JP2018009894A - 円筒内面観察装置、円筒内面観察方法、円筒内面検査装置及び円筒内面検査方法 - Google Patents

円筒内面観察装置、円筒内面観察方法、円筒内面検査装置及び円筒内面検査方法 Download PDF

Info

Publication number
JP2018009894A
JP2018009894A JP2016139522A JP2016139522A JP2018009894A JP 2018009894 A JP2018009894 A JP 2018009894A JP 2016139522 A JP2016139522 A JP 2016139522A JP 2016139522 A JP2016139522 A JP 2016139522A JP 2018009894 A JP2018009894 A JP 2018009894A
Authority
JP
Japan
Prior art keywords
light
cylinder
light beam
incident
illumination light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016139522A
Other languages
English (en)
Other versions
JP6922166B2 (ja
Inventor
今野 雄介
Yusuke Konno
雄介 今野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2016139522A priority Critical patent/JP6922166B2/ja
Publication of JP2018009894A publication Critical patent/JP2018009894A/ja
Application granted granted Critical
Publication of JP6922166B2 publication Critical patent/JP6922166B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Image Processing (AREA)

Abstract

【課題】径の小さな円筒であっても、円筒内面をより高速に撮像することが可能な円筒内面観察装置を提供する。【解決手段】照明光の照射された円筒内面の光線情報を生成する光線情報取得装置100と、生成された光線情報に対して所定の画像処理を施す演算処理装置とを備える。光線情報取得装置100は、照明光を照射する照明光源101と、円筒S内面の光線情報を取得するライトフィールドカメラ103と、円錐プリズム又は円錐ミラー121を少なくとも有し、円筒内面での照明光の像をライトフィールドカメラへと導く光線取得光学系105と、を有する。演算処理装置は、直交座標系での光線情報を、円筒の径方向を動径方向とした極座標系へと変換し、極座標系での光線情報を用いて、円筒の軸方向と円筒の周方向とで焦点位置を変えて、画像再構成処理を実施する。【選択図】図2A

Description

本発明は、円筒内面観察装置、円筒内面観察方法、円筒内面検査装置及び円筒内面検査方法に関する。
各種の鋼管に代表される管状体や、シリンダー等の筒状体について、これら管状体や筒状体の内面(以下、「円筒内面」と称する。)を撮像するための技術が、各種提案されている。
例えば、以下の特許文献1では、管軸方向に光軸を有するラインカメラの視野をミラーにより90度折り曲げるとともに、かかるミラーを回転させることで円筒内面を撮像する技術が提案されている。
また、以下の特許文献2では、円筒内面を撮像するために、複数の撮像手段を円筒の内空間に配置するとともに、これら複数の撮像手段で円筒の内空間の周方向を分割して撮像する技術が提案されている。
更に、以下の特許文献3では、円筒の軸方向に沿って移動しながら、円筒内面に対して環状のレーザ光を照射し、環状のレーザ光が照射された円筒内面を撮像する技術が提案されている。かかる技術では、光源から射出されたレーザ光の光路を、円錐ミラーによって直角に曲げることで、環状のレーザ光を作り出している。
特開2004−69371号公報 特開平8−261947号公報 特開平10−47929号公報 特開2015−186037号公報
しかしながら、上記特許文献1で提案されている技術では、機械的なミラー回転機構が必要となり、また、円筒内面の全周を一度に撮像することができないため、円筒内面全体を高速に撮像することができないという問題がある。
また、上記特許文献2で提案されている技術では、複数の撮像手段を管状体の内部に配置するため、小型化が困難であり、かかる技術を適用可能な管状体の管径が限定されてしまうという問題がある。
また、上記特許文献3で提案されている技術では、光学系に円錐ミラーを用いているが、円錐ミラー又は円錐プリズムを用いて光路を直角に曲げた上で円筒内面を撮像する場合には、大きな非点収差が生じるため、撮像装置の絞りを極端に絞らないと焦点の合った撮像ができないという問題がある。ここで、撮像装置の絞りを絞ってしまうと、長い露光時間が必要となるため、高速な撮像ができなくなってしまう。
そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、径の小さな円筒であっても、円筒内面をより高速に撮像することが可能な、円筒内面観察装置、円筒内面観察方法、円筒内面検査装置及び円筒内面検査方法を提供することにある。
上記課題を解決するために、本発明のある観点によれば、円筒の内面に対して照明光を照射して、当該照明光の照射された前記円筒内面からの反射光の光線情報を取得する光線情報取得装置と、前記光線情報取得装置により生成された前記光線情報に対して、所定の処理を施して前記円筒内面の像を再構成する演算処理装置と、を備え、前記光線情報取得装置は、前記円筒内面の全周にわたって前記照明光を照射する照明光源と、前記円筒内面から入射する光の入射位置及び入射方向毎の強度である前記光線情報を記録するセンサと、当該センサへ入射する光の合焦位置を調整するレンズ系と、を有し、前記円筒内面からの前記光線情報を取得するライトフィールドカメラと、円錐プリズム又は円錐ミラーを少なくとも有し、前記円筒内面での前記照明光の反射光を前記ライトフィールドカメラへ導く光線取得光学系と、を有しており、前記演算処理装置は、直交座標系で表わされた前記光線情報を、前記円筒の径方向を動径方向とした極座標系へと変換する極座標変換部と、前記極座標系へと変換された前記光線情報を用いて再構成した画像が、前記円筒の軸方向と、前記円筒の周方向との両方で合焦状態となるように画像再構成処理を実施する、画像再構成部と、を有する円筒内面観察装置が提供される。
前記ライトフィールドカメラの前記レンズ系の焦点位置は、前記円筒の軸方向のみが合焦状態となる焦点位置と、前記円筒の周方向のみが合焦状態となる焦点位置と、の間に設定されており、前記画像再構成部は、前記動径方向及び偏角方向の焦点位置をそれぞれ所定量変化させて、前記画像再構成処理を実施してもよい。
前記極座標変換部は、前記極座標系への変換に際して、前記極座標系での前記反射光の入射位置及び入射方向毎の強度を、前記直交座標系での対応する入射位置及び入射方向の近傍の前記反射光の入射位置及び入射方向の強度から、画像補間処理により算出してもよい。
前記照明光源は、複数の光源が円環状に配置された円環状光源であり、前記円錐プリズム又は円錐ミラーと、前記複数の光源とは、前記円筒と同心となるように設けられており、前記円錐プリズム又は円錐ミラーは、当該円錐プリズム又は円錐ミラーにおける前記照明光の反射光の到達位置が前記円環状光源よりも前記円筒の奥行方向前方に位置するように、設けられていることが好ましい。
前記光線情報取得装置のうち少なくとも前記照明光源及び前記光線取得光学系が、前記円筒の内部へと挿入されることが好ましい。
また、上記課題を解決するために、本発明の別の観点によれば、円筒の内面に対して照明光を照射して、当該照明光の照射された前記円筒内面からの反射光の光線情報を取得するものであり、前記円筒内面の全周にわたって前記照明光を照射する照明光源と、前記円筒内面から入射する光の入射位置及び入射方向毎の強度である前記光線情報を記録するセンサと、当該センサへ入射する光の合焦位置を調整するレンズ系と、を有し、前記円筒内面からの前記光線情報を取得するライトフィールドカメラと、円錐プリズム又は円錐ミラーを少なくとも有し、前記円筒内面での前記照明光の反射光を前記ライトフィールドカメラへ導く光線取得光学系と、を有する光線情報取得装置により、前記円筒内面からの前記照明光の反射光の光線情報を取得するステップと、直交座標系で表わされた前記光線情報を、前記円筒の径方向を動径方向とした極座標系へと変換するステップと、前記極座標系へと変換された前記光線情報を用いて再構成した画像が、前記円筒の軸方向と、前記円筒の周方向との両方で合焦状態となるように画像再構成処理を実施するステップと、を含む円筒内面観察方法が提供される。
また、上記課題を解決するために、本発明の更に別の観点によれば、円筒の内面に対して照明光を照射して、当該照明光の照射された前記円筒内面からの反射光の光線情報を取得する光線情報取得装置と、前記光線情報取得装置により生成された前記光線情報に対して、所定の処理を施して、前記円筒内面の欠陥検査を行う演算処理装置と、を備え、前記光線情報取得装置は、前記円筒内面の全周にわたって前記照明光を照射する照明光源と、前記円筒内面から入射する光の入射位置及び入射方向毎の強度である前記光線情報を記録するセンサと、当該センサへ入射する光の合焦位置を調整するレンズ系と、を有し、前記円筒内面からの前記光線情報を取得するライトフィールドカメラと、円錐プリズム又は円錐ミラーを少なくとも有し、前記円筒内面での前記照明光の反射光を前記ライトフィールドカメラへ導く光線取得光学系と、を有しており、前記演算処理装置は、直交座標系で表わされた前記光線情報を、前記円筒の径方向を動径方向とした極座標系へと変換する極座標変換部と、前記極座標系へと変換された前記光線情報を用いて再構成した画像が、前記円筒の軸方向と、前記円筒の周方向との両方で合焦状態となるように画像再構成処理を実施する、画像再構成部と、再構成された前記画像を用いて、前記円筒内面に存在する欠陥を検出する検出処理部と、を有する円筒内面検査装置が提供される。
また、上記課題を解決するために、本発明の更に別の観点によれば、円筒の内面に対して照明光を照射して、当該照明光の照射された前記円筒内面からの反射光の光線情報を取得するものであり、前記円筒内面の全周にわたって前記照明光を照射する照明光源と、前記円筒内面から入射する光の入射位置及び入射方向毎の強度である前記光線情報を記録するセンサと、当該センサへ入射する光の合焦位置を調整するレンズ系と、を有し、前記円筒内面からの前記光線情報を取得するライトフィールドカメラと、円錐プリズム又は円錐ミラーを少なくとも有し、前記円筒内面での前記照明光の反射光を前記ライトフィールドカメラへ導く光線取得光学系と、を有する光線情報取得装置により、前記円筒内面からの前記照明光の反射光の光線情報を取得するステップと、直交座標系で表わされた前記光線情報を、前記円筒の径方向を動径方向とした極座標系へと変換するステップと、前記極座標系へと変換された前記光線情報を用いて再構成した画像が、前記円筒の軸方向と、前記円筒の周方向との両方で合焦状態となるように画像再構成処理を実施するステップと、再構成された前記画像を用いて、前記円筒内面に存在する欠陥を検出する検出処理ステップと、を含む円筒内面検査方法が提供される。
以上説明したように本発明によれば、径の小さな円筒であっても、円筒内面をより高速に撮像することが可能となる。
本発明の第1の実施形態に係る円筒内面観察装置の全体構成を模式的に示したブロック図である。 同実施形態に係る円筒内面観察装置が備える光線情報取得装置の一例を模式的に示した説明図である。 同実施形態に係る円筒内面観察装置が備える光線情報取得装置の一例を模式的に示した説明図である。 同実施形態に係る光線情報取得装置が有する照明光源を模式的に示した説明図である。 同実施形態に係る光線情報取得装置が有するライトフィールドカメラを説明するための説明図である。 同実施形態に係る光線情報取得装置が有するライトフィールドカメラを説明するための説明図である。 同実施形態に係る光線情報取得装置で生じる非点収差を説明するための説明図である。 同実施形態に係る円筒内面観察装置が備える演算処理装置の全体構成を模式的に示したブロック図である。 同実施形態に係る演算処理装置が有する画像処理部の構成の一例を模式的に示したブロック図である。 同実施形態に係る画像処理部における座標変換処理を説明するための説明図である。 同実施形態に係る画像処理部における座標変換処理を説明するための説明図である。 同実施形態に係る画像処理部における画像再構成処理を説明するための説明図である。 同実施形態に係る画像再構成処理の具体例を示した説明図である。 同実施形態に係る画像再構成処理の具体例を示した説明図である。 同実施形態に係る画像再構成処理の具体例を示した説明図である。 同実施形態に係る画像再構成処理の具体例を示した説明図である。 同実施形態に係る円筒内面観察方法の流れの一例を示した流れ図である。 同実施形態に係る円筒内面検査装置の全体構成の一例を模式的に示したブロック図である。 同実施形態に係る円筒内面検査装置が備える演算処理装置の全体構成を模式的に示したブロック図である。 同実施形態に係る演算処理装置が有する画像処理部の構成の一例を模式的に示したブロック図である。 同実施形態に係る画像処理部における欠陥検出処理を説明するための説明図である。 同実施形態に係る円筒内面検査方法の流れの一例を示した流れ図である。 同実施形態に係る演算処理装置のハードウェア構成の一例を模式的に示したブロック図である。
以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
(円筒内面観察装置の全体構成について)
まず、図1を参照しながら、本発明の実施形態に係る円筒内面観察装置の全体構成について、簡単に説明する。図1は、本実施形態に係る円筒内面観察装置の全体構成を模式的に示したブロック図である。
本実施形態に係る円筒内面観察装置10は、各種の鋼管や、シリンダー等の円筒内面に対して、以下で述べるような所定の照明光を照射した上で、かかる円筒内面における照明光の反射光が円筒内面観察装置10に入射する際の入射位置と入射方向別の強度とに関する情報(以下、「光線情報」と称する。)を取得することで、光線情報を生成する装置である。生成された光線情報に着目することで、円筒内面を観察することができる。
なお、本実施形態に係る円筒内面は、中空部を有する円筒の内面であれば特に限定されるわけではないが、かかる円筒内面の例として、スパイラル鋼管、電縫鋼管、UO鋼管、継目無鋼管(シームレス鋼管)、鍛接鋼管、TIG溶接鋼管等の各種鋼管や、各種のパイプ等、更には、エンジンシリンダーの内面等を挙げることができる。
本実施形態に係る円筒内面観察装置10は、図1に示したように、円筒内面の光線情報を取得する光線情報取得装置100と、光線情報取得装置100の管軸方向に沿った移動を制御する駆動制御装置150と、取得した円筒内面の光線情報に対して、所定の処理を行う演算処理装置200と、を備える。
光線情報取得装置100は、かかる光線情報取得装置100を構成する複数の構成部品のうち少なくとも照明装置、又は、光線情報を取得するセンサへと光を導く光線取得光学系のどちらかが、円筒の中空部に設置されてもよい。この光線情報取得装置100は、円錐状の照明光を照射可能な照明光源を有しており、円筒の軸方向に沿って位置を随時変更しながら、円筒内面の光線情報を軸方向に沿って順次取得し、取得した光線情報を、演算処理装置200に出力する装置である。光線情報取得装置100は、駆動制御装置150により、各種構成部品の軸方向に沿った位置が制御されており、これら構成部品の移動に伴いPLG(Pulse Logic Generator:パルス型速度検出器)等からPLG信号が演算処理装置200に出力される。また、光線情報取得装置100は、演算処理装置200によって、円筒内面の光線情報の取得タイミング等が制御されている。
なお、この光線情報取得装置100の具体的な構成については、以下で改めて詳述する。
駆動制御装置150は、光線情報取得装置100の管軸方向の移動を制御する、アクチュエータ等の装置である。駆動制御装置150は、演算処理装置200による制御のもとで、構成部品の円筒の軸方向の移動の制御を行う。
演算処理装置200は、光線情報取得装置100による円筒内面の光線情報の取得処理を制御するとともに、光線情報取得装置100によって生成された光線情報に対して以下で詳述する所定の処理を実施することで、円筒内面を観察する装置である。かかる演算処理装置200の詳細な構成についても、以下で詳述する。
本実施形態に係る円筒内面観察装置10は、これら光線情報取得装置100、駆動制御装置150及び演算処理装置200が互いに連携して機能することで、円筒内面を、より高速かつリアルタイムに観察することが可能となる。
(光線情報取得装置100の構成について)
次に、図2A〜図6を参照しながら、本実施形態に係る円筒内面観察装置10が備える光線情報取得装置100の構成について、詳細に説明する。
図2A及び図2Bは、本実施形態に係る円筒内面観察装置が備える光線情報取得装置の一例を模式的に示した説明図である。図3は、本実施形態に係る光線情報取得装置が有する照明光源を模式的に示した説明図である。図4及び図5は、本実施形態に係る光線情報取得装置が有するライトフィールドカメラを説明するための説明図である。図6は、本実施形態に係る光線情報取得装置で生じる非点収差を説明するための説明図である。
図2A及び図2Bに模式的に示したように、本実施形態に係る光線情報取得装置100は、円筒Sの内面の全周に亘って円錐状の照明光(以下、「円錐状照明光」ともいう。)を照射する照明光源101と、照明光が照射された円筒Sの内面の光線情報を取得するライトフィールドカメラ103と、円筒Sの内面での照明光の反射光をライトフィールドカメラ103へ導く光線取得光学系105と、を有している。
ここで、照明光源101と光線取得光学系105とは、固定部材によって固定されて、プローブとして機能するように設けられている。また、かかる照明光源101及び光線取得光学系105から構成されるプローブと、ライトフィールドカメラ103とは、非図示の公知の手段により固定されている。
なお、ライトフィールドカメラ103は、その大きさが円筒の内径よりも小さいものであれば、円筒の内部空間に、プローブとともに挿入されてもよい。また、ライトフィールドカメラ103は、円筒の内部空間へと挿入されずに、円筒の開口端より外部に位置していてもよい。
照明光源101は、例えば400nm〜800nm程度の可視光帯域に属する波長を有する円錐状照明光を、円筒内面の全周にわたって広がりを持ちながら照射する光源であり、後述する演算処理装置200により、照明光の点灯タイミングや照射タイミング等が制御されている。照明光源101は、例えば図3に示したように、円環状の基台111の円周に沿って、照明光の照射方向を制御するためのレンズが設けられた発光素子113が、等間隔に複数配設されている。円錐状照明光は、それぞれの発光素子113から、円環状の基台111の中心に対して放射状に(すなわち、円環の径方向に外側に向かって)射出される。
円環状の基台111に設けられる発光素子113の個数や設置間隔は特に限定されるものではなく、着目する円筒内面の視野が所望の均一な明るさを有するように決定すればよい。また、図3に示したような複数の発光素子111の代わりに、照明光の照射方向を制御するためのレンズが設けられた1つのリング状の発光素子を用いても良い。
ライトフィールドカメラ103は、照明光が照射された円筒内面の光線情報を取得する装置であり、後述する演算処理装置200により、円筒内面の光線情報の取得タイミング等が制御されている。ライトフィールドカメラ103を用いることで、取得した光線情報から画像を再構成することが可能であり、例えば再構成画像のピント(焦点位置)を、事後的に変更することができる。これにより、センサ面上ではピントの合っていなかった部位を、事後的にピントが合うように修正することができる。
図4に模式的に示したように、ライトフィールドカメラは、二次元感光素子(以下、「センサ」ともいう。)上の光線(入射光)の強度を、入射位置(x,y)毎についてだけでなく、入射光の入射方向毎についても記録する。2次元光線情報取得素子は、通常、格子状に画素が配列されているため、取得される光線情報も、直交座標系で表されるものとなる。図4において、入射光のxz平面内での傾きをuとし、入射光のyz平面内での傾きをvとすると、ライトフィールドカメラ103が取得した光線情報Iは、位置かつ方向毎の強度I(x,y,u,v)という4変数の関数となる。ライトフィールドカメラ103が取得した光線情報を、(x,y,u,v)で規定される4次元空間中の2方向について和を取ることで、焦点位置を変えた画像を再構成することができる。
ライトフィールドカメラによる画像の再構成処理について、図5を参照しながら、その原理を簡単に説明しておく。以下では、説明の便宜上、空間1次元、かつ、方向1次元の計2次元で規定される輝度値I(x,u)を取り上げる。ライトフィールドカメラによる画像の再構成処理は、図5に模式的に示したように、センサ面z=0に対して、仮想的な焦点面(仮想焦点面)をz=Δzの位置に設定し、かかる仮想焦点面に結像する光線を取り出す処理となる。ここで、仮想焦点面での座標をx’と表わすこととすると、x’の位置に結像する光線のセンサ面上での座標は、光線の入射方向の傾きがuであることから、x=x’+Δzuとなる。従って、方向uについて、これらの光線を加算することで、位置x’に結像している光の強度Irefocusx(x’)を、以下の式11のように求めることができる。ここで、以下の式11におけるΔz(すなわち、仮想焦点面の位置)は、画像再構成処理を実施するユーザが決定する値となる。
また、2次元の光線情報を再構成する場合には、図5に示した1次元の場合と同様に、まず1つの方向について和を取った後で、もう一つの方向について和を取ればよい。従って、以下の式13により、まず1つの方向uについて和を取って、光の強度Itempx(x’,y’,v)を算出し、その後、式15により、もう1つの方向vについて和を取ることで、光の強度Irefocus(x’,y’)を求めることができる。
本実施形態に係る光線情報取得装置100では、このようなライトフィールドカメラ103を、図2A及び図2Bに示したように、照明光源101及び光線取得光学系105の後段(照明光源101及び光線取得光学系105から構成されるプローブの挿入方向に対して、かかるプローブの後側)に配設される。また、照明光源101及び光線取得光学系105から構成されるプローブと、ライトフィールドカメラ103とは、円筒内面と同心となるように配設されている。
かかるライトフィールドカメラ103の詳細な構成については、特に限定されるものではなく、例えば上記特許文献4に開示されているようなライトフィールドカメラ等、公知の各種のライトフィールドカメラをそのまま利用することが可能である。また、かかるライトフィールドカメラ103には、レンズ系が備わっており、通常のカメラと同じように、光軸に垂直なある平面について、かかる平面の1点から出た光がセンサ面上の1点に集まるようにすることが、可能となっている。
光線取得光学系105は、円筒内面での照明光の反射光を、ライトフィールドカメラ103へと導く光学系である。この光線取得光学系105は、図2Aに示したような円錐ミラー121、又は、図2Bに示したような円錐プリズム123を有している。図2Aに示した円錐ミラー121、又は、図2Bに示した円錐プリズム123により、ライトフィールドカメラ103の光路は直角に曲げられており、ライトフィールドカメラ103が、照明光の照射された円筒内面について、全周にわたって光線情報を取得可能なようになっている。なお、光路を直角に折り曲げた場合、内面を垂直に観察することができ、内面の凹みや穴を観察するためには好ましい配置となるが、必ずしも光路を直角に折り曲げなくともよい。
ここで、円錐ミラー121は、図2Aでは図示していない透明な素材により、装置の挿入方向を前方としてライトフィールドカメラ103の前方に保持されており、円錐プリズム123は、図2Bでは図示していない素材により、ライトフィールドカメラ103の前方に保持されている。円錐ミラー121又は円錐プリズム123の中心軸は、円錐面と円筒内面との距離を等しくするために、円筒の中心軸と同心に配置されている。なお、図2Bに示した例では、円錐プリズム123を保持する素材は、必ずしも透明でなくてもよい。
これら円錐ミラー121又は円錐プリズム123は、内面を垂直に観察する場合には、円筒面から垂直に出射した光を円筒の軸に平行になるように光線を垂直に折り曲げるような頂角を有している必要があるが、必ずしもそのような頂角を有していなくともよい。測定対象の軸方向の長さが短い場合には、照明光と同じように円筒面から円錐状に出射した光(ただし、向きは逆である。)が円筒の軸に平行になるよう、斜めに屈折するような頂角としておけば、光線情報取得装置100を内部に挿入する必要が無くなるという利点がある。
また、ライトフィールドカメラ103の光軸と円筒の中心軸は一致する必要は無いが、少なくとも平行となっている必要がある。
また、円錐ミラー121又は円錐プリズム123により、ライトフィールドカメラ103の光路を直角に曲げた場合は、図2A及び図2Bに模式的に示したように、円錐ミラー121又は円錐プリズム123は、円錐ミラー121又は円錐プリズム123における照明光の反射光の到達位置が照明光源101よりも軸方向前方(すなわち、円筒の奥行方向前方)に位置するように、設けられていることが好ましい。
ここで、図6上段に表としてまとめたように、円錐ミラー121は、円筒の軸方向については、平面ミラーとして機能する一方で、円筒の周方向については、凸面鏡として機能してしまう。そのため、図6の中段に示したように、円筒の軸方向についてセンサ面に結像させるようにライトフィールドカメラ103のレンズ系を調整した場合、円筒の周方向については、円錐ミラー121が凸面鏡として機能することで結像関係を維持することができず、円筒内面の像は、ボケた状態でライトフィールドカメラ103のセンサ面に結像することとなる。
また、円錐プリズム123は、円筒の軸方向については、平面ミラーとして機能する一方で、円筒の周方向については、凹面鏡として機能してしまう。そのため、図6の下段に示したように、円筒の軸方向についてセンサ面に結像されるようにライトフィールドカメラ103のレンズ系を調整した場合、円筒の周方向については、円錐プリズム123が凹面鏡として機能することで結像関係を維持することができず、円筒内面の像は、ボケた状態でライトフィールドカメラ103のセンサ面に結像することとなる。
その結果、先だって言及したように、円錐ミラー121又は円錐プリズム123を、光線取得光学系105として利用することで、円周方向の焦点位置と動径方向の焦点位置とが異なる、いわゆる非点収差が発生してしまう。本実施形態に係る円筒内面観察装置10では、これら円錐ミラー121又は円錐プリズム123によって生じる非点収差を、上記のようなライトフィールドカメラの画像再構成処理を利用して事後的に修正する。
なお、図2A及び図2Bでは、光線取得光学系105として、円錐ミラー121又は円錐プリズム123しか図示していないが、光線取得光学系105は、これら円錐ミラー121又は円錐プリズム123に加えて、各種のレンズやミラー等といった公知の光学素子を更に有していてもよい。また、光線取得光学系105は、円筒内面の像を、遠方(例えば、円筒の外部)に位置するライトフィールドカメラ103へとリレーするリレー光学系等を更に有していてもよい。
以上説明したような照明光源101、ライトフィールドカメラ103及び光線取得光学系105が互いに連携することで、照明に照らされた部分の光線情報が取得され、演算処理装置200へと随時出力される。
このように、本実施形態に係る光線情報取得装置100では、円筒内面について、照明光の照射されている部分の光線情報を、1台のライトフィールドカメラ103を用いて、一度に全周に亘って取得することができる。そのため、本実施形態に係る光線情報取得装置100を用いることで、径の小さな円筒であっても、円筒内面について、より高速に光線情報を取得することが可能となる。
以上、図2A〜図6を参照しながら、本実施形態に係る光線情報取得装置100の構成について、詳細に説明した。
(演算処理装置200の構成について)
次に、図7〜図11を参照しながら、本実施形態に係る円筒内面観察装置10が備える演算処理装置200の構成について、詳細に説明する。
図7は、本実施形態に係る円筒内面観察装置が備える演算処理装置の全体構成を模式的に示したブロック図であり、図8は、本実施形態に係る演算処理装置が有する画像処理部の構成の一例を模式的に示したブロック図である。図9及び図10は、本実施形態に係る画像処理部における座標変換処理を説明するための説明図であり、図11は、本実施形態に係る画像処理部における画像再構成処理を説明するための説明図である。
本実施形態に係る演算処理装置200は、光線情報取得装置100による円筒内面の光線情報取得処理を制御するとともに、光線情報取得装置100により生成された光線情報に対して、所定の画像処理を施す装置である。この演算処理装置200は、例えば図7に示したように、光線情報取得制御部201と、画像処理部203と、表示制御部205と、記憶部207と、を主に備える。
光線情報取得制御部201は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、通信装置等により実現される。光線情報取得制御部201は、本実施形態に係る光線情報取得装置100による円筒内面の光線情報の取得制御を実施する。より詳細には、光線情報取得制御部201は、円筒の光線情報の取得を開始する場合に、照明光源101に対して照明光の照射を開始させるための制御信号を送出する。
また、光線情報取得装置100が円筒内面の光線情報の取得を開始すると、光線情報取得装置100又は駆動制御装置150からPLG信号が定期的に(例えば、光線情報取得装置100のプローブが0.5mm移動する毎に1パルスのPLG信号)送出されるが、光線情報取得制御部201は、PLG信号を取得する毎に、ライトフィールドカメラ103に対して光線情報の取得を開始するためのトリガ信号を送出する。
画像処理部203は、例えば、CPU、ROM、RAM、通信装置等により実現される。画像処理部203は、光線情報取得装置100(より詳細には、光線情報取得装置100のライトフィールドカメラ103)から取得した光線情報を用いて、先だって簡単に言及したような、画像再構成処理を実施する。画像処理部203は、円筒内面の光線情報を用いた画像再構成処理を終了すると、得られた再構成後の画像(以下、「再構成画像」ともいう。)に関する情報を、表示制御部205に伝送する。
なお、この画像処理部203については、以下で改めて詳細に説明する。
表示制御部205は、例えば、CPU、ROM、RAM、出力装置等により実現される。表示制御部205は、画像処理部203から伝送された、円筒内面の光線情報から再構成した再構成画像を、演算処理装置200が備えるディスプレイ等の出力装置や演算処理装置200の外部に設けられた出力装置等に表示する際の表示制御を行う。これにより、円筒内面観察装置10の利用者は、観察対象物である円筒内面を、その場で観察することが可能となる。
記憶部207は、例えば本実施形態に係る演算処理装置200が備えるRAMやストレージ装置等により実現される。記憶部207には、本実施形態に係る演算処理装置200が、何らかの処理を行う際に保存する必要が生じた様々なパラメータや処理の途中経過等、または、各種のデータベースやプログラム等が、適宜記録される。この記憶部207は、光線情報取得制御部201、画像処理部203、表示制御部205等が、自由にリード/ライト処理を実行することが可能である。
<画像処理部203について>
続いて、図8を参照しながら、本実施形態に係る演算処理装置200が備える画像処理部203について、詳細に説明する。
本実施形態に係る画像処理部203は、図8に示したように、極座標変換部211と、画像再構成部213と、結果出力部215と、を主に備える。
極座標変換部211は、例えば、CPU、ROM、RAM等により実現される。極座標変換部211は、光線情報取得装置100により生成された、直交座標系で表わされた光線情報を、円筒の径方向を動径方向とした極座標系へと変換して、極座標系での光線情報を生成する。
先だって図6を参照しながら説明したように、本実施形態に係る光線情報取得装置100では、光線取得光学系105として、円錐面を有する円錐ミラー121又は円錐プリズム123を用いているため、非点収差が発生して、円筒の軸方向と、円筒の周方向とで、焦点位置にズレが生じている。そのため、図5を参照しながら簡単に説明したような、画像の再構成処理を実施することで、円筒の軸方向と周方向との間の焦点位置のズレを再構成する。この際、光線情報において着目すべき方向が、円筒の軸方向と周方向であるため、直交座標系で表わされた光線情報よりも、極座標系で表わされた光線情報の方が、以降の画像再構成処理を実施しやすくなる。そこで、本実施形態に係る極座標変換部211は、直交座標系で表わされた光線情報を、円筒の径方向を動径方向とした極座標系へと変換して、極座標系での光線情報を生成する。
先だって言及したように、ライトフィールドカメラ103で生成される光線情報Iは、画素位置を表す2つの直交座標系での変数(x,y)と、入射光の直交座標系での入射方向を表す2つの変数(u,v)と、を用いた4変数の関数I(x,y,u,v)として光の入射強度を表すものとなっている。そこで、極座標変換部211は、図9に示したような4変数(x,y,u,v)で規定される直交座標系での光線情報I(x,y,u,v)を、4変数(r,θ,φ,ω)で規定される極座標系での光線情報Itrans(r,θ,φ,ω)へと変換する。ここで、(r,θ)は、極座標系における画素位置を表す2つの変数であり、(φ,ω)は、極座標系における入射光の入射方向を表す2つの変数である。
より詳細には、極座標変換部211は、極座標空間(r,θ,φ,ω)に格子点を設定し、かかる格子点上に対応する直交座標系上での点(x,y,u,v)の座標を求め、I(x,y,u,v)をサンプリングすることで、極座標系での光線情報Itrans(r,θ,φ,ω)を生成する。この際、極座標変換部211は、変数(r,θ)から変数(x,y)への変換を、以下の式101及び式103に基づき実施する。また、極座標変換部211は、変数(φ,ω)から変数(u,v)への変換を、2次元の回転行列を用いた以下の式105に基づき実施する。かかる演算により、直交座標系で表わされた光線情報I(x,y,u,v)が、極座標系で表わされた光線情報Itrans(r,θ,φ,ω)へと変換される。
なお、ライトフィールドカメラにより取得される光線情報Iは、直交座標系での格子点(x,y,u,v)の値であるが、極座標変換部211で実施される座標変換は、直交座標系から極座標系への座標変換であるため、極座標系における格子点(r,θ,φ,ω)に対応する直交座標系における格子点(x,y,u,v)が存在しない場合が考えられる。そこで、極座標変換部211は、このような場合、サンプリングしたい点(x,y,u,v)の近傍に位置する他の格子点の濃度に基づいて補間する、いわゆる画像補間法を併せて実施することが好ましい。
かかる画像補間法は、特に限定されるものではなく、例えば、「昭晃堂 画像処理ハンドブック」等に記載されている公知の画像補間法を利用することが可能である。このような画像補間法の例として、最近傍(nearest neighbor)法、双線形補間(bi−linear interpolation)法、3次補間(bi−cubic convolution)法等を挙げることができる。これらの方法のうち、前者ほど処理速度が速く、後者ほど高品質の結果を得ることができる。そこで、極座標変換部211は、利用する画像補間法の種別を、処理に用いることのできるリソース量や処理時間等に応じて適宜決定すればよい。
このような極座標変換部211による座標変換処理により、図10上段に模式的に示したような直交座標系(x,y)における、照明光の照射された内面に対応する円形の領域は、図10下段に模式的に示したように、円筒内面を平面に展開した極座標系(r,θ)での矩形の領域に対応することになる。
極座標変換部211は、以上説明したような座標変換処理や画像補間処理により、極座標系で表わされた光線情報(すなわち、輝度値Itrans(r,θ,φ,ω))を生成すると、生成した極座標系での光線情報を、後段の画像再構成部213へと出力する。
画像再構成部213は、例えば、CPU、ROM、RAM等により実現される。画像再構成部213は、極座標変換部211により生成された極座標系での光線情報を利用し、円筒の軸方向と、円筒の周方向とで焦点位置を変えて、画像再構成処理を実施する。
より詳細には、画像再構成部213は、極座標変換部211により生成された、極座標系で光線情報Itrans(r,θ,φ,ω)を用いて、以下の式111及び式113により画像再構成処理を実施する。
ここで、画像再構成部213は、予め設定された再構成パラメータであるkを用いて、式111に基づき方向φについて和を取ることで、中間情報Itempφ(r,θ,ω)を算出した後、予め設定された再構成パラメータであるkθを用いて、式113に基づき方向ωについて和を取ることで、再構成後の画像の輝度値Ipolar(r,θ)を算出する。
なお、上記式111及び式113における再構成パラメータk,kθは、観察対象とする円筒の内径、光線取得光学系105として利用する円錐ミラー121又は円錐プリズム123のサイズ、ライトフィールドカメラ103から円錐ミラー121又は円錐プリズム123への距離、ライトフィールドカメラ103に設けられたレンズの焦点距離等といった各種の光線情報取得条件に基づき、変化するものである。従って、上記のような条件を変化させながら事前に実験を行い、軸方向の焦点位置を適切に修正することが可能な再構成パラメータkと、周方向の焦点位置を適切に修正することが可能な再構成パラメータkθと、を、円筒の内径に応じて予め決定しておく。このような再構成パラメータk,kθに関する情報は、例えば図11に示したようにデータベース化した上で、記憶部207等に予め格納しておけばよい。
ここで、図5に示したように、仮想焦点面の移動量Δzが大きいとセンサ面座標(x,y)での和を取る範囲が大きくなるため、センサ面から和を取る領域がはみ出すようになる。従って、再構成パラメータk,kθは、なるべく小さくなるように設定することが好ましい。
上記のようにするためには、ライトフィールドカメラ103に装着されたレンズ系の焦点位置が、円筒の軸方向のみがセンサ面上に合焦状態となる焦点位置と、円筒の周方向のみがセンサ面上に合焦状態となる焦点位置と、の間に設定することが好ましい。この場合には、画像再構成部213は、極座標系での光線情報における動径方向及び偏角方向の焦点位置をそれぞれ所定量変化させて、画像再構成処理を実施する。より詳細には、画像再構成部213は、図11に示したようなデータベースを参照して再構成パラメータkを特定し、上記式111に基づき輝度値Itempφ(r,θ,ω)を算出した後、図11に示したようなデータベースを参照して再構成パラメータkθを特定し、上記式113に基づき輝度値Ipolar(r,θ)を算出する。
画像再構成部213は、以上のようにして再構成画像を生成すると、生成した再構成画像を、結果出力部215へと出力する。
なお、画像再構成部213による画像再構成処理は、少なくとも、照明光が照射されている円筒内面に対して実施されればよい。従って、例えば図10下段に示したような極座標系での光線情報が得られている場合に、画像再構成部213は、照明光の照射された内面に対応する(r,θ)部分のみを切り出して処理対象画像とし、かかる処理対象画像に対して、上記のような画像再構成処理を実施してもよい。また、画像再構成部213は、各タイミングで取得された複数の光線情報のそれぞれから、上記のような処理対象画像を生成した上で、複数の処理対象画像を取得順に軸方向に沿って結合していくことで結合画像を生成し、かかる結合画像に対して、一括して上記のような画像再構成処理を実施してもよい。
結果出力部215は、例えば、CPU、ROM、RAM、出力装置等により実現される。結果出力部215は、画像再構成部213により生成された再構成画像に関する情報を、表示制御部205に出力する。これにより、円筒内面の光線情報から得られた再構成画像が、表示部(図示せず。)に出力されることとなる。また、結果出力部215は、得られた再構成画像を、製造管理用プロコン等の外部の装置に出力してもよく、得られた再構成画像を用いて、各種の帳票を作成してもよい。また、結果出力部215は、再構成画像を、当該画像が生成された日時等に関する時刻情報と関連づけて、記憶部207等に履歴情報として格納してもよい。
以上、図8〜図11を参照しながら、本実施形態に係る演算処理装置200が備える画像処理部203の構成について、詳細に説明した。
以上、本実施形態に係る演算処理装置200の機能の一例を示した。上記の各構成要素は、汎用的な部材や回路を用いて構成されていてもよいし、各構成要素の機能に特化したハードウェアにより構成されていてもよい。また、各構成要素の機能を、CPU等が全て行ってもよい。従って、本実施形態を実施する時々の技術レベルに応じて、適宜、利用する構成を変更することが可能である。
なお、上述のような本実施形態に係る演算処理装置の各機能を実現するためのコンピュータプログラムを作製し、パーソナルコンピュータ等に実装することが可能である。また、このようなコンピュータプログラムが格納された、コンピュータで読み取り可能な記録媒体も提供することができる。記録媒体は、例えば、磁気ディスク、光ディスク、光磁気ディスク、フラッシュメモリなどである。また、上記のコンピュータプログラムは、記録媒体を用いずに、例えばネットワークを介して配信してもよい。
(画像再構成処理の具体例)
次に、図12〜図15を参照しながら、本実施形態に係る演算処理装置200で実施される画像再構成処理について、具体的に説明する。図12〜図15は、本実施形態に係る画像再構成処理の具体例を示した説明図である。
以下の具体例では、光線情報取得装置100のライトフィールドカメラ103として、焦点距離50mmの単焦点レンズが装着された市販のライトフィールドカメラを利用するとともに、光線取得光学系105として、直径30mmの円錐プリズムを利用した光線情報取得装置100を構築した。ここで、用いたライトフィールドカメラは、(x,y,u,v)の格子数632×434×15×15について、光線情報を取得可能なものである。
また、本具体例では、図12に示したようなテストパターンが印刷された印刷物を円筒形に形成したものを、試験体として用いた。なお、かかる試験体は、直径が50mmとなるように形成されている。
まず、ライトフィールドカメラ103の代わりに通常のエリアカメラを用いて、上記のような試験体の内面の光線情報を取得した。この際、エリアカメラの絞りは、F2に設定した。得られた光線情報の取得結果を、図13に示した。図13は、軸方向のパターンにピントを合わせた状態(状態A)の光線情報と、周方向のパターンにピントを合わせた状態(状態B)の光線情報と、をあわせて示している。
ここで、図13の各光線情報では、円錐プリズムを保持するために利用したレンズホルダのアームが、画像中に写り込んでいる。また、図13の各光線情報において、2本の点線で囲まれた部分は、円錐プリズムの円柱面に対応する部分であり、内側に位置する点線よりも画像中心部側に位置する部分が、円錐プリズムを介して取得された、試験体の内面の光線情報となっている。なお、画像の中心部は、円錐の頂点が切り落とされて平面になっているために、円形の空白となっている。
図13に示した2つの光線情報を比較すると明らかなように、カメラの絞りをF2に設定した場合では、軸方向又は周方向の何れか一方にしかピントを合わせることができず、図12に示したような2種類のテストパターンの双方にピントが合った状態を作り出すことは出来ない。
次に、ライトフィールドカメラを用い、図13の左図に示した状態(状態A)の条件と同様にして光線情報の取得を行い、得られた光線情報に対して、再構成パラメータk,kθを変えながら画像再構成処理を行った結果を、図14に示した。なお、かかる画像再構成処理では、円錐プリズムを介してライトフィールドカメラに結像した部分のみを使用している。
図14において、k=kθ=0とした場合では、焦点位置を変化させていないため、図13左図と同様の画像が得られている。一方で、k=2.5、kθ=0として動径方向(試験体の径方向)の焦点位置を変えて画像再構成処理を行うことで、軸方向と周方向の双方でピントの合った画像を得ることができた。
同様に、ライトフィールドカメラを用い、図13の右図に示した状態(状態B)の条件と同様にして光線情報の取得を行い、得られた光線情報に対して、再構成パラメータk,kθを変えながら画像再構成処理を行った結果を、図15に示した。図15においても、円錐プリズムを介してライトフィールドカメラに結像した部分のみを使用して、画像再構成処理を実施している。
図15において、k=kθ=0とした場合では、焦点位置を変化させていないため、図13右図と同様の画像が得られている。一方で、k=0、kθ=−100として偏角方向(試験体の周方向)の焦点位置を変えて画像再構成処理を行うことで、軸方向と周方向の双方でピントの合った画像を得ることができた。
かかる結果からも明らかなように、ライトフィールドカメラを利用し、以上説明したような極座標系による画像再構成処理を実施することで、光線取得光学系105として円錐ミラー又は円錐プリズムを用いた場合であっても、非点収差による画像のボケを取り除いた、適切な光線情報を得ることが可能となる。
(円筒内面観察方法について)
次に、図16を参照しながら、本実施形態に係る円筒内面観察装置10を用いて実施される円筒内面観察方法の流れの一例について、簡単に説明する。図16は、本実施形態に係る円筒内面観察方法の流れの一例を示した流れ図である。
本実施形態に係る円筒内面観察方法では、まず、演算処理装置200による制御のもとで、以上説明したような光線情報取得装置100により円筒内面の光線情報が取得され(ステップS101)、光線情報が生成される。生成された光線情報は、円筒内面観察装置10の演算処理装置200へと出力される。
演算処理装置200が備える画像処理部203の極座標変換部211は、光線情報取得装置100により生成された直交座標系での光線情報を、以上説明したような方法で、極座標系へと座標変換し(ステップS103)、極座標系での光線情報を生成する。生成された極座標系での光線情報は、画像再構成部213へと出力される。
その後、画像再構成部213は、極座標系での光線情報を用いて、以上説明したような方法により、画像再構成処理を実施する(ステップS105)。これにより、軸方向と周方向の双方でピントの合った、再構成画像が生成されることとなる。画像再構成部213は、生成した再構成画像を、結果出力部215へと出力する。
結果出力部215は、画像再構成部213により生成された再構成画像を、出力する(ステップS107)。これにより、円筒内面観察装置10の利用者は、着目している円筒内面の様子を、その場で把握することが可能となる。
以上、本実施形態に係る円筒内面観察方法の流れの一例を、簡単に説明した。
(円筒内面検査装置の全体構成について)
次に、図17を参照しながら、本実施形態に係る円筒内面検査装置15の全体構成を説明する。図17は、本実施形態に係る円筒内面検査装置の全体構成の一例を模式的に示したブロック図である。
本実施形態に係る円筒内面検査装置15は、図1〜図11を参照しながら説明した、本実施形態に係る円筒内面観察装置10に対して、円筒内面の検査機能を付加した装置となっている。かかる円筒内面検査装置15は、例えば図17に示したように、光線情報取得装置100と、駆動制御装置150と、演算処理装置250と、を主に備える。
ここで、本実施形態に係る円筒内面検査装置15の光線情報取得装置100及び駆動制御装置150は、本実施形態に係る円筒内面観察装置10の光線情報取得装置100及び駆動制御装置150と同様の構成を有し、同様の効果を奏するものである。従って、以下では詳細な説明は省略する。
また、本実施形態に係る円筒内面検査装置15の演算処理装置250は、本実施形態に係る円筒内面観察装置10の演算処理装置200に対して、円筒内面の検査機能を更に付加したものである。この演算処理装置250の構成については、以下で改めて説明する。
(演算処理装置の構成について)
次に、図18を参照しながら、本実施形態に係る円筒内面検査装置15が備える演算処理装置250の構成について説明する。図18は、本実施形態に係る円筒内面検査装置が備える演算処理装置の全体構成を模式的に示したブロック図である。
本実施形態に係る円筒内面検査装置15が有する演算処理装置250は、例えば図18に示したように、光線情報取得制御部201と、表示制御部205と、記憶部207と、画像処理部251と、を主に備える。
ここで、本実施形態に係る演算処理装置250における光線情報取得制御部201、表示制御部205、及び、記憶部207は、本実施形態に係る円筒内面観察装置10が備える光線情報取得制御部201、表示制御部205、及び、記憶部207と同様の構成を有し、同様の効果を奏するものである。従って、以下では詳細な説明は省略する。
画像処理部251は、本実施形態に係る円筒内面観察装置10の画像処理部203に対して、円筒内面の検査機能を更に付加したものである。この画像処理部203は、例えば図19に示したように、極座標変換部211と、画像再構成部213と、検出処理部261と、結果出力部263と、を主に有している。
ここで、本実施形態に係る画像処理部251における極座標変換部211及び画像再構成部213は、本実施形態に係る円筒内面観察装置10が備える極座標変換部211及び画像再構成部213と同様の構成を有し、同様の効果を奏するものである。従って、以下では詳細な説明は省略する。
検出処理部261は、例えば、CPU、ROM、RAM等により実現される。検出処理部261は、画像再構成部213によって生成された再構成画像に基づいて、円筒内面に存在する欠陥を検出する処理部である。
かかる検出処理部261は、再構成画像に基づいて欠陥部位を特定する欠陥部位特定機能と、特定した欠陥部位の形態及び輝度値に関する特徴量を抽出する特徴量抽出機能と、抽出した特徴量に基づいて欠陥の種別や有害度等を判別する欠陥判別機能と、を有している。以下、これらの機能について、簡単に説明する。
○欠陥部位特定機能
検出処理部261は、取得した再構成画像の各画素に対して、周辺画素との輝度値の線形和を得るフィルタ処理によって縦線状疵、横線状疵、微小疵等の領域を強調し、得られた値が、欠陥部位特定のための第1の閾値以上となるか否かの判定を行う。このようなフィルタ処理及び当該フィルタ処理結果に基づく判定処理を実施することで、検出処理部261は、欠陥部位を特定するための二値化画像を生成することができる。かかる二値化画像において、算出した値が第1の閾値未満であった画素が正常箇所(すなわち、二値化画像の輝度値=0)に該当し、算出した値が第1の閾値以上であった画素が欠陥箇所(すなわち、二値化画像の輝度値=1)に該当する。更に、検出処理部261は、連続して発生している欠陥箇所を結合していくことで、一つ一つの欠陥部位を特定する。
○特徴量抽出機能
検出処理部261は、欠陥部位特定機能により再構成画像の欠陥部位を特定すると、特定した欠陥部位ごとに、欠陥部位の形態及び輝度値に関する特徴量を抽出する。欠陥部位の形態に関する特徴量として、例えば、欠陥部位の幅、欠陥部位の長さ、欠陥部位の周囲長、欠陥部位の面積、欠陥部位の外接長方形の面積等を挙げることができる。また、欠陥部位の輝度値に関する特徴量として、欠陥部位の最大輝度値、最小輝度値、平均輝度値等を挙げることができる。
○欠陥判別機能
検出処理部261は、特徴量抽出機能により各欠陥部位の特徴量を抽出すると、欠陥部位ごとに、抽出した特徴量に基づいて欠陥の種別や有害度等を判別する。特徴量に基づく欠陥の種別や有害度等の判別処理は、例えば図20に示したようなロジックテーブルを用いて行われる。すなわち、検出処理部261は、図20に例示したようなロジックテーブルによって表される判別条件に基づき、欠陥の種別や有害度を判別する。
図20に例示したように、ロジックテーブルの縦方向の項目として、欠陥の種別(欠陥A1〜欠陥An)が記載されており、ロジックテーブルの横方向の項目として、特徴量の種類(特徴量B1〜特徴量Bm)が記載されている。また、欠陥の種別及び特徴量により規定されるテーブルの各セルには、対応する特徴量の大小による判別条件式(条件式C11〜条件式Cnm)が記述されている。このようなロジックテーブルの各行が一組となって、一つ一つの欠陥の種別の判別条件となる。判別処理は、最上位の行に記載された種別から順に行われ、何れか一つの行に記載された判別条件を全て満たした時点で終了する。
このようなロジックテーブルは、過去の操業データ及び当該操業データに基づく検定員による欠陥の種別及び有害度の特定結果を教師データとした学習処理により構築されたデータベースを用いて、公知の方法により生成することが可能である。
検出処理部261は、このようにして検出した欠陥部位ごとに欠陥の種別及び有害度を特定し、得られた検出結果を結果出力部263へと出力する。
なお、以上の説明では、ロジックテーブルを用いて欠陥の種別や有害度を判別する場合について説明したが、欠陥の種別や有害度を判別する方法は上記例に限定されるわけではない。例えば、過去の操業データ及び当該操業データに基づく検定員による欠陥の種別及び有害度の特定結果を教師データとした学習処理により、ニューラルネットやサポートベクターマシン(SVM)等の判別器を生成し、かかる判別器を欠陥の種別や有害度の判別に利用してもよい。
結果出力部263は、例えば、CPU、ROM、RAM、出力装置等により実現される。結果出力部263は、画像再構成部213により生成された再構成画像に関する情報と、検出処理部261による欠陥検出結果に関する情報と、を、表示制御部205に出力する。これにより、円筒内面の光線情報から得られた再構成画像や、欠陥検出結果に関する情報が、表示部(図示せず。)に出力されることとなる。また、結果出力部263は、得られた再構成画像や欠陥検出結果を、製造管理用プロコン等の外部の装置に出力してもよく、得られた再構成画像や欠陥検出結果を用いて、各種の帳票を作成してもよい。また、結果出力部263は、再構成画像や欠陥検出結果に関する情報を、当該情報が生成された日時等に関する時刻情報と関連づけて、記憶部207等に履歴情報として格納してもよい。
以上、図18〜図20を参照しながら、本実施形態に係る演算処理装置250が備える画像処理部251の構成について、詳細に説明した。
以上、本実施形態に係る演算処理装置250の機能の一例を示した。上記の各構成要素は、汎用的な部材や回路を用いて構成されていてもよいし、各構成要素の機能に特化したハードウェアにより構成されていてもよい。また、各構成要素の機能を、CPU等が全て行ってもよい。従って、本実施形態を実施する時々の技術レベルに応じて、適宜、利用する構成を変更することが可能である。
なお、上述のような本実施形態に係る演算処理装置の各機能を実現するためのコンピュータプログラムを作製し、パーソナルコンピュータ等に実装することが可能である。また、このようなコンピュータプログラムが格納された、コンピュータで読み取り可能な記録媒体も提供することができる。記録媒体は、例えば、磁気ディスク、光ディスク、光磁気ディスク、フラッシュメモリなどである。また、上記のコンピュータプログラムは、記録媒体を用いずに、例えばネットワークを介して配信してもよい。
(円筒内面検査方法について)
次に、図21を参照しながら、本実施形態に係る円筒内面検査装置15を用いて実施される円筒内面検査方法の流れの一例について、簡単に説明する。図21は、本実施形態に係る円筒内面検査方法の流れの一例を示した流れ図である。
本実施形態に係る円筒内面検査方法では、まず、演算処理装置250による制御のもとで、以上説明したような光線情報取得装置100により円筒内面の光線情報が取得され(ステップS201)、光線情報が生成される。生成された光線情報は、円筒内面検査装置15の演算処理装置250へと出力される。
演算処理装置250が備える画像処理部251の極座標変換部211は、光線情報取得装置100により生成された直交座標系での光線情報を、以上説明したような方法で、極座標系へと座標変換し(ステップS203)、極座標系での光線情報を生成する。生成された極座標系での光線情報は、画像再構成部213へと出力される。
その後、画像再構成部213は、極座標系での光線情報を用いて、以上説明したような方法により、画像再構成処理を実施する(ステップS205)。これにより、軸方向と周方向の双方でピントの合った、再構成画像が生成されることとなる。画像再構成部213は、生成した再構成画像を、検出処理部261及び結果出力部263へと出力する。
検出処理部261は、画像再構成部213により生成された再構成画像を用いて、以上説明したような欠陥検出処理を実施する(ステップS207)。これにより、円筒内面に存在する各種の欠陥が検出されることとなる。検出処理部261は、円筒内面に関する欠陥検出結果を、結果出力部263へと出力する。
結果出力部263は、画像再構成部213により生成された再構成画像、及び、検出処理部261により生成された欠陥検出結果に関する情報を出力する(ステップS209)。これにより、円筒内面検査装置15の利用者は、着目している円筒内面の検査結果を、その場で把握することが可能となる。
以上、本実施形態に係る円筒内面検査方法の流れの一例を、簡単に説明した。
(ハードウェア構成について)
次に、図22を参照しながら、本実施形態に係る演算処理装置200,250のハードウェア構成について、詳細に説明する。図22は、本発明の実施形態に係る演算処理装置200,250のハードウェア構成を説明するためのブロック図である。
演算処理装置200,250は、主に、CPU901と、ROM903と、RAM905と、を備える。また、演算処理装置200,250は、更に、バス907と、入力装置909と、出力装置911と、ストレージ装置913と、ドライブ915と、接続ポート917と、通信装置919とを備える。
CPU901は、中心的な処理装置及び制御装置として機能し、ROM903、RAM905、ストレージ装置913、又はリムーバブル記録媒体921に記録された各種プログラムに従って、演算処理装置200,250内の動作全般又はその一部を制御する。ROM903は、CPU901が使用するプログラムや演算パラメータ等を記憶する。RAM905は、CPU901が使用するプログラムや、プログラムの実行において適宜変化するパラメータ等を一次記憶する。これらはCPUバス等の内部バスにより構成されるバス907により相互に接続されている。
バス907は、ブリッジを介して、PCI(Peripheral Component Interconnect/Interface)バスなどの外部バスに接続されている。
入力装置909は、例えば、マウス、キーボード、タッチパネル、ボタン、スイッチ及びレバーなどユーザが操作する操作手段である。また、入力装置909は、例えば、赤外線やその他の電波を利用したリモートコントロール手段(いわゆる、リモコン)であってもよいし、演算処理装置200,250の操作に対応したPDA等の外部接続機器923であってもよい。更に、入力装置909は、例えば、上記の操作手段を用いてユーザにより入力された情報に基づいて入力信号を生成し、CPU901に出力する入力制御回路などから構成されている。ユーザは、この入力装置909を操作することにより、演算処理装置200,250に対して各種のデータを入力したり処理動作を指示したりすることができる。
出力装置911は、取得した情報をユーザに対して視覚的又は聴覚的に通知することが可能な装置で構成される。このような装置として、CRTディスプレイ装置、液晶ディスプレイ装置、プラズマディスプレイ装置、ELディスプレイ装置及びランプなどの表示装置や、スピーカ及びヘッドホンなどの音声出力装置や、プリンタ装置、携帯電話、ファクシミリなどがある。出力装置911は、例えば、演算処理装置200,250が行った各種処理により得られた結果を出力する。具体的には、表示装置は、演算処理装置200,250が行った各種処理により得られた結果を、テキスト又はイメージで表示する。他方、音声出力装置は、再生された音声データや音響データ等からなるオーディオ信号をアナログ信号に変換して出力する。
ストレージ装置913は、演算処理装置200,250の記憶部の一例として構成されたデータ格納用の装置である。ストレージ装置913は、例えば、HDD(Hard Disk Drive)等の磁気記憶部デバイス、半導体記憶デバイス、光記憶デバイス、又は光磁気記憶デバイス等により構成される。このストレージ装置913は、CPU901が実行するプログラムや各種データ、及び外部から取得した各種のデータなどを格納する。
ドライブ915は、記録媒体用リーダライタであり、演算処理装置200,250に内蔵、あるいは外付けされる。ドライブ915は、装着されている磁気ディスク、光ディスク、光磁気ディスク、又は半導体メモリ等のリムーバブル記録媒体921に記録されている情報を読み出して、RAM905に出力する。また、ドライブ915は、装着されている磁気ディスク、光ディスク、光磁気ディスク、又は半導体メモリ等のリムーバブル記録媒体921に記録を書き込むことも可能である。リムーバブル記録媒体921は、例えば、CDメディア、DVDメディア、Blu−ray(登録商標)メディア等である。また、リムーバブル記録媒体921は、コンパクトフラッシュ(登録商標)(CompactFlash:CF)、フラッシュメモリ、又は、SDメモリカード(Secure Digital memory card)等であってもよい。また、リムーバブル記録媒体921は、例えば、非接触型ICチップを搭載したICカード(Integrated Circuit card)又は電子機器等であってもよい。
接続ポート917は、機器を演算処理装置200,250に直接接続するためのポートである。接続ポート917の一例として、USB(Universal Serial Bus)ポート、IEEE1394ポート、SCSI(Small Computer System Interface)ポート、RS−232Cポート等がある。この接続ポート917に外部接続機器923を接続することで、演算処理装置200,250は、外部接続機器923から直接各種のデータを取得したり、外部接続機器923に各種のデータを提供したりする。
通信装置919は、例えば、通信網925に接続するための通信デバイス等で構成された通信インターフェースである。通信装置919は、例えば、有線もしくは無線LAN(Local Area Network)、Bluetooth(登録商標)、又はWUSB(Wireless USB)用の通信カード等である。また、通信装置919は、光通信用のルータ、ADSL(Asymmetric Digital Subscriber Line)用のルータ、又は、各種通信用のモデム等であってもよい。この通信装置919は、例えば、インターネットや他の通信機器との間で、例えばTCP/IP等の所定のプロトコルに則して信号等を送受信することができる。また、通信装置919に接続される通信網925は、有線又は無線によって接続されたネットワーク等により構成され、例えば、インターネット、家庭内LAN、社内LAN、赤外線通信、ラジオ波通信又は衛星通信等であってもよい。
以上、本発明の実施形態に係る演算処理装置200,250の機能を実現可能なハードウェア構成の一例を示した。上記の各構成要素は、汎用的な部材を用いて構成されていてもよいし、各構成要素の機能に特化したハードウェアにより構成されていてもよい。従って、本実施形態を実施する時々の技術レベルに応じて、適宜、利用するハードウェア構成を変更することが可能である。
以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
10 円筒内面観察装置
15 円筒内面検査装置
100 光線情報取得装置
101 照明光源
103 ライトフィールドカメラ
105 光線取得光学系
111 基台
113 発光素子
121 円錐ミラー
123 円錐プリズム
200,250 演算処理装置
201 光線情報取得制御部
203,251 画像処理部
205 表示制御部
207 記憶部
211 極座標変換部
213 画像再構成部
215,263 結果出力部
261 検出処理部

Claims (8)

  1. 円筒の内面に対して照明光を照射して、当該照明光の照射された前記円筒内面からの反射光の光線情報を取得する光線情報取得装置と、
    前記光線情報取得装置により生成された前記光線情報に対して、所定の処理を施して前記円筒内面の像を再構成する演算処理装置と、
    を備え、
    前記光線情報取得装置は、
    前記円筒内面の全周にわたって前記照明光を照射する照明光源と、
    前記円筒内面から入射する光の入射位置及び入射方向毎の強度である前記光線情報を記録するセンサと、当該センサへ入射する光の合焦位置を調整するレンズ系と、を有し、前記円筒内面からの前記光線情報を取得するライトフィールドカメラと、
    円錐プリズム又は円錐ミラーを少なくとも有し、前記円筒内面での前記照明光の反射光を前記ライトフィールドカメラへ導く光線取得光学系と、
    を有しており、
    前記演算処理装置は、
    直交座標系で表わされた前記光線情報を、前記円筒の径方向を動径方向とした極座標系へと変換する極座標変換部と、
    前記極座標系へと変換された前記光線情報を用いて再構成した画像が、前記円筒の軸方向と、前記円筒の周方向との両方で合焦状態となるように画像再構成処理を実施する、画像再構成部と、
    を有する、円筒内面観察装置。
  2. 前記ライトフィールドカメラの前記レンズ系の焦点位置は、前記円筒の軸方向のみが合焦状態となる焦点位置と、前記円筒の周方向のみが合焦状態となる焦点位置と、の間に設定されており、
    前記画像再構成部は、前記動径方向及び偏角方向の焦点位置をそれぞれ所定量変化させて、前記画像再構成処理を実施する、請求項1に記載の円筒内面観察装置。
  3. 前記極座標変換部は、前記極座標系への変換に際して、前記極座標系での前記反射光の入射位置及び入射方向毎の強度を、前記直交座標系での対応する入射位置及び入射方向の近傍の前記反射光の入射位置及び入射方向の強度から、画像補間処理により算出する、請求項1又は2に記載の円筒内面観察装置。
  4. 前記照明光源は、複数の光源が円環状に配置された円環状光源であり、
    前記円錐プリズム又は円錐ミラーと、前記複数の光源とは、前記円筒と同心となるように設けられており、
    前記円錐プリズム又は円錐ミラーは、当該円錐プリズム又は円錐ミラーにおける前記照明光の反射光の到達位置が前記円環状光源よりも前記円筒の奥行方向前方に位置するように、設けられている、請求項1〜3の何れか1項に記載の円筒内面観察装置。
  5. 前記光線情報取得装置のうち少なくとも前記照明光源及び前記光線取得光学系が、前記円筒の内部へと挿入される、請求項1〜4の何れか1項に記載の円筒内面観察装置。
  6. 円筒の内面に対して照明光を照射して、当該照明光の照射された前記円筒内面からの反射光の光線情報を取得するものであり、前記円筒内面の全周にわたって前記照明光を照射する照明光源と、前記円筒内面から入射する光の入射位置及び入射方向毎の強度である前記光線情報を記録するセンサと、当該センサへ入射する光の合焦位置を調整するレンズ系と、を有し、前記円筒内面からの前記光線情報を取得するライトフィールドカメラと、円錐プリズム又は円錐ミラーを少なくとも有し、前記円筒内面での前記照明光の反射光を前記ライトフィールドカメラへ導く光線取得光学系と、を有する光線情報取得装置により、前記円筒内面からの前記照明光の反射光の光線情報を取得するステップと、
    直交座標系で表わされた前記光線情報を、前記円筒の径方向を動径方向とした極座標系へと変換するステップと、
    前記極座標系へと変換された前記光線情報を用いて再構成した画像が、前記円筒の軸方向と、前記円筒の周方向との両方で合焦状態となるように画像再構成処理を実施するステップと、
    を含む、円筒内面観察方法。
  7. 円筒の内面に対して照明光を照射して、当該照明光の照射された前記円筒内面からの反射光の光線情報を取得する光線情報取得装置と、
    前記光線情報取得装置により生成された前記光線情報に対して、所定の処理を施して、前記円筒内面の欠陥検査を行う演算処理装置と、
    を備え、
    前記光線情報取得装置は、
    前記円筒内面の全周にわたって前記照明光を照射する照明光源と、
    前記円筒内面から入射する光の入射位置及び入射方向毎の強度である前記光線情報を記録するセンサと、当該センサへ入射する光の合焦位置を調整するレンズ系と、を有し、前記円筒内面からの前記光線情報を取得するライトフィールドカメラと、
    円錐プリズム又は円錐ミラーを少なくとも有し、前記円筒内面での前記照明光の反射光を前記ライトフィールドカメラへ導く光線取得光学系と、
    を有しており、
    前記演算処理装置は、
    直交座標系で表わされた前記光線情報を、前記円筒の径方向を動径方向とした極座標系へと変換する極座標変換部と、
    前記極座標系へと変換された前記光線情報を用いて再構成した画像が、前記円筒の軸方向と、前記円筒の周方向との両方で合焦状態となるように画像再構成処理を実施する、画像再構成部と、
    再構成された前記画像を用いて、前記円筒内面に存在する欠陥を検出する検出処理部と、
    を有する、円筒内面検査装置。
  8. 円筒の内面に対して照明光を照射して、当該照明光の照射された前記円筒内面からの反射光の光線情報を取得するものであり、前記円筒内面の全周にわたって前記照明光を照射する照明光源と、前記円筒内面から入射する光の入射位置及び入射方向毎の強度である前記光線情報を記録するセンサと、当該センサへ入射する光の合焦位置を調整するレンズ系と、を有し、前記円筒内面からの前記光線情報を取得するライトフィールドカメラと、円錐プリズム又は円錐ミラーを少なくとも有し、前記円筒内面での前記照明光の反射光を前記ライトフィールドカメラへ導く光線取得光学系と、を有する光線情報取得装置により、前記円筒内面からの前記照明光の反射光の光線情報を取得するステップと、
    直交座標系で表わされた前記光線情報を、前記円筒の径方向を動径方向とした極座標系へと変換するステップと、
    前記極座標系へと変換された前記光線情報を用いて再構成した画像が、前記円筒の軸方向と、前記円筒の周方向との両方で合焦状態となるように画像再構成処理を実施するステップと、
    再構成された前記画像を用いて、前記円筒内面に存在する欠陥を検出する検出処理ステップと、
    を含む、円筒内面検査方法。

JP2016139522A 2016-07-14 2016-07-14 円筒内面観察装置、円筒内面観察方法、円筒内面検査装置及び円筒内面検査方法 Active JP6922166B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016139522A JP6922166B2 (ja) 2016-07-14 2016-07-14 円筒内面観察装置、円筒内面観察方法、円筒内面検査装置及び円筒内面検査方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016139522A JP6922166B2 (ja) 2016-07-14 2016-07-14 円筒内面観察装置、円筒内面観察方法、円筒内面検査装置及び円筒内面検査方法

Publications (2)

Publication Number Publication Date
JP2018009894A true JP2018009894A (ja) 2018-01-18
JP6922166B2 JP6922166B2 (ja) 2021-08-18

Family

ID=60995378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016139522A Active JP6922166B2 (ja) 2016-07-14 2016-07-14 円筒内面観察装置、円筒内面観察方法、円筒内面検査装置及び円筒内面検査方法

Country Status (1)

Country Link
JP (1) JP6922166B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110087067A (zh) * 2019-05-20 2019-08-02 奥普特视觉科技(苏州)有限公司 一种基于同轴光源的多路成像检测设备及其使用方法
WO2019219956A1 (en) * 2018-05-18 2019-11-21 Ab Sandvik Materials Technology Tube inspection system
CN111727368A (zh) * 2018-02-14 2020-09-29 株式会社斯库林集团 检查装置、检查方法、片剂印刷装置以及片剂印刷方法
CN112305836A (zh) * 2019-08-02 2021-02-02 爱帝科林塞体系株式会社 圆筒内周面拍摄装置
CN112858306A (zh) * 2021-01-11 2021-05-28 合肥富煌君达高科信息技术有限公司 一种内径螺旋扫描缺陷检测装置
WO2021159333A1 (en) * 2020-02-12 2021-08-19 Abb Schweiz Ag Apparatus for detecting surface condition of object and method for manufacturing apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02103010A (ja) * 1988-04-28 1990-04-16 Olympus Optical Co Ltd 管内観察用内視鏡光学系
JPH06292204A (ja) * 1993-04-05 1994-10-18 Electric Power Dev Co Ltd ボアホールテレビカメラ装置の影像処理方式
JP2000337887A (ja) * 1999-05-25 2000-12-08 Mitsubishi Electric Corp 移動体の自己位置標定装置
WO2014205281A2 (en) * 2013-06-19 2014-12-24 The General Hospital Corporation Omni-directional viewing apparatus
JP2015138263A (ja) * 2014-01-24 2015-07-30 富士フイルム株式会社 レンズモジュール及び撮像モジュール並びに撮像装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02103010A (ja) * 1988-04-28 1990-04-16 Olympus Optical Co Ltd 管内観察用内視鏡光学系
JPH06292204A (ja) * 1993-04-05 1994-10-18 Electric Power Dev Co Ltd ボアホールテレビカメラ装置の影像処理方式
JP2000337887A (ja) * 1999-05-25 2000-12-08 Mitsubishi Electric Corp 移動体の自己位置標定装置
WO2014205281A2 (en) * 2013-06-19 2014-12-24 The General Hospital Corporation Omni-directional viewing apparatus
JP2015138263A (ja) * 2014-01-24 2015-07-30 富士フイルム株式会社 レンズモジュール及び撮像モジュール並びに撮像装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111727368A (zh) * 2018-02-14 2020-09-29 株式会社斯库林集团 检查装置、检查方法、片剂印刷装置以及片剂印刷方法
WO2019219956A1 (en) * 2018-05-18 2019-11-21 Ab Sandvik Materials Technology Tube inspection system
CN110087067A (zh) * 2019-05-20 2019-08-02 奥普特视觉科技(苏州)有限公司 一种基于同轴光源的多路成像检测设备及其使用方法
CN112305836A (zh) * 2019-08-02 2021-02-02 爱帝科林塞体系株式会社 圆筒内周面拍摄装置
JP2021025842A (ja) * 2019-08-02 2021-02-22 株式会社エデックリンセイシステム 円筒内面撮像装置
WO2021159333A1 (en) * 2020-02-12 2021-08-19 Abb Schweiz Ag Apparatus for detecting surface condition of object and method for manufacturing apparatus
CN112858306A (zh) * 2021-01-11 2021-05-28 合肥富煌君达高科信息技术有限公司 一种内径螺旋扫描缺陷检测装置

Also Published As

Publication number Publication date
JP6922166B2 (ja) 2021-08-18

Similar Documents

Publication Publication Date Title
JP2018009894A (ja) 円筒内面観察装置、円筒内面観察方法、円筒内面検査装置及び円筒内面検査方法
JP5742655B2 (ja) 欠陥検出装置及び欠陥検出方法
KR102195029B1 (ko) 결함 분류 장치 및 결함 분류 방법
JP6515344B2 (ja) 欠陥検出装置及び欠陥検出方法
JP6447728B2 (ja) 被検査体撮像装置、被検査体撮像方法、表面検査装置及び表面検査方法
JP5001286B2 (ja) 対象物再構成方法およびシステム
JP6696278B2 (ja) ドリフト検査装置
JP2019158499A (ja) 外観検査システム、設定装置、画像処理装置、設定方法およびプログラム
JP6481216B1 (ja) 管状体内表面検査方法及び管状体内表面検査装置
WO2019076192A1 (zh) 图像重建方法、装置及显微成像装置
JP6481217B1 (ja) 管状体内表面検査装置及び管状体内表面検査方法
JP2018088321A (ja) 走査透過電子顕微鏡および画像生成方法
JP2005077411A (ja) 部品の構造化光プロファイルに関する画像処理方法及びシステム
US10466184B2 (en) Providing image data
JP6149717B2 (ja) 撮像装置及び撮像方法
JP2016109458A (ja) 円筒内壁面検査装置および円筒内壁面検査方法
KR102129069B1 (ko) 스캐닝 홀로그램 기반 자동광학검사 장치 및 방법
JP6563517B2 (ja) 顕微鏡観察システム、顕微鏡観察方法、及び顕微鏡観察プログラム
JP5796511B2 (ja) 管状体検査装置及び管状体検査方法
US10741358B2 (en) Electron microscope
KR20180049395A (ko) 비가시광 적외선 다점 레이저빔과 적외선 카메라 영상기반 물체의 3차원 미세진동 측정에 의한 음원 진단 방법 및 장치
JP2010164635A (ja) 共焦点顕微鏡
KR101711708B1 (ko) Oct 영상에서 영역의 중심점 검출 방법 및 그 장치
CN115356858B (zh) 一种用于生成角膜地形图的方法、设备及介质
JP2014142213A (ja) 撮影パラメータ決定装置及びその制御方法

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190208

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190306

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210712

R151 Written notification of patent or utility model registration

Ref document number: 6922166

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151