、2,2−ジアリールマロノニトリル等が挙げられる。これらの中でも、好ましくはアクリロニトリル系モノマーであり、特に好ましくは(メタ)アクリロニトリルであり、更に好ましくはアクリロニトリルである。これらは単独で用いても良く、又は2種以上を併せて用いても良い。
上記ラジカル重合性の二重結合を2個以上有しているエチレン性不飽和単量体(h)としては、例えば、ジ(メタ)アクリレート、トリ(メタ)アクリレート、テトラ(メタ)アクリレート、共役ジエン類が挙げられる。
ジ(メタ)アクリレートとしては、例えば、ジビニルベンゼン、ポリオキシエチレンジ(メタ)アクリレート、ポリオキシプロピレンジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート等が挙げられる。
また、トリ(メタ)アクリレートとしては、例えば、トリメチロールプロパントリ(メタ)アクリレー等が挙げられ、テトラ(メタ)アクリレートとしては、例えば、ペンタエリスリトールテトラ(メタ)アクリレート等が挙げられる。
また、共役ジエン系モノマーとしては、例えば、1,3−ブタジエン、イソプレン、2,3−ジメチル−1,3−ブタジエン、1,3−ペンタジエン、1,3−ヘキサジエン、1,3−ヘプタジエン、2,3−ジメチルブタジエン、2−フェニル−1,3−ブタジエン、3−メチル−1,3−ペンタジエン、1,3−ヘキサジエン等の炭化水素共役ジエン系モノマー;2−クロロ−1,3−ブタジエン等のハロゲン含有共役ジエン系モノマー;置換直鎖共役ペンタジエン類;置換および側鎖共役ヘキサジエン類等が挙げられる。これらの中でも、炭素数4〜6の共役ジエン系モノマーが好ましく、1,3−ブタジエンが特に好ましい。
これらラジカル重合性の二重結合を2個以上有しているエチレン性不飽和単量体(h)は、一種を単独で、又は二種以上を組み合わせて用いることができる。
上記アミノ基を有するエチレン性不飽和単量体(i)としては、例えば、(メタ)アクリルアミド、N,N−ジメチルアミノエチル(メタ)アクリレート、N,N−ジエチルアミノエチル(メタ)アクリレート等のN,N−ジアルキルアミノアルキル(メタ)アクリレート等が挙げられる。これらは単独で用いても良く、又は2種以上を併せて用いても良い。なかでも、(メタ)アクリルアミドが好ましい。
上記スルホン酸基を有するエチレン性不飽和単量体(j)としては、例えば、ビニルスルホン酸、ビニルスチレンスルホン酸(塩)等が挙げられる。これらは単独で用いても良く、又は2種以上を併せて用いても良い。
上記リン酸基を有するエチレン性不飽和単量体(k)としては、例えば、ビニルホスホン酸、ビニルホスフェート、アシッドホスホキシエチル(メタ)アクリレート、アシッドホスホキシプロピル(メタ)アクリレート、ビス〔(メタ)アクリロイロキシエチル〕ホスフェート、ジフェニル−2−(メタ)アクリロイロキシエチルホスフェート、ジブチル−2−(メタ)アクリロイロキシエチルホスフェート、ジオクチル−2(メタ)アクリロイロキシエチルホスフェート等が挙げられる。これらは単独で用いても良く、又は2種以上を併せて用いても良い。
上記芳香族エチレン性不飽和単量体(l)としては、例えば、スチレン、ビニルトルエン、α−メチルスチレン等が挙げられ、これらは単独で用いても良く、又は2種以上を併せて用いても良い。中でも、好ましくはスチレンである。
上記脂肪酸エステル系不飽和単量体(m)としては、例えば、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、酪酸ビニル、イソ酪酸ビニル、ピバリン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、バーサチック酸ビニル等が挙げられる。これらは単独で用いても良く、又は2種以上を併せて用いても良い。
重合体粒子(A)には、本発明の目的を損なわない範囲内で、上記以外の他のモノマー(以下、単に「その他のモノマー」と称することがある。)に由来する構造単位が含まれていてもよい。その他のモノマーの含有量は、重合体粒子に対して、通常30重量%以下、好ましくは20重量%以下、特に好ましくは10重量%以下である。なお、その他のモノマーに由来する構造単位の含有量は、本発明が有するエマルジョンの製造に際して仕込む、その他のモノマーの仕込み量と比例する。
本発明においては、重合体粒子(A)が(メタ)アクリル系樹脂を主成分としてなることが好ましい。
(メタ)アクリル系樹脂は、(メタ)アクリル系単量体を含有する単量体成分を重合してなるものであり、例えば上記(a)〜(m)の不飽和単量体のうち(メタ)アクリル構造を有する単量体を1種又は2種以上含有する単量体成分を重合してなるものである。
(メタ)アクリル系樹脂を構成する単量体成分のうち、(メタ)アクリル構造を有する単量体の含有割合は、好ましくは10〜100重量%、特に好ましくは20〜95重量%であり、他の単量体の含有割合は、好ましくは0〜90重量%、特に好ましくは5〜80重量%である。
〔ポリビニルアルコール系樹脂(B)〕
上記重合体粒子(A)を分散安定化させるPVA系樹脂(B)としては、例えば、公知一般の水溶性のPVA系樹脂が挙げられる。
かかるPVA系樹脂(B)は、例えば、ビニルエステル系モノマーを重合し、ケン化することにより得られる。
上記ビニルエステル系モノマーとしては、酢酸ビニルが挙げられる。また酢酸ビニルの代わりに、例えば、プロピオン酸ビニル、酪酸ビニル、カプロン酸ビニル、カプリル酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ミリスチン酸ビニル、パルミチン酸ビニル、ステアリン酸ビニル、シクロヘキサンカルボン酸ビニル、ピパリン酸ビニル、オクチル酸ビニル、モノクロロ酢酸ビニル、アジピン酸ビニル、メタクリル酸ビニル、クロトン酸ビニル、ソルビン酸ビニル、安息香酸ビニル、桂皮酸ビニル、トリフロロ酢酸ビニル等を例示できるが、価格や入手の容易さの観点で、酢酸ビニルが好ましく用いられる。
ビニルエステル系モノマーの重合は、公知の任意の重合法、例えば、溶液重合、懸濁重合、乳化重合などにより行うことができる。なかでも、反応熱を効率的に除去できる溶液重合を還流下で行うことが好ましい。溶液重合の溶媒としては、通常はアルコールが用いられ、好ましくは炭素数1〜3の低級アルコールが用いられる。
得られた共重合体のケン化についても、従来のPVA系樹脂で行われている公知のケン化方法を採用することができる。すなわち、重合体をアルコール又は水/アルコール溶媒に溶解させた状態で、アルカリ触媒又は酸触媒を用いてケン化を行うことができる。
前記アルカリ触媒としては、水酸化カリウム、水酸化ナトリウム、ナトリウムメチラート、ナトリウムエチラート、カリウムメチラート、リチウムメチラート等のアルカリ金属の水酸化物やアルコラートを用いることができる。
通常、無水アルコール系溶媒下、アルカリ触媒を用いたエステル交換反応が反応速度の点や脂肪酸塩等の不純物を低減できるなどの点で好適に用いられる。
ケン化反応の反応温度は、通常20℃〜60℃である。反応温度が低すぎると、反応速度が小さくなり反応効率が低下する傾向があり、高すぎると反応溶媒の沸点以上となる場合があり、製造面における安全性が低下する傾向がある。なお、耐圧性の高い塔式連続ケン化塔などを用いて高圧下でケン化する場合には、より高温、例えば、80〜150℃でケン化することが可能であり、少量のケン化触媒でも短時間、高ケン化度のものを得ることが可能である。
PVA系樹脂(B)のケン化度(JIS K6726に準拠して測定)は、好ましくは80〜100モル%であり、特に好ましくは85〜99.9モル%であり、更に好ましくは90〜99.5モル%である。かかるケン化度が低すぎると、PVA系樹脂(B)の保護コロイド性が高くなりすぎるため、エマルジョン粘度が高くなりすぎたり、PVA系樹脂に曇点が発現したりして、例えば乳化重合時の重合安定性が極端に低下して目的とするエマルジョンが得られにくい傾向がある。またケン化度が低すぎると、電解液に対して膨潤しやすくなり、この結果、正極部材間の結着性が低下する傾向がある。なお、高ケン化度、特に完全ケン化のPVA系樹脂は、工業的に生産が困難になる傾向がある。
粘度平均重合度(JIS K6726に準拠して測定)は、好ましくは300〜3000であり、特に好ましくは350〜2800、更に好ましくは400〜2500である。かかる粘度平均重合度が低すぎると、アクリル系モノマー等への保護コロイド性が低下する傾向がある他、調製したエマルジョンから造膜された皮膜の柔軟性が低下することで、正極の柔軟性が低下する傾向がある。逆に高すぎると、重合反応溶液の粘度が高くなりすぎ、重合中に攪拌し難くなり、重合困難となる傾向がある。また、保護コロイド性が高くなりすぎるために、例えば乳化重合時の滴下モノマーが重合粒子内に吸収され難くなり、滴下モノマー由来の新粒子の生成が多くなり、その結果、乳化物中の粗粒子量が増加してしまう傾向がある。
上記PVA系樹脂(B)には、本発明の効果を阻害しない範囲(例えば、10モル%未満、好ましくは5モル%以下)にて、ビニルエステル系モノマー以外の他のモノマーに由来する構造単位を有していても良い。
例えば、グリシジル(メタ)アクリレート、グリシジル(メタ)アリルエーテル、3,4−エポキシシクロヘキシル(メタ)アクリレート、アリルグリシジルエーテル等のビニル基とエポキシ基を有するモノマー;トリアリルオキシエチレン、ジアリルマレアート、トリアリルシアヌレート、トリアリルイソシアヌレート、テトラアリルオキシエタン、ジアリルフタレート等のアリル基を2個以上有するモノマー;酢酸アリル、アセト酢酸ビニルエステル、アセト酢酸アリルエステル、ジアセト酢酸アリルエステル等のアリルエステル系モノマー;アセトアセトキシエチル(メタ)アクリレート、アセトアセトキシプロピル(メタ)アクリレート等のアセトアセトキシアルキル(メタ)アクリレート;アセトアセトキシエチルクロトナート、アセトアセトキシプロピルクロトナート等のアセトアセトキシアルキルクロトナート;2−シアノアセトアセトキシエチル(メタ)アクリレート;ジビニルベンゼン;エチレングリコールジ(メタ)アクリレート、1,2−プロピレングリコールジ(メタ)アクリレート、1,3−プロピレングリコールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等のアルキレングリコール(メタ)アクリレート;トリメチロールプロパントリ(メタ)アクリレート;アリル(メタ)アクリレート;2−ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート(アルキル部分がC1〜C10アルキル基であり、好ましくはC1〜C6アルキル基);(メタ)アクリロニトリルなどのニトリル系モノマー;スチレン、α−メチルスチレン等のスチレン系モノマー;エチレン、プロピレン、1−ブテン、イソブテン等のオレフィン;塩化ビニル、塩化ビニリデン、フッ化ビニル、フッ化ビニリデン等のハロゲン化オレフィン;エチレンスルホン酸等のオレフィン系モノマー;ブタジエン−1,3、2−メチルブタジエン、1,3又は2,3−ジメチルブタジエン−1,3、2−クロロブタジエン−1,3等のジエン系モノマー;3−ブテン−1−オール、4−ペンテン−1−オール、5−ヘキセン−1,2−ジオール、グリセリンモノアリルエーテル等のヒドロキシ基含有α−オレフィン類、およびそのアシル化物などの誘導体;1,3−ジアセトキシ−2−メチレンプロパン、1,3−ジプロピオニルオキシ−2−メチレンプロパン、1,3−ジブチロニルオキシ−2−メチレンプロパンなどのヒドロキシメチルビニリデンジアセテート類;イタコン酸、マレイン酸、アクリル酸等の不飽和酸類、その塩又はモノ若しくはジアルキルエステル;アクリロニトリル等のニトリル類、メタクリルアミド、ジアセトンアクリルアミド等のアミド類、エチレンスルホン酸、アリルスルホン酸、メタアリルスルホン酸、AMPS等のオレフィンスルホン酸あるいはその塩などの化合物、ビニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリプロポキシシラン、ビニルトリブトキシシラン、ビニルメチルジメトキシシラン、ビニルメチルジエトキシシラン等のビニルアルキルジアルコキシシラン;γ−(メタ)アクリロキシプロピルトリメトキシシラン、γ−(メタ)アクリロキシプロピルトリエトキシシラン等のγ−(メタ)アクリロキシプロピルトリアルコキシシラン;γ−(メタ)アクリロキシプロピルメチルジメトキシシラン、γ−(メタ)アクリロキシプロピルメチルジエトキシシラン等のγ−(メタ)アクリロキシプロピルアルキルジアルコキシシラン;ビニルトリス(β−メトキシエトキシ)シラン、ヒドロキシメチルビニリデンジアセテートが挙げられる。ヒドロキシメチルビニリデンジアセテートの具体的な例としては、1,3−ジアセトキシ−2−メチレンプロパン、1,3−ジプロピオニルオキシ−2−メチレンプロパン、1,3−ジブチロニルオキシ−2−メチレンプロパン等が挙げられる。これらのモノマーは単独で用いても良く、又は2種以上を併せて用いても良い。
また、本発明のPVA系樹脂(B)には、本発明の効果を阻害しない範囲(通常15モル%以下、好ましくは10モル%以下)にて変性されたPVA系樹脂、例えば、PVA系樹脂のホルマール化物、アセタール化物、アセトアセチル化物、ブチラール化物、ウレタン化物、スルホン酸やカルボン酸等とのエステル化物等が含まれていても良い。
本発明においては、エマルジョン[I]が含有するPVA系樹脂(B)として、水酸基含有α−オレフィン類およびそのアシル化物などの誘導体変性PVA系樹脂を用いることが好ましい。例えば、PVA系樹脂(B)として、側鎖に一級水酸基を有する構造単位を含有する変性ポリビニルアルコール系樹脂(b)を用いることが好ましい。かかる構造単位における一級水酸基の数は、通常1〜5個であり、好ましくは1〜2個であり、特に好ましくは1個である。また、一級水酸基以外にも二級水酸基を有することが好ましい。
このような側鎖に一級水酸基を有する構造単位を含有するPVA系樹脂としては、例えば、側鎖に1,2−ジオール構造単位を有するPVA系樹脂、側鎖にヒドロキシアルキル基構造単位を有するPVA系樹脂等が挙げられる。中でも、特に下記一般式(1)で表される、側鎖に1,2−ジオール構造を有する構造単位を含有するPVA系樹脂を用いることが好ましい(以下、「側鎖1,2−ジオール構造単位含有PVA系樹脂」と称することがある)。
Figure 2018018728
(上記一般式(1)において、R〜Rはそれぞれ独立して水素原子又は有機基を表し、Xは単結合又は結合鎖を表す。)
上記一般式(1)において、R〜Rはそれぞれ独立して水素原子又は有機基を表す。R〜Rは、すべて水素原子であることが望ましいが、樹脂特性を大幅に損なわない程度の量であれば有機基であってもよい。該有機基としては、特に限定しないが、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基等の炭素数1〜4のアルキル基が好ましく、必要に応じてハロゲン基、水酸基、エステル基、カルボン酸基、スルホン酸基等の置換基を有していてもよい。
上記一般式(1)中、Xは単結合又は結合鎖であり、非晶部におけるフリーボリューム(分子間空隙)低減による耐電解液性(すなわち、電解液による膨潤が起こり難い性質)の点から、単結合であることが好ましい。上記結合鎖としては、特に限定されず、例えば、アルキレン、アルケニレン、アルキニレン、フェニレン、ナフチレン等の炭化水素(これらの炭化水素は、フッ素、塩素、臭素等のハロゲン等で置換されていてもよい)の他、−O−、−(CHO)m−、−(OCH)m−、−(CHO)mCH−、−CO−、−COCO−、−CO(CH)mCO−、−CO(C)CO−、−S−、−CS−、−SO−、−SO−、−NR−、−CONR−、−NRCO−、−CSNR−、−NRCS−、−NRNR−、−HPO−、−Si(OR)−、−OSi(OR)−、−OSi(OR)O−、−Ti(OR)−、−OTi(OR)−、−OTi(OR)O−、−Al(OR)−、−OAl(OR)−、−OAl(OR)O−等が挙げられる。Rは各々独立して任意の置換基であり、水素原子、アルキル基が好ましく、またmは自然数である。なかでも、製造時の粘度安定性や耐熱性等の点で、炭素数6以下のアルキレン基、特にメチレン基、あるいは−CHOCH−が好ましい。
上記一般式(1)で表される1,2−ジオール構造単位における特に好ましい構造は、R〜Rがすべて水素原子であり、Xが単結合である。すなわち、下記構造式(1a)で示される構造単位が特に好ましい。
Figure 2018018728
このような側鎖1,2−ジオール構造単位含有PVA系樹脂は、公知の製造方法により製造することができる。例えば、特開2002−284818号公報、特開2004−285143号公報、特開2006−95825号公報に記載されている方法により製造することができる。すなわち、(i)ビニルエステル系モノマーと下記一般式(2)で示される化合物との共重合体をケン化する方法、(ii)ビニルエステル系モノマーと下記一般式(3)で示されるビニルエチレンカーボネートとの共重合体をケン化及び脱炭酸する方法、(iii)ビニルエステル系モノマーと下記一般式(4)で示される2,2−ジアルキル−4−ビニル−1,3−ジオキソランとの共重合体をケン化及び脱ケタール化する方法などにより、製造することができる。
Figure 2018018728
Figure 2018018728
Figure 2018018728
上記一般式(2)(3)(4)中、R〜Rは、いずれも一般式(1)の場合と同様である。R及びRは、それぞれ独立して水素またはR−CO−(式中、Rは、炭素数1〜4のアルキル基である。)であり、R10及びR11は、それぞれ独立して水素原子又は有機基であり、有機基は一般式(1)の場合と同様である。
上記方法のうち、共重合反応性及び工業的な取扱いにおいて優れるという点で、(i)の方法が好ましく、特にR〜Rが水素、Xが単結合、R、RがR−CO−であり、Rがアルキル基である3,4−ジアシロキシ−1−ブテンが好ましく、その中でも特にRがメチル基である3,4−ジアセトキシ−1−ブテンが好ましく用いられる。
なお、(ii)や(iii)の方法によって得られた側鎖1,2−ジオール構造単位含有PVA系樹脂は、ケン化度が低い場合や、脱炭酸あるいは脱アセタール化が不充分な場合には、側鎖にカーボネート環あるいはアセタール環が残存することがある。そのようなPVA系樹脂を分散剤として用いた場合、得られる重合体粒子には粗大な粒子の割合が増加する傾向がある。このような理由からも、(i)の方法によって得られたPVA系樹脂が本用途においては特に好適である。
PVA系樹脂(B)が上記1,2−ジオール構造単位を含む場合、その含有量は、乳化重合時の分散質たるエチレン性不飽和重合体粒子へのPVA系樹脂のグラフト化や耐電解液性、エマルジョンの放置安定性等の点より通常0.5〜15モル%であり、好ましくは1〜10モル%、より好ましくは1〜8モル%である。含有量が少なすぎると、分散質たるエチレン性不飽和重合体粒子へのPVA系樹脂のグラフト化率が低下し、耐電解液性、エマルジョンの放置安定性等が低下する傾向がある。含有量が多すぎると、充放電時の内部抵抗が大きくなる傾向がある。
なお、PVA系樹脂(B)中の1,2−ジオール構造単位の含有率は、ケン化度100モル%のPVA系樹脂のH−NMRスペクトル(溶媒:DMSO−d6、内部標準:テトラメチルシラン)から求めることができる。具体的には1,2−ジオール構造単位中の水酸基プロトン、メチンプロトン、およびメチレンプロトン、主鎖のメチレンプロトン、主鎖に連結する水酸基のプロトンなどに由来するピーク面積から算出することができる。
エマルジョン[I]における溶媒は、通常、水であり、上記PVA系樹脂(B)の溶解を阻害しない範囲(例えば溶媒の20重量%未満、好ましくは10重量%未満)において、水と混和性の有機溶媒を含有していてもよい。
かかる有機溶媒としては、例えば、N−メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルホルムアミドなどのアミド系溶媒、ジメチルスルホキサイドなどのスルホキサイド、メタノール、エタノール等の炭素数1〜3の低級アルコール、1,1,1,3,3,3−ヘキサフルオロ−2−プロパノール等のアルコール系溶媒が挙げられる。
〔PVA系樹脂(B)を乳化剤とした乳化重合によるエマルジョン[I]の合成〕
かかるエマルジョン[I]は、以上のような分散剤たるPVA系樹脂(B)と分散質たるエチレン性不飽和単量体に由来する重合体粒子(A)が、水分散媒中に分散しているものである。かかるエマルジョン[I]は、分散剤の存在下で、例えば、上記アクリル系モノマー(および所望によりアクリル系モノマー以外の他のモノマー)を乳化重合することによって得られる。
前記乳化重合を実施する方法としては、a)水、分散剤としてのPVA系樹脂(B)および重合触媒の存在下に、分散質の原料、例えばアクリル系モノマー(および所望によりその他のモノマー)を一時または連続的に配合して、加熱、撹拌することにより乳化重合する方法;b)ビニル系モノマー、例えばアクリル系モノマー(および所望によりアクリル系モノマー以外の他のモノマー)をPVA系樹脂(B)の水溶液に混合分散させた分散液を調製し、この調製した分散液を、水、PVA系樹脂(B)および重合触媒が配合された系内に、一時又は連続的に配合して、加熱、撹拌して、乳化重合する方法が挙げられる。このように予め調製した分散液を用いる方法は特にプレエマルジョン法と称される。かかる方法は、重合対象のモノマー組成がたとえ複雑であっても、生産性を維持して乳化重合を行なうことが可能であるので好ましい。
前記乳化重合に用いられる反応溶液中の分散媒は、通常、水である。所望により、上記溶媒にて挙げた水と混合可能な有機溶媒を水と併用することも可能である。しかしながら、乳化重合に供するモノマーの分散性の点から、好ましくは水のみである。
特に本発明においては、重合体粒子(A)の平均粒子径を特定の小さい範囲とするために、(1)エマルジョンの調製時に添加する界面活性剤や水溶性高分子保護コロイド剤などの乳化分散剤の組成及び量を制御する方法や、(2)モノマーや重合触媒の添加条件を制御する方法、(3)エマルジョンの設計不揮発分を制御する方法等を採用することができる。
その他には、重合装置の混合攪拌翼の大きさや攪拌速度、攪拌時間を制御する方法などを採用することもできる。さらには、モノマーを多孔質の膜中に通すことで粒子径を制御する膜乳化法や、攪拌方法に超音波を用いる超音波乳化法等を採用することもできる。
乳化重合時に分散剤としてPVA系樹脂(B)を用いる場合、その配合量は、使用するPVA系樹脂(B)の種類や合成しようとするエマルジョンの濃度等によって多少異なるが、乳化重合反応系の全体に対して、通常0.1〜80重量%であり、好ましくは10〜70重量%、特に好ましくは20〜60重量%である。
PVA系樹脂の配合量が少なすぎると、エチレン性不飽和単量体の乳化状態が不安定となって、重合反応性が低下したり、重合により得られるエマルジョン中での粒子の乳化状態安定性が低下する傾向にある。一方、PVA系樹脂の含有量が多すぎると、反応液の粘度が増大しすぎて均一分散性が低下し、重合率を高められなかったり、得られるエマルジョンの粘度が高くなりすぎて、製造上の歩留まりが低下したりする傾向にある。
重合触媒としては、通常、乳化重合の分野で用いられる重合触媒を用いることができる。例えば、過硫酸カリウム、過硫酸アンモニウム、臭素酸カリウム、酸性亜硫酸ナトリウム、過酸化水素−酒石酸、過酸化水素−鉄塩、過酸化水素−アスコルビン酸−鉄塩、過酸化水素−ロンガリット、過酸化水素−ロンガリット−鉄塩等の水溶性のレドックス系の重合触媒などが挙げられる。これらは単独で用いても良く、又は2種以上を併せて用いても良い。具体的には、化薬アクゾ社製「カヤブチルB」や同社製「カヤブチルA−50C」等の有機過酸化物とレドックス系からなる触媒を用いることもできる。
重合触媒の使用量は、重合に使用するモノマー100重量部に対して、通常0.01〜10重量部であり、好ましくは0.05〜5重量部、特に好ましくは0.1〜3重量部である。かかる重合開始剤の使用量が少なすぎると重合速度が低下する傾向があり、逆に多すぎると重合安定性が低下する傾向がある。
なお、重合開始剤の配合方法としては、特に制限はなく、初期に一括して反応液中に配合してもよいし、重合の経過に伴って連続的に添加してもよい。
乳化重合は、1段階で行ってもよいし、2段階以上の複数段階で行ってもよい。特に2段階で行う場合、1段目と2段目でモノマー仕込み量(仕込み比率)を変えることにより、1段目で形成した内層と2段目で形成した外層のガラス転移点(Tg)を変えることも可能となる。具体的には、以下のような2段階の重合が挙げられる。
(1)1段目の重合工程
分散媒、分散剤を含有する反応容器に、重合目的のモノマーの一部を仕込み、1段目の乳化重合を行う。1段目に投入するモノマーの量は、特に限定しないが、重合に使用するモノマーの通常1〜50重量%程度であり、好ましくは5〜30重量%である。1段目の乳化重合工程の条件は、用いるモノマーの種類、組成、重合開始剤の使用量等により適宜決定することができる。
乳化重合反応の温度は、通常30〜90℃、好ましくは40〜80℃であり、重合時間は好ましくは1〜4時間である。1段目の乳化重合工程においては、重合転化率が30%以上であることが好ましく、60%以上であることが特に好ましい。
(2)2段目の重合工程
2段目の乳化重合は、1段目の重合が終了した反応容器に、残りのモノマーを投入することにより行う。投入は、滴下しながら行うことが好ましい。また、2段目の重合に際して、重合触媒を投入してもよい。2段目の乳化重合は、重合温度が40〜80℃、重合時間が1〜6時間の条件で行う。
また、滴下するモノマー組成比を連続的に変えながら滴下するパワーフィード重合法を用いることも可能である。また、モノマーを分散剤たるPVA系樹脂の存在下で予め混合分散させた分散液を滴下しながら重合してもよい。
必要に応じて、かかる工程の後に通常1〜6時間の追い込み重合をおこなうことも可能である。かかる重合中に重合触媒を投入してもよい。
以上のような乳化重合において、必要に応じて、分子量調節剤を用いてもよい。分子量調節剤の具体例としては、例えば、n−ヘキシルメルカプタン、n−オクチルメルカプタン、t−オクチルメルカプタン、n−ドデシルメルカプタン、t−ドデシルメルカプタン、n−ステアリルメルカプタン等のアルキルメルカプタン;ジメチルキサントゲンジサルファイド、ジイソプロピルキサントゲンジサルファイド等のキサントゲン化合物;ターピノレン、テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、テトラメチルチウラムモノスルフィド等のチウラム系化合物;2,6−ジ−t−ブチル−4−メチルフェノール、スチレン化フェノール等のフェノール系化合物;アリルアルコール等のアリル化合物;ジクロロメタン、ジブロモメタン、四臭化炭素や四塩化炭素等のハロゲン化炭化水素化合物;α−ベンジルオキシスチレン、α−ベンジルオキシアクリロニトリル、α−ベンジルオキシアクリルアミド等のビニルエーテル;トリフェニルエタン、ペンタフェニルエタン、アクロレイン、メタアクロレイン、チオグリコール酸、チオリンゴ酸、2−エチルヘキシルチオグリコレート、α−メチルスチレンダイマー、四塩化炭素等が挙げられる。なお、乳化重合工程では、これらの分子量調節剤を一種単独でまたは二種以上組み合わせて使用することができる。
また、上記重合工程において、PVA系樹脂(2)による分散安定効果を阻害しない範囲で、あらかじめ含有する分散剤とは別に、非イオン性界面活性剤やアニオン性界面活性剤等の界面活性剤を系内に併存させてもよい。かかる界面活性剤の配合量は、乳化重合反応系の全体に対して、通常10重量%以下であり、好ましくは5重量%以下である。
非イオン性界面活性剤としては、例えば、ポリオキシエチレン−アルキルエーテル型、ポリオキシエチレン−アルキルフェノール型、ポリオキシエチレン−多価アルコールエステル型、多価アルコールと脂肪酸とのエステル、オキシエチレン・オキシプロピレンブロックポリマー等が挙げられる。
アニオン性界面活性剤としては、例えば、高級アルコール硫酸塩、高級脂肪酸アルカリ塩、ポリオキシエチレンアルキルフェノールエーテル硫酸塩、アルキルベンゼンスルホン酸塩、ナフタリンスルホン酸塩ホルマリン縮合物、アルキルジフェニルエーテルスルホン酸塩、ジアルキルスルホコハク酸塩、高級アルコールリン酸エステル塩等が挙げられる。
更に、フタル酸エステル、リン酸エステル等の可塑剤、炭酸ナトリウム、酢酸ナトリウム、リン酸ナトリウム等のpH調整剤等も併用され得る。
〔エマルジョン〕
以上のようにして乳化重合を行うことにより、エチレン性不飽和単量体に由来する重合体粒子(A)がポリビニルアルコール系樹脂(B)で分散安定化されたエマルジョン[I]が得られる。
得られるエマルジョン[I]の固形分含有量は通常10〜60重量%であり、好ましくは20〜58重量%であり、特に好ましくは30〜55重量%であり、更に好ましくは35〜53重量%である。なお、エマルジョンの固形分は、乾燥機にて105℃で3時間加熱乾燥した残分を測定した値を採用する。
得られるエマルジョンの粘度は、通常100〜20000mPa・sであり、好ましくは300〜10000mPa・sであり、特に好ましくは450〜8000mPa・sである。なお、エマルジョンの粘度は、B型粘度計により測定された値を採用する。
以上のようなエマルジョンは、そのまま本発明の正極用バインダー組成物の製造に供してもよいし、エマルジョンの固形分量や粘度等を調節するために、PVA系樹脂(B)以外の水溶性高分子などを適宜追加してもよい。
PVA系樹脂(B)以外の水溶性高分子としては、例えば、メチルセルロース、エチルセルロース、ヒドロキシメチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシブチルメチルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース、アミノメチルヒドロキシプロピルセルロース、アミノエチルヒドロキシプロピルセルロース等のセルロース誘導体類;デンプン、トラガント、ペクチン、グルー、アルギン酸又はその塩;ゼラチン;ポリビニルピロリドン;ポリアクリル酸又はその塩、ポリメタクリル酸又はその塩;ポリアクリルアミド、ポリメタクリルアミド等のアクリルアミド類;酢酸ビニルと、マレイン酸、無水マレイン酸、アクリル酸、アクリル酸、メタクリル酸、イタコン酸、フマル酸、クロトン酸等の不飽和酸との共重合体;スチレンと上記不飽和酸との共重合体;ビニルエーテルと上記不飽和酸との共重合体;及び前記不飽和酸と各共重合体の塩類又はエステル類、カラギーナン、キサンタンガム、ヒアルロン酸ナトリウム、ローカストビーンガム、タラガム、グアーガム、タマリンドシードガム等の天然多糖類が挙げられる。
〔重合体粒子(A)〕
本発明における重合体粒子(A)の平均粒径は、好ましくは50nm以上600nm以下であり、特に好ましくは150〜300nmである。なお、前記粒子の平均粒子径は、ゼータ電位測定装置により測定された値を採用する。
〔リチウムイオン二次電池正極用バインダー組成物〕
本発明のリチウムイオン二次電池正極用バインダー組成物は上記エマルジョンを含む。
上記したように、本発明の正極用バインダー組成物においては、バインダー組成物に含まれる上記エマルジョン中の分散剤としてのPVA系樹脂(B)とは別に、PVA系樹脂が配合されることが好ましい。側鎖に一級水酸基を有する構造単位を含有する変性PVA系樹脂は、低結晶性であることから、別途、エマルジョンのPVA系樹脂水溶液中に、側鎖に一級水酸基を有する構造単位を含有する変性PVA系樹脂が含まれることで、正極用バインダー組成物である水ペーストの粘度安定性を付与することが可能であり、作業効率を向上させることができる。
本発明のバインダー組成物において、分散媒に溶解して含まれるPVA系樹脂量を特定範囲とする方法としては、(i)エマルジョン中の分散剤としてのPVA系樹脂(便宜上、第1のPVA系樹脂と称することがある。)を通常よりも多量に用いる方法や、(ii)エマルジョンと共に他の成分としてPVA系樹脂(便宜上、第2のPVA系樹脂と称することがある。)を配合する方法、(iii)上記(i)と(ii)を併用する方法等が挙げられる。(ii)の方法の場合、PVA系樹脂は固体であっても、バインダー組成物の分散媒と親和性のある溶媒に溶解した溶液であってもよいが、溶液が好ましい。
なお、いずれの方法においてもPVA系樹脂の含有量は本発明のバインダー組成物における固形分に含まれる。
上記(i)の方法においては、上述したエマルジョンの乳化重合時に、分散剤として用いられるPVA系樹脂の配合量を、エマルジョンの固形分に対して通常10重量%超、80重量%以下、好ましくは20〜70重量%、特に好ましくは30〜60重量%とすることができる。
上記(ii)の方法においては、調製したエマルジョン組成物中に後添加するPVA系樹脂(第2のPVA系樹脂)として、上記した分散剤たるPVA系樹脂と同様に、公知のPVA系樹脂を用いることが可能である。また、本発明の目的を阻害しない範囲において、第2のPVA系樹脂においても、上記分散剤たるPVA系樹脂と同じく変性PVA系樹脂を用いることが可能である。
(ii)の方法では、エマルジョンの調製に用いたPVA系樹脂以外に、異なる種類のPVA系樹脂を用いることが可能である。
(ii)の方法では、第1のPVA系樹脂とは異なる種類のPVA系樹脂を第2のPVA系樹脂として用いることができる。
異なる種類のPVA系樹脂を用いる場合、本発明に用いるエマルジョンの分散剤たる第1のPVA系樹脂と第2のPVA系樹脂は、互いに完全相溶性となり均一相を形成することとなる。
また、特に(ii)の方法においては、本発明に用いるエマルジョンの分散剤たる第1のPVA系樹脂のケン化度が、第2のPVA系樹脂のケン化度より同程度であることが好ましい。
かかる場合、バインダー組成物より得られるポリマーの連続相において、第1のPVA系樹脂が安定なマトリックスを形成することができる為、連続層の強度が良好に維持されると考えられる。
第2のPVA系樹脂の配合量は、上記(i)の方法における第1のPVA系樹脂の配合量と同じ配合量であってもよく、また異なる配合量であってよく、バインダー組成物の通常0.1〜30重量%、好ましくは0.5〜20重量%、特に好ましくは1〜10重量%である。
前記第2のPVA系樹脂は、エマルジョンをバインダー組成物として使用する際に配合してもよいし、予めエマルジョン中に配合しておいてもよい。特に、予めエマルジョンに配合してエマルジョン組成物としておくことが、エマルジョンの分散質の分散安定性の点から好ましい。
本発明のリチウムイオン二次電池正極用バインダー組成物における重合体粒子(A)とPVA系樹脂(B)の含有割合(A/B)は、固形分の重量比にて、1/99〜40/60であり、好ましくは5/95〜40/60、特に好ましくは10/90〜35/65、更に好ましくは15/85〜30/70である。
また本発明の正極用バインダー組成物における重合体粒子(A)の含有量は、固形分にて、好ましくは1〜40重量%であり、好ましくは5〜40重量%、特に好ましくは5〜35重量%、更に好ましくは10〜35重量%、殊に好ましくは15〜30重量%である。重合体粒子(A)の含有量が少なすぎると、バインダーとしての内部抵抗が大きくなる傾向がある。重合体粒子(A)の含有量が多すぎると、一般に電解液膨潤率が高くなりやすく、耐熱性や被膜強度の低下を招く傾向もある。
さらに本発明の正極用バインダー組成物のエマルジョン[I]におけるPVA系樹脂(B)の含有量が、固形分にて、好ましくは60〜99重量%であり、特に好ましくは60〜95重量%、更に好ましくは65〜90重量%、殊に好ましくは70〜85重量%である。
PVA系樹脂(B)の含有量が少なすぎると、耐熱性や耐酸化性の低下を引き起こす傾向がある。また、PVA系樹脂(B)の含有量が多すぎると、バインダーとしての内部抵抗が大きくなり、充放電容量が低下する傾向がある。
<他の成分>
本発明のバインダー組成物には、通常、塗膜に用いられる塗料や成型用樹脂に用いられる配合剤等を配合することができる。例えば、光安定剤、紫外線吸収剤、増粘剤、レベリング剤、チクソ化剤、消泡剤、凍結安定剤、艶消し剤、架橋反応触媒、顔料、硬化触媒、架橋剤{ホウ酸、メチロール化メラミン、炭酸ジルコニュム、ジイソプロポキシチタンビストリエタノールアミネート等}、皮張り防止剤、分散剤、湿潤剤、酸化防止剤、紫外線吸収剤、レオロジーコントロール剤、成膜助剤、防錆剤、染料、可塑剤、潤滑剤、還元剤、防腐剤、防黴剤、消臭剤、黄変防止剤、静電防止剤又は帯電調整剤等が挙げられる。それぞれの目的に応じて選択したり、組み合わせたりして配合することができる。なお、バインダー組成物がこれらの配合剤を含有する場合、含有する配合剤の有機分は、バインダー組成物の固形分に含まれる。
上記配合剤の配合量は、バインダー組成物における上記エマルジョンの固形分100重量部に対して通常10重量部未満、好ましくは5重量部未満である。
〔正極用スラリーの調製:正極の製造〕
上記本発明の正極用バインダー組成物及び活物質を混合して、リチウムイオン二次電池正極用スラリーを調製することができる。
かかる活物質は、リチウムイオン二次電池正極に用いられる、公知一般の活物資を用いることが可能である。
正極用活物質としては、例えば、オリビン型リン酸鉄リチウム、コバルト酸リチウム、マンガン酸リチウム、ニッケル酸リチウム、三元系ニッケルコバルトマンガン酸リチウム、リチウムニッケルコバルトアルミニウム複合酸化物等を用いることができる。
スラリー中の活物質の含有量は、10〜95重量%、好ましくは20〜80重量%、特に好ましくは35〜65重量%である。
活物質の平均粒子径は、通常1〜100μmであり、好ましくは1〜50μmであり、特に好ましくは1〜25μmである。なお、活物質の平均粒子径は、レーザ回折式粒度分布測定(レーザ回折散乱法)により測定された値を採用するものとする。
正極用スラリーにおける活物質とバインダー組成物との含有比率は、活物質100重量部に対して、前記バインダー組成物に含まれる重合体粒子(A)の固形分にて通常0.1〜10重量部であり、好ましくは0.1〜5重量部、特に好ましくは0.1〜4重量部である。正極用バインダー組成物の含有量が多くなりすぎると、内部抵抗が増大する傾向がある。一方、少なすぎると、活物質間の所望の結着力や集電体への接着力が得られず、正極が不安定となり、充放電サイクル特性が低下する傾向がある。
正極用スラリーには、上記活物質、正極用バインダー組成物の他、その他の物質が含まれてもよい。例えば、導電助剤、支持塩(リチウム塩)等が含まれ得る。これらの成分の配合比は、公知の一般的な範囲である。配合比についても、リチウムイオン二次電池についての公知の知見を適宜参照することにより、調整され得る。
導電助剤とは、導電性を向上させるために配合される配合物をいう。導電助剤としては、黒鉛などのカーボン粉末や、気相成長炭素繊維(VGCF(登録商標))、スーパーグロスナノチューブなどの種々の炭素繊維などが挙げられる。本発明のリチウムイオン二次電池正極の作成において種々の配合の結果、結着剤の導電性を更に高める必要がある場合、導電助剤を配合することが好ましく、導電助剤としてVGCF(登録商標)を用いると、活物質が有効に活用され、結着剤を多量に用いることに起因する充放電容量の低下が抑制され得る。この際、VGCF(登録商標)の配合量は、活物質層の合計質量に対して、好ましくは1〜10重量%である。
さらに、正極作製時の作業性等を考慮して、粘度調整、バインダー組成物の固形分の調整などの目的により、溶媒を追加して、正極用スラリーを調製してもよい。かかる溶媒としては、上記した有機溶媒と同様のものを用いることができる。
正極用スラリーには、上記活物質や正極用バインダー組成物及び導電助剤などの分散性向上、または塗工時のレベリング性改善を目的として、バインダー組成物とは別に増粘剤を添加してもよい。増粘剤の種類としては、特に限定はしないが、PVA系樹脂との混和性や、エマルジョン組成物の分散媒に水が好適に用いられていることなどから、主に水溶性高分子が好適に用いられる。
水溶性高分子としては、例えば、メチルセルロース、エチルセルロース、ヒドロキシメチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシブチルメチルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース、アミノメチルヒドロキシプロピルセルロース、アミノエチルヒドロキシプロピルセルロース等のセルロース誘導体類;デンプン、トラガント、ペクチン、グルー、アルギン酸又はその塩;ゼラチン;ポリビニルピロリドン;ポリアクリル酸又はその塩、ポリメタクリル酸又はその塩;ポリアクリルアミド、ポリメタクリルアミド糖のアクリルアミド類;酢酸ビニルとマレイン酸、無水マレイン酸、アクリル酸、アクリル酸、メタクリル酸、イタコン酸、フマル酸、クロトン酸等の不飽和酸との共重合体;スチレンと上記不飽和酸との共重合体;ビニルエーテルと上記不飽和酸との共重合体;及び前記不飽和酸と各共重合体の塩類又はエステル類、カラギーナン、キサンタンガム、ヒアルロン酸ナトリウム、ローカストビーンガム、タラガム、グアーガム、タマリンドシードガム等の天然多糖類が挙げられる。
正極用スラリーに用いられる増粘剤の量としては、正極用スラリーの固形分にて、通常0.01〜5重量%、好ましくは0.1〜3重量%、特に好ましくは0.5〜2重量%である。スラリーに対して用いる量が少なすぎると、上記活物質や正極用バインダー及び導電助剤などの分散安定性が悪くなり、正極が不均一になって安定な充放電が得られない傾向にある。また一方で、かかる量が多すぎると、正極用スラリーの粘度が高くなり過ぎて、正極を作成する際に集電体に均一に塗工するのが困難となる傾向がある他、作成した電池の内部抵抗が向上して充放電容量が低下する傾向がある。
正極用バインダー組成物、活物質、及び必要に応じて用いられる配合剤、溶媒の混合は、攪拌機、脱泡機、ビーズミル、高圧ホモジナイザー等を利用することができる。また、正極用スラリーの調製は、減圧下で行うことが好ましい。これにより、得られる活物質層内に気泡が生じることを防止することができる。
以上のようにして調製される正極用スラリーを、集電体上に塗布、乾燥することにより、本発明のリチウムイオン二次電池正極(以下「本発明の正極」と略記することがある。)を製造することができる。必要に応じて、塗布後、プレスして密度を上げることが好ましい。
本発明の正極に用いられる集電体としては、リチウムイオン二次電池の正極の集電体として用いられているものを使用できる。具体的には、アルミニウム、銅、ニッケル、タンタル、ステンレス、チタン等の金属材料が挙げられ、目的とする蓄電デバイスの種類に応じて適宜選択して用いることができる。
このような集電体上に、正極用スラリーを塗布、乾燥することで、正極層を形成することができる。正極用スラリーを集電体に塗布する方法としては、ドクターブレード法、リバースロール法、コンマバー法、グラビヤ法、エアーナイフ法等が挙げられる。また、正極用スラリーの塗布膜の乾燥処理の条件としては、処理温度が通常20〜250℃であり、好ましくは50〜150℃である。また、処理時間は通常1〜120分間であり、好ましくは5〜60分間である。
活物質層の厚さ(塗布層の片面の厚さ)は、通常20〜500μmであり、好ましくは20〜300μm、特に好ましくは20〜150μmである。
得られる正極における本発明の正極用バインダー組成物の電解液膨潤率は、エチレン性不飽和単量体の種類、組成にもよるが、通常10%以下であり、好ましくは7%以下、特に好ましくは0.1〜5%である。
電解液膨潤率が前記範囲にあると、本発明の正極用バインダー組成物は電解液に対して適度に膨潤し、効果的に内部抵抗を低下させて、より良好な充放電特性を実現できる傾向がある。また、本発明の正極用バインダー組成物の電解液に対する膨潤を一定範囲に留めることにより、長期充放電時の抵抗増加を抑制することが可能となる。これは、正極活物質と電解液の接触を抑制することにより、電解液の酸化分解によりもたらされる電池抵抗の増加を抑制することが可能となるためと推測される。
かかる電解液膨潤率は、例えば、以下のように測定した値をいう。
正極用バインダー組成物として調製したアクリルエマルジョンを500μmのアプリケータを用いてPETフィルム上にキャストした後、105℃の乾燥機で3時間加熱乾燥してフィルムを得た。得られるフィルムを、所定サイズに切り出して、その重量を測定する(W(g))。このフィルムを10gのプロピレンカーボネート(PC)、又はエチレンカーボネート/ジメチルカーボネート(EC/DMC)の3/7混合液(体積比)に浸漬させて60℃で3時間加熱する。室温まで冷却した後、フィルムを取り出し、フィルム表面に付着した電解液をふき取った後に、試験後の浸漬後重量(W(g))から、下式に従って、電解液膨潤率を算出する。
電解液膨潤率(%)=((W −W )/W )×100
本発明のリチウムイオン二次電池正極用バインダー組成物を用いて得られた正極は柔軟性や耐酸化性が従来の正極よりも改善される為、合剤層の割れ、活物質の剥離・脱落や電解液の酸化分解が発生し難くなるという効果が得られる。
〔リチウムイオン二次電池〕
本発明のリチウムイオン二次電池正極用バインダー組成物を用いて作製された正極を有するリチウムイオン二次電池について説明する。
リチウムイオン二次電池は、正極、負極、電解液、セパレータを少なくとも有する。
負極は、上述の正極と同様の方法で製造することができ、例えば、一般的なバインダー組成物、負極用活物質、及び必要に応じて用いられる配合剤を含有する負極用スラリーを集電体上に塗布、乾燥して形成することができる。
負極用活物質としては、炭素材料が好ましい。炭素材料としては、例えば、天然黒鉛、人造黒鉛、膨張黒鉛等の黒鉛系炭素材料(黒鉛)、カーボンブラック、活性炭、カーボンファイバー、コークス、ソフトカーボン、ハードカーボン等が挙げられる。それ以外に、リチウム金属、リチウム含有金属複合酸化物、炭素粉末、珪素粉末、錫粉末、またはこれらの混合物を用いることが好ましい。
負極の集電体としては、例えば、銅、ニッケルといった金属箔、エッチング金属箔、エキスパンドメタルなどが用いられる。
電解液としては、リチウム塩を溶解する非プロトン性極性溶媒が用いられる。特に限定しないが、エチレンカーボネート、プロピレンカーボネート等の環状炭酸エステル系高誘電率・高沸点溶媒に、低粘性率溶媒である炭酸ジメチル、炭酸エチルメチル、炭酸ジエチル等の低級鎖状炭酸エステルを含有させて用いられる。具体的には、エチレンカーボネート、クロロエチレンカーボネート、トリフルオロプロピレンカーボネート、ブチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート、イソプロピルメチルカーボネート、エチルプロピルカーボネート、イソプロピルエチルカーボネート、ブチルメチルカーボネート、ブチルエチルカーボネート、ジプロピルカーボネート、1,2−ジメトキシエタン、γ−ブチロラクトン、テトラヒドロフラン、2−メチルテトラヒドロフラン、スルホラン、3−メチルスルホラン、2,4−ジメチルスルホラン、1,3−ジオキソラン、酢酸メチル、酢酸エチル、ギ酸メチル、ギ酸エチルなどが挙げられ、これらは混合して用いることが好ましい。
電解質のリチウム塩としては、LiClO、LiPF、LiBF、LiAsF、LiCl、LiBr等の無機塩や、LiCFSO、LiN(SOCF)、LiN(SO、LiC(SOCF)、LiN(SOCF等の有機塩など、非水電解液の電解質として常用されているものを用いればよい。これらのなかでもLiPF、LiBF又はLiClOを用いるのが好ましい。
セパレータとしては、特に限定されず、ポリオレフィンの不織布や多孔性フィルム、またガラスフィルター、ポリアラミド製フィルム、PVA系樹脂からなら不織布などを用いることができる。
二次電池の構造としては、特に限定されず、積層型(扁平型)電池、巻回型(円筒型)電池など、従来公知のいずれの形態・構造にも適用し得る。また、リチウムイオン二次電池内の電気的な接続形態(電極構造)については、(内部並列接続タイプ)電池および双極型(内部直列接続タイプ)電池のいずれにも適用し得る。
以上のようにして得られるリチウムイオン二次電池は、本発明の電極用バインダー組成物を用いたことに基づき、電極の柔軟性が改善され、合剤層の割れ、活物質の剥離・脱落が発生し難くなる。また、耐酸化性も改善されるため初回放電容量が高く、しかも高い充放電容量を安定的に得ることが可能となる。
また、電池の内部抵抗を抑制する為に、エマルジョン中の分散質の粒子径を制御する方法を用いても良い。本発明のリチウムイオン二次電池電極用バインダー組成物は、エチレン性不飽和単量体に由来する重合体粒子がPVA系樹脂水溶液中に分散しているエマルジョンを含むことによって、当該バインダー組成物を用いて得られる電極において、バインダー中のPVA系樹脂マトリックスの表面積が大きく且つPVA層の厚みが薄くなる。この結果、PVA系樹脂特有の耐電解液性及び耐酸化性を維持したまま、電池の内部抵抗が軽減され、電池の安全性や耐久性が向上する。これらの効果が得られる理由は、エチレン性不飽和単量体に由来する重合体粒子とPVA系マトリックスとの界面にて乳化重合の際に形成されるグラフト形成物が増大することにより、エチレン性不飽和単量体に由来する重合体粒子の分散粒径が更に小さくなり、且つ粒径分布が均一化され、内部抵抗の軽減を図ることが可能となるためと考えられる。
以下、実施例を挙げて本発明を更に具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。なお、例中「部」とあるのは重量基準を意味する。また、例中「Vol」とあるのは体積比を意味する。
〔分析方法〕
下記実施例及び比較例において製造したPVA系樹脂は、以下の方法にて分析した。
(1)ケン化度(モル%)
残存酢酸ビニル及び3,4−ジアセトキシ−1−ブテンの加水分解に要するアルカリ消費量にて分析した。
(2)粘度平均重合度
JIS K 6726に準じて測定した。
(3)側鎖1,2−ジオール構造単位の含有量(変性量)(モル%)
BRUKER社製のAVANCEIIIHD 400を用いて、H−NMR(400MHz、プロトンNMR、溶媒:重水溶液、温度:50℃)にて測定し、得られたNMRチャートに基づき、積分値より算出した。
〔測定評価方法〕
下記実施例及び比較例において調製したバインダーは、以下の方法にて電池特性の評価を行った。
(1)電池特性
作製したセルを25℃で50時間放置した後充放電試験に供した。
電流密度を30mA/gとし電位範囲2.7−4.2Vで定電流充放電試験を行い、初回の放電容量(mAh/g)、クーロン効率(%)を測定した。その後電流密度75mA/g、電位範囲2.7−4.2Vで測定時の温度を50℃とし、定電流充放電試験を継続して行い、高温長期サイクル後の容量維持率を測定した。
(2−1)初回放電容量(mAh/g)
初回放電時の定電流値(制御電流値(mA))と設定電位に達するまでの時間(h)の積を、電極活物質(正極活物質)重量(g)で除した値を初回放電容量(mAh/g)とした。
初回放電容量の絶対値が140(mAh/g)以上を優(◎)、130(mAh/g)以上、かつ140(mAh/g)未満を良(〇)、130(mAh/g)未満を不良(×)と評価した。
(2−2)初回クーロン効率(%)
初回放電容量(mAh/g)を初回充電容量(mAh/g)で除した百分率(%)を初回クーロン効率とした。
初回クーロン効率が90%以上を優(◎)、80%以上、かつ90%未満を良(〇)、80%未満を不良(×)と評価した。
(2−3)高温長期サイクル特性
電流密度75mA/g、50℃サイクル時の初回以降の放電容量(mAh/g)を初回放電容量(mAh/g)で除した百分率を容量維持率とした。容量維持率が高いほど、サイクル特性は良好であることを示す。
なお、容量維持率の絶対値は100%に近い程よいものとする。
容量維持率が40%以上を優(◎)20%以上、かつ40%未満を良(〇)、20%未満を不良(×)と評価した。
〔重合例1:ベースエマルジョンの重合〕
還流冷却器、攪拌機、滴下漏斗、温度計を備え付けたセパラブルフラスコに、分散媒としての水969.3部、分散剤として上記構造式(1a)に示す構造の側鎖1,2−ジオール構造単位を含有するPVA系樹脂(ケン化度:99.1モル%、粘度平均重合度:470、上記構造式(1a)に示す1,2−ジオール構造単位含有率:6モル%)172.8部、酢酸ナトリウム0.57部を流し込み、95℃で撹拌しながら2時間溶解させた後、フラスコ内の温度を75℃に冷却した。
この温浴中に、1段目の乳化重合用モノマーとして、ブチルアクリレート(BA)とメチルメタクリレート(MMA)との混合モノマー(混合重量比:BA/MMA=70/30)を27.0部、重合開始剤として亜硫酸水素ナトリウム水溶液(5重量%)5.40部及び過硫酸アンモニウム水溶液(1重量%)17.82部を加えて、1段目の乳化重合を開始した。反応温度を75℃〜80℃に保持しながら、1時間重合を行った。
次に、2段目の乳化重合を行なった。1段階目の乳化重合を行った反応系の温度を75〜80℃の範囲に保ちながら、2段目の乳化重合用モノマーとして、先ほどと同じ組成の混合モノマー243.0部を3時間半かけて滴下した。かかる滴下中に、過硫酸アンモニウム水溶液(1重量%)35.64部を14分割して15分毎に配合した。その後、温度を75℃に保ちながら、90分間重合を続けた。この間、過硫酸アンモニウム水溶液(1重量%)5.94部を2分割して45分毎に配合した。
2段目の乳化重合の後、反応温度を50℃まで低下させて、1時間追い込み重合を行った。かかる追い込み重合中はt−ブチルヒドロパーオキシ水溶液(10重量%)2.7部及びL−アスコルビン酸水溶液(10重量%)3.2部をそれぞれ2分割して30分毎に配合した。その後、室温まで冷却して、上記構造式(1a)に示す構造の側鎖1,2−ジオール構造単位を含有するPVA系樹脂水溶液中にブチルアクリレート(BA)及びメチルメタクリレート(MMA)の混合組成の重合体粒子が分散するエマルジョンを得た。かかるエマルジョンにおける固形分は29.7重量%であった。
〔重合例2:ベースエマルジョンの重合〕
還流冷却器、攪拌機、滴下漏斗、温度計を備え付けたセパラブルフラスコに、分散媒としての水1016.0部、分散剤として上記構造式(1a)に示す構造の側鎖1,2−ジオール構造単位を含有するPVA系樹脂(ケン化度:99.1モル%、粘度平均重合度:1200、上記構造式(1a)に示す1,2−ジオール構造単位含有率:6モル%)256.0部、酢酸ナトリウム0.42部を流し込み、95℃で撹拌しながら2時間溶解させた後、フラスコ内の温度を75℃に冷却した。
この温浴中に、1段目の乳化重合用モノマーとして、ブチルアクリレート(BA)とメチルメタクリレート(MMA)との混合モノマー(混合重量比:BA/MMA=70/30)を20.0部、重合開始剤として亜硫酸水素ナトリウム水溶液(5重量%)4.00部及び過硫酸アンモニウム水溶液(1重量%)13.20部を加えて、1段目の乳化重合を開始した。反応温度を75℃〜80℃に保持しながら、1時間重合を行った。
次に、2段目の乳化重合を行なった。1段階目の乳化重合を行った反応系の温度を75〜80℃の範囲に保ちながら、2段目の乳化重合用モノマーとして、先ほどと同じ組成の混合モノマー180.0部を3時間半かけて滴下した。かかる滴下中に、過硫酸アンモニウム水溶液(1重量%)26.40部を14分割して15分毎に配合した。その後、温度を75℃に保ちながら、90分間重合を続けた。この間、過硫酸アンモニウム水溶液(1重量%)4.40部を2分割して45分毎に配合した。
2段目の乳化重合の後、反応温度を50℃まで低下させて、1時間追い込み重合を行った。かかる追い込み重合中はt−ブチルヒドロパーオキシ水溶液(10重量%)2.0部及びL−アスコルビン酸水溶液(10重量%)2.4部をそれぞれ2分割して30分毎に配合した。その後、室温まで冷却して、上記構造式(1a)に示す構造の側鎖1,2−ジオール構造単位を含有するPVA系樹脂水溶液中にブチルアクリレート(BA)及びメチルメタクリレート(MMA)の混合組成の重合体粒子が分散するエマルジョンを得た。かかるエマルジョンにおける固形分は30.6重量%であった。
〔重合例3:ベースエマルジョンの重合〕
還流冷却器、攪拌機、滴下漏斗、温度計を備え付けたセパラブルフラスコに、分散媒としての水969.3部、分散剤として上記構造式(1a)に示す構造の側鎖1,2−ジオール構造単位を含有するPVA系樹脂(ケン化度:99.1モル%、粘度平均重合度:300、上記構造式(1a)に示す1,2−ジオール構造単位含有率:8モル%)172.8部、酢酸ナトリウム0.57部を流し込み、95℃で撹拌しながら2時間溶解させた後、フラスコ内の温度を75℃に冷却した。
この温浴中に、1段目の乳化重合用モノマーとして、ブチルアクリレート(BA)とメチルメタクリレート(MMA)との混合モノマー(混合重量比:BA/MMA=70/30)を27.0部、重合開始剤として亜硫酸水素ナトリウム水溶液(5重量%)5.40部及び過硫酸アンモニウム水溶液(1重量%)17.82部を加えて、1段目の乳化重合を開始した。反応温度を75℃〜80℃に保持しながら、1時間重合を行った。
次に、2段目の乳化重合を行なった。1段階目の乳化重合を行った反応系の温度を75〜80℃の範囲に保ちながら、2段目の乳化重合用モノマーとして、先ほどと同じ組成の混合モノマー243.0部を3時間半かけて滴下した。かかる滴下中に、過硫酸アンモニウム水溶液(1重量%)35.64部を14分割して15分毎に配合した。その後、温度を75℃に保ちながら、90分間重合を続けた。この間、過硫酸アンモニウム水溶液(1重量%)5.94部を2分割して45分毎に配合した。
2段目の乳化重合の後、反応温度を50℃まで低下させて、1時間追い込み重合を行った。かかる追い込み重合中はt−ブチルヒドロパーオキシ水溶液(10重量%)2.7部及びL−アスコルビン酸水溶液(10重量%)3.2部をそれぞれ2分割して30分毎に配合した。その後、室温まで冷却して、上記構造式(1a)に示す構造の側鎖1,2−ジオール構造単位を含有するPVA系樹脂水溶液中にブチルアクリレート(BA)及びメチルメタクリレート(MMA)の混合組成の重合体粒子が分散するエマルジョンを得た。かかるエマルジョンにおける固形分は29.7重量%であった。
〔製造例1:バインダー溶液の製造〕
前記重合例1で調製したベースエマルジョンを分取し、希釈用の精製水と、さらに上記構造式(1a)に示す構造の側鎖1,2−ジオール構造単位を含有するPVA系樹脂(ケン化度:99.1モル%、粘度平均重合度:470、上記構造式(1a)に示す1,2−ジオール構造単位含有率:6モル%)の10重量%水溶液とを添加することで、10重量%のバインダー溶液を調製した。この時、バインダーの固形分中の重合体粒子(A)とPVA系樹脂(B)の含有割合(A/B)が、固形分の重量比にて、20/80になるように調整した。
〔製造例2:バインダー溶液の製造〕
前記重合例2で調製したベースエマルジョンを分取し、希釈用の精製水と、さらに上記構造式(1a)に示す構造の側鎖1,2−ジオール構造単位を含有するPVA系樹脂(ケン化度:99.1モル%、粘度平均重合度:1200、上記構造式(1a)に示す1,2−ジオール構造単位含有率:6モル%)の10重量%水溶液とを添加することで、10重量%のバインダー溶液を調製した。この時、バインダーの固形分中の重合体粒子(A)とPVA系樹脂(B)の含有割合(A/B)が、固形分の重量比にて、20/80になるように調整した。
〔製造例3:バインダー溶液の製造〕
前記重合例3で調製したベースエマルジョンを分取し、希釈用の精製水と、さらに上記構造式(1a)に示す構造の側鎖1,2−ジオール構造単位を含有するPVA系樹脂(ケン化度:99.1モル%、粘度平均重合度:300、上記構造式(1a)に示す1,2−ジオール構造単位含有率:8モル%)の10重量%水溶液とを添加することで、10重量%のバインダー溶液を調製した。この時、バインダーの固形分中の重合体粒子(A)とPVA系樹脂(B)の含有割合(A/B)が、固形分の重量比にて、88/12および44/56の2種類になるように調整した。
[電池の作製]
上記製造例1〜3で調製した正極用バインダーを用いて、以下のようにして正極用スラリー液を作製し、リチウムイオン二次電池正極、次いでリチウムイオン二次電池を作製した。作製した電池について上記評価方法の通り電池特性を測定評価した。結果を表1に示す。
〔実施例1〕
〔リチウムイオン二次電池正極の作製〕
<正極活物質を用いた電池用正極の作製>
活物質としてLiNiMnCoO(日本化学工業株式会社製、平均粒径10μm)を94部、導電助剤としてアセチレンブラック(電気化学工業株式会社製「デンカブラック」)を3部、さらに分散剤として1.5重量%水溶液に調製したカルボキシメチルセルロース#2200(ダイセルファインケム株式会社製)を固形分換算で1.5部、また適時に精製水を加えた後、遊星式混練機(株式会社シンキー製「泡取り錬太郎」)を用いて混合して固形分濃度66.3重量%のペーストを得た(2000rpmで8分間混合した後、更に2200rpmで0.5分間脱泡した。)。
得られたペースト中に、正極用バインダーとして製造例1で作成したバインダー溶液(25重量%)を固形分換算で1.5部、また適時に精製水を加水した後、さらに遊星式混練機を用いて同様の条件で混合することで、固形分濃度が55.9重量%の活物質ペーストを得た。
次に、集電体として圧延アルミ箔(株式会社製箔、厚さ18μm)の表面に、180μmのアプリケータと塗工機(株式会社井元製作所製「コントロールコーター(塗工機)」)を用いて、塗工速度10mm/秒で上記活物質ペーストを塗工した。これを60℃で10分間乾燥させ、電池用正極を得た。
(充放電試験)
評価用の電池の外層としては、2032型のコイン型セルを使用した。得られた電池用正極を直径11mmの大きさに打ち抜き、更に80℃で24時間以上真空乾燥を行った後にグローブボックスへと仕込んだ。作製した電池用正極を作用極に、金属リチウム負極(直径13mm)を対極に用い、厚さ16μmのポリプロピレン多孔膜から成るセパレータ(直径18mm)を介在させて、互いに電極が対向するように配置させた。電解液として、エチレンカーボネートとジエチレンカーボネートとを体積比で3:7に混合した溶媒を使用し、電解質としてLiPFを1mol/リットルの濃度に溶解したものを使用した。ポリプロピレン製パッキングを介して外層容器にステンレス鋼のキャップを被せて固定し、電池缶を封止することでハーフセルを作成し、評価用の電池を作製した。
〔実施例2〕
正極用バインダーとして製造例2で調製したバインダー溶液を使用する以外は、実施例1と同様の方法で正極、更に電池を作製して電池性能を評価した。
〔比較例1〕
正極用バインダーとして製造例3で調製したバインダー溶液のうち、固形分中の重合体粒子(A)とPVA系樹脂(B)の含有割合(A/B)が44/56であるバインダー溶液を使用する以外は、実施例1と同様の方法で正極、更に電池を作製して電池性能を評価した。
〔比較例2〕
正極用バインダーとして製造例3で調製したバインダー溶液のうち、固形分中の重合体粒子(A)とPVA系樹脂(B)の含有割合(A/B)が12/88であるバインダー溶液を使用する以外は、実施例1と同様の方法で正極、更に電池を作製して電池性能を評価した。
Figure 2018018728
表1に示す結果から、重合体粒子(A)とポリビニルアルコール系樹脂(B)の含有割合(A/B)が、固形分の重量比にて、5/95〜40/60である本発明の正極用バインダー組成物を用いた電池では、初回放電容量が高く、また50℃という高温下での充放電のサイクル特性が良好となることが分かる。

Claims (7)

  1. エチレン性不飽和単量体に由来する重合体粒子(A)がポリビニルアルコール系樹脂(B)で分散安定化されたエマルジョン[I]を含むリチウムイオン二次電池正極用バインダー組成物であって、
    重合体粒子(A)とポリビニルアルコール系樹脂(B)の含有割合(A/B)が、固形分の重量比にて、1/99〜40/60であることを特徴とするリチウムイオン二次電池正極用バインダー組成物。
  2. ポリビニルアルコール系樹脂(B)の粘度平均重合度が300〜3000であることを特徴とする請求項1記載のリチウム二次電池正極用バインダー組成物。
  3. 重合体粒子(A)が(メタ)アクリル系樹脂を主成分としてなることを特徴とする請求項1または2記載のリチウム二次電池正極用バインダー組成物。
  4. ポリビニルアルコール系樹脂(B)が、側鎖に一級水酸基を有する構造単位を含有する変性ポリビニルアルコール系樹脂(b)であることを特徴とする請求項1〜3いずれか記載のリチウム二次電池正極用バインダー組成物。
  5. 側鎖に一級水酸基を有する構造単位が、側鎖に1,2−ジオール構造を有する構造単位であることを特徴とする請求項4記載のリチウム二次電池正極用バインダー組成物。
  6. 請求項1〜5いずれか記載のリチウム二次電池正極用バインダー組成物を用いて得られることを特徴とするリチウムイオン二次電池正極。
  7. 請求項6記載のリチウムイオン二次電池正極を有するリチウムイオン二次電池。
JP2016149073A 2016-07-28 2016-07-28 リチウムイオン二次電池正極用バインダー組成物、リチウムイオン二次電池正極、及びリチウムイオン二次電池 Active JP6737045B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016149073A JP6737045B2 (ja) 2016-07-28 2016-07-28 リチウムイオン二次電池正極用バインダー組成物、リチウムイオン二次電池正極、及びリチウムイオン二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016149073A JP6737045B2 (ja) 2016-07-28 2016-07-28 リチウムイオン二次電池正極用バインダー組成物、リチウムイオン二次電池正極、及びリチウムイオン二次電池

Publications (2)

Publication Number Publication Date
JP2018018728A true JP2018018728A (ja) 2018-02-01
JP6737045B2 JP6737045B2 (ja) 2020-08-05

Family

ID=61076341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016149073A Active JP6737045B2 (ja) 2016-07-28 2016-07-28 リチウムイオン二次電池正極用バインダー組成物、リチウムイオン二次電池正極、及びリチウムイオン二次電池

Country Status (1)

Country Link
JP (1) JP6737045B2 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004172035A (ja) * 2002-11-22 2004-06-17 Shin Kobe Electric Mach Co Ltd 非水電解液二次電池用電極の製造方法及び該電極を用いた非水電解液二次電池
CN1824724A (zh) * 2005-02-23 2006-08-30 深圳市比克电池有限公司 水性粘接剂、其在制造锂离子电池正极片中的应用及电池
WO2012036260A1 (ja) * 2010-09-16 2012-03-22 日本ゼオン株式会社 二次電池用正極
JP2012238488A (ja) * 2011-05-12 2012-12-06 Sumitomo Chemical Co Ltd 電極用バインダー、電極及び該電極を有するリチウムイオン二次電池
WO2013161975A1 (ja) * 2012-04-27 2013-10-31 日本合成化学工業株式会社 樹脂組成物及びその用途
JP2016054134A (ja) * 2014-09-04 2016-04-14 日本合成化学工業株式会社 リチウムイオン二次電池正極用組成物
JP2016066601A (ja) * 2014-09-22 2016-04-28 日本合成化学工業株式会社 リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極、及びリチウムイオン二次電池
US20160164099A1 (en) * 2013-07-29 2016-06-09 The Penn State Research Foundation Elastic gel polymer binder for silicon-based anode

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004172035A (ja) * 2002-11-22 2004-06-17 Shin Kobe Electric Mach Co Ltd 非水電解液二次電池用電極の製造方法及び該電極を用いた非水電解液二次電池
CN1824724A (zh) * 2005-02-23 2006-08-30 深圳市比克电池有限公司 水性粘接剂、其在制造锂离子电池正极片中的应用及电池
WO2012036260A1 (ja) * 2010-09-16 2012-03-22 日本ゼオン株式会社 二次電池用正極
JP2012238488A (ja) * 2011-05-12 2012-12-06 Sumitomo Chemical Co Ltd 電極用バインダー、電極及び該電極を有するリチウムイオン二次電池
WO2013161975A1 (ja) * 2012-04-27 2013-10-31 日本合成化学工業株式会社 樹脂組成物及びその用途
US20160164099A1 (en) * 2013-07-29 2016-06-09 The Penn State Research Foundation Elastic gel polymer binder for silicon-based anode
JP2016054134A (ja) * 2014-09-04 2016-04-14 日本合成化学工業株式会社 リチウムイオン二次電池正極用組成物
JP2016066601A (ja) * 2014-09-22 2016-04-28 日本合成化学工業株式会社 リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極、及びリチウムイオン二次電池

Also Published As

Publication number Publication date
JP6737045B2 (ja) 2020-08-05

Similar Documents

Publication Publication Date Title
KR101157785B1 (ko) 축전 디바이스 전극용 결합제 조성물, 축전 디바이스 전극용 슬러리, 축전 디바이스 전극 및 축전 디바이스
WO2015099021A1 (ja) リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極、及びリチウムイオン二次電池
JP6572410B2 (ja) リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極、及びリチウムイオン二次電池
JP6760074B2 (ja) リチウムイオン二次電池正極用バインダー組成物、リチウムイオン二次電池正極用スラリー組成物、リチウムイオン二次電池用正極およびリチウムイオン二次電池
JP2017059527A (ja) 二次電池電極用バインダー組成物、二次電池電極、及び二次電池
JP2016066601A (ja) リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極、及びリチウムイオン二次電池
JP6795814B2 (ja) リチウムイオン二次電池の負極用バインダー、負極用スラリー組成物及び負極並びにリチウムイオン二次電池
WO2014115802A1 (ja) リチウム二次電池電極用バインダーの製造方法及びリチウム二次電池電極用バインダー
US11329288B2 (en) Secondary battery negative electrode binder composition, secondary battery negative electrode, and secondary battery
JP6070266B2 (ja) リチウムイオン二次電池正極用スラリー組成物、リチウムイオン二次電池用正極の製造方法、リチウムイオン二次電池用正極、及び、リチウムイオン二次電池
JP6266396B2 (ja) リチウムイオン二次電池負極用バインダー
JP2016054134A (ja) リチウムイオン二次電池正極用組成物
JP6844240B2 (ja) 二次電池負極用バインダー組成物、二次電池負極及び二次電池
JP6844241B2 (ja) 二次電池負極用バインダー組成物、二次電池負極及び二次電池
JP2013077533A (ja) 二次電池電極用水系組成物および二次電池正極用電極
JP7220216B2 (ja) 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス
JP6737045B2 (ja) リチウムイオン二次電池正極用バインダー組成物、リチウムイオン二次電池正極、及びリチウムイオン二次電池
WO2021187407A1 (ja) 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、及び蓄電デバイス
WO2021039503A1 (ja) 蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、及び蓄電デバイス
JP6733474B2 (ja) リチウムイオン二次電池正極用バインダー組成物、リチウムイオン二次電池正極、及びリチウムイオン二次電池
JP6907505B2 (ja) 二次電池負極用バインダー組成物、二次電池負極及び二次電池
JP7220215B2 (ja) 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス
JP6828782B1 (ja) 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、及び蓄電デバイス
JP6791324B1 (ja) 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、及び蓄電デバイス
WO2015012371A1 (ja) 共重合体ラテックスの製造方法、及び共重合体ラテックス

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190326

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20190514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200629

R151 Written notification of patent or utility model registration

Ref document number: 6737045

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151