JP2018000228A - 照明装置、照明装置の制御方法、および撮像システム - Google Patents

照明装置、照明装置の制御方法、および撮像システム Download PDF

Info

Publication number
JP2018000228A
JP2018000228A JP2016126418A JP2016126418A JP2018000228A JP 2018000228 A JP2018000228 A JP 2018000228A JP 2016126418 A JP2016126418 A JP 2016126418A JP 2016126418 A JP2016126418 A JP 2016126418A JP 2018000228 A JP2018000228 A JP 2018000228A
Authority
JP
Japan
Prior art keywords
light
amount
drive
light source
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016126418A
Other languages
English (en)
Inventor
正義 秋田
Masayoshi Akita
正義 秋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2016126418A priority Critical patent/JP2018000228A/ja
Priority to PCT/JP2017/015312 priority patent/WO2018003241A1/ja
Publication of JP2018000228A publication Critical patent/JP2018000228A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0655Control therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/26Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes using light guides

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

【課題】照明光の色温度の変動が抑制された照明装置、照明装置の制御方法、および撮像システムを提供する。
【解決手段】異なる波長域の光を出射する複数の光源と、前記光源の各々から出射された光の光量を検出する光モニタ部と、前記光モニタ部が検出した光量と、目標光量とに基づいて、前記光源の各々に印加する駆動電圧または駆動電流を算出する駆動量算出部と、前記複数の光源のうち最も応答性が低い光源の光量に基づいて、算出された前記駆動電圧または駆動電流を補正する駆動量補正部と、を備える、照明装置。
【選択図】図1

Description

本開示は、照明装置、照明装置の制御方法、および撮像システムに関する。
内視鏡または顕微鏡カメラ等の撮像システムにおいて、キセノンランプまたはハロゲンランプ等のランプ光源の替わりに、RGB(Red、Green、Blue)光源等の複数の光源を用いることが提案されている。
例えば、下記の特許文献1には、赤色レーザ光源、緑色レーザ光源および青色レーザ光源を備え、内視鏡または顕微鏡カメラ等に用いられる照明装置が開示されている。特許文献1に開示された照明装置では、赤色レーザ光源、緑色レーザ光源および青色レーザ光源の各々から出射された光を合波することで、観察対象に照射する照明光を生成している。
国際公開2015/166728号
しかしながら、光源は、発光原理および出射する光の波長等によって、それぞれ特性(例えば、応答性または安定性など)が異なる。そのため、複数の光源を用いる場合、特許文献1に開示される照明装置では、特に、点灯時および光量変更時に、各光源の光量比が変動し、観察対象に照射される照明光の色温度が変動してしまうことがあった。このような場合、撮像された観察画像の色調が過渡的に変動してしまうため、ユーザにとって利便性が低くなっていた。
そこで、本開示では、照明光の色温度の変動が抑制された、新規かつ改良された照明装置、照明装置の制御方法、および撮像システムを提案する。
本開示によれば、異なる波長域の光を出射する複数の光源と、前記光源の各々から出射された光の光量を検出する光モニタ部と、前記光モニタ部が検出した光量と、目標光量とに基づいて、前記光源の各々に印加する駆動電圧または駆動電流を算出する駆動量算出部と、前記複数の光源のうち最も応答性が低い光源の光量に基づいて、算出された前記駆動電圧または駆動電流を補正する駆動量補正部と、を備える、照明装置が提供される。
また、本開示によれば、異なる波長域の光を出射する複数の光源の各々から出射された光の光量を検出することと、検出した光量と、目標光量とに基づいて、前記光源の各々に印加される駆動電圧または駆動電流を算出することと、前記複数の光源のうち最も応答性が低い光源の光量に基づいて、算出された前記駆動電圧または駆動電流を補正することと、を含む、照明装置の制御方法が提供される。
また、本開示によれば、異なる波長域の光を出射する複数の光源と、前記光源の各々から出射された光の光量を検出する光モニタ部と、前記光モニタ部が検出した光量と、目標光量とに基づいて、前記光源の各々に印加する駆動電圧または駆動電流を算出する駆動量算出部、および前記複数の光源のうち最も応答性が低い光源の光量に基づいて、算出された前記駆動電圧または駆動電流を補正する駆動量補正部を含む制御部と、照明された観察対象を撮像する撮像部と、を備える、撮像システムが提供される。
本開示によれば、各光源の制御に対する応答性に起因して、点灯時または光量変更時に生じる各光源の光量比の変動を抑制することが可能である。
以上説明したように本開示によれば、照明光の色温度の変動が抑制された照明装置、照明装置の制御方法、および撮像システムが提供される。
なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。
本開示の一実施形態に係る撮像システムの全体構成を示すブロック図である。 同実施形態に係る合波部を含む合波モジュールの構成例を示す模式図である。 同実施形態に係る制御部の機能構成を示すブロック図である。 各光源の光量の収束の様子を示した模式的なグラフ図である。 駆動切替部による制御が行われた場合の光源の光量の様子を示した模式的なグラフ図である。 同実施形態に係る照明装置の第1の制御例を示したフローチャート図である。 同実施形態に係る照明装置の第2の制御例を示したフローチャート図である。 本開示の一実施形態の変形例に係る照明装置の構成を示すブロック図である。 同変形例に係る合波部を含む合波モジュールの構成例を示す模式図である。 第1の指標であるp−pを説明する模式的なグラフ図である。 第2の指標である標準偏差σを説明する模式的なグラフ図である。
以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
なお、説明は以下の順序で行うものとする。
1.撮像システムの全体構成
1.1.照明装置の構成例
1.2.撮像装置の構成例
2.照明装置の制御
2.1.第1の制御例
2.2.第2の制御例
3.変形例
4.本開示に係る技術による効果
5.まとめ
以下、本明細書では、光源から出射された光を「出射光」とも称し、照明装置から観察対象へ照射された光を「照明光」とも称する。
<1.撮像システムの全体構成>
まず、図1を参照して、本開示の一実施形態に係る照明装置300を備えた撮像システム20の全体構成について説明する。図1は、本実施形態に係る撮像システム20の全体構成を示すブロック図である。
図1に示すように、撮像システム20は、照明装置300と、撮像装置200とを備え、例えば、医療用の内視鏡システムとして構成される。なお、内視鏡システムは、撮像システム20の一例であり、本実施形態に係る撮像システム20は、他のシステムであってもよい。例えば、撮像システム20は、顕微鏡カメラシステムであってもよい。
[1.1.照明装置の構成例]
照明装置300は、赤色光源130Rと、緑色光源130Gと、青色光源130Bと、赤色光モニタ部150Rと、緑色光モニタ部150Gと、青色光モニタ部150Bと、赤色光源駆動回路310Rと、緑色光源駆動回路310Gと、青色光源駆動回路310Bと、合波部170と、制御部330と、操作パネル400とを備える。
以下、赤色光源130R、緑色光源130G、および青色光源130Bを総称して光源130とも表す。また、赤色光モニタ部150R、緑色光モニタ部150G、および青色光モニタ部150Bを総称して光モニタ部150とも表す。さらに、赤色光源駆動回路310R、緑色光源駆動回路310G、および青色光源駆動回路310Bを総称して光源駆動回路310とも表す。
なお、図1では、照明装置300の内部に制御部330が備えられる構成を示したが、本実施形態に係る撮像システム20は、上記に限定されない。制御部330は、照明装置300とは別体の情報処理装置に備えられていてもよい。
(光源)
光源130は、波長域の異なる光を出射する複数の光源を備え、例えば、上述したように、赤色光源130R、緑色光源130G、および青色光源130Bを備える。
赤色光源130Rは、例えば、630nm〜645nmの波長域の光を発するレーザ光源であってもよい。例えば、赤色光源130Rは、GaInP量子井戸構造レーザダイオード等の半導体レーザで構成されてもよい。緑色光源130Gは、例えば、510nm〜540nmの波長域の光を発するレーザ光源であってもよい。例えば、緑色光源130Gは、半導体レーザによって励起される固体レーザで構成されてもよく、異なる波長域の光を発する半導体レーザに波長変換フィルタを装着することで構成されてもよい。青色光源130Bは、例えば、435nm〜465nmの波長域の光を発するレーザ光源であってもよい。例えば、青色光源130Bは、GaInN量子井戸構造レーザダイオード等の半導体レーザで構成されてもよい。
このようなレーザ光源から構成される光源130は、キセノンランプまたはハロゲンランプ等のランプ光源とは異なり、レーザ光源に印加される駆動電流または駆動電圧を制御することで、出射光の光量を調整することが可能である。
なお、上述した半導体レーザ、および固体レーザは光源130の一例であり、本実施形態に係る照明装置300が備える光源130は、上記に限定されない。本実施形態に係る照明装置300が備える光源130は、光量を電気的に調整可能であれば、他の種類の光源を備えていてもよい。例えば、光源130は、RGB以外の3色光源を備えていてもよく、4色以上の光源を備えていてもよく、白色光源を備えていてもよい。ただし、レーザ光源は、出射光の拡散が小さいため、光源130が備える光源にレーザ光源を用いた場合、後述する光モニタ部150において、光量の検出を容易に行うことができる。
(光源駆動回路)
光源駆動回路310は、制御部330にて生成される駆動指令に基づいて、光源130を駆動させる。具体的には、赤色光源駆動回路310R、緑色光源駆動回路310G、および青色光源駆動回路310Bは、制御部330により生成される駆動指令に基づいて、赤色光源130R、緑色光源130G、および青色光源130Bをそれぞれ駆動させる。例えば、光源駆動回路310は、光源130が備える各光源への駆動電流を調整可能な回路を含んで構成される。
(光モニタ部)
光モニタ部150は、光源130の出射光の光量を検出する。具体的には、赤色光モニタ部150R、緑色光モニタ部150G、および青色光モニタ部150Bは、赤色光源130R、緑色光源130G、および青色光源130Bの出射光の光量をそれぞれ検出する。例えば、光モニタ部150は、フォトダイオードで構成されてもよい。光モニタ部150は、光源130の各々から出射された出射光の一部を受光し、受光した光の光量を電圧信号に変換して制御部330に出力する。
(合波部)
合波部170は、赤色光源130R、緑色光源130G、および青色光源130Bからそれぞれ出射された赤色光、緑色光、および青色光を合波し、照明光を生成する。本実施形態に係る照明装置300では、制御部330によって赤色光、緑色光、および青色光の各々の光量比を制御することで、合波後の照明光の色温度が制御される。
ここで、図2を参照して、合波部170による赤色光、緑色光、および青色光の合波の具体的な方法について説明する。図2は、合波部170を含む合波モジュール180の構成例を示す模式図である。
図2に示すように、合波モジュール180は、ミラー153、およびダイクロイックミラー155、157を備える。ダイクロイックミラー155、157は、それぞれ特定の波長の光を反射し、反射光以外の波長の光を透過させるミラーである。なお、ミラー153についてもダイクロイックミラーとしてもよい。
図2で示す例では、赤色光源130Rから出射された赤色光は、ミラー153によって反射されることで、進路がレンズ159に向かう方向に変化する。また、緑色光源130Gから出射された緑色光は、ダイクロイックミラー155によって反射されることで、進路がレンズ159に向かう方向に変化する。このとき、ミラー153から送られてきた赤色光は、ダイクロイックミラー155を透過する。さらに、青色光源130Bから出射された青色光は、ダイクロイックミラー157によって反射されることで、進路がレンズ159に向かう方向に変化する。このとき、ダイクロイックミラー155から送られてきた赤色光および緑色光は、ダイクロイックミラー157を透過する。
これにより、ダイクロイックミラー157から送られてきた赤色光、緑色光、および青色光は、同じ光軸上に導かれることで、重ね合わされてレンズ159に入射する。図2で示した合波モジュール180では、最も波長が長い赤色光に対して、赤色光より波長が短い緑色光、および緑色光よりさらに波長が短い青色光を順次合波している。合波された光は、レンズ159によって集光されることで、照明光として観察対象に照射される。
本実施形態に係る撮像システム20が内視鏡システムである場合、照射される照明光は、光ファイバ等によって内視鏡プローブの先端に導光された後、観察対象に照射される。これにより、撮像システム20では、照明装置300によって目的とする観察対象を照明し、撮像装置200によって、照明された観察対象を撮像することができる。
なお、合波モジュール180では、赤色光源130R、緑色光源130G、および青色光源130Bからの出射光の一部は、ミラー153、およびダイクロイックミラー155、157に入射する前に、光サンプラ151R、151G、151Bによってそれぞれ分波される。分波された出射光の一部は、赤色光モニタ部150R、緑色光モニタ部150G、および青色光モニタ部150Bに入射する。これにより、赤色光モニタ部150R、緑色光モニタ部150G、および青色光モニタ部150Bは、赤色光、緑色光および青色光の光量をそれぞれ検出することができる。
(制御部)
続いて、図3を参照して、本実施形態に係る照明装置300が備える制御部330について説明する。図3は、制御部330の機能構成を示すブロック図である。
図3に示すように、制御部330は、光モニタ部150にて検出した光量、目標光量、および供給電流値の入力に基づいて、赤色光源130R、緑色光源130G、および青色光源130Bの駆動を制御する演算処理部である。
具体的には、制御部330は、駆動量算出部332と、駆動量補正部334と、駆動切替部336とを備え、駆動量算出部332および駆動量補正部334によって算出された駆動電流に基づいて、各光源130の駆動を制御する。また、駆動量算出部332および駆動量補正部334の動作は、駆動切替部336によって制御される。
駆動量算出部332は、目標光量に基づいて、赤色光源130R、緑色光源130Gおよび青色光源130Bの駆動電流を算出する。具体的には、駆動量算出部332は、光源130ごとに、光モニタ部150により検出される光量と、目標光量とを比較し、目標光量を達成する各光源130の駆動電流を算出する。例えば、駆動量算出部332は、あらかじめ各光源130に印加される駆動電流と、各光源130から出射される光量との相関関係を算出しておき、該相関関係に基づいて目標光量を達成する駆動電流を算出してもよい。
例えば、光モニタ部150により検出される各光源130の光量が目標光量よりも大きい場合、駆動量算出部332は、より小さい駆動電流を算出する。また、出射される各光源130の光量が目標光量よりも小さい場合、駆動量算出部332は、より大きい駆動電流を算出する。
なお、照明装置300では、各光源130の劣化等を防止するために、各光源130に供給し得る最大の電流量(最大駆動電流)が設定されることがある。このような場合、駆動量算出部332は、最大駆動電流を超えないように駆動電流を算出してもよい。最大駆動電流は、例えば、定格電流の値であってもよく、各光源130を保護するために設定された任意の値であってもよい。
また、光源130では、温度変化および経年劣化によって、駆動電流と、出射される光量との相関関係が変動することもある。そのため、駆動量算出部332は、温度変化および経年劣化等をさらに考慮して、目標光量を達成する駆動電流を算出してもよい。
駆動量補正部334は、駆動量算出部332が算出した各光源130の駆動電流を補正する。具体的には、駆動量補正部334は、各光源130の光量比が一定になるように駆動量算出部332が算出した各光源130の駆動電流を補正する。
ここで、駆動量補正部334を設ける理由について説明する。本実施形態に係る照明装置300では、光源130の光量が変化した場合、光源130の光量は、一旦、目標光量を超えて行きすぎた(オーバーシュートした)後、減衰振動しながら目標光量に収束していく。このとき、光源130の制御に対する応答性は、光源130の発光原理および射出する光の波長等によって異なる。
例えば、レーザ光源では、駆動電流が多いほど、発熱量が増加することでレーザ光源の発光効率が低下するため、制御に対する応答性が低下する傾向がある。また、波長変換を行っているレーザ光源では、波長変換に伴って、制御に対する応答性が低下する傾向がある。
このような制御に対する応答性が低い光源では、オーバーシュートによる行きすぎ量が大きいため、オーバーシュートによって各光源130の光量比が変動してしまうことがある。また、制御に対する応答性が低い光源では、目標光量に収束するまでの時間が長いため、他の光源の光量が目標光量に収束した後も光量が変動し、各光源130の光量比を変動させてしまうことがある。各光源130の光量比が変動した場合、各光源130から出射された光を合波した照明光の色温度が変動してしまうため、観察画像の色調が変化し、ユーザの違和感の原因となってしまう。
そこで、本実施形態に係る照明装置300では、駆動量補正部334は、最も応答性が低い光源の光量を基準として、各光源130の光量比が一定となるように、他の光源の駆動電流を補正する。これによれば、オーバーシュートによる行きすぎ量が最も大きく、かつ減衰振動の収束までの時間が最も長い光源を基準として他の光源の光量が決定されるため、各光源130の光量比が一定となり、照明光の色温度の変動を抑制することができる。
また、駆動量補正部334による補正について、図4を参照して、より具体的に説明する。図4は、各光源130の光量の収束の様子を示した模式的なグラフ図である。なお、図4では、光量の波形の進行方向は時間経過を示しており、進行方向と垂直な方向は光量の大きさを示している。
図4の上段に示すように、駆動量補正部334による補正が行われない場合、赤色光源130R、緑色光源130Gおよび青色光源130Bの光量131R、131G、131Bは、各々独立して制御される。そのため、光量131R、131G、131Bは、破線で示した目標光量に対してオーバーシュートした後、それぞれの応答性に基づいて減衰振動しながら収束している。
ここで、図4に示すように、緑色光源130Gは、赤色光源130R、緑色光源130Gおよび青色光源130Bのうちで制御に対する応答性が最も低いことが多い。これは、緑色光源130Gでは、出射される光の波長域を緑色にするため波長変換が行われることが多く、かつ印加される駆動電流が大きいためである。そのため、例えば、緑色光源130Gのオーバーシュート時、ならびに赤色光源130Rおよび青色光源130Bの光量が収束した後等において、各光源130の光量131R、131G、131Bの比率は所望の光量比から変動してしまうことが多い。
本実施形態では、駆動量補正部334による補正が行われるため、赤色光源130R、緑色光源130Gおよび青色光源130Bの光量135R、135G、135Bは、図4の下段に示すように制御される。具体的には、赤色光源130Rおよび青色光源130Bの光量135R、135Bは、緑色光源130Gの光量135Gに対する比率が目標光量における各光量の比率と同じになるように制御される。なお、このとき、赤色光源130Rおよび青色光源130Bの光量135R、135Bは、緑色光源130Gの光量135Gの減衰振動の周期と同じ周期で変動することになる。
これによれば、赤色光源130R、緑色光源130Gおよび青色光源130Bの光量比が一定に保たれるため、赤色光源130R、緑色光源130Gおよび青色光源130Bからの出射光を合波した照明光の色温度も一定に保つことができる。したがって、駆動量補正部334によれば、本実施形態に係る照明装置300は、観察画像の色温度の変動を抑制することで、ユーザに対して観察により適した観察画像を提供することができる。
駆動切替部336は、駆動量算出部332および駆動量補正部334の動作の停止及び再開を制御する。
具体的には、駆動切替部336は、光モニタ部150が検出した光量が目標光量に収束した場合、駆動量算出部332および駆動量補正部334の動作を停止させ、光源130に流れる駆動電流を一定値に制御してもよい。
光源130から出射される光の光量が安定した後も駆動量算出部332および駆動量補正部334による光源130への駆動電流の制御が行われた場合、過剰な制御によってかえって光量比が変動し、照明光の色温度が変動する可能性がある。そのため、光源130から出射される光の光量が安定した場合、駆動切替部336は、駆動量算出部332および駆動量補正部334の動作を停止させ、光源130に流れる駆動電流を一定値に制御してもよい。これによれば、各光源130の光量比が一定に固定されるため、照明光の色温度の変動を抑制することができる。
また、駆動切替部336は、光モニタ部150が検出した光量と、目標光量との差が第1の閾値未満となった場合、駆動量算出部332および駆動量補正部334の動作を停止させ、光源130に流れる駆動電流を一定値に制御してもよい。
例えば、光モニタ部150が検出した光量が目標光量に収束していなくとも、検出した光量と、目標光量との差が十分に小さくなった場合、光源130から出射される光の光量が安定したとみなすことができる。したがって、このような場合も、駆動切替部336は、光源130に流れる駆動電流を一定値に制御し、各光源130の光量比を一定に固定することで、照明光の色温度の変動を抑制してもよい。
さらに、駆動切替部336は、時間経過に伴い、光モニタ部150が検出した光量と、目標光量との差が第2の閾値を超えた場合、駆動量算出部332および駆動量補正部334の動作を再開させてもよい。光源130は、出射する光量が安定した場合でも、光源130の温度変化等によって、目標光量から光量が徐々にずれてしまう現象(いわゆる、ドリフト現象)が生じることがある。このような場合、観察画像の明るさが徐々に変動してしまうため、ユーザの観察画像に対する視認性が低下してしまう。
そのため、駆動切替部336は、駆動量算出部332および駆動量補正部334の動作を停止させた後に、光モニタ部150が検出した光量と、目標光量との差が目標光量との差が第2の閾値を超えた場合、駆動量算出部332および駆動量補正部334の動作を再開させてもよい。これによれば、駆動切替部336は、光源130のドリフト現象による光量の変動を抑制することで、観察画像の明るさが徐々に変動することを抑制することができる。
したがって、本実施形態に係る照明装置300では、駆動切替部336によって駆動量算出部332および駆動量補正部334の動作を制御することで、照明光の色温度の変動を抑制しつつ、光量の変動を抑制することができる。
ここで、上記の光モニタ部150が検出した光量とは、各光源130から射出された光の合計光量(すなわち、合波した照明光の光量)であってもよく、最も応答性が低い光源から出射された光の光量であってもよい。例えば、駆動切替部336が目標光量との比較に用いる光量は、緑色光モニタ部150Gが検出した緑色光源130Gの光量であってもよい。最も応答性が低い光源の光量が目標光量に収束した場合、より応答性が高い光源では、すでに光量が目標光量に収束していると推定される。したがって、駆動切替部336は、最も応答性が低い光源から出射された光の光量と、目標光量とを比較した場合でも、光源130から出射される光を合波した照明光の光量が目標光量に収束したか否かを判断することが可能である。
また、駆動切替部336による制御について、図5を参照して、より具体的に説明する。図5は、駆動切替部336による制御が行われた場合の光源130の光量の様子を示した模式的なグラフ図である。なお、図5では、光量の波形の進行方向が時間経過を示しており、進行方向と垂直な方向が光量の大きさを示している。
図5に示すように、例えば、照明光の光量171は、駆動量算出部332および駆動量補正部334の動作によって、破線で示した目標光量に対して、減衰振動しながら収束する。ここで、目標光量との差が第1の閾値Th1未満となった場合、駆動切替部336は、各光源130の光量が目標光量に収束したと判断し、駆動量算出部332および駆動量補正部334の動作を停止させた後、駆動電流を一定値に制御する。これにより、各光源130の光量比が固定されるため、以降の照明光の色温度が一定に保たれる。
しかしながら、その後、時間経過等によって照明光の光量171が目標光量から徐々に乖離し、目標光量との差が第2の閾値Th2を超えた場合、駆動切替部336は、駆動量算出部332および駆動量補正部334の動作を再開させることで、照明光の光量171が目標光量となるように制御する。これによれば、本実施形態に係る照明装置300は、照明光の色温度の変動を抑制しつつ、照明光の光量を目標光量に保つことができる。
ここで、第1の閾値Th1および第2の閾値Th2は、観察画像の視認性に影響を与えない範囲で設定されていればよい。ただし、第2の閾値Th2は、第1の閾値Th1よりも大きく設定されることが好ましい。例えば、第1の閾値Th1は、目標光量の0.3%に設定されてもよく、第2の閾値Th2は、目標光量の0.6%に設定されてもよい。
なお、図5では、合波された照明光の光量と目標光量との差によって、駆動切替部336が駆動量算出部332および駆動量補正部334の動作を制御する構成を説明したが、本実施形態は上記例示に限定されない。例えば、駆動切替部336は、最も応答性が低い光源の光量と、目標光量との差によって、駆動量算出部332および駆動量補正部334の動作を制御してもよい。
(操作パネル)
操作パネル400は、ユーザによる照明装置300の操作入力を受け付ける入力部としての機能と、照明装置300の状態等を表示する表示部としての機能を有してもよい。操作パネル400は、例えば、タッチパネル等で構成されてもよい。
具体的には、操作パネル400には、光源130の光量を操作可能な入力ボタン等と、光源130の光量を示す表示とが設けられてもよい。ユーザは、入力ボタンをタッチ操作することで、照明光の目標光量を増減させることができる。
[1.2.撮像装置の構成例]
撮像装置200は、光学系210、受光部230、および撮像処理部250を備える。
光学系210は、照明装置300から照射された照明光および反射光を取り込む。本実施形態に係る撮像システム20が内視鏡システムである場合、光学系210は、内視鏡プローブの先端に設けられた観察窓を介して、照明光および反射光を取り込む機構であってもよい。
受光部230は、例えば、CCD(Charge Coupled Device)イメージセンサ、またはCMOS(Complementary Metal Oxide Semiconductor)イメージセンサ等の固体撮像素子を備える。受光部230は、光学系210の結像位置に配置されており、観察対象に照射されて反射された照明光(反射光)を受光し、受光した反射光を光電変換することで、撮像信号を生成する。生成した撮像信号は、撮像処理部250に出力される。
撮像処理部250は、CPU(Central Processing Unit)および記憶素子を備えて構成され、受光部230から出力された撮像信号に基づいて観察画像を生成する。なお、生成された観察画像は、図示しないモニタ等に表示され、ユーザによる観察、診断および治療等に用いられる。
<2.照明装置の制御>
続いて、図6および図7を参照して、本実施形態に係る照明装置300の制御方法について説明する。図6は、本実施形態に係る照明装置300の第1の制御例を示したフローチャート図であり、図7は、本実施形態に係る照明装置300の第2の制御例を示したフローチャート図である。
[2.1.第1の制御例]
まず、図6を参照して、本実施形態に係る照明装置300の第1の制御例について説明する。
図6に示すように、ユーザからの入力等によって照明装置300に対して目標光量が設定された場合(S101)、まず、駆動量算出部332は、各光モニタ部150が検出した光量と、目標光量とに基づいて、各光源130に印加する駆動電流を算出する(S103)。続いて、駆動量補正部334は、最も応答性が低い光源である緑色光源130Gの光量を基準として、各光源130の光量比が一定となるように赤色光源130Rおよび青色光源130Bに印加する駆動電流を補正する(S105)。次に、制御部330は、各光源130に印加される駆動電流を制御することで(S107)、各光源130の光量を制御する。
その後、駆動切替部336は、緑色光モニタ部150Gによって検出された緑色光源130Gの光量が目標光量に収束したか否かを判断する(S109)。緑色光源130Gの光量が目標光量に収束した場合(S109/Yes)、駆動切替部336は、駆動量算出部332および駆動量補正部334の動作を停止させ、各光源130を定電流で駆動させる。一方、緑色光源130Gの光量が目標光量に収束していない場合(S109/No)、制御部330は、ステップS103に戻って動作を続ける。
以上の制御方法によれば、本実施形態に係る照明装置300は、点灯時および光量変更時に照明光の色温度が変動してしまうことを抑制することができる。
[2.2.第2の制御例]
次に、図7を参照して、本実施形態に係る照明装置300の第2の制御例について説明する。
図7に示すように、ユーザからの入力等によって照明装置300に対して目標光量が設定された場合(S101)、まず、駆動量算出部332は、各光モニタ部150が検出した光量と、目標光量とに基づいて、各光源130に印加する駆動電流を算出する(S103)。続いて、駆動量補正部334は、最も応答性が低い光源である緑色光源130Gの光量を基準として、各光源130の光量比が一定となるように赤色光源130Rおよび青色光源130Bに印加する駆動電流を補正する(S105)。次に、制御部330は、各光源130に印加される駆動電流を制御することで(S107)、各光源130の光量を制御する。
その後、駆動切替部336は、緑色光モニタ部150Gによって検出された緑色光源130Gの光量と、目標光量との差が第1の閾値未満となったか否かを判断する(S111)。緑色光源130Gの光量と、目標光量との差が第1の閾値未満となった場合(S111/Yes)、駆動切替部336は、駆動量算出部332および駆動量補正部334の動作を停止させ、各光源130を定電流で駆動させる(S113)。一方、緑色光源130Gの光量と、目標光量との差が第1の閾値以上である場合(S111/No)、制御部330は、ステップS103に戻って動作を続ける。
また、駆動切替部336は、緑色光源130Gの光量をモニタし続け、緑色光源130Gの光量と、目標光量との差が第2の閾値を超えたか否かを判断する(S115)。緑色光源130Gの光量と、目標光量との差が第2の閾値を超えた場合(S115/Yes)、制御部330は、ステップS103に戻って、検出された光量が目標光量となるように、各光源130に印加される駆動電流の制御を再開する。一方、緑色光源130Gの光量と、目標光量との差が第2の閾値以下の場合(S115/No)、駆動切替部336は、ステップS115に戻って、緑色光源130Gの光量のモニタを続ける。
以上の制御方法によれば、本実施形態に係る照明装置300は、照明光の光量が安定した後における照明光の色温度の変動、および経時変化による照明光の光量の変動を抑制することで、ユーザに安定した観察画像を提供することができる。
<3.変形例>
ここで、図8および図9を参照して、本実施形態に係る照明装置300の変形例について説明する。図8は、変形例に係る照明装置500の構成を示すブロック図である。
図8に示すように、変形例に係る照明装置500は、1つの光モニタ部(カラーセンサ)550により、複数の光源からそれぞれ出射される出射光の光量を検出する点で、本実施形態に係る照明装置300とは異なる照明装置である。
具体的には、照明装置500は、赤色光源130Rと、緑色光源130Gと、青色光源130Bと、カラーセンサ550と、赤色光源駆動回路310Rと、緑色光源駆動回路310Gと、青色光源駆動回路310Bと、合波部570と、制御部330と、操作パネル400とを備える。
なお、赤色光源130R、緑色光源130G、青色光源130B、赤色光源駆動回路310R、緑色光源駆動回路310G、および青色光源駆動回路310Bは、図1を参照して説明した構成と同様の構成とすることができる。
合波部570は、赤色光源130R、緑色光源130G、および青色光源130Bからそれぞれ出射された赤色光、緑色光、および青色光を合波し、照明光を生成する。
ここで、図9を参照して、合波部570による赤色光、緑色光、および青色光の合波の具体的な方法について説明する。図9は、合波部570を含む合波モジュール580の構成例を示す模式図である。
図9に示すように、合波モジュール580は、ミラー153、およびダイクロイックミラー155、157を備える。ダイクロイックミラー155、157は、それぞれ特定の波長の光を反射し、反射光以外の波長の光を透過させるミラーである。なお、ミラー153についてもダイクロイックミラーとしてもよい。
また、合波モジュール580は、合波された光の一部を反射することで、合波された光の一部をカラーセンサ550に導くダイクロイックミラー571を備える。これにより、合波モジュール580では、各光源130から出射された光の光量は、個別の光モニタ部150によって検出されるのではなく、1つのカラーセンサ550によって分光されて検出される。
カラーセンサ550では、入射光は、カラーフィルタ等によって赤色光、緑色光および青色光のそれぞれの波長の光に分光され、カラーセンサ550は、分光された各色の光の光量を検出する。カラーセンサ550で検出された各色の光の光量は、それぞれ電圧信号に変換された後、制御部330に出力される。なお、カラーセンサ550は、特に限定されるものではなく、公知のカラーセンサを用いることが可能である。
ただし、カラーセンサ550によって検出した各色の光量と、実際の照射光における各色の光量とは、相関関係はあるものの厳密には一致していないことがある。そのため、制御部330は、カラーセンサ550が出力した各色の光量を下記の行列演算を施した上で、各光源130の駆動制御に用いてもよい。
具体的には、カラーセンサ550は、連続的な透過特性を有するカラーフィルタにて各色の光を分光しているため、各色の光を完全に分光しきれていないことがある。そのため、各色に対応するセンサ出力は、他の色に対しても反応して電圧信号に変換されていると考えられる。したがって、カラーセンサ550が検出したRGB各色の光量をCS、CS、CSとし、実際に観察対象に照射される照明光におけるRGB各色の光量をR、G、Bとすると、これらには以下の数式1の関係があると考えられる。
Figure 2018000228
なお、上記の数式1は、以下の行列式1にてまとめて表すことができる。
Figure 2018000228
ここで、X、X、X、Y、Y、Y、Z、Z、Zは、カラーセンサ550に備えられるカラーフィルタ等によって決まる定数である。そのため、あらかじめカラーセンサ550によって検出した各色の光量と、実際の照射光における各色の光量とを対応させて演算することで、X、X、X、Y、Y、Y、Z、Z、Zを算出することができる。よって、以下の行列式2のように、逆行列を用いた行列演算を行うことで、カラーセンサ550が検出したRGB各色の光量CS、CS、CSから、実際に観察対象に照射される照明光におけるRGB各色の光量R、G、Bを算出することができる。
Figure 2018000228
すなわち、制御部330は、上記の行列演算を行うことで、カラーセンサ550が出力した各色の光量から、観察対象に照射される照明光の各色の光量を算出することができる。これによれば、制御部330は、より正確に各光源130の駆動制御を行うことができる。
なお、カラーセンサ550に入射する照明光は、照明装置500が備える光学系の内部にて分波されたものであるため、光ファイバ等を含むスコープを介して観察対象に照射される照明光とは、波長特性が異なっていることがある。上記の行列演算では、行列式中にスコープ等の波長特性を考慮した項等を導入することも可能である。したがって、制御部330は、上記の行列演算を行うことで、カラーセンサ550が出力した各色の光量から、観察対象に照射される照明光の各色の光量をより正確に算出することができる。
<4.本開示に係る技術による効果>
次に、図10および図11を参照して、本実施形態に係る照明装置による効果検証について説明する。図10は、第1の指標であるp−pを説明する模式的なグラフ図であり、図11は、第2の指標である標準偏差σを説明する模式的なグラフ図である。
まず、実施例として、本実施形態に係る照明装置を第2の制御例を用いて制御した場合の照明光の色温度の変動の程度を評価した。なお、照明光の色温度は、4400Kとした。
具体的には、応答性が最も低い緑色光源を基準として、光量比が一定となるように赤色光源および青色光源に印加する駆動電流を制御した。また、緑色光源から出射される光の光量と、目標光量との差が光量の0.3%未満となった場合、各光源を定電流で駆動するよう制御した。さらに、緑色光源から出射される光の光量と、目標光量との差が光量の0.6%を超えた場合、各光源に印加される駆動電流の制御を再開するように制御した。
また、比較のため、比較例1として各光源を定電流で駆動させた場合の照明光の色温度の変動の程度を評価した。さらに、比較例2として各光源で互いに独立して光量の制御を行った以外は、実施例と同様に制御した場合の照明光の色温度の変動の程度を評価した。
なお、色温度の変動の程度は、光量変更時から所定時間経過した間の色温度のp−p(peak to peak)および標準偏差にて評価した。具体的には、図10に示すように、光量変更時からの経過時間10分〜30分の間の照明光の色温度の最大値と、最小値との差(Peak to peak)を色温度の変動の第1の指標として評価した。また、図11に示すように、照明光の色温度のばらつきは正規分布に従っていると仮定し、標準偏差σの4倍(4σ)を平均値μで規格化したものを色温度の変動の第2の指標として評価した。なお、標準偏差σの4倍(4σ)は、正規分布において、集団の99.99%が含まれる範囲を規定する値である。
第1の指標および第2の指標による評価結果を下記の表1に示す。なお、以下で示す結果は、光量変更後、照明光の光量が一旦、目標光量をオーバーシュートした後の10分〜30分の間の結果である。
Figure 2018000228
表1の結果を参照すると、本実施形態に係る制御方法にて照明装置を制御した実施例は、照明光の色温度が所望の値(4400K)に近く、かつ色温度の変動が小さいことがわかる。
一方、定電流を各光源に印加した比較例1は、色温度の変動は小さいものの、照明光の色温度が所望の値(4400K)から大きく外れていることがわかる。すなわち、比較例1では、温度変化または経時変化によるドリフト現象によって、いずれかの光源の光量が目標光量から乖離していることがわかる。また、各光源に印加される駆動電流を独立して制御した比較例2は、照明光の色温度が所望の値(4400K)に近いものの、光量を目標光量に収束させる過程で光量比が変動したため、色温度が大きく変動していることがわかる。
<5.まとめ>
以上にて説明したように、本実施形態に係る照明装置300によれば、制御に対する応答性が最も低い光源の光量を基準として、各光源130の光量比が一定になるように各光源130の光量を制御することができる。これによれば、本実施形態に係る照明装置300は、点灯時および光量変更時などにおいて、光量が目標光量に収束するまでの間に各光源130の光量比が変動することを抑制することで、照明光の色温度の変動を抑制することができる。
以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
なお、以下のような構成も本開示の技術的範囲に属する。
(1)
異なる波長域の光を出射する複数の光源と、
前記光源の各々から出射された光の光量を検出する光モニタ部と、
前記光モニタ部が検出した光量と、目標光量とに基づいて、前記光源の各々に印加する駆動電圧または駆動電流を算出する駆動量算出部と、
前記複数の光源のうち最も応答性が低い光源の光量に基づいて、算出された前記駆動電圧または駆動電流を補正する駆動量補正部と、
を備える、照明装置。
(2)
前記駆動量補正部は、前記光源の各々の光量比を一定に保つように、算出された前記駆動電圧または駆動電流を補正する、前記(1)に記載の照明装置。
(3)
前記駆動量補正部は、前記複数の光源のうち最も応答性が低い光源の光量を基準として、前記光源の各々の光量比を一定に保つように、最も応答性が低い光源以外の光源に印加する駆動電圧または駆動電流を補正する、前記(2)に記載の照明装置。
(4)
前記駆動量算出部および前記駆動量補正部の動作を制御する駆動切替部をさらに備え、
前記駆動切替部は、前記光モニタ部が検出した光量と、目標光量との差が第1の閾値未満となった場合、前記駆動量算出部および前記駆動量補正部の動作を停止させ、前記光源の各々に印加される駆動電圧または駆動電流を一定値に制御する、前記(1)〜(3)のいずれか一項に記載の照明装置。
(5)
前記駆動切替部は、前記駆動電圧または駆動電流を一定値に制御した後、前記光モニタ部が検出した光量と、目標光量との差が第2の閾値を超えた場合、前記駆動量算出部および前記駆動量補正部の動作を再開させる、前記(4)に記載の照明装置。
(6)
前記第2の閾値は、第1の閾値よりも大きい、前記(5)に記載の照明装置。
(7)
前記駆動切替部の判断に用いられる前記光モニタ部が検出した光量は、前記複数の光源のうち最も応答性が低い光源の光量である、前記(4)〜(6)のいずれか一項に記載の照明装置。
(8)
前記光モニタ部は、前記複数の光源からの出射光が合波された照明光を分光し、分光した光の各々の光量を検出するカラーセンサを含む、前記(1)〜(7)のいずれか一項に記載の照明装置。
(9)
前記カラーセンサは、前記複数の光源からの出射光を合波して照明光を生成する光学系の内部に設けられ、
前記光モニタ部は、前記カラーセンサにて検出した光の各々の光量に基づいて、観察対象に照射される照明光における前記光源の各々の光量を算出する、前記(8)に記載の照明装置。
(10)
前記複数の光源は、レーザ光源である、前記(1)〜(9)のいずれか一項に記載の照明装置。
(11)
前記複数の光源は、赤色光源、緑色光源、および青色光源を含む、前記(1)〜(10)のいずれか一項に記載の照明装置。
(12)
前記最も応答性が低い光源は、緑色光源である、前記(11)に記載の照明装置。
(13)
異なる波長域の光を出射する複数の光源の各々から出射された光の光量を検出することと、
検出した光量と、目標光量とに基づいて、前記光源の各々に印加される駆動電圧または駆動電流を算出することと、
前記複数の光源のうち最も応答性が低い光源の光量に基づいて、算出された前記駆動電圧または駆動電流を補正することと、
を含む、照明装置の制御方法。
(14)
異なる波長域の光を出射する複数の光源と、
前記光源の各々から出射された光の光量を検出する光モニタ部と、
前記光モニタ部が検出した光量と、目標光量とに基づいて、前記光源の各々に印加する駆動電圧または駆動電流を算出する駆動量算出部、および前記複数の光源のうち最も応答性が低い光源の光量に基づいて、算出された前記駆動電圧または駆動電流を補正する駆動量補正部を含む制御部と、
照明された観察対象を撮像する撮像部と、
を備える、撮像システム。
(15)
前記撮像システムは、内視鏡システムまたは顕微鏡カメラシステムである、前記(14)に記載の撮像システム。
20 撮像システム
130 光源
150 光モニタ部
170 合波部
200 撮像装置
300、500 照明装置
310 光源駆動回路
330 制御部
332 駆動量算出部
334 駆動量補正部
336 駆動切替部
400 操作パネル
550 カラーセンサ

Claims (15)

  1. 異なる波長域の光を出射する複数の光源と、
    前記光源の各々から出射された光の光量を検出する光モニタ部と、
    前記光モニタ部が検出した光量と、目標光量とに基づいて、前記光源の各々に印加する駆動電圧または駆動電流を算出する駆動量算出部と、
    前記複数の光源のうち最も応答性が低い光源の光量に基づいて、算出された前記駆動電圧または駆動電流を補正する駆動量補正部と、
    を備える、照明装置。
  2. 前記駆動量補正部は、前記光源の各々の光量比を一定に保つように、算出された前記駆動電圧または駆動電流を補正する、請求項1に記載の照明装置。
  3. 前記駆動量補正部は、前記複数の光源のうち最も応答性が低い光源の光量を基準として、前記光源の各々の光量比を一定に保つように、最も応答性が低い光源以外の光源に印加する駆動電圧または駆動電流を補正する、請求項2に記載の照明装置。
  4. 前記駆動量算出部および前記駆動量補正部の動作を制御する駆動切替部をさらに備え、
    前記駆動切替部は、前記光モニタ部が検出した光量と、目標光量との差が第1の閾値未満となった場合、前記駆動量算出部および前記駆動量補正部の動作を停止させ、前記光源の各々に印加される駆動電圧または駆動電流を一定値に制御する、請求項1に記載の照明装置。
  5. 前記駆動切替部は、前記駆動電圧または駆動電流を一定値に制御した後、前記光モニタ部が検出した光量と、目標光量との差が第2の閾値を超えた場合、前記駆動量算出部および前記駆動量補正部の動作を再開させる、請求項4に記載の照明装置。
  6. 前記第2の閾値は、第1の閾値よりも大きい、請求項5に記載の照明装置。
  7. 前記駆動切替部の判断に用いられる前記光モニタ部が検出した光量は、前記複数の光源のうち最も応答性が低い光源の光量である、請求項4に記載の照明装置。
  8. 前記光モニタ部は、前記複数の光源からの出射光が合波された照明光を分光し、分光した光の各々の光量を検出するカラーセンサを含む、請求項1に記載の照明装置。
  9. 前記カラーセンサは、前記複数の光源からの出射光を合波して照明光を生成する光学系の内部に設けられ、
    前記光モニタ部は、前記カラーセンサにて検出した光の各々の光量に基づいて、観察対象に照射される照明光における前記光源の各々の光量を算出する、請求項8に記載の照明装置。
  10. 前記複数の光源は、レーザ光源である、請求項1に記載の照明装置。
  11. 前記複数の光源は、赤色光源、緑色光源、および青色光源を含む、請求項1に記載の照明装置。
  12. 前記最も応答性が低い光源は、緑色光源である、請求項11に記載の照明装置。
  13. 異なる波長域の光を出射する複数の光源の各々から出射された光の光量を検出することと、
    検出した光量と、目標光量とに基づいて、前記光源の各々に印加される駆動電圧または駆動電流を算出することと、
    前記複数の光源のうち最も応答性が低い光源の光量に基づいて、算出された前記駆動電圧または駆動電流を補正することと、
    を含む、照明装置の制御方法。
  14. 異なる波長域の光を出射する複数の光源と、
    前記光源の各々から出射された光の光量を検出する光モニタ部と、
    前記光モニタ部が検出した光量と、目標光量とに基づいて、前記光源の各々に印加する駆動電圧または駆動電流を算出する駆動量算出部、および前記複数の光源のうち最も応答性が低い光源の光量に基づいて、算出された前記駆動電圧または駆動電流を補正する駆動量補正部を含む制御部と、
    照明された観察対象を撮像する撮像部と、
    を備える、撮像システム。
  15. 前記撮像システムは、内視鏡システムまたは顕微鏡カメラシステムである、請求項14に記載の撮像システム。
JP2016126418A 2016-06-27 2016-06-27 照明装置、照明装置の制御方法、および撮像システム Pending JP2018000228A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016126418A JP2018000228A (ja) 2016-06-27 2016-06-27 照明装置、照明装置の制御方法、および撮像システム
PCT/JP2017/015312 WO2018003241A1 (ja) 2016-06-27 2017-04-14 照明装置、照明装置の制御方法、および撮像システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016126418A JP2018000228A (ja) 2016-06-27 2016-06-27 照明装置、照明装置の制御方法、および撮像システム

Publications (1)

Publication Number Publication Date
JP2018000228A true JP2018000228A (ja) 2018-01-11

Family

ID=60787013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016126418A Pending JP2018000228A (ja) 2016-06-27 2016-06-27 照明装置、照明装置の制御方法、および撮像システム

Country Status (2)

Country Link
JP (1) JP2018000228A (ja)
WO (1) WO2018003241A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020036780A (ja) * 2018-09-05 2020-03-12 富士フイルム株式会社 内視鏡システム
WO2020115807A1 (ja) * 2018-12-04 2020-06-11 オリンパス株式会社 光源装置
US11324396B2 (en) 2018-04-05 2022-05-10 Olympus Corporation Light source apparatus for endoscope and light-emission amount control method for the same
WO2022185514A1 (ja) * 2021-03-05 2022-09-09 オリンパスメディカルシステムズ株式会社 光源装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021166090A1 (ja) * 2020-02-18 2021-08-26 オリンパス株式会社 内視鏡用光源装置
CN117377173A (zh) * 2022-06-30 2024-01-09 深圳开立生物医疗科技股份有限公司 一种照明校正方法、装置、电子设备及存储介质

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5841513B2 (ja) * 2012-09-18 2016-01-13 オリンパス株式会社 走査型内視鏡システム
JP5802860B2 (ja) * 2013-08-01 2015-11-04 オリンパス株式会社 内視鏡システム
WO2016056459A1 (ja) * 2014-10-10 2016-04-14 オリンパス株式会社 光源装置及び光源装置の制御方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11324396B2 (en) 2018-04-05 2022-05-10 Olympus Corporation Light source apparatus for endoscope and light-emission amount control method for the same
JP2020036780A (ja) * 2018-09-05 2020-03-12 富士フイルム株式会社 内視鏡システム
US11419488B2 (en) 2018-09-05 2022-08-23 Fujifilm Corporation Endoscope system
WO2020115807A1 (ja) * 2018-12-04 2020-06-11 オリンパス株式会社 光源装置
JPWO2020115807A1 (ja) * 2018-12-04 2021-10-07 オリンパス株式会社 光源装置、及び光量調整方法
US11391426B2 (en) 2018-12-04 2022-07-19 Olympus Corporation Light source device and light-amount adjusting method
WO2022185514A1 (ja) * 2021-03-05 2022-09-09 オリンパスメディカルシステムズ株式会社 光源装置

Also Published As

Publication number Publication date
WO2018003241A1 (ja) 2018-01-04

Similar Documents

Publication Publication Date Title
WO2018003241A1 (ja) 照明装置、照明装置の制御方法、および撮像システム
JP4582179B2 (ja) 画像表示装置
JP6010255B2 (ja) 光源装置及び光源装置の作動方法
US11031748B2 (en) Illumination device, control device, and control method
WO2016092958A1 (ja) 照明装置及び照明装置の制御方法並びに画像取得システム
US11278183B2 (en) Light source device and imaging system
US11076106B2 (en) Observation system and light source control apparatus
JP2010161152A (ja) 画像表示装置
US11146764B2 (en) Control device, optical scanning device, display apparatus, and control method
JP6848354B2 (ja) 光投射装置
WO2019017051A1 (ja) 光源システム、制御装置および制御方法
US11056031B2 (en) Control device, optical scanner, display device, and control method
WO2016047464A1 (ja) 照明装置および光源制御方法、ならびに投射型表示装置
US9977232B2 (en) Light source device for endoscope, endoscope system, and method for operating light source device for endoscope
JP7087096B2 (ja) 光源装置、内視鏡システム、及び、光源装置の制御方法
JP6731784B2 (ja) 光源装置および映像表示装置
JP6564538B1 (ja) 内視鏡用光源装置
US20220057623A1 (en) Image system, endoscope system, light source device, and control method for light source device
JP2014106378A (ja) 画像表示装置
WO2019167315A1 (ja) 内視鏡用光源装置
JP2017153558A (ja) 内視鏡用プロセッサ及び光供給量調整方法
KR20200138226A (ko) 과전류 판정 회로 및 발광 제어 장치
JP2020042230A (ja) 画像投射装置およびその制御方法
WO2015198774A1 (ja) 内視鏡用光源装置及び内視鏡システム