JP2018017412A - ランキンサイクルシステム - Google Patents

ランキンサイクルシステム Download PDF

Info

Publication number
JP2018017412A
JP2018017412A JP2016145398A JP2016145398A JP2018017412A JP 2018017412 A JP2018017412 A JP 2018017412A JP 2016145398 A JP2016145398 A JP 2016145398A JP 2016145398 A JP2016145398 A JP 2016145398A JP 2018017412 A JP2018017412 A JP 2018017412A
Authority
JP
Japan
Prior art keywords
path
coolant
rankine cycle
radiator
working fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016145398A
Other languages
English (en)
Inventor
松林 成彰
Shigeaki Matsubayashi
成彰 松林
引地 巧
Takumi Hikichi
巧 引地
修 小須田
Osamu Kosuda
修 小須田
雅章 長井
Masaaki Nagai
雅章 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2016145398A priority Critical patent/JP2018017412A/ja
Priority to EP17178970.4A priority patent/EP3293372A1/en
Publication of JP2018017412A publication Critical patent/JP2018017412A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

【課題】通年の総発電量を増加させるのに有利なランキンサイクルシステムを提供する。
【解決手段】
本開示のランキンサイクルシステム(1a)は、ヒートポンプサイクル経路(4)と、ランキンサイクル経路(3)と、冷却液経路(7)と、圧縮機(5)と、エンジン(2)と、ポンプ(17)と、加熱器(6)と、膨張機(16)と、第一放熱器(31)と、を備える。圧縮機(5)は、冷媒を圧縮する。エンジン(2)は、圧縮機(5)を駆動し、冷却液経路(7)を流れる冷却液によって冷却される。ポンプ(17)は、作動流体を圧送する。加熱器(6)は、ポンプ(17)によって圧送された作動流体をエンジン(2)の排熱によって加熱する。膨張機(16)は、加熱器(6)によって加熱された作動流体を膨張させる。第一放熱器(15)は、膨張機(16)から吐出された作動流体の熱を冷却液に放熱する。
【選択図】図1

Description

本開示は、ランキンサイクルシステムに関する。
従来、エンジンの排熱を熱源として利用してランキンサイクル装置を動作させて発電を行うエンジン駆動式空気調和装置が知られている。
例えば、特許文献1には、図4に示す通り、ランキンサイクル回路140を備えたエンジン駆動式空気調和装置が記載されている。このエンジン駆動式空気調和装置は、空気調和回路111及び冷却液回路130を備えている。ランキンサイクル回路140には、第2補助熱交換器133、プレート熱交換器141、膨張機142、ランキンサイクル用ラジエータ143、受液器144、及びポンプ145が配設されている。膨張機142は、プレート熱交換器141を経由した作動流体を膨張させて駆動力を発生する。膨張機142には発電機146が機械的に接続されており、膨張機142で発生した機械的エネルギー(駆動力)を更に電気的エネルギーに変換する。膨張機142から流出した作動流体は、ランキンサイクル用ラジエータ143において室外空気と熱交換することで凝縮される。
空気調和回路111は、ガスエンジン110により駆動される圧縮機112から吐出された冷媒が圧縮機112に吸入されるまでの流路を形成する。空気調和回路111には、四方弁113、室外機熱交換器114、逆止弁115a、電子膨張弁115b、膨張弁、室内機熱交換器、第1補助熱交換器116、電子膨張弁117、アキュムレータ118が設けられている。第1補助熱交換器116及び第2補助熱交換器133は、冷却液を供給可能な互いに独立の第1冷却液供給路136及び第2冷却液供給路137に配設されている。第1冷却液供給路136及び第2冷却液供給路137には、第1電子膨張弁138及び第2電子膨張弁139が配設されている。
冷却液回路130には、ウォーターポンプ131、第1補助熱交換器116、第2補助熱交換器133、及びサーモスタット135が設けられている。冷却液回路130は、バイパス流路134を含む。
冷房運転において、冷却液温度Tが低側温度T1を超え、かつ高側温度T2以下の場合には、ウォーターポンプ131から送り出されてガスエンジン110を通過した冷却液は、主として第2補助熱交換器133を経てウォーターポンプ131に戻る。冷房運転において、ランキンサイクル回路140は、ガスエンジン110の排熱で作動流体を加熱して動力として回収する。すなわち、第2補助熱交換器133において冷却液によりランキンサイクル回路140の作動流体を昇圧するべくガスエンジン110の排熱が利用される。その結果、ランキンサイクル回路140の動力回収効率が向上する。
暖房運転において、冷却液温度Tが低側温度T1を超え、かつ高側温度T2以下の場合には、ウォーターポンプ131から送り出されてガスエンジン110を通過した冷却液は、第1補助熱交換器116を経てウォーターポンプ131に戻る。この場合、第1補助熱交換器116において冷却液により空気調和回路111の冷媒を温めて蒸発させるべく、ガスエンジン110の排熱が利用される。その結果、空気調和回路111の暖房効率が向上する。暖房運転において、冷却液温度Tが高側温度T2を超える場合には、未使用状態にあるランキンサイクル用ラジエータ143を用いて、ランキンサイクル用ラジエータ143において冷却液から外部に放熱させる。これにより、ガスエンジン110の排熱を外部に放出させる。
特開2012−242015号公報
特許文献1に記載の技術に鑑みると、ランキンサイクルによる通年の総発電量を増加させるとともに発電効率を向上させる余地がある。加えて、ランキンサイクルの小型化を図る余地がある。そこで、本開示は、通年の総発電量を増加させるとともに発電効率を向上させ、かつ、小型化に有利なランキンサイクルシステムを提供する。
本開示は、
冷媒が流れるヒートポンプサイクル経路と、
作動流体が流れるランキンサイクル経路と、
冷却液が流れる冷却液経路と、
前記ヒートポンプサイクル経路上に配置され、前記冷媒を圧縮する圧縮機と、
前記圧縮機と連結され、前記圧縮機を駆動するエンジンであって、前記冷却液経路を流れる冷却液によって冷却されるエンジンと、
前記ランキンサイクル経路上に配置され、前記作動流体を圧送するポンプと、
前記ランキンサイクル経路上に配置され、前記ポンプによって圧送された前記作動流体を前記エンジンの排熱によって加熱する加熱器と、
前記ランキンサイクル経路上に配置され、前記加熱器によって加熱された前記作動流体を膨張させる膨張機と、
前記ランキンサイクル経路上及び前記冷却液経路上に跨って配置され、前記膨張機から吐出された前記作動流体の熱を前記冷却液に放熱する第一放熱器と、を備えた、
ランキンサイクルシステムを提供する。
上記のランキンサイクルシステムは、通年の総発電量を増加させるとともに発電効率を向上させることができ、かつ、小型化するのに有利である。
図1は、本開示のランキンサイクルシステムの実施形態の一例を示す構成図である。 図2Aは、図1に示すランキンサイクルシステムの冷房運転における動作を説明する構成図である。 図2Bは、図1に示すランキンサイクルシステムの暖房運転における動作を説明する構成図である。 図3は、変形例に係るランキンサイクルシステムを示す構成図である。 図4は、従来のランキンサイクル回路を備えたエンジン駆動式空気調和装置を示す構成図である。
<本発明者らの検討に基づく知見>
本発明者らは、冷房及び暖房に利用されるヒートポンプサイクルの圧縮機をエンジンで駆動し、そのエンジンの排熱を利用してランキンサイクルを動作させるランキンサイクルシステムに関し、通年の発電を可能とするための検討を行った。検討の結果、本発明者らは、ランキンサイクルの膨張機から吐出された作動流体の熱を、エンジンを冷却するための冷却液に放熱することにより、通年の発電が可能となって、通年の総発電量を増加させることができることを新たに見出した。加えて、本発明者らは、ランキンサイクルの作動流体の熱をエンジンの冷却液に放熱することにより、作動流体が冷却されやすく発電効率を向上しやすいことを新たに見出した。さらに、本発明者らは、ランキンサイクルの膨張機から吐出された作動流体の熱を、エンジンを冷却するための冷却液に放熱すれば、ランキンサイクルに配置すべき放熱器を小型化しやすいことを新たに見出した。
本発明者らは、このような新たな知見に基いて本開示のランキンサイクルシステムを案出した。なお、特許文献1に記載の技術では、暖房運転において空気調和回路111で利用されないエンジン110の排熱はランキンサイクル用ラジエータ143において冷却液から外部(室外空気)に放熱されている。このように、暖房運転において、ランキンサイクル回路140は運転されておらず、ランキンサイクル用ラジエータ143は、エンジン110の排熱を室外空気に放熱するために使用されている。加えて、ランキンサイクル回路140の排熱はランキンサイクル用ラジエータ143において室外空気に放出される。ランキンサイクル用ラジエータ143は、空冷の熱交換器であるので小型化しにくい。
本開示の第1態様は、
冷媒が流れるヒートポンプサイクル経路と、
作動流体が流れるランキンサイクル経路と、
冷却液が流れる冷却液経路と、
前記ヒートポンプサイクル経路上に配置され、前記冷媒を圧縮する圧縮機と、
前記圧縮機と連結され、前記圧縮機を駆動するエンジンであって、前記冷却液経路を流れる冷却液によって冷却されるエンジンと、
前記ランキンサイクル経路上に配置され、前記作動流体を圧送するポンプと、
前記ランキンサイクル経路上に配置され、前記ポンプによって圧送された前記作動流体を前記エンジンの排熱によって加熱する加熱器と、
前記ランキンサイクル経路上に配置され、前記加熱器によって加熱された前記作動流体を膨張させる膨張機と、
前記ランキンサイクル経路上及び前記冷却液経路上に跨って配置され、前記膨張機から吐出された前記作動流体の熱を前記冷却液に放熱する第一放熱器と、を備えた、
ランキンサイクルシステムを提供する。
第1態様によれば、ランキンサイクルの膨張機から吐出された作動流体の熱が第一放熱器においてエンジンを冷却するための冷却液に放熱される。すなわち、エンジンを冷却するための冷却液をランキンサイクルの低温熱源として利用できる。第1態様によれば、エンジンを冷却するための冷却液は、ヒートポンプサイクル経路において冷房運転が行われているときにおいても、暖房運転が行われているときにおいても、ランキンサイクルの低温熱源として利用できる。このため、第1態様によれば、ランキンサイクルによる通年の発電が可能である。その結果、第1態様によれば、ランキンサイクルによる通年の総発電量を増加させることができる。第一放熱器において作動流体は冷却液経路を流れる冷却液によって冷却されるので、作動流体が冷却されやすく、ランキンサイクルによる発電効率を高めやすい。加えて、例えば、第一放熱器としてプレート式熱交換器を利用でき、フィンチューブ式熱交換器を用いて作動流体を空気によって冷却する場合に比べて、第一熱交換器は熱交換効率を高めやすい。このため、第一熱交換器は小型化しやすい。
本開示の第2態様は、第1態様に加えて、前記冷却液経路において前記冷却液が前記エンジンを冷却する位置よりも前記冷却液の流れの下流に配置され、前記冷却液が有する熱を放熱する第二放熱器をさらに備え、前記第一放熱器は、前記冷却液経路において前記第二放熱器よりも前記冷却液の流れの下流に配置されている、ランキンサイクルシステムを提供する。第2態様によれば、第二放熱器において放熱した冷却液が第一放熱器に導かれる。このため、第一放熱器に供給される冷却液の温度が低下しやすい。その結果、ランキンサイクルの低温熱源の温度が低くなりやすく、ランキンサイクルの発電効率をより高めやすい。
本開示の第3態様は、第1態様又は第2態様に加えて、前記冷却液経路上及び前記ヒートポンプサイクル経路上に跨って配置され、前記冷却液と前記冷媒とを熱交換させる熱交換器をさらに備えた、ランキンサイクルシステムを提供する。第3態様によれば、例えば、ヒートポンプサイクル経路において暖房運転が行われている場合に、冷却液の熱の一部を冷媒に受け渡すことができる。このため、冷却液が冷媒によって冷却されることにより、第一放熱器に供給される冷却液の温度が低下しやすい。その結果、ランキンサイクルの低温熱源の温度が低くなりやすく、ランキンサイクルの発電効率をより高めやすい。
本開示の第4態様は、第1態様〜第3態様のいずれか1つの態様に加えて、前記ランキンサイクル経路において前記膨張機の出口と前記ポンプの入口との間に配置され、前記作動流体の熱を大気に放熱する空冷放熱器をさらに備えた、ランキンサイクルシステムを提供する。第4態様によれば、ランキンサイクルの膨張機から吐出された作動流体の熱を第一放熱器及び空冷放熱器の双方において放熱できる。このため、第一放熱器において作動流体から放熱される熱量が十分でない場合でも、空冷放熱器における作動流体の放熱によりランキンサイクルの発電効率を高めることができる。
本開示の第5態様は、第4態様に加えて、前記空冷放熱器は、前記ランキンサイクル経路において前記第一放熱器における前記作動流体の流路よりも前記作動流体の流れの下流に配置されている、ランキンサイクルシステムを提供する。例えば、エンジンが起動されて間もない期間において、冷却液経路を流れる冷却液の温度が低下しすぎないように調整する必要がある。この場合、第一放熱器に供給される冷却液の温度が比較的高く、第一放熱器において作動流体から放熱される熱量が十分でない可能性がある。第5態様によれば、第一放熱器に供給される作動流体の温度が高い場合でも、ある程度は、第一放熱器において作動流体から冷却液に放熱できる。加えて、第一放熱器を通過した作動流体が空冷放熱器において放熱することにより作動流体から十分な熱量が放熱される。その結果、ランキンサイクルの発電効率を高めることができる。
以下、本開示の実施形態について図面を参照しながら説明する。なお、以下の説明は本発明の一例に関するものであり、本発明はこれらに限定されるものではない。
図1に示す通り、ランキンサイクルシステム1aは、ヒートポンプサイクル経路4と、ランキンサイクル経路3と、冷却液経路7と、圧縮機5と、エンジン2と、ポンプ17と、加熱器6と、膨張機16と、第一放熱器31とを備えている。ヒートポンプサイクル経路4は、冷媒が流れる経路である。ランキンサイクル経路3は、作動流体が流れる経路である。冷却液経路7は、冷却液が流れる経路である。圧縮機5は、ヒートポンプサイクル経路4上に配置されており、冷媒を圧縮する。エンジン2は、圧縮機5と連結されており、圧縮機5を駆動する。エンジン2は、冷却液経路7を流れる冷却液によって冷却される。ポンプ17は、ランキンサイクル経路3上に配置されており、作動流体を圧送する。加熱器6は、ランキンサイクル経路3上に配置されており、ポンプ17によって圧送された作動流体をエンジン2の排熱によって加熱する。膨張機16は、ランキンサイクル経路3上に配置されており、加熱器6によって加熱された作動流体を膨張させる。第一放熱器31は、ランキンサイクル経路3上及び冷却液経路7上に跨って配置されており、膨張機16によって膨張した作動流体の熱を冷却液に放熱する。
エンジン2は、例えば、13A等の都市ガスを燃焼させて発生したエネルギーを機械的仕事に変換するガスエンジンである。エンジン2は、例えば、クランクシャフト及びベルト伝導装置等の動力伝達機構(図示省略)によって圧縮機5に連結されている。これにより、エンジン2で発生した機械的仕事が圧縮機5に伝達され、圧縮機5が駆動される。エンジン2において燃料が燃焼することによって排気ガスが発生する。この排気ガスは、エンジン2の外部に排出される。例えば、エンジン2で発生した排気ガスは加熱器6に導かれ、ランキンサイクル経路3において加熱器6を流れる作動流体と熱交換して冷却され、その後大気に放出される。エンジン2は、都市ガス以外のガス燃料又はガソリン及び重油などの液体燃料を燃焼させて機械的仕事を得る機械であってもよい。
冷却液経路7は、エンジン2を冷却するための冷却液が流れる経路である。図1に示す通り、ランキンサイクルシステム1aは、例えば第二放熱器10をさらに備えている。第二放熱器10は、冷却液経路7において冷却液がエンジン2を冷却する位置よりも冷却液の流れの下流に配置され、冷却液が有する熱を放熱する。第一放熱器31は、冷却液経路7において第二放熱器10よりも冷却液の流れの下流に配置されている。例えば、第二放熱器10において冷却液が有する熱が大気に放熱される。すなわち、第二放熱器10は例えば空冷の熱交換器である。第二放熱器10は、例えばフィンチューブ式熱交換器等の公知の熱交換器である。
冷却液経路7には、例えば、冷却液ポンプ8、エンジンジャケット9、第二放熱器10、及び第一放熱器31が配置されており、これらのコンポーネントは閉回路を構成するように複数の配管によってこの順番で環状に接続されている。冷却液ポンプ8によって圧送された冷却液は、エンジンジャケット9を通る過程においてエンジン2で発生した熱を吸収し、例えば第二放熱器10においてエンジンジャケット9で吸収した熱を大気に放熱する。第二放熱器10を通過した冷却液は、第一放熱器31に供給される。第一放熱器31において、冷却液はランキンサイクル経路3を流れる作動流体と熱交換し、作動流体の熱が冷却液に放熱される。その後、冷却液は第一放熱器31を出て冷却液ポンプ8に戻る。このエンジンジャケット9における冷却液による冷却により、エンジン2の温度が所望の温度範囲に保たれる。
図1に示す通り、ランキンサイクルシステム1aは、例えば熱交換器15をさらに備えている。熱交換器15は、冷却液経路7上及びヒートポンプサイクル経路4上に跨って配置され、冷却液と冷媒とを熱交換させる。熱交換器15は、例えばプレート式熱交換器及び二重管式熱交換器等の公知の熱交換器である。
例えば、冷却液経路7には、三方弁30が配置されている。三方弁30は、冷却液経路7においてエンジンジャケット9の出口と第一放熱器31における冷却液の入口との間に配置されている。図1に示す通り、三方弁30は、冷却液経路7においてエンジンジャケット9の出口と第二放熱器10における冷却液の入口との間に配置されていてもよい。三方弁30には、例えば、第一配管、第二配管、及び第三配管が接続されている。第一配管は、冷却液経路7におけるエンジンジャケット9の出口と三方弁30との間の経路の少なくとも一部を定める配管である。第二配管は、三方弁30から、第一放熱器31、場合によっては第二放熱器10に向かって延びており、冷却液経路7における三方弁30と第一放熱器31の冷却液の入口との間の経路の少なくとも一部を定める配管である。その経路には熱交換器15における冷却液の流路は含まれない。第三配管は、三方弁30から熱交換器15に向かって延びており、冷却液経路7において三方弁30と熱交換器15における冷却液の入口との間の経路の少なくとも一部を定める配管である。なお、熱交換器15における冷却液の出口は、第二配管によって定められた流路を含む、冷却液経路7における三方弁30と第一放熱器31の冷却液の入口との間の経路につながっている。例えば、熱交換器15における冷却液の出口は、冷却液経路7における第二放熱器10の冷却液の出口と第一放熱器31の冷却液の入口との間の経路につながっている。
三方弁30は、第二放熱器10及び熱交換器15に供給される冷却液の流量を調整可能な弁である。例えば、ヒートポンプサイクル経路4において冷房運転が行われている場合、三方弁30を通過した冷却液が第二放熱器10に向かって流れるように三方弁30が制御される。一方、ヒートポンプサイクル経路4において暖房運転が行われている場合、三方弁30を通過した冷却液が熱交換器15に向かって流れるように三方弁30が制御される。熱交換器15において冷却液は冷媒との熱交換により冷却される。第二放熱器10又は熱交換器15を通過した冷却液は、第一放熱器31に導かれる。
図1に示す通り、例えば、ヒートポンプサイクル経路4には、圧縮機5、四方弁11、室内熱交換器12、膨張弁13、及び室外熱交換器14が配置されている。これらのコンポーネントは、閉回路を構成するように複数の配管によって上記の順番で環状に接続されている。
圧縮機5は、上記の通り、動力伝達機構によってエンジン2と連結されており、エンジン2が作動することにより圧縮機5が駆動される。圧縮機5は、例えば、容積型の圧縮機である。容積型の圧縮機である圧縮機5は、例えばスクロール圧縮機、ロータリ圧縮機、スクリュー圧縮機、又は往復圧縮機である。
四方弁11には、4本の配管が接続されている。四方弁11に接続された4本の配管には、四方弁11に冷媒を流入させるための一対の流入管と、四方弁11から冷媒を流出させるための一対の流出管とを含む。四方弁11は、一対の流入管の一方を通って四方弁11に流入した冷媒を一対の流出管の一方に流出させ、かつ、一対の流入管の他方を通って四方弁11に流入した冷媒を一対の流出管の他方に流出させる。また、四方弁11は、四方弁11の内部の流路を切り替えて、冷媒が四方弁11から流出する方向(流路)を切り替えることができる。例えば、四方弁11に接続された4本の配管は、第一配管、第二配管、第三配管、及び第四配管を含む。第一配管は、ヒートポンプサイクル経路4において圧縮機5の冷媒の吐出口と四方弁11とをつなぐ経路の少なくとも一部を定めている。第二配管は、ヒートポンプサイクル経路4において四方弁11と室内熱交換器12とをつなぐ経路の少なくとも一部を定めている。第三配管は、ヒートポンプサイクル経路4において四方弁11と室外熱交換器14とをつなぐ経路の少なくとも一部を定めている。第四配管はヒートポンプサイクル経路4において四方弁11と圧縮機5の冷媒の吸入口とをつなぐ経路の少なくとも一部を定めている。四方弁11の内部の流路が切り替わることにより、状態Aと状態Bとが選択的に切り替わる。状態Aは、四方弁11によって、第一配管の内部と第二配管の内部とが連通しているとともに第三配管の内部と第四配管の内部とが連通している状態である。状態Bは、四方弁11によって、第一配管の内部と第三配管の内部とが連通しているとともに第二配管の内部と第四配管の内部とが連通している状態である。
室内熱交換器12は、例えば建物の内部に設置されている。室内熱交換器12において、ヒートポンプサイクル経路4を流れる冷媒と室内の空気とが熱交換することによって、冷媒が冷却又は加熱される。室内熱交換器12として、例えば、フィンチューブ式熱交換器などの公知の熱交換器を使用できる。ヒートポンプサイクル経路4を流れる冷媒が膨張弁13を通過すると、冷媒が減圧膨張して低温かつ低圧になる。室外熱交換器14は、例えば建物の外部に設置されている。室外熱交換器14において、ヒートポンプサイクル経路4を流れる冷媒と大気とが熱交換することによって、冷媒が冷却又は加熱される。室外熱交換器14として、例えば、フィンチューブ式熱交換器などの公知の熱交換器を使用できる。
熱交換器15は、冷却液回路7を流れる冷却液とヒートポンプサイクル経路4を流れる冷媒とを熱交換させることによって、冷媒を加熱する。ヒートポンプサイクル経路4における熱交換器15の配置は特定の配置に制限されない。熱交換器15は、例えば膨張弁13及び圧縮機によって2つに分けられたヒートポンプサイクル経路4の2つの部分のうち、室外熱交換器14を含む部分に配置されている。この場合、熱交換器15は、例えば、圧縮機5の冷媒の吸入口又は四方弁11と室外熱交換器14との間に配置されている。
図1に示す通り、例えば、ランキンサイクル経路3において、膨張機16、第一放熱器31、ポンプ17、及び加熱器6は、これらのコンポーネントが閉回路を構成するようにこの順番で環状に接続されている。
膨張機16は、作動流体を膨張させることによって作動流体の有するエネルギーを回転動力に変換する。膨張機16の回転軸には、発電機21が接続されている。膨張機16によって発電機21が駆動される。膨張機16は、例えば、容積型又は速度型の膨張機である。膨張機16として利用可能な容積型の膨張機は、例えば、スクロール膨張機、ロータリ膨張機、スクリュー膨張機、及び往復膨張機である。膨張機16として利用可能な速度型の膨張機は、例えば膨張タービンである。
膨張機16は、望ましくは容積型の膨張機である。容積型の膨張機は、典型的には速度型の膨張機よりも広範囲の回転数で高い膨張機効率を発揮する。例えば、高い膨張機効率を維持したまま、定格回転数の半分以下の回転数で容積型の膨張機を運転することも可能である。つまり、高い膨張機効率を維持したまま、発電量を定格発電量の半分以下に低下させることができる。容積型の膨張機は、このような特性を持っているので、膨張機16として容積型の膨張機を使用すればヒートポンプサイクル経路3における熱需要の変動によって発電量を柔軟に変動させる必要がある場合に対応できる。加えて、膨張機16として容積型の膨張機を使用すれば、電力の需要の変動に応じるように高い膨張機効率を維持したまま発電量を変動させることができる。
第一放熱器31は、膨張機16から吐出された作動流体と冷却液経路7を流れる冷却液とを熱交換させることによって、作動流体を冷却し、かつ、冷却液を加熱する。第一放熱器22は、例えば、プレート式熱交換器及び二重管式熱交換器等の公知の熱交換器である。
ポンプ17は、第一放熱器31から流出した作動流体を吸入し、加熱器6に向かって圧送する。ポンプ17として、容積型又は速度型のポンプを使用できる。ポンプ17として利用可能な容積型のポンプは、例えば、ピストンポンプ、ギヤポンプ、ベーンポンプ、及びロータリポンプである。ポンプ17として利用可能な速度型のポンプは、例えば、遠心ポンプ、斜流ポンプ、及び軸流ポンプである。
加熱器6は、エンジン2で発生した排気ガスが有する熱エネルギーを吸収する熱交換器である。加熱器6として、プレート式熱交換器及びフィンチューブ式熱交換器などの公知の熱交換器を使用できる。エンジン2から供給された排気ガスとランキンサイクル経路3を流れる作動流体とが加熱器6において熱交換する。これにより、ランキンサイクル経路3を流れる作動流体が加熱され、蒸発する。
ランキンサイクル経路3を流れる作動流体は、望ましくは、所定の有機化合物である有機作動流体である。多くの場合、有機作動流体の沸点は低い。このため、ランキンサイクル経路3を流れる作動流体として有機作動流体を使用すれば、エンジン2から供給された排気ガスの温度が約200℃〜400℃であってもランキンサイクルシステム1aのランキンサイクルが高い発電効率を発揮する。ランキンサイクル経路3を流れる有機作動流体として、ハロゲン化炭化水素及び炭化水素等の有機化合物を使用できる。ランキンサイクル経路3を流れる有機作動流体であるハロゲン化炭化水素は、例えば、R−134a、R−245fa、R−1234ze、又はR−356mfcである。ランキンサイクル経路3を流れる有機作動流体である炭化水素は、例えば、プロパン、ブタン、ペンタン、イソペンタン等のアルカンである。1種類の有機化合物が有機作動流体として単独で使用されてもよいし、2種類以上の有機化合物が混合された混合物が有機作動流体として使用されてもよい。場合によっては、ランキンサイクル経路3を流れる作動流体として、水、二酸化炭素、及びアンモニアなどの無機化合物が使用されてもよい。
ランキンサイクルシステム1aの動作の一例を説明する。まず、ヒートポンプサイクル経路4において冷房運転が行われる場合のランキンサイクルシステム1aの動作の一例を説明する。図2Aに示す通り、冷房運転において、エンジン2が作動して圧縮機5が回転することにより、圧縮機5に吸入された冷媒が圧縮されて高温かつ高圧の蒸気となり、四方弁11に導かれる。冷房運転において、四方弁11の状態は状態Bである。圧縮機5から吐出されて四方弁11を通過した冷媒は、熱交換器15に供給される。図2Aに示す通り、冷房運転において、冷却液経路7において冷却液の全量が第二放熱器10に供給されるように三方弁30が制御されている。すなわち、冷房運転において、冷却液は熱交換器15には供給されない。このため、冷媒は、冷却液経路7を流れる冷却液から熱を受け取ることなく熱交換器15を通過する。冷媒は、その後室外熱交換器14に流入する。冷媒は、室外熱交換器14において大気と熱交換して冷却されて低温かつ高圧の状態となり、膨張弁13に導かれる。冷媒は、膨張弁13において減圧膨張して低温かつ低圧の状態になり、その後室内熱交換器12に供給される。冷媒は、室内熱交換器12において室内の空気と熱交換して加熱される。これにより、室内の空気が冷却され、室内が冷房される。室内熱交換器12を通過した冷媒は、四方弁11を通って、圧縮機5の吸入口から圧縮機5の内部に流入する。なお、図2A及び図2Bにおいて、一点鎖線の矢印はヒートポンプサイクル経路4における冷媒の流れを示し、実線の矢印はランキンサイクル経路3における作動流体の流れを示し、二点鎖線の矢印は冷却液回路7における冷却液の流れを示す。
図2Aに示す通り、冷房運転において、ポンプ17は作動流体を圧送し、ポンプ17によって圧送され高圧になった作動流体は加熱器6に流入する。作動流体は、加熱器6において、エンジン2における燃料の燃焼によって発生したエンジン2の排気ガスとの熱交換により加熱されて蒸発し、高温かつ高圧の蒸気になる。高温かつ高圧の作動流体は、加熱器6から流出し、膨張機16へ送られる。膨張機16において、作動流体の圧力エネルギーが機械的エネルギーに変換され、発電機21が駆動される。これにより、発電機21において電力が生成される。膨張機16から吐出された作動流体は、第一放熱器31に流入する。作動流体は、第一放熱器31において、冷却液経路7を流れる冷却液によって冷却され、第一放熱器31において全部又は一部の作動流体が凝縮する。これにより、冷却液経路7を流れる冷却液は第一放熱器31において作動流体によって加熱される。第一放熱器31から流出した作動流体は、低温かつ低圧の液相状態になり、ポンプ17へ向かって流れる。
冷房運転において、冷却液経路7においてエンジンジャケット9を通過した冷却液が第二放熱器10に導かれるように三方弁30が制御される。これにより、冷却液の有する熱は第二放熱器10において大気に放熱され、冷却液の温度は第二放熱器10を通過することにより低下する。第一放熱器31には、第二放熱器10における放熱により低温の冷却液が導かれやすい。このため、ランキンサイクルが高い発電効率を発揮しやすい。
次に、ヒートポンプサイクル経路4において暖房運転が行われる場合のランキンサイクルシステム1aの動作の一例を説明する。図2Bに示す通り、暖房運転において、エンジン2が作動して圧縮機5が回転することにより、圧縮機5に吸入された冷媒が圧縮されて高温かつ高圧の蒸気となり、四方弁11に導かれる。暖房運転における四方弁11の状態は状態Aである。圧縮機5から吐出されて四方弁11を通過した冷媒は、室内熱交換器12に供給される。冷媒は、室内熱交換器12において室内の空気と熱交換して冷却され、低温かつ高圧の状態となり、その後膨張弁13に向かって流れる。これにより、室内の空気が加熱され、室内が暖房される。冷媒は、膨張弁13において減圧膨張し、低温かつ低圧の状態になり、その後室外熱交換器14に供給される。冷媒は、室外熱交換器14において大気との熱交換により加熱され、その後熱交換器15に供給される。冷媒は、熱交換器15において冷却液経路7を流れる冷却液の有する熱を受け取り、その後四方弁11を通って圧縮機5に吸入される。
図2Bに示す通り、暖房運転において、冷房運転と同様に、ポンプ17は作動流体を圧送し、ポンプ17によって圧送され高圧になった作動流体は加熱器6に流入する。作動流体は、加熱器6において、エンジン2の排気ガスとの熱交換により加熱されて蒸発し、高温かつ高圧の蒸気になる。高温かつ高圧の作動流体は、加熱器6から流出し、膨張機16へ送られる。膨張機16において、作動流体の圧力エネルギーが機械的エネルギーに変換され、発電機21が駆動される。これにより、発電機21において電力が生成される。膨張機16から吐出された作動流体は、第一放熱器31に供給される。作動流体は、第一放熱器31において、冷却液経路7を流れる冷却液によって冷却され、第一放熱器31において全部又は一部の作動流体が凝縮する。これにより、冷却液経路7を流れる冷媒は第一放熱器31において作動流体によって加熱される。第一放熱器31から流出した作動流体は低温かつ低圧の液相状態となり、ポンプ17に向かって流れる。
暖房運転において、冷却液経路7においてエンジンジャケット9を通過した冷却液が第二放熱器10に導かれるように三方弁30が制御される。これにより、冷却液は熱交換器15においてヒートポンプサイクル経路4を流れる冷媒によって冷却される。このため、冷却液の温度は、熱交換器15を通過することにより低下する。第一放熱器31には、熱交換器15における冷却により低温の冷却液が導かれやすい。このため、ランキンサイクルが高い発電効率を発揮しやすい。
ランキンサイクルシステム1aによれば、ランキンサイクルの高温熱源としてエンジン2の排気ガスを用い、ランキンサイクルの低温熱源として冷却液経路7を流れる冷却液をン用いることができる。これにより、ヒートポンプサイクル経路4において、冷房運転が行われている場合でも、暖房運転が行われている場合でも、常にランキンサイクル経路3の膨張機16から吐出された作動流体の熱を、冷却液経路7を流れる冷却液に放熱できる。その結果、ランキンサイクルシステム1aにおいて通年の発電が可能である。また、膨張機16から吐出された作動流体を第一放熱器31において冷却液によって冷却するので、作動流体が冷却されやすい。このため、ランキンサイクルシステム1aによれば、ランキンサイクルによる発電効率が高まりやすい。加えて、第一放熱器31において作動流体と冷却液とが熱交換するので、第一放熱器31として、例えば、プレート式熱交換器を用いることができる。このため、作動流体と空気とを熱交換するフィンチューブ式熱交換器に比べて、第一放熱器31は高い熱交換効率を有し、第一放熱器31は小型化しやすい。
ランキンサイクルシステム1aによれば、熱交換器15は、ヒートポンプサイクル経路4において室外熱交換器14と圧縮機5の冷媒の吸入口との間に配置されている。これにより、特に、ヒートポンプサイクル経路4において暖房運転が行われている場合に、冷却液経路7の冷却液が有する熱を、ヒートポンプサイクル経路4において圧縮機5の吸入口に向かって流れる冷媒に放熱できる。ヒートポンプサイクル経路4において暖房運転が行われている場合に、圧縮機5の吸入口における冷媒の温度は低く、冬期の外気温よりも低い。このため、ランキンサイクルの低温熱源である冷却液経路7の冷却液の温度をより低くできる。これにより、ランキンサイクルシステム1aにおいて、ランキンサイクルの発電効率を高めやすく、ランキンサイクルによる発電量を増加させることができる。加えて、冷却液経路7の冷却液が有する熱をヒートポンプサイクル経路4において圧縮機5の吸入口に向かって流れている冷媒の加熱に利用できるので、ヒートポンプサイクル経路4において暖房運転が行われている場合に、暖房効率を向上させることができる。
(変形例)
ランキンサイクルシステム1aは、様々な観点から変更可能である。例えば、ランキンサイクルシステム1aは、図3に示すランキンサイクルシステム1bのように変更されてもよい。ランキンサイクルシステム1bは、特に説明する場合を除きランキンサイクルシステム1aと同様に構成されている。ランキンサイクルシステム1aの構成要素と同一又は対応するランキンサイクルシステム1bの構成要素には同一の符号を付し、詳細な説明を省略する。ランキンサイクルシステム1aに関する説明は、技術的に矛盾しない限りランキンサイクルシステム1bにも適用される。
図3に示す通り、ランキンサイクルシステム1bは、空冷放熱器18をさらに備えている。空冷放熱器18は、ランキンサイクル経路3において膨張機16の出口とポンプ17の入口との間に配置され、作動流体の熱を大気に放熱する。空冷放熱器18は、例えば、フィンチューブ式熱交換器等の公知の熱交換器である。ランキンサイクルシステム1bによれば、膨張機16から吐出された作動流体の熱を第一放熱器31及び空冷放熱器18の双方において放熱できる。このため、第一放熱器31において作動流体から放熱される熱量が十分でない場合でも、空冷放熱器における作動流体の放熱によりランキンサイクルによる発電効率を高めることができる。
図3に示す通り、空冷放熱器18は、例えば、ランキンサイクル経路3において第一放熱器31における作動流体の流路よりも作動流体の流れの下流に配置されている。これにより、第一放熱器31を通過した作動流体が空冷放熱器18に導かれる。例えば、エンジン2が起動されて間もない期間において、冷却液経路7を流れる冷却液の温度が低下しすぎないように調整する必要がある。この場合、第一放熱器31に供給される冷却液の温度が比較的高く、第一放熱器31において作動流体から冷却液に放熱できる熱量が十分でない可能性がある。ランキンサイクル1bによれば、第一放熱器31に供給される作動流体の温度が高い場合でも、ある程度は、第一放熱器31において作動流体から冷却液に放熱できる。加えて、第一放熱器31を通過した作動流体が空冷放熱器18において放熱することにより作動流体の温度を低下させることができ、ランキンサイクルによる発電効率を高めることができる。
本願の明細書に記載された技術は、ガスエンジン駆動式空気調和装置に利用されているエンジンの排熱を有効に利用して発電するシステムに有利に利用できる。
1a、1b ランキンサイクルシステム
2 エンジン
3 ランキンサイクル経路
4 ヒートポンプサイクル経路
5 圧縮機
6 加熱器
7 冷却液経路
10 第二放熱器
16 膨張機
17 ポンプ
18 空冷放熱器
31 第一放熱器

Claims (5)

  1. 冷媒が流れるヒートポンプサイクル経路と、
    作動流体が流れるランキンサイクル経路と、
    冷却液が流れる冷却液経路と、
    前記ヒートポンプサイクル経路上に配置され、前記冷媒を圧縮する圧縮機と、
    前記圧縮機と連結され、前記圧縮機を駆動するエンジンであって、前記冷却液経路を流れる冷却液によって冷却されるエンジンと、
    前記ランキンサイクル経路上に配置され、前記作動流体を圧送するポンプと、
    前記ランキンサイクル経路上に配置され、前記ポンプによって圧送された前記作動流体を前記エンジンの排熱によって加熱する加熱器と、
    前記ランキンサイクル経路上に配置され、前記加熱器によって加熱された前記作動流体を膨張させる膨張機と、
    前記ランキンサイクル経路上及び前記冷却液経路上に跨って配置され、前記膨張機から吐出された前記作動流体の熱を前記冷却液に放熱する第一放熱器と、を備えた、
    ランキンサイクルシステム。
  2. 前記冷却液経路において前記冷却液が前記エンジンを冷却する位置よりも前記冷却液の流れの下流に配置され、前記冷却液が有する熱を放熱する第二放熱器をさらに備え、
    前記第一放熱器は、前記冷却液経路において前記第二放熱器よりも前記冷却液の流れの下流に配置されている、請求項1に記載のランキンサイクルシステム。
  3. 前記冷却液経路上及び前記ヒートポンプサイクル経路上に跨って配置され、前記冷却液と前記冷媒とを熱交換させる熱交換器をさらに備えた、請求項1又は2に記載のランキンサイクルシステム。
  4. 前記ランキンサイクル経路において前記膨張機の出口と前記ポンプの入口との間に配置され、前記作動流体の熱を大気に放熱する空冷放熱器をさらに備えた、請求項1〜3のいずれか1項に記載のランキンサイクルシステム。
  5. 前記空冷放熱器は、前記ランキンサイクル経路において前記第一放熱器における前記作動流体の流路よりも前記作動流体の流れの下流に配置されている、請求項4に記載のランキンサイクルシステム。
JP2016145398A 2016-07-25 2016-07-25 ランキンサイクルシステム Pending JP2018017412A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016145398A JP2018017412A (ja) 2016-07-25 2016-07-25 ランキンサイクルシステム
EP17178970.4A EP3293372A1 (en) 2016-07-25 2017-06-30 Rankine cycle system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016145398A JP2018017412A (ja) 2016-07-25 2016-07-25 ランキンサイクルシステム

Publications (1)

Publication Number Publication Date
JP2018017412A true JP2018017412A (ja) 2018-02-01

Family

ID=61075358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016145398A Pending JP2018017412A (ja) 2016-07-25 2016-07-25 ランキンサイクルシステム

Country Status (1)

Country Link
JP (1) JP2018017412A (ja)

Similar Documents

Publication Publication Date Title
JP5254219B2 (ja) 改良された圧縮機装置
JP6132214B2 (ja) ランキンサイクル装置、熱電併給システム及びランキンサイクル装置の運転方法
JP5621721B2 (ja) ランキンサイクル
WO2016043094A1 (ja) 冷却設備、これを備えるコンバインドサイクルプラント、及び冷却方法
JP6665003B2 (ja) コージェネレーション装置
JP2008127017A (ja) 車両室内を空調するための冷却回路とランキン回路との組み合わせ
JP5515438B2 (ja) 熱供給システム
JP4140543B2 (ja) 廃熱利用装置
JP6775185B2 (ja) ランキンサイクルシステム及び発電方法
US9850783B2 (en) Liquid pump including a gas accumulation area and rankine cycle device including a liquid pump
EP3293372A1 (en) Rankine cycle system
JP2018017412A (ja) ランキンサイクルシステム
JP2016151191A (ja) 発電システム
JP2018017132A (ja) ランキンサイクルシステム
JP2013160076A (ja) ランキンサイクル装置
WO2013136606A1 (ja) 蒸気発生システム
CN220567541U (zh) 热泵系统
JP2018017131A5 (ja) ランキンサイクルシステム及び発電方法
JP5601412B2 (ja) 熱供給システムの制御方法
JP2009115065A (ja) エネルギー変換システム
CN109196201B (zh) 用于消散燃气涡轮发动机中产生的热动力的可逆系统
JP2005337063A (ja) ランキンサイクル装置
CN117128697A (zh) 热泵系统及其控制方法
JP2009115435A (ja) 冷暖房システム
JP2012037095A (ja) 蒸気冷水併給装置