JP2018016875A - Composite member and cutting tool composed of the same - Google Patents

Composite member and cutting tool composed of the same Download PDF

Info

Publication number
JP2018016875A
JP2018016875A JP2016150496A JP2016150496A JP2018016875A JP 2018016875 A JP2018016875 A JP 2018016875A JP 2016150496 A JP2016150496 A JP 2016150496A JP 2016150496 A JP2016150496 A JP 2016150496A JP 2018016875 A JP2018016875 A JP 2018016875A
Authority
JP
Japan
Prior art keywords
cemented carbide
carbide layer
based cemented
steel
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016150496A
Other languages
Japanese (ja)
Other versions
JP7099800B2 (en
Inventor
五十嵐 誠
Makoto Igarashi
誠 五十嵐
藤原 和崇
Kazutaka Fujiwara
和崇 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2016150496A priority Critical patent/JP7099800B2/en
Publication of JP2018016875A publication Critical patent/JP2018016875A/en
Application granted granted Critical
Publication of JP7099800B2 publication Critical patent/JP7099800B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Laser Beam Processing (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composite material composed of a WC-based cemented carbide and steel-based material suitable for a cutting tool, excellent in hardness and toughness while allowing for reduction of amount of use of tungsten.SOLUTION: The composite material is provided which has a steel-based material and a WC-based cemented carbide layer provided on the surface of the steel-based material, and in which the WC-based cemented carbide layer has a maximum thickness of 50 to 1000 μm, an area ratio of WC particles is 50% or more of area of the WC-based cemented carbide layer when any vertical cross section including the WC-based cemented carbide layer surface is observed, an area ratio Y of WC crystal particles with aspect ratio of 2 or more satisfies 0.5X≤Y≤2X when an area ratio of the WC particles with aspect ratio of 1 to less than 2 is X area% regarding the WC particles in the WC-based cemented carbide layer and Vickers hardness HV of a WC-based cemented carbide layer surface is 1500 to 2000.SELECTED DRAWING: Figure 1

Description

この発明は、複合部材およびこれからなる切削工具に関し、特に、鉄鋼系材料基体の表面の一部または全部に、WC基超硬合金が設けられた高硬度、高靱性を有する複合部材に関し、さらには、この複合部材からなる切削性能のすぐれた切削工具に関する。   The present invention relates to a composite member and a cutting tool comprising the same, and more particularly, to a composite member having high hardness and high toughness in which a WC-based cemented carbide is provided on a part or all of the surface of a steel-based material base, and The present invention also relates to a cutting tool having excellent cutting performance comprising the composite member.

鋼や鋳鉄の切削加工用工具としては、WC基超硬合金が広く利用されているが、希少金属であるタングステンの使用量を削減するために、従来から、各種の提案がなされている。   WC-based cemented carbide is widely used as a tool for cutting steel and cast iron, but various proposals have been made in order to reduce the amount of tungsten, which is a rare metal.

例えば、特許文献1には、工具を少なくとも基体、溶射皮膜で構成し、該基体を工具鋼、合金鋼、鋳鉄からなる鉄鋼材料で構成し、該溶射皮膜を超硬質合金とした金属材料切削用工具が提案されており、これによって、高能率、長寿命、高精度等の工具性能を維持しつつ、工具コストを低減した切削工具を提供し得るとされている。   For example, in Patent Document 1, a tool is composed of at least a substrate and a sprayed coating, the substrate is composed of a steel material made of tool steel, alloy steel, and cast iron, and the sprayed coating is made of a super-hard alloy. A tool has been proposed, and this makes it possible to provide a cutting tool with reduced tool costs while maintaining tool performance such as high efficiency, long life, and high accuracy.

また、例えば、特許文献2には、切削用材料として炭化タングステンを使用することは、よく知られているが、鑞付けにより、炭化タングステン製インサートを、切削工具に取り付けるのに適したプロセスではないとの観点から、結合剤がコバルト、硬質材料が炭化タングステンであるような前記硬質材料を含む混合物を鋼帯の縁部に被着させ鋼帯の一部分を融解させるために、前記移動可能な鋼帯を放射線ビームで照射し、前記硬質材料及び結合剤元素を含む前記混合物を前記鋼帯の融解部分に供給し、硬質材料により被覆された鋼帯から個々のブレードを形成するブレードの製造方法が提案されている。   Further, for example, in Patent Document 2, it is well known to use tungsten carbide as a cutting material, but it is not a process suitable for attaching a tungsten carbide insert to a cutting tool by brazing. In view of the above, the movable steel is used to deposit a mixture containing the hard material such as cobalt as the binder and tungsten carbide as the hard material on the edge of the steel strip to melt a part of the steel strip. A method of manufacturing a blade in which a strip is irradiated with a radiation beam, the mixture containing the hard material and a binder element is supplied to a molten portion of the steel strip, and individual blades are formed from the steel strip coated with the hard material. Proposed.

また、例えば、特許文献3には、複合材料からなる切削工具インサートとして、基体(台金)にWC成分の含有量が10mass%以下であるTi基サーメットを採用し、その基体の刃先となる部分にのみ、WCと結合相形成成分(例えば、Co,Ni,Fe)を主成分とし、該結合相の面積割合が8〜30面積%であるWC基超硬合金を刃先材料として形成し、一方、基体と刃先材料との界面側のTi基サーメットの結合相(例えば、Co,Ni,Feからなる結合相)の含有量を10〜40面積%とすることによって、タングステン使用量の低減を図り得るばかりか、密着強度不足による欠損や変形を生じることもなく、かつ、すぐれた耐摩耗性を発揮するWC基超硬合金製切削工具インサートを得ること、さらに、刃先材料を溶射膜として構成した場合には、Ti基サーメットの結合相富化層の下部に結合相量が少なく、硬質層が富化した層が形成されており、WC成分の含有量が10mass%以下であり、また、適正な結合相分布が形成されているために、溶射膜との熱膨張係数差が制御され、それによる適度な残留圧縮応力が付与されることにより、より一段と密着強度にすぐれるとともに、剥離、欠損等の異常損傷を発生することもなく、すぐれた耐摩耗性を発揮するタングステン使用量を低減したWC基超硬合金製切削工具インサートを得ることが提案されている。   Further, for example, in Patent Document 3, as a cutting tool insert made of a composite material, a Ti-based cermet having a WC component content of 10 mass% or less is adopted for a base body (base metal), and a portion serving as a cutting edge of the base body Only WC and cemented phase forming component (for example, Co, Ni, Fe) as a main component, and a WC-based cemented carbide having an area ratio of the binder phase of 8 to 30% by area is formed as a cutting edge material, The amount of tungsten used is reduced by setting the content of the Ti-based cermet binding phase (for example, a binding phase composed of Co, Ni, Fe) on the interface side between the substrate and the cutting edge material to 10 to 40% by area. In addition to obtaining a cutting tool insert made of a WC-based cemented carbide that exhibits excellent wear resistance without causing defects or deformation due to insufficient adhesion strength, and further, a cutting edge material is used as a spray coating. In the case where it is configured, the amount of the binder phase is small at the bottom of the binder phase enriched layer of the Ti-based cermet, the layer enriched by the hard layer is formed, and the content of the WC component is 10 mass% or less, In addition, since an appropriate binder phase distribution is formed, the difference in thermal expansion coefficient with the sprayed film is controlled, and by imparting an appropriate residual compressive stress thereby, the adhesion strength is further improved, It has been proposed to obtain a WC-based cemented carbide cutting tool insert with reduced tungsten usage that exhibits excellent wear resistance without causing abnormal damage such as peeling or chipping.

特開2003−191126号公報JP 2003-191126 A 特開2010−596号公報JP 2010-596 A 特開2013−188832号公報JP 2013-188832 A

前記特許文献1〜3に示す、超硬合金と鉄鋼材料、あるいは、超硬合金とサーメットからなる複合材料においては、希少金属であるタングステンの使用量の低減は図られるものの、この複合材料から形成した切削工具を、切れ刃に高負荷が作用する切削条件で使用した場合には、超硬合金の硬度が不十分であり、また、靱性・抗折強度も十分ではないため、耐欠損性、耐摩耗性の観点から、切削工具としての十分な性能を発揮することができなかった。
そこで、希少金属であるタングステンの使用量を低減し得るとともに、硬度、靱性にすぐれたWC基超硬合金と鉄鋼系材料からなる複合材料が望まれる。
In the composite materials composed of cemented carbide and steel materials or cemented carbide and cermet shown in Patent Documents 1 to 3, the amount of tungsten, which is a rare metal, can be reduced, but formed from this composite material. When the cutting tool is used under cutting conditions in which a high load acts on the cutting edge, the hardness of the cemented carbide is insufficient, and the toughness and bending strength are not sufficient. From the viewpoint of wear resistance, sufficient performance as a cutting tool could not be exhibited.
Therefore, a composite material composed of a WC-based cemented carbide and a steel material that is excellent in hardness and toughness while being able to reduce the amount of tungsten that is a rare metal is desired.

本発明者等は、上述のような観点から、タングステン使用量の低減を図るとともに、硬度、靱性(曲げ強度)にすぐれたWC基超硬合金と鉄鋼系材料からなる複合材料について鋭意検討したところ、鉄鋼系材料をレーザー照射により融解し、融解した鉄鋼系材料にWC基超硬合金粉末を分散させ、鉄鋼系材料上にWC基超硬合金層を形成するにあたり、レーザー照射条件(レーザー出力、レーザースポット径、走査速度)を適切にコントロールし、WC基超硬合金層における所定のアスペクト比のWC結晶粒を所定の面積割合で形成することにより、WC基超硬合金層の硬度、靱性(曲げ強度)を高め得ることを見出したのである。
また、前記WC基超硬合金層の硬さを、その厚さ方向に向かって漸次増加させることによって、WC基超硬合金層の最表面では、1500〜2000HVの硬さを得られることを見出したのである。
さらに、前記WC基超硬合金層を、鉄鋼材料内部に所定の深さ侵入するように形成することにより、靱性(曲げ強度)をさらに高め得ることを見出したのである。
そして、前記複合材料によって切削工具を構成することにより、この切削工具は、硬度、靱性にすぐれるため、長期の使用にわたって、すぐれた切削性能を発揮することを見出したのである。
From the above-mentioned viewpoints, the present inventors diligently studied a composite material composed of a WC-based cemented carbide and a steel-based material having excellent hardness and toughness (bending strength) while reducing the amount of tungsten used. In order to melt a steel material by laser irradiation, disperse the WC-based cemented carbide powder in the molten steel material, and form a WC-based cemented carbide layer on the steel material, laser irradiation conditions (laser output, By appropriately controlling the laser spot diameter and scanning speed) and forming WC crystal grains having a predetermined aspect ratio in the WC-based cemented carbide layer in a predetermined area ratio, the hardness and toughness of the WC-based cemented carbide layer ( It has been found that the bending strength can be increased.
Further, it has been found that a hardness of 1500 to 2000 HV can be obtained on the outermost surface of the WC-based cemented carbide layer by gradually increasing the hardness of the WC-based cemented carbide layer in the thickness direction. It was.
Furthermore, the present inventors have found that the toughness (bending strength) can be further improved by forming the WC-based cemented carbide layer so as to penetrate a predetermined depth into the steel material.
It was found that by forming a cutting tool with the composite material, the cutting tool has excellent hardness and toughness, and therefore exhibits excellent cutting performance over a long period of use.

本発明は、上記知見に基づいてなされたものであって、
「(1)鉄鋼系材料の表面の一部または全部にWC基超硬合金層が設けられている複合材料であって、
(a)前記WC基超硬合金層は、50μm以上1000μm以下の最大厚さを有し、
(b)前記WC基超硬合金層表面を含む任意の縦断面を観察した場合、WC粒子が占める面積割合は、前記WC基超硬合金層の面積の50%以上であり、
(c)前記WC基超硬合金層におけるWC粒子について、アスペクト比が1以上2未満のWC粒子が占める面積割合をX面積%とした場合、アスペクト比が2以上のWC結晶粒が占める面積割合Yは、0.5X≦Y≦2Xを満足することを特徴とする複合材料。
(2)前記(1)に記載の複合材料において、前記WC基超硬合金層の結合相は、Feを20原子%以上50原子%以下およびCoを50原子%以上80原子%以下含有し、
前記WC基超硬合金層の硬さは、前記鉄鋼系材料との界面側から前記WC基超硬合金層表面に向かって漸次増加する硬さプロファイルを備え、かつ、前記WC基超硬合金層表面におけるビッカース硬さHVは1500以上2000以下であることを特徴とする前記(1)に記載の複合材料。
(3)前記複合材料において、前記WC基超硬合金層を設ける以前の前記鉄鋼系材料の表面を基準面とした場合、前記WC基超硬合金層の最大侵入深さが前記鉄鋼系材料の基準面から内部へ20μm以上200μm以下に形成されていることを特徴とする前記(1)または(2)に記載の複合材料。
(4)前記(1)乃至(3)のいずれかに記載の複合材料において、鉄鋼系材料が高速度工具鋼またはダイス鋼であることを特徴とする複合材料。
(5)前記(1)乃至(4)のいずれかに記載の複合材料から構成されていることを特徴とする切削工具。」
を特徴とするものである。
The present invention has been made based on the above findings,
“(1) A composite material in which a WC-based cemented carbide layer is provided on part or all of the surface of a steel-based material,
(A) The WC-based cemented carbide layer has a maximum thickness of 50 μm or more and 1000 μm or less,
(B) When observing an arbitrary longitudinal section including the surface of the WC-based cemented carbide layer, the area ratio occupied by the WC particles is 50% or more of the area of the WC-based cemented carbide layer,
(C) Regarding the WC particles in the WC-based cemented carbide layer, when the area ratio occupied by WC particles having an aspect ratio of 1 or more and less than 2 is defined as X area%, the area ratio occupied by WC crystal grains having an aspect ratio of 2 or more Y is a composite material characterized by satisfying 0.5X ≦ Y ≦ 2X.
(2) In the composite material according to (1), the binder phase of the WC-based cemented carbide layer contains Fe at 20 atomic% to 50 atomic% and Co at 50 atomic% to 80 atomic%,
The hardness of the WC-based cemented carbide layer has a hardness profile that gradually increases from the interface side with the steel-based material toward the surface of the WC-based cemented carbide layer, and the WC-based cemented carbide layer The composite material according to (1), wherein the surface has a Vickers hardness HV of 1500 or more and 2000 or less.
(3) In the composite material, when the surface of the steel-based material before providing the WC-based cemented carbide layer is used as a reference surface, the maximum penetration depth of the WC-based cemented carbide layer is that of the steel-based material. The composite material according to (1) or (2), wherein the composite material is formed to have a thickness of 20 μm to 200 μm from the reference surface to the inside.
(4) The composite material according to any one of (1) to (3), wherein the steel material is high-speed tool steel or die steel.
(5) A cutting tool comprising the composite material according to any one of (1) to (4). "
It is characterized by.

次に、この発明について、詳細に説明する。   Next, the present invention will be described in detail.

図1にその縦断面模式図を示すように、本発明は、鉄鋼系材料の表面の一部または全部にWC基超硬合金層が設けられている複合材料であって、WC基超硬合金層は、50μm以上1000μm以下の最大厚さを有するとともに、該WC基超硬合金層において、WC粒子が占める面積割合は50面積%以上である。
本発明で、WC基超硬合金層の最大厚さを、50μm以上1000μm以下としているのは、例えば、本発明の複合材料を高硬度耐摩耗性部材である切削工具として用いた場合に、WC基超硬合金層の最大厚さが薄い場合には、長期の使用にわたってすぐれた耐摩耗性を発揮することができないからであり、特に、WC基超硬合金層の最大厚さが50μm未満である場合には、短寿命となる。一方、WC基超硬合金層の最大厚さが1000μmを超える場合には、すぐれた硬さを備えるものの靱性が低下し剥離・欠損等を発生しやすくなることから、WC基超硬合金層の最大厚さは、50μm以上1000μm以下とする。
鉄鋼系材料表面への上記厚さのWC基超硬合金層は、例えば、後記するレーザーを用いた肉盛法を複数回繰り返し行うことによって形成することができる。
なお、本発明の複合材料を構成する鉄鋼系材料としては、特段の制限はないが、高速度工具鋼、ダイス鋼を用いることが好適である。
As shown in the schematic longitudinal sectional view of FIG. 1, the present invention is a composite material in which a WC-based cemented carbide layer is provided on a part or all of the surface of a steel-based material. The layer has a maximum thickness of 50 μm or more and 1000 μm or less, and in the WC-based cemented carbide layer, the area ratio occupied by the WC particles is 50 area% or more.
In the present invention, the maximum thickness of the WC-based cemented carbide layer is 50 μm or more and 1000 μm or less, for example, when the composite material of the present invention is used as a cutting tool that is a high-hardness wear-resistant member. This is because when the maximum thickness of the base cemented carbide layer is thin, excellent wear resistance cannot be exhibited over a long period of use. In particular, the maximum thickness of the WC based cemented carbide layer is less than 50 μm. In some cases, the lifetime is short. On the other hand, if the maximum thickness of the WC-based cemented carbide layer exceeds 1000 μm, the toughness of the WC-based cemented carbide layer is reduced, and the toughness is likely to decrease, and peeling and defects are likely to occur. The maximum thickness is 50 μm or more and 1000 μm or less.
The WC-based cemented carbide layer having the above thickness on the surface of the steel-based material can be formed, for example, by repeatedly performing a build-up method using a laser which will be described later.
The steel material constituting the composite material of the present invention is not particularly limited, but high-speed tool steel and die steel are preferably used.

本発明でいう、WC基超硬合金層の厚さとは、走査型電子顕微鏡およびオージェ電子分光装置を用いて、WC基超硬合金層と鉄鋼系材料との接合部近傍の縦断面観察をし、WC基超硬合金層側からみて、WC粒子が観察される臨界位置を界面とし、WC基超硬合金層を設ける以前の鉄鋼系材料の表面に垂直方向に、前記界面からWC基超硬合金層表面までの最大距離をWC基超硬合金層の最大厚さという(図1参照)。 The thickness of the WC-based cemented carbide layer referred to in the present invention is a longitudinal cross-sectional observation in the vicinity of the joint between the WC-based cemented carbide layer and the steel material using a scanning electron microscope and an Auger electron spectrometer. When viewed from the WC-based cemented carbide layer side, the critical position where WC particles are observed is the interface, and the WC-based cemented carbide is perpendicular to the surface of the steel-based material before the WC-based cemented carbide layer is provided. The maximum distance to the alloy layer surface is referred to as the maximum thickness of the WC-based cemented carbide layer (see FIG. 1).

本発明のWC基超硬合金層は、主として、WC基超硬合金の硬質成分であるWC粒子によってその高硬度を発現するが、前記WC基超硬合金層表面を含む縦断面観察において、該層中に占めるWC粒子の面積割合が50面積%未満では、十分な高硬度、耐摩耗性を発揮することができないから、WC基超硬合金層に占めるWC粒子の面積割合は50面積%以上とする。 The WC-based cemented carbide layer of the present invention expresses its high hardness mainly by the WC particles that are the hard components of the WC-based cemented carbide. In the longitudinal section observation including the WC-based cemented carbide layer surface, If the area ratio of the WC particles in the layer is less than 50% by area, sufficient hardness and wear resistance cannot be exhibited. Therefore, the area ratio of the WC particles in the WC-based cemented carbide layer is 50% by area or more. And

前記WC基超硬合金層の厚さおよび該層中に占める前記WC粒子の面積割合を有する本発明の複合材料において、アスペクト比が1以上2未満であるWC粒子は、比較的等方的な性質を有する組織であって、このWC粒子によってWC基超硬合金層全体としての高硬度を担保している。一方、アスペクト比が2以上のWC粒子は、細長い組織であり、WC基超硬合金層におけるクラックの伝播を抑え、靱性を向上させる効果を有する。
したがって、高硬度とともに靱性を向上させるためには、アスペクト比が1以上2未満であるWC粒子とアスペクト比が2以上であるWC粒子の面積割合を調整することが必要であるが、WC粒子アスペクト比が1以上2未満のWC粒子が占める面積割合をX面積%とした場合、アスペクト比が2以上のWC結晶粒が占める面積割合Yが0.5X未満では、WC基超硬合金層の靱性が不足し、一方、前記面積割合Yが2Xを超えると硬さが不足することから、本発明の複合材料においては、0.5X≦Y≦2Xと定めた。
In the composite material of the present invention having the thickness of the WC-based cemented carbide layer and the area ratio of the WC particles in the layer, the WC particles having an aspect ratio of 1 or more and less than 2 are relatively isotropic. It is a structure having properties, and the WC particles ensure the high hardness of the entire WC-based cemented carbide layer. On the other hand, WC particles having an aspect ratio of 2 or more are elongated structures, and have the effect of suppressing the propagation of cracks in the WC-based cemented carbide layer and improving the toughness.
Therefore, in order to improve toughness with high hardness, it is necessary to adjust the area ratio of WC particles having an aspect ratio of 1 or more and less than 2 and WC particles having an aspect ratio of 2 or more. When the area ratio occupied by WC grains having a ratio of 1 or more and less than 2 is X area%, the toughness of the WC-based cemented carbide layer is less than 0.5X when the area ratio Y occupied by WC grains having an aspect ratio of 2 or more is less than 0.5X. On the other hand, when the area ratio Y exceeds 2X, the hardness is insufficient. Therefore, in the composite material of the present invention, 0.5X ≦ Y ≦ 2X was determined.

本発明において、前記WC粒子の面積割合、WC粒子のアスペクト比、Xの値、Yの値は、次の方法によって測定・算出する。
まず、WC基超硬合金層の表面から、該層の厚さの1/5の内部深さまでの領域において、2000倍の走査型電子顕微鏡による画像を取得し、この画像から、各WC粒子について面積割合とアスペクト比を求める。
ついで、アスペクト比が1以上2未満のWC粒子の面積割合を合計して、その値をXとする。
ついで、アスペクト比が2以上のWC粒子の面積割合を合計して、その値をYとし、前記Xの値とYの値が、不等式0.5X≦Y≦2Xを満足するか否かを判定する。
また、前記2000倍の走査型電子顕微鏡により取得した画像全体の面積と、全てのWC粒子が占める面積を比較し、全てのWC粒子が占める面積割合を算出することにより、WC基超硬合金層に占めるWC粒子の面積割合を算出する。
In the present invention, the area ratio of the WC particles, the aspect ratio of the WC particles, the value of X, and the value of Y are measured and calculated by the following method.
First, in a region from the surface of the WC-based cemented carbide layer to the inner depth of 1/5 of the thickness of the layer, an image obtained by a scanning electron microscope at a magnification of 2000 is obtained. Find the area ratio and aspect ratio.
Then, the area ratios of WC particles having an aspect ratio of 1 or more and less than 2 are totaled, and the value is defined as X.
Subsequently, the area ratios of WC particles having an aspect ratio of 2 or more are totaled, and the value is set to Y, and it is determined whether the value of X and the value of Y satisfy the inequality 0.5X ≦ Y ≦ 2X. To do.
Further, the WC-based cemented carbide layer is obtained by comparing the area of the entire image acquired by the scanning electron microscope of 2000 times with the area occupied by all the WC particles and calculating the area ratio occupied by all the WC particles. The area ratio of the WC particles occupying is calculated.

本発明の複合材料におけるWC基超硬合金層を構成する硬質成分としては、前記のように該層中において50面積%以上を占めるWC粒子を主たる硬質成分とするが、従来から知られているTi、Zr、Cr、V、NbおよびTaの炭化物、窒化物、炭窒化物、炭酸化物、窒酸化物および炭窒酸化物等からなる副硬質相成分を含有させることができる。
また、本発明では、前記WC基超硬合金層を構成する結合相成分として、20〜50原子%Feおよび50〜80原子%のCoを含有させる。
結合相成分のFeが20原子%未満では、鉄鋼系材料との密着強度が不十分となり靱性が低下する恐れがあり、一方、Feの含有量が50原子%を超えると鉄系材料からなる被削材との反応性が高くなり、クレーター摩耗が発達しやすくなることから、Feの含有量20〜50原子%、残部はCo(即ち、Co含有量は50〜80原子%)とすることが望ましい。
As the hard component constituting the WC-based cemented carbide layer in the composite material of the present invention, WC particles occupying 50% by area or more in the layer as described above are the main hard components, but are conventionally known. Sub-hard phase components composed of carbides, nitrides, carbonitrides, carbonates, nitrides, carbonitrides, and the like of Ti, Zr, Cr, V, Nb, and Ta can be included.
Moreover, in this invention, 20-50 atomic% Fe and 50-80 atomic% Co are contained as a binder phase component which comprises the said WC group cemented carbide layer.
If the binder phase component Fe is less than 20 atomic%, the adhesion strength with the steel-based material may be insufficient, and the toughness may be reduced. On the other hand, if the Fe content exceeds 50 atomic%, the coating made of the iron-based material may occur. Since the reactivity with the cutting material increases and crater wear tends to develop, the Fe content should be 20 to 50 atomic%, and the balance should be Co (that is, the Co content should be 50 to 80 atomic%). desirable.

前記WC基超硬合金層の結合相におけるFe含有量およびCo含有量は、次のようにして求めることができる。
まず、鉄鋼系材料とWC基超硬合金層との界面からWC基超硬合金層側に、前記界面からWC基超硬合金層表面に向けてWC基超硬合金層を10等分するように、WC基超硬合金層を設ける以前の鉄鋼系材料の表面と平行方向に9本の線を引き、同線上で線分析を行い、結合相中のFeおよびCoの含有量を測定し、前記9本の線についてそれぞれ測定したFeおよびCoの含有量を平均化することによって、WC基超硬合金層の結合相におけるFe含有量およびCo含有量をそれぞれの平均値として求めることができる。
The Fe content and the Co content in the binder phase of the WC-based cemented carbide layer can be obtained as follows.
First, the WC-based cemented carbide layer is divided into 10 equal parts from the interface between the steel material and the WC-based cemented carbide layer to the WC-based cemented carbide layer side, and from the interface toward the WC-based cemented carbide layer surface. In addition, nine lines are drawn in a direction parallel to the surface of the steel-based material before providing the WC-based cemented carbide layer, line analysis is performed on the same line, and the contents of Fe and Co in the binder phase are measured. By averaging the content of Fe and Co measured for each of the nine lines, the Fe content and the Co content in the binder phase of the WC-based cemented carbide layer can be obtained as their average values.

また、本発明では、WC基超硬合金層における層厚方向の硬さプロファイルを、鉄鋼系材料との界面側からWC基超硬合金層表面に向かって漸次硬さが増加する傾斜構造とし、WC基超硬合金層表面におけるビッカース硬さHVを1500以上2000以下とすることが望ましい。
このような硬さ分布は、例えば、後記するレーザーを用いた肉盛法を複数回繰り返し行うことによって形成することができ、本発明により得られるWC基超硬合金層表面におけるHV1500以上2000以下という硬さは、通常のWC基超硬合金の硬さに匹敵するものである。
In the present invention, the hardness profile in the layer thickness direction of the WC-based cemented carbide layer is an inclined structure in which the hardness gradually increases from the interface side with the steel-based material toward the WC-based cemented carbide layer surface, It is desirable that the Vickers hardness HV on the surface of the WC-based cemented carbide layer is 1500 or more and 2000 or less.
Such hardness distribution can be formed, for example, by repeatedly performing a build-up method using a laser, which will be described later, and is HV1500 or more and 2000 or less on the surface of the WC-based cemented carbide layer obtained by the present invention. The hardness is comparable to that of a normal WC-based cemented carbide.

本発明におけるWC基超硬合金層における層厚方向の硬さプロファイル(硬さ傾斜構造)は、前記結合相中のFeおよびCoの含有量を測定する際に用いた前記9本の線について、それぞれのマイクロビッカース硬さを測定することにより、鉄鋼系材料とWC基超硬合金層との界面からWC基超硬合金層表面に向かう硬さプロファイルを求めることができる。   The hardness profile (hardness gradient structure) in the layer thickness direction of the WC-based cemented carbide layer in the present invention is the nine lines used when measuring the contents of Fe and Co in the binder phase. By measuring each micro Vickers hardness, a hardness profile from the interface between the steel material and the WC-based cemented carbide layer toward the WC-based cemented carbide layer surface can be obtained.

本発明では、例えば、レーザーを用いた肉盛法により鉄鋼系材料の表面の一部または全部にWC基超硬合金層を形成し、しかも、図1に示すように、前記WC基超硬合金層の最大侵入深さが前記鉄鋼系材料の基準面から内部へ20μm以上200μm以下に形成されていること望ましい。
つまり、レーザー照射により鉄鋼系材料を溶融させ、鉄鋼系材料表面の一部または全部に鉄鋼系材料のプールを形成するとともに、該プール内にWC基超硬合金を溶け込ませ、これを冷却することによって、WC基超硬合金付加層の最大浸入深さが鉄鋼系材料の基準面から20μm〜200μmの深さとなるようWC基超硬合金層が形成されていることが望ましい。
ここで、鉄鋼系材料の基準面とは、WC基超硬合金層を設ける以前の鉄鋼系材料の表面をいう。
鉄鋼系材料の基準面からのWC基超硬合金層の最大浸入深さが20μm未満では、形成される鉄鋼系材料のプールの深さが浅く、鉄鋼系材料とWC基超硬合金との溶け込み量が少なく、鉄鋼系材料に対するWC基超硬合金層の密着効果が少ないため、複合部材に負荷が作用した場合、鉄鋼系材料とWC基超硬合金層が剥離を発生しやすい。
一方、鉄鋼系材料の基準面からのWC基超硬合金層の最大浸入深さが200μmを超える場合には、鉄鋼系材料の溶融量が大きいため、冷却時に割れを生じやすくなり、その結果、WC基超硬合金層の脱落が生じやすくなる。
したがって、鉄鋼系材料の基準面からのWC基超硬合金層の最大浸入深さは、20μm〜200μmとすることが望ましい。
In the present invention, for example, a WC-based cemented carbide layer is formed on a part or all of the surface of the steel-based material by a cladding method using a laser, and as shown in FIG. It is desirable that the maximum penetration depth of the layer is 20 μm or more and 200 μm or less inward from the reference surface of the steel material.
In other words, the steel material is melted by laser irradiation to form a pool of the steel material on part or all of the surface of the steel material, and the WC-based cemented carbide is melted into the pool and cooled. Therefore, it is desirable that the WC-based cemented carbide layer is formed so that the maximum penetration depth of the WC-based cemented carbide additional layer is 20 μm to 200 μm from the reference surface of the steel-based material.
Here, the reference surface of the steel-based material refers to the surface of the steel-based material before providing the WC-based cemented carbide layer.
If the maximum penetration depth of the WC-based cemented carbide layer from the reference surface of the steel-based material is less than 20 μm, the depth of the steel-based material pool formed is shallow, and the penetration of the steel-based material and the WC-based cemented carbide is Since the amount is small and the effect of adhesion of the WC-based cemented carbide layer to the steel-based material is small, when a load is applied to the composite member, the steel-based material and the WC-based cemented carbide layer are likely to be peeled off.
On the other hand, when the maximum penetration depth of the WC-based cemented carbide layer from the reference surface of the steel-based material exceeds 200 μm, since the melting amount of the steel-based material is large, cracking is likely to occur during cooling. The WC-based cemented carbide layer is likely to fall off.
Therefore, the maximum penetration depth of the WC-based cemented carbide layer from the reference surface of the steel-based material is desirably 20 μm to 200 μm.

鉄鋼系材料の基準面からのWC基超硬合金層の最大浸入深さは、走査型電子顕微鏡により取得した画像において、WC基超硬合金層を形成する以前の鉄鋼系材料の表面を基準面とし、該基準面からWC基超硬合金層を横断する線分を引き、該線分から、鉄鋼系材料とWC基超硬合金層の界面への垂直な距離を測定し、その最大距離をWC基超硬合金層の最大浸入深さとして求める。   The maximum penetration depth of the WC-based cemented carbide layer from the reference surface of the steel-based material is the reference surface of the surface of the steel-based material before the formation of the WC-based cemented carbide layer in the image acquired by the scanning electron microscope. Then, a line segment crossing the WC-based cemented carbide layer is drawn from the reference plane, and the perpendicular distance from the line segment to the interface between the steel material and the WC-based cemented carbide layer is measured, and the maximum distance is defined as WC. Obtained as the maximum penetration depth of the base cemented carbide layer.

本発明の複合材料は、硬度、靱性にすぐれることから、WC基超硬合金層を切れ刃側として使用する切削工具に好適である。
なお、WC基超硬合金層をそのまま切れ刃として切削加工に供することができるが、WC基超硬合金層表面に、従来から良く知られている硬質被覆層(例えば、Ti化合物層、TiAlN層、Al層等)を物理蒸着あるいは化学蒸着等により被覆形成することによって、表面被覆切削工具として使用することもできる。
Since the composite material of the present invention is excellent in hardness and toughness, it is suitable for a cutting tool using a WC-based cemented carbide layer as the cutting edge side.
Although the WC-based cemented carbide layer can be used for cutting as it is as a cutting edge, a well-known hard coating layer (for example, a Ti compound layer, a TiAlN layer) is formed on the surface of the WC-based cemented carbide layer. , Al 2 O 3 layer or the like) can be used as a surface-coated cutting tool by coating with physical vapor deposition or chemical vapor deposition.

本発明の複合材料は、例えば、レーザー肉盛法によって作製することができる。
まず、WC基超硬合金層を形成する鉄鋼系材料の所定位置に対してレーザー照射を行い、該位置の鉄鋼系材料を溶融させてプールを形成し、該プールに向けて所定成分組成のWC基超硬合金粉末を吹きつけ、該プールにおいて溶融した鉄鋼系材料でWC基超硬合金を希釈・溶融し、その後、これを冷却し、さらにこの操作を複数回繰り返し行うことにより、本発明で規定するWC基超硬合金層(厚さ、WC粒子の面積割合、所定アスペクト比率のWC粒子、結合相成分組成、硬さプロファイル、最大浸入深さ)が、鉄鋼系材料の表面の一部または全部に設けられた、すぐれた硬さと靱性を有する複合材料を作製することができる。
なお、レーザー肉盛操作を繰り返し行う場合には、レーザー照射によって、鉄鋼系材料は溶融させず、直前に形成したWC基超硬合金層のうちの、結合相のみを溶融させることが好ましい。
なお、レーザー照射に際して、鉄鋼系材料にクラックを発生させないため、大出力、大スポット径の照射は避けるべきであって、レーザー出力100〜300W、スポット径0.1〜2mm程度の低エネルギー照射が望ましい。
The composite material of the present invention can be produced, for example, by laser overlaying.
First, laser irradiation is performed on a predetermined position of the steel-based material forming the WC-based cemented carbide layer, the steel-based material at the position is melted to form a pool, and a WC having a predetermined component composition is directed toward the pool. By spraying the base cemented carbide powder, diluting and melting the WC base cemented carbide with the steel-based material melted in the pool, then cooling this, and further repeating this operation several times in the present invention. The specified WC-based cemented carbide layer (thickness, area ratio of WC particles, WC particles with a predetermined aspect ratio, binder phase component composition, hardness profile, maximum penetration depth) is a part of the surface of the steel-based material or A composite material having excellent hardness and toughness can be produced.
In addition, when performing laser cladding operation repeatedly, it is preferable not to melt a steel material by laser irradiation but to melt only the binder phase in the WC-based cemented carbide layer formed immediately before.
In addition, in order to prevent cracks in the steel-based material during laser irradiation, irradiation with a large output and a large spot diameter should be avoided. Low energy irradiation with a laser output of 100 to 300 W and a spot diameter of about 0.1 to 2 mm is performed. desirable.

例えば、鉄鋼系材料として高速度工具鋼の表面に、レーザー出力500W、スポット径2mmの条件で肉盛を行った場合には、レーザー出力が大きく、高速度工具鋼表面の溶融プールが大きくなるため、WC基超硬合金層の最大浸入深さは200μmを超えるとともに、冷却後ビード割れが発生した(図2参照)。 For example, when overlaying is performed on the surface of a high-speed tool steel as a steel-based material under the conditions of a laser output of 500 W and a spot diameter of 2 mm, the laser output is large and the molten pool on the surface of the high-speed tool steel becomes large. The maximum penetration depth of the WC-based cemented carbide layer exceeded 200 μm, and bead cracking occurred after cooling (see FIG. 2).

これに対して、鉄鋼系材料として前記と同じ高速度工具鋼の表面に、レーザー出力200W、スポット径1mmの条件で、この操作を合計3回繰り返し行って肉盛層を形成した場合には、1回目の操作では、WC基超硬合金層の厚さは80μm、かつ、最大浸入深さは50μmのWC基超硬合金層が形成され、3回目の操作により、290μmの厚さ、100μmの最大浸入深さのWC基超硬合金層が形成され、冷却後もクラックの発生は生じなかった(図3参照)。 On the other hand, on the surface of the same high-speed tool steel as described above as a steel-based material, under the conditions of a laser output of 200 W and a spot diameter of 1 mm, this operation is repeated three times in total to form a built-up layer. In the first operation, a WC-based cemented carbide layer having a thickness of 80 μm and a maximum penetration depth of 50 μm is formed. By the third operation, a thickness of 290 μm and a thickness of 100 μm are formed. A WC-based cemented carbide layer with the maximum penetration depth was formed, and no cracks occurred even after cooling (see FIG. 3).

本発明によれば、鉄鋼系材料の表面の一部または全部にWC基超硬合金層が設けられ、すぐれた靱性とすぐれた硬さを相兼ね備えた複合材料を得ることができる。
そして、この複合材料は、そのすぐれた靱性とすぐれた硬さを生かし、切削工具として好適に使用することができる。
According to the present invention, a WC-based cemented carbide layer is provided on a part or all of the surface of a steel-based material, and a composite material having both excellent toughness and excellent hardness can be obtained.
And this composite material can be suitably used as a cutting tool by making use of its excellent toughness and excellent hardness.

鉄鋼系材料の表面の一部または全部にWC基超硬合金層が設けられている本発明に係る複合材料の縦断面模式図を示す。The longitudinal cross-sectional schematic diagram of the composite material which concerns on this invention in which the WC base cemented carbide layer is provided in part or all of the surface of the steel-type material is shown. 繰返し肉盛回数1回の比較例複合材料1についての縦断面概観組織(上段)とWC基超硬合金層内の組織(下段)を示す。The vertical cross-section outline structure (upper stage) about the comparative composite material 1 of the number of times of 1 times of overlaying, and the structure | tissue in a WC group cemented carbide layer (lower stage) are shown. 繰返し肉盛回数3回の本発明複合材料1についての縦断面概観組織(上段)とWC基超硬合金層内の組織(下段)を示す。The vertical cross-sectional outline structure (upper stage) and the structure in the WC-based cemented carbide layer (lower stage) of the composite material 1 of the present invention with the number of repeated build-ups of 3 are shown.

以下、この発明を実施例に基づいて、具体的に説明する。   Hereinafter, the present invention will be specifically described based on examples.

表1に示す成分組成の鉄鋼系材料の表面に、表2に示す本発明条件にてレーザーを照射し、レーザー照射箇所に表3に示す配合組成からなる造粒-仮焼したWC基超硬合金粉末を表2に示す条件で投射し、この操作を、表2に示す回数繰り返し行い、鉄鋼系材料の表面の一部または全部にWC基超硬合金層を形成することにより、表4に示す本発明の複合材料1〜12(本発明複合材料1〜12という)を作製した。
なお、レーザー照射条件は、いずれも、レーザー出力100〜300W、スポット径0.1〜2.0mm、操作速度500〜2000mm/min、繰返し肉盛回数1〜10回の範囲内である。
なお、本発明複合材料1の縦断面概観組織とWC基超硬合金層内の組織を図3に示す。
The surface of a steel-based material having the composition shown in Table 1 is irradiated with a laser under the conditions of the present invention shown in Table 2, and a granulated and calcined WC-based cemented carbide having the composition shown in Table 3 is applied to the laser irradiation location. The alloy powder is projected under the conditions shown in Table 2, and this operation is repeated as many times as shown in Table 2 to form a WC-based cemented carbide layer on a part or all of the surface of the steel-based material. The composite materials 1 to 12 of the present invention shown (referred to as the present composite materials 1 to 12) were produced.
In addition, as for laser irradiation conditions, all are within the range of laser output 100-300W, spot diameter 0.1-2.0mm, operation speed 500-2000mm / min, and the number of times of repeated overlaying 1-10 times.
In addition, the longitudinal cross-sectional outline structure of this invention composite material 1 and the structure | tissue in a WC base cemented carbide layer are shown in FIG.

本発明複合材料1〜12について、走査型電子顕微鏡とオージェ電子分光装置を用いて、WC基超硬合金層と鉄鋼系材料との接合部近傍の縦断面を観察し、WC基超硬合金層側からみて、WC粒子が観察される臨界位置を界面とし、WC基超硬合金層を設ける以前の鉄鋼系材料の表面に垂直方向に、界面からWC基超硬合金層表面までの距離を求め、そのうちの最大値をWC基超硬合金層の最大厚さとして求めた。 About this invention composite materials 1-12, the vertical cross section of the junction part vicinity of a WC group cemented carbide layer and a steel-type material is observed using a scanning electron microscope and an Auger electron spectrometer, and a WC group cemented carbide layer The distance from the interface to the surface of the WC-based cemented carbide layer is obtained in the direction perpendicular to the surface of the steel material before the WC-based cemented carbide layer is provided, with the critical position where the WC particles are observed as the interface. The maximum value was obtained as the maximum thickness of the WC-based cemented carbide layer.

また、本発明複合材料1〜12について、2000倍の走査型電子顕微鏡によりWC基超硬合金層表面を含む任意の縦断面箇所の画像を取得し、画像全体の面積と、該画像中に存在する全てのWC粒子が占める合計面積とから、WC基超硬合金層に占めるWC粒子の面積割合を算出した。
さらに、WC基超硬合金層の表面から、該層の厚さの1/5の内部深さまでの領域において、前記2000倍の走査型電子顕微鏡により縦断面箇所の画像を取得し、この画像から、各WC粒子についてのアスペクト比と面積割合を求め、アスペクト比が1以上2未満のWC粒子の面積割合を合計して、その値をXとし、ついで、アスペクト比が2以上のWC粒子の面積割合を合計して、その値をYとし、前記Xの値とYの値が、不等式0.5X≦Y≦2Xを満足するか否かを判定した。
Moreover, about this invention composite materials 1-12, the image of the arbitrary longitudinal cross-section location containing the surface of a WC group cemented carbide layer is acquired with a 2000 times scanning electron microscope, The area of the whole image, and presence in this image From the total area occupied by all the WC particles, the area ratio of the WC particles in the WC-based cemented carbide layer was calculated.
Further, in the region from the surface of the WC-based cemented carbide layer to the inner depth of 1/5 of the thickness of the layer, an image of the longitudinal cross-sectional portion is obtained by the scanning electron microscope of 2000 times, and from this image Then, the aspect ratio and the area ratio of each WC particle are obtained, and the area ratios of the WC particles having an aspect ratio of 1 or more and less than 2 are totaled, and the value is set to X, and then the area of the WC particles having an aspect ratio of 2 or more. The ratios were summed and the value was set as Y, and it was determined whether or not the values of X and Y satisfy the inequality 0.5X ≦ Y ≦ 2X.

また、本発明複合材料1〜12について、2000倍の走査型電子顕微鏡を用いて、鉄鋼系材料とWC基超硬合金層との界面近傍の画像を取得し、まず、鉄鋼系材料とWC基超硬合金層との界面からWC基超硬合金層側に、前記界面からWC基超硬合金層表面に向けてWC基超硬合金層を10等分するように、前記WC基超硬合金層を設ける以前の鉄鋼系材料の表面と平行方向に9本の線を引き、同線上で線分析を行い、結合相中のFeおよびCoの含有量を測定し、前記9本の線についてそれぞれ測定したFeおよびCoの含有量を平均化することによって、WC基超硬合金層の結合相におけるFe含有量およびCo含有量をそれぞれの平均値として求めた。 Moreover, about this invention composite materials 1-12, the image of the interface vicinity of a steel-type material and a WC group cemented carbide layer is acquired using a 2000 times scanning electron microscope, First, a steel-type material and a WC group The WC-based cemented carbide alloy is divided into 10 equal parts from the interface with the cemented carbide layer to the WC-based cemented carbide layer side and from the interface toward the WC-based cemented carbide layer surface. Draw nine lines in the direction parallel to the surface of the steel-based material before providing the layer, perform line analysis on the same line, measure the content of Fe and Co in the binder phase, and each of the nine lines By averaging the measured Fe and Co contents, the Fe content and the Co content in the binder phase of the WC-based cemented carbide layer were obtained as their average values.

さらに、本発明複合材料1〜12について、走査型電子顕微鏡により、鉄鋼系材料とWC基超硬合金層との界面近傍の画像を取得し、該画像において、鉄鋼系材料の基準面((WC基超硬合金層を設ける以前の鉄鋼系材料の表面))からWC基超硬合金層を横断する線分を引き、該線分から、鉄鋼系材料とWC基超硬合金層の界面までの垂直な距離を測定し、その最大距離をWC基超硬合金層の最大浸入深さとして求めた。   Further, for the composite materials 1 to 12 of the present invention, an image in the vicinity of the interface between the steel material and the WC-based cemented carbide layer is obtained by a scanning electron microscope, and the reference surface ((WC Draw a line across the WC-based cemented carbide layer from the surface of the steel-based material before the base cemented carbide layer is provided)), and perpendicularly extend from the segment to the interface between the steel-based material and the WC-based cemented carbide layer. The maximum distance was measured as the maximum penetration depth of the WC-based cemented carbide layer.

表4に、上記で得た測定値、算出値、判定結果等を示す。   Table 4 shows the measured values, calculated values, determination results, and the like obtained above.





比較のため、表1に示す成分組成の鉄鋼系材料の表面に、表5に示す条件にてレーザーを照射し、レーザー照射箇所に表3に示す配合組成からなる造粒-仮焼したWC基超硬合金粉末を投射し、鉄鋼系材料の表面の一部または全部にWC基超硬合金層を形成することにより表6に示す比較例の複合材料1〜12(比較例複合材料1〜12という)を作製した。
なお、レーザー照射条件は、いずれも、レーザー出力50〜2000W、スポット径0.05〜5mm、操作速度200〜3000mm/min、繰返し肉盛回数1〜20回の範囲内である。
なお、比較例複合材料1の縦断面概観組織とWC基超硬合金層内の組織を、図2に示す。
For comparison, the surface of a steel material having the composition shown in Table 1 is irradiated with a laser under the conditions shown in Table 5, and a granulated-calcined WC group having the composition shown in Table 3 is applied to the laser irradiated portion. By projecting the cemented carbide powder and forming a WC-based cemented carbide layer on part or all of the surface of the steel-based material, composite materials 1 to 12 shown in Table 6 (comparative examples composite materials 1 to 12) Produced).
In addition, as for laser irradiation conditions, all are within the range of laser output 50-2000W, spot diameter 0.05-5mm, operation speed 200-3000mm / min, and the number of repeated overlaying 1-20 times.
In addition, the longitudinal cross-sectional outline structure of the comparative example composite material 1 and the structure | tissue in a WC group cemented carbide layer are shown in FIG.

次いで、比較例複合材料1〜12について、本発明複合材料1〜12の場合と同様にして、WC基超硬合金層の最大厚さ、WC基超硬合金層に占めるWC粒子の面積割合を求め、また、WC基超硬合金層中におけるアスペクト比が1以上2未満のWC粒子の面積割合合計Xと、アスペクト比が2以上のWC粒子の面積割合合計Yを求め、不等式0.5X≦Y≦2Xを満足するか否かを判定した。   Next, for Comparative Example Composites 1-12, the maximum thickness of the WC-based cemented carbide layer and the area ratio of WC particles in the WC-based cemented carbide layer are the same as in the case of the composite materials 1-12 of the present invention. Further, the area ratio total X of WC particles having an aspect ratio of 1 or more and less than 2 in the WC-based cemented carbide layer and the area ratio total Y of WC particles having an aspect ratio of 2 or more are obtained, and the inequality 0.5X ≦ It was determined whether or not Y ≦ 2X was satisfied.

さらに、WC基超硬合金層の結合相中のFeおよびCoの含有量を求め、WC基超硬合金層の最大浸入深さを求めた。
表6に、これらの値を示す。
Furthermore, the contents of Fe and Co in the binder phase of the WC-based cemented carbide layer were determined, and the maximum penetration depth of the WC-based cemented carbide layer was determined.
Table 6 shows these values.




つぎに、上記本発明複合材料1〜12および比較例複合材料1〜12について、結合相中のFeおよびCoの含有量を測定する際に用いた前記9本の線について、それぞれのマイクロビッカース硬さHVを測定することにより、鉄鋼系材料とWC基超硬合金層との界面からWC基超硬合金層表面に向かう硬さプロファイルを求めるとともに、WC基超硬合金層表面のマイクロビッカース硬さHVおよび肉盛り中央付近での圧痕におけるクラックの長さからPalmqvistの式を用い破壊靱性値を求めた。
表7に、鉄鋼系材料とWC基超硬合金層との界面からWC基超硬合金層表面に向かう硬さプロファイル、WC基超硬合金層表面のマイクロビッカース硬さHVの値(GPa)および破壊靱性値の値(MPa・m^(1/2))を示す。
なお、硬さプロファイルについては、前記HVを測定した9本の線のうち、鉄鋼系材料とWC基超硬合金層との界面側の3本の線について求めた硬さの平均値を界面側硬さとし、
WC基超硬合金層表面側の3本の線について求めた硬さの平均値を表面側硬さとし、残りの3本の線について求めた硬さの平均値を中央硬さとして、表7に記した。
Next, with respect to the nine wires used for measuring the contents of Fe and Co in the binder phase for the composite materials 1 to 12 of the present invention and the comparative composite materials 1 to 12, the respective micro-Vickers hardnesses are used. By measuring the thickness HV, a hardness profile from the interface between the steel material and the WC-based cemented carbide layer to the surface of the WC-based cemented carbide layer is obtained, and the micro Vickers hardness of the WC-based cemented carbide layer surface The fracture toughness value was determined from the length of the crack in the indentation near the center of HV and the build-up using the Palmqvist equation.
Table 7 shows the hardness profile from the interface between the steel-based material and the WC-based cemented carbide layer toward the surface of the WC-based cemented carbide layer, the micro Vickers hardness HV value (GPa) of the WC-based cemented carbide layer surface, and The fracture toughness value (MPa · m ^ (1/2)) is shown.
In addition, about the hardness profile, the average value of the hardness calculated | required about three lines by the side of the interface of a steel-type material and a WC base cemented carbide layer among nine lines which measured the said HV is an interface side. Hardness,
Table 7 shows the average hardness value obtained for the three wires on the surface side of the WC-based cemented carbide layer as the surface side hardness, and the average hardness value obtained for the remaining three wires as the center hardness. I wrote.

ついで、上記本発明複合材料1〜12および比較例複合材料1〜12から、WC基超硬合金付加層をそれぞれの切れ刃とする本発明ドリル1〜12、本発明エンドミル1〜12、比較例ドリル1〜12、比較例エンドミル1〜12を作製した。
また、参考のため、表1に示される高速度工具鋼A及び合金工具鋼Bから参考ドリルA、参考エンドミルA、参考ドリルB、参考エンドミルBを作製した。
これらのドリル、エンドミルを切削試験に供することによって切削性能を調査した。
Next, from the composite materials 1 to 12 of the present invention and the composite materials 1 to 12 of the present invention, the drills 1 to 12 of the present invention, the end mills 1 to 12 of the present invention, each of which has a WC-based cemented carbide additional layer as a cutting edge. Drills 1 to 12 and comparative end mills 1 to 12 were produced.
For reference, a reference drill A, a reference end mill A, a reference drill B, and a reference end mill B were produced from the high-speed tool steel A and the alloy tool steel B shown in Table 1.
Cutting performance was investigated by subjecting these drills and end mills to a cutting test.

なお、前記エンドミルは、いずれも、切刃部の直径×長さが10mm×20mmの寸法、並びにねじれ角30度の2枚刃スクエア形状のサイズ・形状をもち、また、前記ドリルは、いずれも、溝形成部の直径×長さがそれぞれ5mm×63.5mmの寸法、並びにねじれ角27度の2枚刃形状をもつ。 Each of the end mills has a size / shape of a cutting blade portion of diameter × length of 10 mm × 20 mm and a two-blade square shape with a twist angle of 30 degrees. The diameter and length of the groove forming part have dimensions of 5 mm × 63.5 mm and a two-blade shape with a twist angle of 27 degrees.

前記の各ドリルについて、次に示す切削条件Aで穴あけ加工試験条件を実施し、前記の各エンドミルについて、次に示す切削条件Bで側面切削加工試験を実施した。
[切削条件A]
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・S25Cの板材
回転速度:1600min.−1
送り:0.14mm/rev、
穴深さ:15mm、
の条件での炭素鋼の湿式穴あけ切削加工試験を行い(水溶性切削油使用)、先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。
[切削条件B]
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・S45Cの板材、
切削速度:28.3m/min、
回転速度:900min.−1
切り込み: ae1.6mm、ap15mm、
送り速度(1刃当り):0.083mm/tooth、
切削長:200m、
の条件での炭素鋼の側面切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。
表8に、これらの試験結果を示す。
About each said drill, the drilling test condition was implemented on the cutting condition A shown next, and the side cutting test was implemented on the above-mentioned each end mill on the cutting condition B shown next.
[Cutting conditions A]
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / S25C plate material Rotational speed: 1600 min. -1 ,
Feed: 0.14mm / rev,
Hole depth: 15mm,
The carbon steel was subjected to a wet drilling cutting test under the conditions (using water-soluble cutting oil), and the number of drilling processes until the flank wear width of the tip cutting edge surface reached 0.3 mm was measured.
[Cutting conditions B]
Work material-Plane size: 100 mm x 250 mm, thickness: 50 mm JIS / S45C plate,
Cutting speed: 28.3 m / min,
Rotational speed: 900 min. -1 ,
Cutting depth: ae 1.6 mm, ap 15 mm,
Feed rate (per blade): 0.083 mm / tooth
Cutting length: 200m,
A side cutting test of carbon steel under the above conditions was performed, and the flank wear width of the cutting edge was measured.
Table 8 shows the results of these tests.


表7に示される結果から、本発明複合材料1〜12は、硬度、靱性ともに、比較例複合材料1〜12に比し、優れていることがわかり、表8に示される結果から、本発明複合材料1〜12は切削性能においても優れていることがわかる。   From the results shown in Table 7, it can be seen that the composite materials 1 to 12 of the present invention are superior to the comparative composite materials 1 to 12 in both hardness and toughness. It turns out that the composite materials 1-12 are excellent also in cutting performance.

本発明の複合材料は、硬度、靱性ともに優れることから、例えば、本発明複合材料により切削工具を構成した場合には、切削加工時にチッピング、欠損等の異常損傷を発生することなく、長期の使用にわたってすぐれた耐摩耗性を発揮し、切削加工の省エネ化、低コスト化、高能率化に寄与するものである。

Since the composite material of the present invention is excellent in both hardness and toughness, for example, when a cutting tool is constituted by the composite material of the present invention, it is used for a long time without causing abnormal damage such as chipping and chipping during cutting. It exhibits excellent wear resistance over a long period of time, contributing to energy saving, cost reduction, and high efficiency in cutting.

Claims (4)

鉄鋼系材料の表面の一部または全部にWC基超硬合金層が設けられている複合材料であって、
(a)前記WC基超硬合金層は、50μm以上1000μm以下の最大厚さを有し、
(b)前記WC基超硬合金層表面を含む任意の縦断面を観察した場合、WC粒子が占める面積割合は、前記WC基超硬合金層の面積の50%以上であり、
(c)前記WC基超硬合金層におけるWC粒子について、アスペクト比が1以上2未満のWC粒子が占める面積割合をX面積%とした場合、アスペクト比が2以上のWC結晶粒が占める面積割合Yは、0.5X≦Y≦2Xを満足することを特徴とする複合材料。
A composite material in which a WC-based cemented carbide layer is provided on part or all of the surface of a steel-based material,
(A) The WC-based cemented carbide layer has a maximum thickness of 50 μm or more and 1000 μm or less,
(B) When observing an arbitrary longitudinal section including the surface of the WC-based cemented carbide layer, the area ratio occupied by the WC particles is 50% or more of the area of the WC-based cemented carbide layer,
(C) Regarding the WC particles in the WC-based cemented carbide layer, when the area ratio occupied by WC particles having an aspect ratio of 1 or more and less than 2 is defined as X area%, the area ratio occupied by WC crystal grains having an aspect ratio of 2 or more Y is a composite material characterized by satisfying 0.5X ≦ Y ≦ 2X.
請求項1に記載の複合材料において、前記WC基超硬合金層の結合相は、Feを20原子%以上50原子%以下含有し、
前記WC基超硬合金層の硬さは、前記鉄鋼系材料との界面側から前記WC基超硬合金層表面に向かって漸次増加する硬さプロファイルを備え、かつ、前記WC基超硬合金層表面におけるビッカース硬さHVは1500以上2000以下であることを特徴とする請求項1に記載の複合材料。
2. The composite material according to claim 1, wherein the binder phase of the WC-based cemented carbide layer contains 20 atomic% or more and 50 atomic% or less of Fe,
The hardness of the WC-based cemented carbide layer has a hardness profile that gradually increases from the interface side with the steel-based material toward the surface of the WC-based cemented carbide layer, and the WC-based cemented carbide layer The composite material according to claim 1, wherein the surface has a Vickers hardness HV of 1500 or more and 2000 or less.
前記複合材料において、前記WC基超硬合金層を設ける以前の前記鉄鋼系材料の表面を基準面とした場合、前記WC基超硬合金層の最大侵入深さが前記鉄鋼系材料の基準面から内部へ20μm以上200μm以下に形成されていることを特徴とする請求項1または2に記載の複合材料。   In the composite material, when the surface of the steel-based material before providing the WC-based cemented carbide layer is a reference surface, the maximum penetration depth of the WC-based cemented carbide layer is from the reference surface of the steel-based material. 3. The composite material according to claim 1, wherein the composite material is formed to be 20 μm to 200 μm inward. 請求項1乃至3のいずれか一項に記載の複合材料から構成されていることを特徴とする切削工具。




















A cutting tool comprising the composite material according to any one of claims 1 to 3.




















JP2016150496A 2016-07-29 2016-07-29 Cutting tools consisting of composite members and future Active JP7099800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016150496A JP7099800B2 (en) 2016-07-29 2016-07-29 Cutting tools consisting of composite members and future

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016150496A JP7099800B2 (en) 2016-07-29 2016-07-29 Cutting tools consisting of composite members and future

Publications (2)

Publication Number Publication Date
JP2018016875A true JP2018016875A (en) 2018-02-01
JP7099800B2 JP7099800B2 (en) 2022-07-12

Family

ID=61075990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016150496A Active JP7099800B2 (en) 2016-07-29 2016-07-29 Cutting tools consisting of composite members and future

Country Status (1)

Country Link
JP (1) JP7099800B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110709198A (en) * 2018-03-19 2020-01-17 住友电气工业株式会社 Surface-coated cutting tool
JP7506421B2 (en) 2022-02-22 2024-06-26 地方独立行政法人大阪産業技術研究所 Method for manufacturing hard metal member, hard metal member and raw material powder thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010000596A (en) * 2008-06-23 2010-01-07 Stanley Works Method of manufacturing blade
JP2011083822A (en) * 2009-10-15 2011-04-28 Siemens Ag Method and apparatus for welding component made of heat-resistant superalloy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010000596A (en) * 2008-06-23 2010-01-07 Stanley Works Method of manufacturing blade
JP2011083822A (en) * 2009-10-15 2011-04-28 Siemens Ag Method and apparatus for welding component made of heat-resistant superalloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110709198A (en) * 2018-03-19 2020-01-17 住友电气工业株式会社 Surface-coated cutting tool
JP7506421B2 (en) 2022-02-22 2024-06-26 地方独立行政法人大阪産業技術研究所 Method for manufacturing hard metal member, hard metal member and raw material powder thereof

Also Published As

Publication number Publication date
JP7099800B2 (en) 2022-07-12

Similar Documents

Publication Publication Date Title
JP4474646B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6139058B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP2006015426A (en) Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting
JP6481897B2 (en) Surface coated cutting tool
JP2006231433A (en) Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting
JP2018144224A (en) Surface-coated cutting tool
JP4991244B2 (en) Surface coated cutting tool
JP6761596B2 (en) Cutting tool made of composite material
JP2017159409A (en) Surface-coated cutting tool exerting excellent wear resistance
JP2018016875A (en) Composite member and cutting tool composed of the same
JP7205709B2 (en) surface coated cutting tools
JP2008155328A (en) Surface-coated tool
JP5023896B2 (en) Surface coated cutting tool
JP2008155329A (en) Surface-coated tool
JP5023895B2 (en) Surface coated cutting tool
JP4936211B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent wear resistance in high-speed cutting
JP4389593B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP2009034766A (en) Surface coated cutting tool with hard coat layer having improved chipping resistance and wear resistance
JP4474647B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
US10751806B2 (en) Surface-coated cutting tool having excellent chipping resistance and wear resistance
JP2014069297A (en) Cutting tool
JP2018144115A (en) Surface-coated cutting tool having hard coating layer excellent in chipping resistance and peeling resistance
JP2007196355A (en) Surface coated cermet cutting tool having hard coating layer exhibiting excellent chipping resistance in cutting difficult-to-cut material
JP2017159423A (en) Surface coated cutting tool having excellent chipping resistance and wear resistance
JP2007237307A (en) Surface coated cermet-made cutting tool having hard coating layer exhibiting excellent chipping resistance in heavy cutting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200411

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201001

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20201222

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210729

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20211012

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20211206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220120

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220523

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220616

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220630

R150 Certificate of patent or registration of utility model

Ref document number: 7099800

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150