JP2018006557A - 記憶装置 - Google Patents

記憶装置 Download PDF

Info

Publication number
JP2018006557A
JP2018006557A JP2016130946A JP2016130946A JP2018006557A JP 2018006557 A JP2018006557 A JP 2018006557A JP 2016130946 A JP2016130946 A JP 2016130946A JP 2016130946 A JP2016130946 A JP 2016130946A JP 2018006557 A JP2018006557 A JP 2018006557A
Authority
JP
Japan
Prior art keywords
region
conductive layer
impurity concentration
layer
storage device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016130946A
Other languages
English (en)
Inventor
善己 鎌田
Yoshiki Kamata
善己 鎌田
浅尾 吉昭
Yoshiaki Asao
吉昭 浅尾
巌 國島
Iwao Kunishima
巌 國島
美砂子 諸田
Misako Morota
美砂子 諸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kioxia Corp
Original Assignee
Toshiba Memory Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Memory Corp filed Critical Toshiba Memory Corp
Priority to JP2016130946A priority Critical patent/JP2018006557A/ja
Priority to US15/635,685 priority patent/US10153429B2/en
Publication of JP2018006557A publication Critical patent/JP2018006557A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/231Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0004Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising amorphous/crystalline phase transition cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0023Address circuits or decoders
    • G11C13/0028Word-line or row circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/004Reading or sensing circuits or methods
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • H10B63/84Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays arranged in a direction perpendicular to the substrate, e.g. 3D cell arrays
    • H10B63/845Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays arranged in a direction perpendicular to the substrate, e.g. 3D cell arrays the switching components being connected to a common vertical conductor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/231Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
    • H10N70/235Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect between different crystalline phases, e.g. cubic and hexagonal
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/823Device geometry adapted for essentially horizontal current flow, e.g. bridge type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/841Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8828Tellurides, e.g. GeSbTe
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)

Abstract

【課題】隣接するメモリセルの間の相互干渉を抑制することが可能な記憶装置を提供する。
【解決手段】実施形態の記憶装置は、第1の導電層と、第2の導電層と、第1の導電層及び第2の導電層と交差する第3の導電層と、第1の導電層と第3の導電層との間に設けられ超格子構造を有する第1の領域と、第2の導電層と第3の導電層との間に設けられ超格子構造を有する第2の領域と、第1の領域と第2の領域との間に設けられ酸素(O)、フッ素(F)、炭素(C)、リン(P)、ボロン(B)、窒素(N)、水素(H)、ビスマス(Bi)、カドミウム(Cd)、亜鉛(Zn)、ガリウム(Ga)、セレン(Se)、アルミニウム(Al)、硫黄(S)、ベリリウム(Be)、インジウム(In)、及び、鉛(Pb)から成る群から選ばれる少なくとも一つの元素の濃度が第1の領域及び第2の領域よりも高い第3の領域と、を含む抵抗変化層と、を備える。
【選択図】図3

Description

本発明の実施形態は、記憶装置に関する。
抵抗変化型メモリの一つとして、超格子型相変化メモリがある。超格子型相変化メモリは、超格子構造の構造変化に伴う抵抗変化を利用する。
抵抗変化型メモリの微細化に伴い、隣接するメモリセルの間の距離が短くなり、隣接するメモリセルの間の相互干渉が問題となる。隣接するメモリセルの間の相互干渉は、誤動作の要因となる。超格子型相変化メモリも、例外ではなく、隣接するメモリセルの間の相互干渉を抑制することが望まれる。
特開2013−175570号公報
本発明が解決しようとする課題は、隣接するメモリセルの間の相互干渉を抑制することが可能な記憶装置を提供することにある。
実施形態の記憶装置は、第1の導電層と、第2の導電層と、前記第1の導電層及び前記第2の導電層と交差する第3の導電層と、前記第1の導電層と前記第3の導電層との間に設けられ超格子構造を有する第1の領域と、前記第2の導電層と前記第3の導電層との間に設けられ超格子構造を有する第2の領域と、前記第1の領域と前記第2の領域との間に設けられ酸素(O)、フッ素(F)、炭素(C)、リン(P)、ボロン(B)、窒素(N)、水素(H)、ビスマス(Bi)、カドミウム(Cd)、亜鉛(Zn)、ガリウム(Ga)、セレン(Se)、アルミニウム(Al)、硫黄(S)、ベリリウム(Be)、インジウム(In)、及び、鉛(Pb)から成る群から選ばれる少なくとも一つの元素の濃度が前記第1の領域及び前記第2の領域よりも高い第3の領域と、を含む抵抗変化層と、を備える。
第1の実施形態の記憶装置のブロック図。 第1の実施形態のメモリセルアレイの等価回路図。 第1の実施形態の記憶装置の模式断面図。 第1の実施形態の記憶装置の製造方法において、製造途中の記憶装置を示す模式断面図。 第1の実施形態の記憶装置の製造方法において、製造途中の記憶装置を示す模式断面図。 第1の実施形態の記憶装置の製造方法において、製造途中の記憶装置を示す模式断面図。 第1の実施形態の記憶装置の製造方法において、製造途中の記憶装置を示す模式断面図。 第1の実施形態の記憶装置の製造方法において、製造途中の記憶装置を示す模式断面図。 第1の実施形態の記憶装置の製造方法において、製造途中の記憶装置を示す模式断面図。 第1の実施形態の記憶装置の製造方法において、製造途中の記憶装置を示す模式断面図。 第1の実施形態の記憶装置の製造方法において、製造途中の記憶装置を示す模式断面図。 第1の実施形態の記憶装置の作用及び効果の説明図。 第1の実施形態の記憶装置の作用及び効果の説明図。 第2の実施形態のメモリセルアレイの等価回路図。 第2の実施形態の記憶装置の模式断面図。
本明細書中、「超格子構造」とは、複数の種類の結晶格子が層上に重なり合う構造を意味する。
以下、実施形態の記憶装置を、図面を参照して説明する。
(第1の実施形態)
本実施形態の記憶装置は、第1の導電層と、第2の導電層と、第1の導電層及び第2の導電層と交差する第3の導電層と、第1の導電層と第3の導電層との間に設けられ超格子構造を有する第1の領域と、第2の導電層と第3の導電層との間に設けられ超格子構造を有する第2の領域と、第1の領域と第2の領域との間に設けられ酸素(O)、フッ素(F)、炭素(C)、リン(P)、ボロン(B)、窒素(N)、水素(H)、ビスマス(Bi)、カドミウム(Cd)、亜鉛(Zn)、ガリウム(Ga)、セレン(Se)、アルミニウム(Al)、硫黄(S)、ベリリウム(Be)、インジウム(In)、及び、鉛(Pb)から成る群から選ばれる少なくとも一つの元素の濃度が第1の領域及び第2の領域よりも高い第3の領域と、を含む抵抗変化層と、を備える。
図1は、本実施形態の記憶装置のブロック図である。図2は、メモリセルアレイの等価回路図である。図2は、メモリセルアレイ内の配線構造を模式的に示す。
本実施形態の記憶装置100は、超格子型相変化メモリである。超格子型相変化メモリは、抵抗変化層内の超格子構造の構造変化に伴う抵抗変化を利用してデータを記憶する。
また、本実施形態のメモリセルアレイは、メモリセルMCが立体的に配置された三次元構造を備える。三次元構造を備えることにより、記憶装置100の集積度が向上する。
図1に示すように、記憶装置100は、メモリセルアレイ10、ワード線ドライバ回路12、ローデコーダ回路14、センスアンプ回路16、カラムデコーダ回路18、及び、制御回路20を備える。
また、図2に示すように、メモリセルアレイ10内には、複数のメモリセルMCが立体的に配置される。図2中、破線で囲まれた領域が1個のメモリセルMCに対応する。
メモリセルアレイ10は、複数のワード線WL(WL11、WL12、WL13、WL21、WL22、WL23)と複数のビット線BL(BL11、BL12、BL21、BL22)を備える。ワード線WLはy方向に伸長する。ビット線BLはz方向に伸長する。ワード線WLとビット線BLは垂直に交差する。ワード線WLとビット線BLとの交差部に、メモリセルMCが配置される。
複数のワード線WLは、ローデコーダ回路14に電気的に接続される。複数のビット線BLは、センスアンプ回路16に接続される。複数のビット線BLとセンスアンプ回路16との間には選択トランジスタST(ST11、ST21、ST12、ST22)とグローバルビット線GBL(GBL1、GBL2)が設けられる。
ローデコーダ回路14は、入力されたローアドレス信号に従ってワード線WLを選択する機能を備える。ワード線ドライバ回路12は、ローデコーダ回路14によって選択されたワード線WLに所定の電圧を印加する機能を備える。
カラムデコーダ回路18は、入力されたカラムアドレス信号に従ってビット線BLを選択する機能を備える。センスアンプ回路16は、カラムデコーダ回路18によって選択されたビット線BLに所定の電圧を印加する機能を備える。また、選択されたワード線WLと選択されたビット線BLとの間に流れる電流を検知して増幅する機能を備える。
制御回路20は、ワード線ドライバ回路12、ローデコーダ回路14、センスアンプ回路16、カラムデコーダ回路18、及び、図示しないその他の回路を制御する機能を備える。
ワード線ドライバ回路12、ローデコーダ回路14、センスアンプ回路16、カラムデコーダ回路18、制御回路20等の回路は、例えば、図示しない半導体層を用いたトランジスタや配線層によって構成される。
図3は、本実施形態の記憶装置100のメモリセルアレイ10の模式断面図である。図3は、メモリセルアレイ10の一部の断面図である。
図3は、図2におけるxz面に平行な断面図である。図3は、図2における1本のビット線BLと、その1本のビット線BLに交差する6本のワード線WLの断面を示している。図3中、破線で囲まれた領域が、1個のメモリセルMCである。
メモリセルアレイ10は、第1のワード線WL1(第1の導電層)、第2のワード線WL2(第2の導電層)、第3のワード線WL3、第4のワード線WL4、第5のワード線WL5、第6のワード線WL6、ビット線BL(第3の導電層)、抵抗変化層30、及び、絶縁層32を備える。抵抗変化層30は、低不純物濃度領域301a(第1の領域)、低不純物濃度領域301b(第2の領域)、低不純物濃度領域301c、低不純物濃度領域301d、低不純物濃度領域301e、低不純物濃度領域301fを備える。また、抵抗変化層30は、高不純物濃度領域302a(第3の領域)、高不純物濃度領域302b、高不純物濃度領域302c、高不純物濃度領域302dを備える。
以下、第1のワード線WL1(第1の導電層)、第2のワード線WL2(第2の導電層)、第3のワード線WL3、第4のワード線WL4、第5のワード線WL5、第6のワード線WL6を総称して、単にワード線WLと記述する場合がある。また、低不純物濃度領域301a(第1の領域)、低不純物濃度領域301b(第2の領域)、低不純物濃度領域301c、低不純物濃度領域301d、低不純物濃度領域301e、低不純物濃度領域301fを総称して、単に低不純物濃度領域301と記述する場合がある。また、高不純物濃度領域302a(第3の領域)、高不純物濃度領域302b、高不純物濃度領域302c、高不純物濃度領域302dを総称して、単に、高不純物濃度領域302と記述する場合がある。
ワード線WLは、導電層である。ワード線WLは、例えば、金属層である。ワード線WLは、例えば、タングステン(W)を含む。ワード線WLは、その他の金属、金属半導体化合物、又は、半導体等の導電性材料で形成されても構わない。
ビット線BLは、導電層である。ビット線BLは、例えば、金属層である。ビット線BLは、例えば、タングステン(W)を含む。ビット線BLは、その他の金属、金属半導体化合物、又は、半導体等の導電性材料で形成されても構わない。
抵抗変化層30は、少なくとも一部が、ワード線WLのそれぞれと、ビット線BLの間に設けられる。
抵抗変化層30は、例えば、連続した膜である。抵抗変化層30の膜厚は、例えば、5nm以上50nm以下である。
低不純物濃度領域301は、のワード線WLのそれぞれと、ビット線BLの間に設けられる。低不純物濃度領域301は、超格子構造を有する。
低不純物濃度領域301は、抵抗状態の変化によってデータを記憶する。また、低不純物濃度領域301a〜301fは、電圧又は電流の印加によってデータの書き換えが可能である。抵抗変化層30は、電圧又は電流の印加によって高抵抗状態と抵抗状態との間を遷移する。例えば、高抵抗状態をデータ“0”、低抵抗状態をデータ“1”と定義する。メモリセルMCは“0”と“1”の1ビットデータを記憶する。
例えば、第1のワード線WL1とビット線BLとの間に、電圧を印加することで、低不純物濃度領域301aの抵抗状態を変化させることが可能である。
低不純物濃度領域301は、例えば、第1のカルコゲン化合物から成る第1の結晶層と、第1のカルコゲン化合物とは異なる第2のカルコゲン化合物から成る第2の結晶層とが、交互に積層された超格子構造を備える。
カルコゲン化合物は、硫黄(S)、セレン(Se)及びテルル(Te)からなる群より選択された1種以上のカルコゲン元素を含む化合物である。
第1のカルコゲン化合物は、例えば、SbTeであり、第1の結晶層は、例えば、SbTe層である。また、第2のカルコゲン化合物は、例えば、GeTeであり、第2の結晶層は、例えば、GeTe層である。この場合、低不純物濃度領域301は、ゲルマニウム(Ge)、アンチモン(Sb)、テルル(Te)を含む化合物である。
低不純物濃度領域301は、電圧又は電流の印加により、超格子構造が変化し、高抵抗状態と低抵抗状態が遷移する。
高不純物濃度領域302は、低不純物濃度領域301のいずれか2つの間に設けられる。例えば、高不純物濃度領域302aは、低不純物濃度領域301aと低不純物濃度領域301bとの間に設けられる。
高不純物濃度領域302は、例えば、SbTe層とGeTe層とが、交互に積層される超格子構造を備える。高不純物濃度領域302は、例えば、ゲルマニウム(Ge)、アンチモン(Sb)、テルル(Te)を含む化合物である。高不純物濃度領域302は、非晶質であっても構わない。
高不純物濃度領域302は、酸素(O)、フッ素(F)、炭素(C)、リン(P)、ボロン(B)、窒素(N)、水素(H)、ビスマス(Bi)、カドミウム(Cd)、亜鉛(Zn)、ガリウム(Ga)、セレン(Se)、アルミニウム(Al)、硫黄(S)、ベリリウム(Be)、インジウム(In)、及び、鉛(Pb)から成る群から選ばれる少なくとも一つの元素Xを不純物として含む。高不純物濃度領域302中の元素Xの濃度は、低不純物濃度領域301中の元素Xの濃度よりも高い。
高不純物濃度領域302中の元素Xの濃度は、例えば、1×1016cm−3以上1×1020cm−3以下である。高不純物濃度領域302中の元素Xの濃度は、例えば、低不純物濃度領域301中の元素Xの濃度よりも一桁以上高い。
高不純物濃度領域302の電気抵抗率は、低不純物濃度領域301の電気抵抗率よりも高い。高不純物濃度領域302の電気抵抗率は、例えば、低不純物濃度領域301の電気抵抗率の10倍以上である。
絶縁層32は、ワード線WLのそれぞれの間に設けられる。絶縁層32は、ワード線WLのそれぞれの間を電気的に分離する機能を備える。
絶縁層32には、元素Xが絶縁層32の主要構成元素又は不純物元素として含まれる。絶縁層32中の元素Xの濃度は、例えば、低不純物濃度領域301中の元素Xの濃度よりも高い。
絶縁層32は、例えば、酸化シリコン、又は、酸窒化シリコンである。
なお、抵抗変化層30が超格子構造を備えるか否か、非晶質であるか否かは、例えば、STEM(Scanning Transmission Electron Microscopy)により判定することが可能である。また、抵抗変化層30に含まれる元素、絶縁層32に含まれる元素は、EDX(Energy Dispersive X−ray spectroscopy)により、同定することが可能である。また、抵抗変化層30に含まれる元素、絶縁層32に含まれる元素の濃度の大小関係は、例えば、EDXにより判断することが可能である。また、抵抗変化層30に含まれる元素、絶縁層32に含まれる元素の濃度は、EELS(Electron Energy−Loss Spectroscopy)により測定することが可能である。
次に、本実施形態の記憶装置100の製造方法、特に、メモリセルアレイ10の製造方法について説明する。図4〜図10は、第1の実施形態の記憶装置の製造方法において、製造途中の記憶装置を示す模式断面図である。
図4(a)〜図10(a)は、メモリセルアレイ10の一部の断面図である。図4(a)〜図10(a)は、図3に示す座標軸におけるxz面に平行な断面である。
図4(b)〜図10(b)は、図4(a)〜図10(a)の上面図である。図4(b)〜図10(b)は、図3に示す座標軸におけるxy面に平行な面である。図4(a)〜図10(a)は、それぞれ、図4(b)〜図10(b)のAA’断面に相当する。
まず、図3の絶縁層32の一部となる絶縁膜32aと、ワード線WLとなる金属膜33とが交互にz方向に積層される積層体40を形成する(図4)。絶縁膜32aには、酸素(O)、フッ素(F)、炭素(C)、リン(P)、ボロン(B)、窒素(N)、水素(H)、ビスマス(Bi)、カドミウム(Cd)、亜鉛(Zn)、ガリウム(Ga)、セレン(Se)、アルミニウム(Al)、硫黄(S)、ベリリウム(Be)、インジウム(In)、及び、鉛(Pb)から成る群から選ばれる少なくとも一つの元素Xが含まれる。
例えば、絶縁膜32a及び金属膜33を、CVD(Chemical Vapor Deposition)法やスパッタ法により交互に堆積することにより、積層体40が形成される。
次に、リソグラフィー法とRIE(Reactive Ion Etching)法により、絶縁膜32a及び金属膜33をパターニングする(図5)。パターニングにより溝41が形成される。溝41により金属膜33が分断され、y方向に延伸するワード線WLが形成される。
次に、絶縁膜32bの堆積により、溝41を埋め込む。その後、CMP(Chemical Mechanical Polishing)を用いて、絶縁膜32bの平坦化を行う(図6)。絶縁膜32bには、酸素(O)、フッ素(F)、炭素(C)、リン(P)、ボロン(B)、窒素(N)、水素(H)、ビスマス(Bi)、カドミウム(Cd)、亜鉛(Zn)、ガリウム(Ga)、セレン(Se)、アルミニウム(Al)、硫黄(S)、ベリリウム(Be)、インジウム(In)、及び、鉛(Pb)から成る群から選ばれる少なくとも一つの元素Xが含まれる。
次に、絶縁膜32bに、z方向に伸長する開口部42を形成する(図7)。開口部42は、例えば、円筒形状である。開口部42の側面に、ワード線WLが露出するよう開口部42は形成される。開口部42は、例えば、リソグラフィー法とRIE法により形成される。
次に、開口部42の側面に、抵抗変化層30を形成する(図8)。抵抗変化層30は、超格子構造を有する結晶質の膜である。抵抗変化層30は、例えば、CVD法やALD(Atomic Layer Deposition)法により形成される。
なお、抵抗変化層30の結晶性を向上させる観点から、抵抗変化層30の堆積前に、シード層の形成を行っても構わない。シード層は、例えば、非晶質のシリコン膜、非晶質のゲルマニウム膜、窒化チタン膜、窒化チタンや窒化タングステン等の金属窒化膜、炭化タンタル等の金属炭化物膜、タングステンシリサイド等の金属シリサイド膜、又は、タングステン膜である。
次に、開口部42を埋め込むように、ビット線BLを形成する(図9)。ビット線BLは、開口部42にCVD法で金属膜を埋め込むことで形成される。ビット線BLはz方向に伸長する。
次に、熱処理を行い、絶縁膜32a及び絶縁膜32b中の元素Xを、抵抗変化層30の一部に拡散させる(図10)。抵抗変化層30中の元素Xが拡散された領域が、高不純物濃度領域302となる。
図11は、図10同様、熱処理を行い、絶縁膜32a及び絶縁膜32b中の元素Xを、抵抗変化層30の一部に拡散させた後の模式断面図である。図11(a)は、図10(a)と同一の断面図である。図11(b)は、図11(a)のBB’断面に相当する。
図11(b)に示すように、2本のWLに挟まれた抵抗変化層30の一部にも、絶縁膜32bから元素Xが拡散されることにより、高不純物濃度領域302が形成される。
熱処理は、例えば、非酸化性雰囲気中で行う。熱処理は、例えば、300℃以上450℃以下で行う。
熱処理に伴う元素Xの拡散により、高不純物濃度領域302が非晶質化しても構わない。
以上の製造方法により、記憶装置100が製造される。
次に、本実施形態の記憶装置100の作用及び効果について説明する。
図12、図13は、本実施形態の記憶装置100の作用及び効果の説明図である。図12は、比較形態の記憶装置のメモリセルアレイ90の模式断面図である。図13は、本実施形態の記憶装置のメモリセルアレイ90の模式断面図である。比較形態の記憶装置のメモリセルアレイ90は、高濃度不純物領域を備えない点で、本実施形態の記憶装置100のメモリセルアレイ10と異なっている。
図12(b)は、図12(a)のBB’断面に相当する。図13(b)は、図13(a)のBB’断面に相当する。
比較形態のメモリセルアレイ90の場合、抵抗変化層30は、超格子構造を備える結晶質の連続する膜である。この場合、抵抗変化層30の導電性が高くなるため、縦方向に隣接するワード線WL間に位置する抵抗変化層30の電気抵抗(図12(a)中のR1)が低くなる。また、横方向に隣接するワード線WL間に位置する抵抗変化層30の電気抵抗(図12(b)中のR2)が低くなる。したがって、隣接する2個のメモリセルMCの間に相互干渉が生ずる恐れがある。隣接する2個のメモリセルMCの間に相互干渉が生ずると、メモリ動作の誤動作が生ずる恐れがある。
例えば、隣接するワード線WL間がショートし、所望のメモリセルMCへの書き込み、所望のメモリセルMCの消去、又は、所望のメモリセルMCの読み出しができなくなる恐れがある。
本実施形態の記憶装置100は、図13に示すように、隣接するワード線WL間に位置する抵抗変化層30は、元素Xを高濃度に含む高不純物濃度領域302となっている。このため、隣接するワード線WL間に位置する抵抗変化層30の電気抵抗(図13(a)中のR1、及び、図13(b)中のR2)が高くなる。したがって、隣接する2個のメモリセルMCの間の相互干渉が抑制される。よって、メモリ動作の誤動作が抑制され、安定して動作する記憶装置100が実現される。
元素Xは、例えば、絶縁層32(絶縁膜32a、絶縁膜32b)からの拡散により、高不純物濃度領域302に導入される。
例えば、元素Xが酸素(O)の場合、高不純物濃度領域302に、電気抵抗率の高い酸化物が形成される。このため、高不純物濃度領域302の電気抵抗率が増大する。元素Xが酸素(O)の場合、絶縁層32として、例えば、酸化シリコン、又は、酸窒化シリコンが用いられる。
例えば、元素Xがフッ素(F)の場合、電気陰性度が高いフッ素がテルル(Te)欠損起因のダングリングボンドを終端しTe欠損起因で発生する正孔濃度が減少する。したがって、高不純物濃度領域302の電気抵抗率が増大する。元素Xがフッ素(F)の場合、絶縁層32として、例えば、フッ素を含む、酸化弗化シリコン(SiOF)、窒化弗化シリコン(SiNF)、又は、酸窒化弗化シリコン(SiONF)が用いられる。
例えば、元素Xが炭素(C)の場合、炭素がテルル(Te)欠損起因のダングリングボンドを終端しTe欠損起因で発生する正孔濃度が減少する。したがって、高不純物濃度領域302の電気抵抗率が増大する。元素Xが炭素(C)の場合、絶縁層32として、例えば、炭素を含む、酸化炭化シリコン(SiOC)、窒化炭化シリコン(SiCN)、又は、酸窒化炭化シリコン(SiOCN)が用いられる。
例えば、元素Xがリン(P)の場合、高不純物濃度領域302では、リン(P)がキャリアの散乱源となり、キャリアの移動度が低下する。このため、高不純物濃度領域302の電気抵抗率が増大する。元素Xがリン(P)の場合、絶縁層32として、例えば、PSG(Phosho Silicate Glass)又はBPSG(Boro−Phosho Silicate Glass)が用いられる。
例えば、元素Xがボロン(B)の場合、高不純物濃度領域302では、ボロン(B)がキャリアの散乱源となり、キャリアの移動度が低下する。このため、高不純物濃度領域302a〜302dの電気抵抗率が増大する。元素Xがボロン(B)の場合、絶縁層32として、例えば、BSG(Boro Silicate Glass)又はBPSG(Boro−Phosho Silicate Glass)が用いられる。
例えば、元素Xが窒素(N)の場合、高不純物濃度領域302には、電気抵抗率の高い窒化物が形成される。このため、高不純物濃度領域302の電気抵抗率が増大する。
抵抗変化層30が、SbTe層とGeTe層との積層構造を含む場合、SbTe層中のテルル(Te)欠損により、SbTe層はp型半導体となる。例えば、元素Xが窒素(N)の場合、窒素がテルル(Te)欠損起因のダングリングボンドを終端しTe欠損起因で発生する正孔濃度が減少する。したがって、高不純物濃度領域302の電気抵抗率が増大する。元素Xが窒素(N)の場合、絶縁層32として、例えば、窒化シリコン、又は、酸窒化シリコンが用いられる。
例えば、元素Xが水素(H)の場合、水素がテルル(Te)欠損起因のダングリングボンドを終端しTe欠損起因で発生する正孔濃度が減少する。したがって、高不純物濃度領域302の電気抵抗率が増大する。元素Xが水素(H)の場合、絶縁層32として、例えば、水素を含む、酸化シリコン、窒化シリコン、又は、酸窒化シリコンが用いられる。
上述のように、抵抗変化層30が、SbTe層とGeTe層との積層構造を含む場合、SbTe層中のテルル(Te)欠損により、SbTe層はp型半導体となる。
例えば、元素Xがビスマス(Bi)の場合、SbTe層のアンチモン(Sb)がビスマス(Bi)で置換され、高不純物濃度領域302にBiTeが形成される。BiTeは、n型半導体であるため、高不純物濃度領域302の電気抵抗率が増大する。元素Xがビスマス(Bi)の場合、絶縁層32として、例えば、ビスマスを含む酸化シリコンが用いられる。
例えば、元素Xがカドミウム(Cd)、亜鉛(Zn)、ガリウム(Ga)、セレン(Se)、アルミニウム(Al)、又は、硫黄(S)である場合、元素Xは、SbTe層中のテルル(Te)を置換し、アンチモンとの化合物を形成する。元素Xとアンチモンとの化合物は、SbTeよりもバンドギャップが大きい。したがって、高不純物濃度領域302の電気抵抗率が増大する。
特に、元素Xが、テルル(Te)と同じ価数であるセレン(Se)又は硫黄(S)である場合、テルル(Te)を容易に置換しSbTe結晶構造と同じSbTe3−y結晶構造となるため、望ましい。
元素Xがカドミウム(Cd)、亜鉛(Zn)、ガリウム(Ga)、セレン(Se)、アルミニウム(Al)、又は、硫黄(S)である場合、絶縁層32として、例えば、カドミウム、亜鉛、ガリウム、セレン、アルミニウム、又は、硫黄を含む酸化シリコンが用いられる。
例えば、元素Xがベリリウム(Be)、亜鉛(Zn)、ガリウム(Ga)、カドミウム(Cd)、インジウム(In)、又は、鉛(Pb)である場合、元素Xは、SbTe層中のアンチモン(Sb)を置換し、テルルとの化合物を形成する。元素Xとテルルとの化合物は、SbTeよりもバンドギャップが大きい。したがって、高不純物濃度領域302の電気抵抗率が増大する。元素Xがベリリウム(Be)、亜鉛(Zn)、ガリウム(Ga)、カドミウム(Cd)、インジウム(In)、又は、鉛(Pb)である場合、絶縁層32として、例えば、ベリリウム、亜鉛、ガリウム、カドミウム、インジウム、又は、鉛を含む酸化シリコンが用いられる。
高不純物濃度領域302の元素Xの濃度は、高不純物濃度領域302の電気抵抗を高くする観点から、1×1016cm−3以上であることが望ましく、1×1017cm−3以上であることがより望ましく、1×1018cm−3以上であることが更に望ましい。
高不純物濃度領域302の元素Xの濃度は、低不純物濃度領域301よりも高不純物濃度領域302の電気抵抗を高くする観点から、低不純物濃度領域301の元素Xの濃度よりも、一桁以上高いことが望ましく、二桁以上高いことがより望ましい。
また、高不純物濃度領域302の電気抵抗を高くする観点から、高不純物濃度領域302a〜302dは非晶質であることが望ましい。
本実施形態の記憶装置100は、図2、図3に示すように、ビット線BLがz方向、すなわち、垂直方向に設けられた三次元構造を備える。この場合、製造時に、隣接するワード線WL間に位置する抵抗変化層30を選択的に除去することが困難である。
したがって、本実施形態の記憶装置100の構造では、隣接するワード線WL間に位置する抵抗変化層30を、元素Xを加えることで高抵抗化し、隣接する2個のメモリセルMCの間の相互干渉を抑制することが望ましい。隣接するワード線WL間に位置する抵抗変化層30の高抵抗化は、例えば、絶縁層32から元素Xを拡散させることにより、自己整合的に実現可能である。
以上、本実施形態によれば、隣接するメモリセルMCの間の相互干渉を抑制することが可能な記憶装置100が実現できる。
(第2の実施形態)
本実施形態の記憶装置は、メモリセルアレイが二次元構造である点で、第1の実施形態と異なる。以下、第1の実施形態と重複する内容については、記述を省略する。
図14は、本実施形態の記憶装置のメモリセルアレイの等価回路図である。図15は、メモリセルアレイ内の配線構造を模式的に示す。
図14に示すように、メモリセルアレイ70内には、複数のメモリセルMCが平面的に配置される。図14中、破線で囲まれた領域が1個のメモリセルMCに対応する。
メモリセルアレイ70は、複数のワード線WLと複数のビット線BLを備える。ワード線はy方向に伸長する。ビット線BLはx方向に伸長する。ワード線WLとビット線BLは垂直に交差する。ワード線WLとビット線BLとの交差部に、メモリセルMCが配置される。メモリセルアレイ70は、いわゆるクロスポイント型のメモリセルアレイである。
図15は、図14におけるxz面に平行な断面図である。図15は、図14における1本のビット線BLと、その1本のビット線BLに交差する3本のワード線WLの断面を示している。図14中、破線で囲まれた領域が、1個のメモリセルMCである。
メモリセルアレイ70は、基板絶縁層11、第1のワード線WL1(第1の導電層)、第2のワード線WL2(第2の導電層)、第3のワード線WL3、抵抗変化層30、及び、絶縁層32を備える。抵抗変化層30は、低不純物濃度領域301a(第1の領域)、低不純物濃度領域301b(第2の領域)、低不純物濃度領域301cを備える。また、抵抗変化層30は、高不純物濃度領域302a(第3の領域)、高不純物濃度領域302bを備える。
本実施形態によれば、第1の実施形態と同様の作用により、隣接するメモリセルMCの間の相互干渉を抑制することが可能な記憶装置が実現できる。
なお、例えば、本実施形態のメモリセルアレイ70を上方向(図14、図15のz方向)に繰り返し積層することにより、三次元構造の記憶装置を実現することも可能である。更に、WL電極をWL上部のメモリセルとWL下部のメモリセルで共用することでメモリセルを高集積化できる。
第1及び第2の実施形態では、低不純物濃度領域301に含まれる超格子構造について、SbTe層とGeTe層とが、交互に積層される超格子構造を例に説明した。しかし、低不純物濃度領域301に含まれる超格子構造は、必ずしも、SbTe層とGeTe層とが、交互に積層される超格子構造に限られるものではない。抵抗状態を変化させることが可能な超格子構造であれば、その他の、超格子構造を適用することが可能である。
例えば、SbTe以外の第1のカルコゲン化合物から成る第1の結晶層と、第1のカルコゲン化合物とは異なる第2のカルコゲン化合物から成る第2の結晶層とが、交互に積層された超格子構造であっても構わない。また、例えば、第1のカルコゲン化合物から成る第1の結晶層と、第1のカルコゲン化合物とは異なるGeTe以外の第2のカルコゲン化合物から成る第2の結晶層とが、交互に積層された超格子構造であっても構わない。
例えば、SbTe以外の第1のカルコゲン化合物としては、BiTe、HfTe、CuTe、又は、SnTe等を用いることが可能である。
第1及び第2の実施形態では、ワード線WLとビット線BLに接して、抵抗変化層30が設けられる場合を例に説明したが、ワード線WLと抵抗変化層30の間、又は、ビット線BLと抵抗変化層30の間に、抵抗変化層30以外の層が挟まれても構わない。例えば、ワード線WLとビット線BL間の間に整流作用を実現するために、例えば、導電性不純物がドープされた半導体層、導電性酸化物層等を、ワード線WLと抵抗変化層30の間、又は、ビット線BLと抵抗変化層30の間に、セレクターとして抵抗変化層30に直列に挟んでも構わない。
第1及び第2の実施形態では、高抵抗状態をデータ“0”、低抵抗状態をデータ“1”と定義したが、高抵抗状態をデータ“1”、低抵抗状態をデータ“0”と定義しても構わない。
以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。例えば、一実施形態の構成要素を他の実施形態の構成要素と置き換え又は変更してもよい。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
10 メモリセルアレイ
30 抵抗変化層
32 絶縁層
100 記憶装置
301a 低不純物濃度領域(第1の領域)
301b 低不純物濃度領域(第2の領域)
302a 高不純物濃度領域(第3の領域)
WL1 第1のワード線WL1(第1の導電層)
WL2 第2のワード線WL2(第2の導電層)
BL ビット線(第3の導電層)

Claims (5)

  1. 第1の導電層と、
    第2の導電層と、
    前記第1の導電層及び前記第2の導電層と交差する第3の導電層と、
    前記第1の導電層と前記第3の導電層との間に設けられ超格子構造を有する第1の領域と、前記第2の導電層と前記第3の導電層との間に設けられ超格子構造を有する第2の領域と、前記第1の領域と前記第2の領域との間に設けられ酸素(O)、フッ素(F)、炭素(C)、リン(P)、ボロン(B)、窒素(N)、水素(H)、ビスマス(Bi)、カドミウム(Cd)、亜鉛(Zn)、ガリウム(Ga)、セレン(Se)、アルミニウム(Al)、硫黄(S)、ベリリウム(Be)、インジウム(In)、及び、鉛(Pb)から成る群から選ばれる少なくとも一つの元素の濃度が前記第1の領域及び前記第2の領域よりも高い第3の領域と、を含む抵抗変化層と、
    を備える記憶装置。
  2. 前記第1の導電層と前記第2の導電層との間に設けられ、前記少なくとも一つの元素が含まれた絶縁層を、更に備える請求項1記載の記憶装置。
  3. 前記第3の領域は、非晶質である請求項1又は請求項2記載の記憶装置。
  4. 前記抵抗変化層は、アンチモン(Sb)、テルル(Te)、及び、ゲルマニウム(Ge)を含む請求項1乃至請求項3いずれか一項記載の記憶装置。
  5. 前記第3の領域の前記少なくとも一つの元素の濃度は、1×1016cm−3以上である請求項1乃至請求項4いずれか一項記載の記憶装置。

JP2016130946A 2016-06-30 2016-06-30 記憶装置 Pending JP2018006557A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016130946A JP2018006557A (ja) 2016-06-30 2016-06-30 記憶装置
US15/635,685 US10153429B2 (en) 2016-06-30 2017-06-28 Memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016130946A JP2018006557A (ja) 2016-06-30 2016-06-30 記憶装置

Publications (1)

Publication Number Publication Date
JP2018006557A true JP2018006557A (ja) 2018-01-11

Family

ID=60806268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016130946A Pending JP2018006557A (ja) 2016-06-30 2016-06-30 記憶装置

Country Status (2)

Country Link
US (1) US10153429B2 (ja)
JP (1) JP2018006557A (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112292758A (zh) * 2018-07-10 2021-01-29 国立研究开发法人产业技术综合研究所 积层构造体及积层构造体的制造方法以及半导体装置
US10559337B1 (en) 2018-11-30 2020-02-11 Micron Technology, Inc. Vertical decoder
US10916698B2 (en) 2019-01-29 2021-02-09 Toshiba Memory Corporation Semiconductor storage device including hexagonal insulating layer
CN110571235A (zh) * 2019-08-30 2019-12-13 华中科技大学 一种三维超晶格相变存储阵列及其制备方法与应用
JP2023001408A (ja) * 2021-06-17 2023-01-06 キオクシア株式会社 半導体記憶装置
JP2023041280A (ja) 2021-09-13 2023-03-24 キオクシア株式会社 記憶装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013175570A (ja) 2012-02-24 2013-09-05 National Institute Of Advanced Industrial & Technology 半導体記憶装置およびその製造方法
JP2016063021A (ja) * 2014-09-17 2016-04-25 株式会社東芝 抵抗変化メモリ、その製造方法、及び、fet
US9893280B2 (en) * 2015-02-06 2018-02-13 Toshiba Memory Corporation Memory device
US9653681B2 (en) * 2015-03-12 2017-05-16 Kabushiki Kaisha Toshiba Semiconductor memory device

Also Published As

Publication number Publication date
US20180006216A1 (en) 2018-01-04
US10153429B2 (en) 2018-12-11

Similar Documents

Publication Publication Date Title
US10964638B2 (en) Vertical memory device including common source line structure
JP2018006557A (ja) 記憶装置
US9269426B1 (en) 3D variable resistance memory device having junction FET and driving method thereof
US9608041B2 (en) Semiconductor memory device and method of manufacturing the same
US11309492B2 (en) Multi-layer structure to increase crystalline temperature of a selector device
US8138489B2 (en) Non-volatile semiconductor storage device and method of manufacturing the same
US8890110B2 (en) Vertical memory device and method of fabricating the same
KR102370620B1 (ko) 반도체 메모리 장치 및 도전체 구조물
JP2008160004A (ja) 半導体記憶装置及びその製造方法
TWI817327B (zh) 記憶體陣列、記憶體裝置及其形成方法
TWI776411B (zh) 記憶胞、半導體裝置及其製造方法
KR20210010748A (ko) 3차원 반도체 장치
JP2019054173A (ja) 記憶装置
KR20230026608A (ko) 반도체 메모리 장치
US20240057342A1 (en) Semiconductor device
US20190088718A1 (en) Memory device
US20240114700A1 (en) Semiconductor device
US20230187548A1 (en) Semiconductor memory device
US20230354605A1 (en) Semiconductor memory device
KR20230026602A (ko) 반도체 메모리 장치
CN117119789A (zh) 半导体存储器装置
TW202125714A (zh) 使用碳系導體線的電阻式記憶體裝置及其形成方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170614

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20180911