JP2018000044A - 分子識別方法 - Google Patents

分子識別方法 Download PDF

Info

Publication number
JP2018000044A
JP2018000044A JP2016128639A JP2016128639A JP2018000044A JP 2018000044 A JP2018000044 A JP 2018000044A JP 2016128639 A JP2016128639 A JP 2016128639A JP 2016128639 A JP2016128639 A JP 2016128639A JP 2018000044 A JP2018000044 A JP 2018000044A
Authority
JP
Japan
Prior art keywords
molecule
target molecule
response characteristic
molecules
reference molecule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016128639A
Other languages
English (en)
Inventor
希倫 何
Kirin Ka
希倫 何
安藤 正彦
Masahiko Ando
正彦 安藤
雄二 諏訪
Yuji Suwa
雄二 諏訪
田井 光春
Mitsuharu Tai
光春 田井
健三 黒土
Kenzo Kurotsuchi
健三 黒土
典史 亀代
Norifumi Kameshiro
典史 亀代
聖一 鈴木
Seiichi Suzuki
聖一 鈴木
真斗 永田
Masato Nagata
真斗 永田
高橋 宏昌
Hiromasa Takahashi
宏昌 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2016128639A priority Critical patent/JP2018000044A/ja
Priority to PCT/JP2017/009291 priority patent/WO2018003186A1/ja
Publication of JP2018000044A publication Critical patent/JP2018000044A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

【課題】
匂い分子の識別を容易とすること。
【解決手段】
感応膜の応答特性を活用して分子の識別を向上させるため、グループ分割法、超応答性の導入法、または、それらを組み合わせたハイブリッド法を用いて、参照分子の特徴量の分散を増加させて分子の識別を向上させる。グループ分割法は、識別関数を用いて、参照分子をターゲット分子の類似分子と非類似分子に分割し、参照分子を類似分子のみに削減する。また、超応答性の導入法は、参照分子の特徴量を用いて、仮想感応膜が備えるべき応答特性を求めて、実感応膜と仮想感応膜で構成される全感応膜種を増加させる。更に、ハイブリッド法は、グループ分割法と超応答性の導入法の組み合わせにより、参照分子の特徴量の分散を協調的に増大させる。
【選択図】図8

Description

本発明は、医療、農業、食品、都市、家庭、自動車等の健康や環境分野における嗅覚や味覚等のセンシングシステムに関し、分子の識別を向上させる方法、装置、及び、システムに関する。
生体は外界を感知するため、嗅覚や味覚から化学情報を収集する。その情報は、神経回路網を介して電気信号で伝達され、脳内の統合処理によって認識、判断、行動が司られる。化学情報は、多様で定量化が難しいため、匂いや味のセンシングでは曖昧な情報に対して高度な識別処理が行われる。生体の嗅覚や味覚機構に倣ったセンシングシステムは、驚異的な分子の識別を実現できると考えられ、健康予防管理や個人認証等への応用が期待される。感応膜の応答特性を活用する分子の識別法は、嗅覚と味覚において同様であるため、以降では嗅覚に限定し記載する。
従来、嗅覚センシングシステムでは、匂い分子の種類と濃度を感応膜を用いて分子認識し、その情報をトランスデューサで変換した応答特性を用いて識別処理が行われる。化学情報を取得するための分子認識とその情報を変換するトランスデューサには、嗅覚受容体を感応膜に用いた研究が進められている。
前記の感応膜の応答特性を活用して、匂い分子を識別するために、教師なし学習の主成分解析、クラスタリング解析、自己組織化マップ法、または、教師あり学習のDeep Neural Networkやサポートベクターマシンが使用されている。主成分分析は、応答特性の特徴点(スパイクレートや振幅)をもとに、事前学習が必要ないため、その場で高速に識別処理できる点が優れている。一方、Deep Neural Networkは、応答特性を大量に集積できれば、その膨大な応答特性の特徴点を抽出せずにそのまま事前学習を行い識別処理する点が優位である。主成分分析を用いた匂い分子の識別に関して、特許文献1、特許文献2が挙げられる。
特開平06−160317号公報 特開平10−170422号公報
主成分分析では、匂い分子に対する感応膜の応答特性に対して、匂い分子の特徴量 Zij (i:匂いの参照分子種、j:感応膜種)の分散 λj を最大化する。しかし、匂い分子の特徴量間の距離が小さいときは、匂い分子の識別が困難になる。また、計測由来の揺らぎσ が生じたときに、匂い分子の特徴量 Zijに揺らぎが生じる。そのため、匂い分子の特徴量間の距離が狭まり、匂い分子の識別が困難になる。更に、参照分子種が増加すると、匂い分子の特徴量間の距離が小さくなるため、匂い分子の識別が困難になる。
一般に、生体由来の感応膜の応答特性は、複数の匂い分子種に応答するGeneralist型である。そのGeneralist感応膜の応答特性を活用した匂い分子の識別機構に関して未知な部分が多い。例えば、嗅覚受容体の種類は生物種に依存して百〜2千種類になる。仮に、嗅覚受容体が遺伝子のランダム変異により生じるとすれば、その種類は冗長に存在する。反対に、その種類は匂い分子を識別するための必要数とも考えられる。このように、多様な匂い分子を識別するためには、Generalist感応膜は何種類が必要であり、如何なるGeneralist感応膜特性を備えるべきか不明である。即ち、多様な匂い分子を複数のGeneralist感応膜で識別する方法は未確立である。
上記課題を解決する本発明の一側面は、入力装置、出力装置、処理装置、記憶装置を備えた情報処理装置によって実行され、入力装置から入力される、参照分子に対して計測された感応膜の応答特性、および、ターゲット分子に対して計測された感応膜の応答特性に基づいて情報処理を行う分子識別方法である。この分子識別方法においては、参照分子に対する感応膜の応答特性を記憶装置に記憶する第1ステップと、処理装置により、主成分分析を用いて、参照分子の特徴量Zref、特徴量の分散λ、参照分子の応答特性を重み付ける線形結合係数aを計算する第2ステップと、ターゲット分子に対する感応膜の応答特性を記憶装置に記憶する第3ステップと、処理装置により、第3ステップのターゲット分子に対する応答特性、及び、第2ステップで求めた線形結合係数aを用いて、ターゲット分子の特徴量Ztarを計算する第4ステップと、処理装置により、第2ステップの参照分子の特徴量Zref、第4ステップのターゲット分子の特徴量Ztar、及び、識別関数Pを用いてターゲット分子に対する参照分子の類似度を表わす類似確率を計算する第5ステップと、処理装置により、第5ステップの類似確率が第2の閾値確率以上の参照分子を類似分子、及び、類似確率が閾値確率より小さい参照分子を非類似分子にグループ分割する第6ステップと、処理装置により、参照分子を類似分子のみに削減し、参照分子種を減少させる第7ステップと、第1ステップに戻り、減少された参照分子種により分子に対する識別処理を繰り返す第8ステップと、を有することを特徴とする。
上記課題を解決する本願発明の他の一側面は、入力装置、出力装置、処理装置、記憶装置を備えた情報処理装置によって実行され、入力装置から入力される、参照分子に対して計測された感応膜の応答特性、および、ターゲット分子に対して計測された感応膜の応答特性に基づいて情報処理を行う分子識別方法である。この分子識別方法においては、参照分子に対する感応膜の応答特性を記憶装置に記憶する第1ステップと、処理装置により、主成分分析を用いて、参照分子の特徴量Zref、特徴量の分散λ、参照分子の応答特性を重み付ける線形結合係数aを計算する第2ステップと、ターゲット分子に対する感応膜の応答特性を記憶装置に記憶する第3ステップと、処理装置により、第3ステップのターゲット分子に対する応答特性、及び、第2ステップで求めた線形結合係数aを用いて、ターゲット分子の特徴量Ztarを計算する第4ステップと、処理装置により、第2ステップの参照分子の特徴量Zref、第4ステップのターゲット分子の特徴量Ztar、及び、識別関数pを用いてターゲット分子に対する参照分子の類似度を表わす類似確率を計算する第5ステップと、処理装置により、第2ステップで求めた特徴量を用いて、仮想的な感応膜が備えた超応答性を計算する第6ステップと、処理装置により、超応答性を備えた仮想的な感応膜を導入して全感応膜種を増加させる第7ステップと、第1ステップに戻り、増加された感応膜種により分子に対する識別処理を繰り返す第8ステップと、を有することを特徴とする。
匂い分子の特徴量の分散が増大し、匂い分子の識別を向上させることができる。
実施の形態1による識別法の構成及び手順の一例を示す処理ブロック図。 実施の形態2による識別法の構成及び手順の一例を示す処理ブロック図。 本発明の実施の形態2による計算フローの具体例を示す概念図。 本発明の実施の形態2によるグループ分割法を用いたとき、匂い分子の識別率に対する計測特性の揺らぎ依存性を示すグラフ図。 実施の形態3による識別法の構成及び手順の一例を示す処理ブロック図。 本発明の実施の形態3による計算フローの具体例を示す概念図。 本発明の実施の形態3による超応答性の導入法を用いたとき、匂い分子の識別率に対する計測特性の揺らぎ依存性を示すグラフ図。 実施の形態4による識別法の計算フローの具体例を示す処理ブロック図。 実施の形態4による匂い分子の識別法において、確率的主成分分析を基にグループ分割法と超応答性の導入法を組み合わせたハイブリッド法を用いたとき、匂い分子の識別率に対する計測特性の揺らぎ依存性を示すグラフ図。 実施の形態5による嗅覚受容体の発現した細胞セルの応答特性に対する分子識別処理の計測装置のブロック図。 実施の形態6による分子識別法を実施するための構成及び手順の一例を示すブロック図。 実施の形態6による分子識別法を実施するための分子識別システムのハードウエア構成の一例を示すブロック図。
発明の実施の形態
実施の形態について、図面を用いて詳細に説明する。ただし、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。本発明の思想ないし趣旨から逸脱しない範囲で、その具体的構成を変更し得ることは当業者であれば容易に理解される。
以下に説明する発明の構成において、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、重複する説明は省略することがある。
本明細書等における「第1」、「第2」、「第3」などの表記は、構成要素を識別するために付するものであり、必ずしも、数または順序を限定するものではない。また、構成要素の識別のための番号は文脈毎に用いられ、一つの文脈で用いた番号が、他の文脈で必ずしも同一の構成を示すとは限らない。また、ある番号で識別された構成要素が、他の番号で識別された構成要素の機能を兼ねることを妨げるものではない。
図面等において示す各構成の位置、大きさ、形状、範囲などは、発明の理解を容易にするため、実際の位置、大きさ、形状、範囲などを表していない場合がある。このため、本発明は、必ずしも、図面等に開示された位置、大きさ、形状、範囲などに限定されない。
上記の課題を解決するために、以下の実施例ではGeneralist感応膜の応答特性を活用して匂い分子の識別を向上させるため、参照分子の特徴量 Zrefの分散 λj を増加させる。このために、グループ分割法、超応答性の導入法、及び、それらを組み合わせたハイブリッド法を示す。
グループ分割法は、識別関数を用いて、参照分子をターゲット分子の類似分子と非類似分子に分割し、参照分子を類似分子のみに削減し分散 λj を増加させて、匂い分子の識別を向上させる方法である。ここで、識別関数として、例えば、参照分子の特徴量Zref、ターゲット分子の特徴量Ztar、を用いて、ターゲット分子に対する参照分子の類似度を表わす関数を利用することができる。また、超応答性の導入法は、参照分子の特徴量Zrefを用いて、分散 λj を最大化する逆問題を解き、仮想感応膜が備えるべき応答特性を求める。この仮想感応膜が備えた応答特性を超応答性と呼ぶ。そして、実感応膜と仮想感応膜で構成される全感応膜種を増加させて、参照分子の特徴量の分散λj を均等増大させて、匂い分子の識別を向上させる。ハイブリッド法は、グループ分割法と超応答性の導入法の組み合わせにより、参照分子の特徴量の分散 λj を協調的に増大させて、匂い分子の識別を向上させる方法である。本実施例の概念は、上記原理による匂い分子の識別法、装置及びシステムを含む。
以下、本発明の実施の形態を図面に基づいて詳細に説明する。実施例で示す具体的な構成では、グループ分割法、超応答性の導入法、及び、それらを組み合わせたハイブリッド法を示す。
グループ分割法の典型的な例は、下記の処理ステップで構成される。
(1) 参照分子に対して計測された感応膜の応答特性を入力。
(2) 主成分分析を用いて、参照分子の 特徴量 Zref 、特徴量の分散 λ、参照分子の応答特性を重み付ける線形結合係数 aを計算。
(3) ターゲット分子に対して計測された感応膜の応答特性を入力。
(4) 前記(3)のターゲット分子に対する応答特性、及び、前記(2)の線形結合係数aを用いて、ターゲット分子の特徴量Ztar(a)を計算。
(5) 前記(2)の参照分子の特徴量Zref、前記(4)のターゲット分子の特徴量Ztar(a)、及び、識別関数F(Ztar(a)Zref)を用いて類似確率を計算。この類似確率はターゲット分子に対する参照分子の類似度を表わす。
(6) 前記(5)の類似確率が閾値確率Pth以上の参照分子の数が単一、もしくは十分小さな数であった場合には、当該参照分子に対して、ターゲット分子の類似分子、及び、その類似確率を出力し、匂い分子の識別を終了。
(7) 前記(5)の類似確率が閾値確率Pth以上の参照分子の数が十分小さくなく、さらに絞り込む必要がある場合には、参照分子を類似分子に、及び、類似確率が閾値確率Pthより小さい参照分子を非類似分子にグループ分割。
(8) グループ分割された参照分子を類似分子のみに削減し、参照分子種を減少。
(9) 前記の(1)に戻り、必要に応じて匂い分子に対する識別処理を繰り返す。
超応答性の導入法の典型的な例は、下記の処理ステップで構成される。
(1) 参照分子に対して計測された感応膜の応答特性を入力。
(2) 主成分分析を用いて、参照分子の特徴量 Zref、特徴量の分散 λ、参照分子の応答特性に対する線形結合係数 aを計算。
(3) 前記(2)の特徴量Zref を用いて超応答性を計算。
(4) 超応答性を備えた仮想感応膜の導入により全感応膜種を増加。参照分子に対する感応膜の応答特性に仮想感応膜の超応答性を追加。
(5) ターゲット分子に対して計測された感応膜の応答特性を入力。ターゲット分子に対して推定された仮想感応膜の応答特性を入力。
(6) 前記(5)のターゲット分子に対する応答特性、及び、全感応膜種を増加した応答特性を用いた主成分分析(前記(2))の線形結合係数aを用いて、ターゲット分子の特徴量Ztar(a)を計算。
(7) 前記(2)の参照分子の特徴量Zref、前記(6)のターゲット分子の特徴量Ztar(a)、及び、識別関数F(Ztar(a)Zref)を用いて類似確率を計算。この類似確率はターゲット分子に対する参照分子の類似度を表わす。
(8) 前記(7)の類似確率が閾値確率Pth以上の参照分子に対して、ターゲット分子の類似分子、及び、その類似確率を出力し、匂い分子の識別を終了。
(9) 必要に応じて前記の(1)に戻り、匂い分子に対する識別処理を繰り返す。
ハイブリッド法は、下記の処理ステップで構成される。
(1) 参照分子に対して計測された感応膜の応答特性を入力。
(2) 主成分分析を用いて、参照分子の 特徴量 Zref 、特徴量の分散 λ、参照分子の応答特性に対する線形結合係数 aを計算。
(3) 前記(2)の特徴量Zref を用いて超応答性を計算。
(4) 超応答性を備えた仮想感応膜の導入により全感応膜種を増加。
(5) ターゲット分子に対して計測された感応膜の応答特性を入力。
(6) 前記(5)のターゲット分子に対する応答特性、及び、前記(2)の線形結合係数aを用いて、ターゲット分子の特徴量Ztar(a)を計算。
(7) 前記(2)の参照分子の特徴量Zref 、前記(6)のターゲット分子の特徴量Ztar(a)、及び、識別関数F(Ztar(a)Zref)を用いて類似確率を計算。この類似確率はターゲット分子に対する参照分子の類似度を表わす。
(8) 前記(7)の類似確率が閾値確率Pth以上の参照分子に対して、ターゲット分子の類似分子、及び、その類似確率を出力し、匂い分子の識別を終了。
(9) 前記(7)の類似確率が閾値確率Pth以上の参照分子を類似分子、及び、類似確率が閾値確率Pthより小さい参照分子を非類似分子にグループ分割。
(10) 参照分子を類似分子のみに削減し、参照分子種を減少。
(11) 前記の(1)に戻り、必要に応じて匂い分子に対する識別処理を繰り返す。
図1は、本発明の実施の形態1による確率的主成分分析に基づく匂い分子の識別法において、その構成及び手順の一例を示すブロック図である。初めに、No 種類の参照分子に対するNr 種類の感応膜の応答特性(計測特性データ)101をもとに、主成分分析102を用いて匂い特徴量Zrefijを計算する。ここで、iは参照分子種 (i =1、2、---、No)、j は特徴量の次元 (j =1、2、---、Nr) を表わす。また、Zrefij は、感応膜種l (l=1、2、---、Nr) の応答特性xrefilを標準化した応答特性urefilの線形結合で与えられ、次式(数1)で表される。
Figure 2018000044
ここで、aljはuref ilを重み付ける線形結合係数である。また、Zref ijの次元jにおける分散をλとすれば、λ及びaljは次式(数2)、(数3)の固有方程式を解いて求められる固有値及び固有ベクトルである。
Figure 2018000044
Figure 2018000044
次に、ターゲット分子(分析対象試料)に対する感応膜の応答特性(計測特性データ)103を利用する。ターゲット分子に対する感応膜種lの応答特性xtarlを標準化した応答特性utarlに対して、(数1)と同様に参照分子に対して求めた線形結合係数aljを用いて、特徴量計算104において特徴量Ztarjを計算する。そして、判定処理105において、ターゲット分子の特徴量Ztarjと、主成分分析102で得られた参照分子の特徴量Zrefijを用いて、(数4)、(数5)のガウス型確率密度分布を用いた識別関数Pを計算する。
Figure 2018000044
Figure 2018000044
ここで、識別関数Pは、ターゲット分子の参照分子に対する類似確率を表わす。この類似確率は、ターゲット分子の特徴量と参照分子の特徴量の類似度を表わす指標である。また、Ndは識別関数に用いる特徴量の次元、Zは識別関数の規格化因子である。また、参照分子に対する感応膜種jの応答特性の揺らぎσrefj(alj)、及び、ターゲット分子に対する感応膜種jの応答特性の揺らぎσtarj(alj)を導入する。そして、判定処理105において、ターゲット分子の特徴量Ztarj、参照分子の特徴量Zrefij、参照分子に対する感応膜種jの応答特性の揺らぎσrefj(alj)、及び、ターゲット分子に対する感応膜種jの応答特性の揺らぎσtarj(alj)を識別関数Pに代入して類似確率を計算する。
そして、判定処理105では、閾値確率 Pth を設定し、特定の参照分子i以外の類似確率が全てPth より小さければ、ターゲット分子は参照分子iに識別される。一方、複数の参照分子の類似確率がPth 以上であれば、ターゲット分子は類似確率に従って複数の参照分子に識別される(分岐YES)。最後に、識別完了処理106において、ターゲット分子の類似分子、及び、その類似確率を出力し、匂い分子の識別を終了する。ただし、判定処理105で、ターゲット分子に対して参照分子が十分に絞れない場合は、分岐NOで識別未完となる。
図2は本発明の実施の形態2によるグループ分割を用いた匂い分子の識別法において、その構成及び手順の一例を示すブロック図である。本実施例では、匂い分子に対するGeneralist感応膜の応答特性を利用して、匂い分子の識別を向上させるため、確率的主成分分析を基にグループ分割法を加えている。以下では実施例1と異なる部分を主に説明する。
グループ分割法では、判定処理205において、複数の(あるいは所定以上の数の)参照分子の類似確率がPth 以上であった場合に、識別関数Pを用いて求めたターゲット分子の参照分子に対する類似確率を使用してグループ分割を行う。すなわち、グループ分割処理207において、その類似確率が、閾値確率Pth以上であれば類似分子、及び、閾値確率より小さければ非類似分子にグループ分割する。
なお、図2ではターゲットの識別完了処理時(206)の閾値確率と、グループ分割時(207)の閾値確率は同じものを用いているが、異なる閾値確率を用いてもよい。例えば、識別完了の判断を行う場合には、厳しい第1の閾値確率を用い、その閾値確率で十分に参照分子が絞り込めた場合には識別完了とする(206)。参照分子が絞り込めない場合には、より緩い第2の閾値確率を用いてグループ分割するようにしてもよい。
続いて、参照分子種減少処理208において、このグループ分割により、参照分子種を類似分子のみに削減する。そして、削減した参照分子種をもとに、再び201及び202において主成分分析を用いて特徴量を計算し、グループ分割を繰り返す。このとき、参照分子種が減少するため、類似分子に対する特徴量は低次元化し、低次元特徴量の分散和が増大する。また、その低次元特徴量の分散和は、グループ分割前の類似分子に対する特徴量の分散和よりも増大する。従って、グループ分割法は、類似グループと非類似グループで構成される全匂い分子を対象に特徴量を分散させるよりも、類似グループのみで構成した匂い分子を対象に特徴量を大きく分散できるため、匂い分子の識別を向上できる。
図3には計算フローの具体例を示す。参照分子25種類に対する感応膜21種類の応答特性をもとに、データ301において、主成分分析を用いて求めた匂い特徴量Zrefij(i =1、2、---、25、j =1、2、3)が示されている。特徴量の最大次元は21次元であるが、この例では説明を簡単にするため3次元(Zref1、Zref2、Zref3)を示し、その分散は λ1 =6.3、λ2 =3.0、λ3 =2.1である。
次に、ターゲット分子に対する感応膜の応答特性、及び、参照分子に対して求めた線形結合係数を用いて特徴量Ztarj(j =1、2、3)を計算する。そして、識別関数Pを用いて類似確率を計算し、閾値確率Pth以上の類似分子にグループ分割する。データ301において、ターゲット分子をO1及びPth =0.01としたとき、データ302の横軸に示す分子種#1, 3, 5, 9, 17, 21, 24に対して0.01を超える類似確率が確認でき、参照分子25種類は類似分子7種類のみに削減される。
データ303には、削減した参照分子種に対して主成分分析を用いた特徴量を示した。その分散はλ1 = 6.1、λ2 = 4.9、λ3 = 3.7 である。参照分子が25種の場合に比較して参照分子が7種類の場合では、匂い特徴量間の距離が大きくなり区別し易くなっている。このように、本実施例では判定処理205で、ターゲット分子に対して参照分子が十分に絞れない場合であっても、グループ分割を繰り返すことで参照分子種が減少し、匂い分子の識別を向上できる。
図4は、匂い分子の識別率ηに対する計測特性の揺らぎσ依存性である。従来の主成分分析では、揺らぎσが大きくになるにつれて、識別率ηが著しく低下する。一方、グループ分割の反復回数が増やすにつれて、識別率ηが著しく向上する様子が示されている。
図5は本発明の実施の形態3による超応答性を用いた匂い分子の識別法において、その構成及び手順の一例を示すブロック図である。本実施例では、匂い分子に対するGeneralist感応膜の応答特性を利用して、匂い分子の識別を向上させるため、確率的主成分分析を基に超応答性の導入法を加えている。以下では実施例1の図1の101〜105(図5の501〜505に対応)に対応する処理を1度行った後、追加される部分を主に説明する。
超応答性の導入法は、新感応膜特性を追加したとき、匂い特徴量の任意次元の分散を大きくして均等増大させる方法である。実感応膜特性を見分け易くするためにタグを付けるように、仮想的な感応膜が備えた超応答性を追加する。即ち、超応答性の導入法は超応答性を備えた仮想的な感応膜種を増加させて、匂い特徴量の分散を均等増大させる方法である。超応答性導入処理507において、処理502(102)で求めた参照分子に対する特徴量Zrefijを用いて次式の固有方程式を形成する。
Figure 2018000044
超応答性は、(数6)を解いて求めた固有ベクトルui0で表される。また、Nuは、分散を増大させたい特徴量の次元数である。感応膜種増加処理508において、実感応膜に超応答性を備えた仮想的感応膜を追加し、全感応膜種を増加させ、参照分子に対する特徴量の任意次元の分散を増大可能である。従って、特徴量の全次元の分散を均等増大できるため、匂い分子の識別を向上させることができる。
このとき、ターゲット分子に対する超応答性は、感応膜の応答特性503において、例えば、先に処理505(105)で求めた参照分子内の類似分子に対する超応答性u、及び、その類似確率を用いて予測する。そして、特徴量計算504において、ターゲット分子の感応膜特性と超応答性を用いて特徴量を計算し、判定処理505において、識別関数Pを用いて参照分子に対する類似確率を求める。ターゲット分子に対して参照分子が一つもしくは十分に絞れない場合には、超応答性導入507以降を繰り返してさらに仮想的感応膜を追加してもよい。
図6には計算フローの概念の具体例を示す。前述と同様にして、データ601において、参照分子25種類に対する特徴量が示されている。次に、3次元特徴量Zref1、Zref2、Zref3を用いて(数6)の固有値方程式を形成する。このとき、超応答性の制御パラメータとして、超応答性を備えた仮想的な感応膜種Nu=3、超応答性の次元Nsup=31を設定した。このNuは、分散を増大させたい特徴量の次元数である。
次に、データ602には、仮想的な感応膜3種類(α、β、γ)が備えた超応答性を示した。また、各感応膜種α、β、γを8、11、12回用いて31次元の超応答性を構成した。そして、データ603において、実感応膜特性に超応答性を追加した全応答特性に対する特徴量を示した。その分散は、λ1 =14.3、λ2 =14.1、λ3 =14.0とほぼ均等に増大し、匂い特徴量間の距離が大きくなり区別し易くなっている。従って、超応答性の導入により、特徴量の分散が均等増大し、匂い分子の識別を向上できる。
図7は、匂い分子の識別率ηに対する計測特性の揺らぎσ依存性である。従来の主成分分析では、揺らぎσが大きくになるにつれて、識別率ηが著しく低下する。一方、超応答性を導入すると、識別率ηが向上する様子が示されている。
図8は本発明の実施の形態4を示す。これは実施例2のグループ分割と実施例3の超応答性を組み合わせたハイブリッド法である。処理801〜810は、図2の処理201から206および図5の処理501〜506の両方の機能を含む。超応答性は、(数6)を解いて求めた固有ベクトルui0で表され、処理808において、実感応膜に超応答性を備えた仮想的感応膜を追加する。ターゲット分子に対する超応答性は、感応膜の応答特性803において、例えば、参照分子内の類似分子に対する超応答性、及び、その類似確率を用いて予測する。そして、特徴量計算804において、ターゲット分子の感応膜特性と超応答性を用いて特徴量Zterを計算し、判定処理805において、識別関数Pを用いて参照分子に対する類似確率を求める。
グループ分割法では、判定処理805において、識別関数Pを用いて求めたターゲット分子の参照分子に対する類似確率を使用する。次に、809において、その類似確率が、閾値確率Pth以上であれば類似分子、及び、閾値確率より小さければ非類似分子にグループ分割する。続いて、810において、このグループ分割により、参照分子種を類似分子に削減する。そして、削減した参照分子種をもとに、501及び502において主成分分析を用いて特徴量を計算する。
グループ分割、および超応答性の導入は、1回でもよいし、分子の分析の精度が十分得られるまで、必要に応じて繰り返すことができる。グループ分割を繰り返すことにより、参照分子種が減少するため、類似分子に対する特徴量は低次元化し、低次元特徴量の分散和が増大する。また、その低次元特徴量の分散和は、グループ分割前の類似分子に対する特徴量の分散和よりも増大する。
以上のように、本実施例のハイブリッド法は、超応答性の導入による匂い特徴量の全次元の分散の均等増大、及び、グループ分割による低次元特徴量の分散和の増大の効果がある。また、その低次元特徴量の分散和は、グループ分割前の類似分子に対する特徴量の分散和よりも増大するため、匂い分子の識別を向上させることができる。
図9は、匂い分子の識別率ηに対する計測特性の揺らぎσ依存性である。従来の主成分分析では、揺らぎσが大きくになるにつれて、識別率ηが著しく低下する。一方、ハイブリッド法では、超応答性を導入しグループ分割を増やすことで、識別率ηが著しく向上する様子が示されている。
図9の例は、最初に超応答性を導入して全感応膜種を増加し、その後グループ分割を繰り返し行い、計測特性の揺らぎσが大きい領域での識別率の向上を図った例である。また逆に、最初にグループ分割を行い、その後超応答性を導入する方法もある。
図10は、本実施例における発明の嗅覚受容体の発現した細胞セルの応答特性を用いた分子識別装置である。m本の走査配線Wi(i=1…m)1001、n本の信号配線Bj(j=1…n)1002の交差部に、センサセルSij(i,j=1,1…m,n)1003がm×nの二次元マトリクス状に配置され、センサセルSij上にセンサ細胞Cij(i,j=1,1…m,n)1004が配置される。たとえばm=n=1000の場合、合計100万個のセンサセルSij上にセンサ細胞Cijが配置される。走査配線Wiは走査回路1005に、信号配線Bjは信号回路1006にそれぞれ接続され、信号回路1006はメモリ演算回路(匂い信号加算部機構)1007、メモリ演算回路は匂い識別部機構1008に接続される。
センサセル1003は、イオン感応性トランジスタ(ISFET)、およびその上に配置されたマイクロウェルから構成され、マイクロウェルの中に少なくとも一つのセンサ細胞1004が配置される。センサ細胞1004は、主に昆虫の嗅覚受容体を具備し、pH調整された生理水溶液中に浸漬されている。生理水溶液内には、Caイオンと匂い分子が分散しており、嗅覚受容体が匂い分子が嗅覚受容体を認識すると、嗅覚受容体のイオンチャネルが開いてセンサ細胞内にCaイオンが流入し、センサ細胞1004表面の電位が変化する。
この電位変化がゲート電極に伝わって絶縁膜/半導体界面にキャリア電荷蓄積が生じて、ドレイン電極/ソース電極の間に電流が流れることで、嗅覚受容体が匂い分子を認識したことを示す応答信号が電気信号に変換される。センサ細胞としては、特許文献: 特開2013-27376、または,非特許文献:H.Mitsuno et al.:Novel cell based odorant sensor elements based on insect odorant receptors:Biosensors and Bioelectronics 65 pp.287-294、2015 に開示されたセンサ細胞を用いることができる。
同嗅覚受容体の応答特性は、加算平均することで、ノイズを低減することができる。そして、参照分子またはターゲット分子に対するGeneralist感応膜の応答特性を計測することができる。そして、識別部機構18は、前記の実施の形態1、実施の形態2、実施の形態3、または、実施の形態4の匂い分子の識別法を利用することで、匂い分子の識別を向上させることができる。
図11及び図12により、本実施の形態6による分子識別法を実施するためのシステム構成を説明する。図11は、分子識別法の構成及び手順の一例を示すブロック図である。
図12は、分子識別システムのハードウエア構成の一例を示すブロック図である。この分子識別システムは、パーソナルコンピュータ1100と、計算装置1102などから構成されている。パーソナルコンピュータ1100は、記憶装置を含む入力装置1101と、画像処理装置を含む出力装置1103などから構成される。計算装置1102は、CPU装置1201と、記憶装置1202、データ転送用結合バス1205に接続される入力装置(入力インタフェース)および出力装置(出力インタフェース)から構成される。CPU装置1201と記憶装置1202は、データ転送用結合バス1204により接続されている。なお、図12では、複数の計算装置1102が、データ転送用結合バス1205によりマトリクス状に接続される構成となっているが、これに限定されず、計算装置1102は1つであってもよく、また、パーソナルコンピュータ1100内に設けてもよい。あるいは、処理能力が十分であれば、単一の大型コンピュータで構成してもよい。
次に、図11及び図12により、本実施の形態6による分子識別法を実施するためのシステムについて、その動作例を説明する。計算装置1102において、記憶装置1202には匂い分子の識別法のプログラムが記憶(保持)されており、パーソナルコンピュータ1100からの指示により、CPU装置1201がそのプログラムを読み出して演算処理を行う。その演算処理の結果は、記憶装置1202に保存される。演算処理に必要なデータ類は、パーソナルコンピュータ1100から、データ転送用結合バス1205を介して送信される。また、計算装置1102における演算処理の結果は、データ転送用結合バス1205を介して、パーソナルコンピュータ1100に送信される。また、パーソナルコンピュータ1100において、演算処理に必要なデータは入力装置1101から入力され、演算処理の結果は出力装置1103で出力・表示される。図11と図12の例では、パーソナルコンピュータ1100と計算装置1102が階層構造になっている。ただし、先に述べたように、本システムは単一の大型コンピュータで構成してもよく、その場合は、記憶装置の配置は図11や図12の例に限らず任意に構成することができる。
図11に示すように、計算装置1102において匂い分子の識別法を実施するため、Generalist感応膜の応答特性を利用して、確率的主成分分析を基にグループ分割法を用いた識別処理は、以下の手順で実行される。
(1) ステップ1102−1において、参照分子に対して計測された感応膜の応答特性データを、システム外部から入力装置1101を介して計算装置1102に入力する。応答特性データは図示しない測定装置からの出力を自動的に電子データ化したものでもよいし、操作者が手入力して作成した電子データでもよい。計算装置1102は当該データを(2)以降の処理のために、記憶装置1202に確保されたデータ領域に格納する。
(2) ステップ1102−2において、計算装置1102は、主成分分析を用いて、参照分子の 特徴量 Zref 、特徴量の分散 λ、参照分子の応答特性を重み付ける線形結合係数 aを計算する。
(3) ステップ1102−3において、ステップ1102−1と同様に、ターゲット分子に対して計測された感応膜の応答特性データを入力装置1101から計算装置1102に入力する。
(4) ステップ1102−4において、計算装置1102は、前記(3)のターゲット分子に対する応答特性、及び、前記(2)の線形結合係数aを用いて、ターゲット分子の特徴量Ztar(a)を計算。
(5) ステップ1102−5において、計算装置1102は、前記(2)の参照分子の特徴量Zref、前記(4)のターゲット分子の特徴量Ztar(a)、及び、識別関数F(Ztar(a)Zref)を用いて類似確率を計算。
(6) ステップ1102−6において、前記(5)の類似確率が閾値確率Pth以上の参照分子に対して、計算装置1102は、ターゲット分子の類似分子、及び、その類似確率を出力し、匂い分子の識別を終了。識別を終了するか否かは、識別が十分かどうかで判断する。すなわち、ターゲット分子の類似分子が十分に絞り込めた段階で終了とする。理想的には一つに特定できることであるが、所望の閾値以下の個数であればよい。閾値などの終了条件は入力装置1101から設定できるようにすればよい。
(7) ステップ1102−7において、識別が十分でない場合には、計算装置1102は、前記(5)の類似確率が閾値確率Pth以上の参照分子を類似分子、及び、類似確率が閾値確率Pthより小さい参照分子を非類似分子にグループ分割する。
(8) ステップ1102−8において、計算装置1102は、参照分子を類似分子のみに削減し、参照分子種を減少する。
(9) ステップ1102−9において、前記の(1)に戻り、計算装置1102は、匂い分子に対する識別処理を繰り返す。処理(1)では、参照分子に対して計測された感応膜の応答特性データは、処理(8)で限定されたものとなる。
また、計算装置1102において、図2に示したグループ分割法を加えた匂い分子の識別法を実施する場合と同様にして、Generalist感応膜の応答特性を利用して、確率的主成分分析を基に超応答性の導入法を用いた識別処理は、図5に示した超応答性の導入法を加えた匂い分子の識別法を実施する。同様にして、Generalist感応膜の応答特性を利用して、確率的主成分分析を基にハイブリッド法を用いた識別処理は、図8に示したハイブリッド法を加えた匂い分子の識別法を実施する。
以上説明した実施例では、主成分分析、グループ分割法と超応答性の導入法の処理を実行する際には、例えば図11に示す構成に対応したグラフィックを出力装置1103に表示して、主成分分析、グループ分割法、超応答性の各機能ブロックを用い、匂い分子の複雑な識別処理フローを入力装置から設定可能に構成することができる。
図11、図12に示した構成は、単体のコンピュータで構成してもよいし、あるいは、入力装置、出力装置、処理装置、記憶装置の任意の部分が、ネットワークで接続された他のコンピュータで構成されてもよい。
本実施例中、ソフトウエアで構成した機能と同等の機能は、FPGA(Field Programmable Gate Array)、ASIC(Application Specific Integrated Circuit)などのハードウエアでも実現できる。そのような態様も本願発明の範囲に含まれる。
本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることが可能である。また、各実施例の構成の一部について、他の実施例の構成の追加・削除・置換をすることが可能である。
1001 走査配線、1002 信号配線、1003 センサセル、1004 センサ細胞、1005 走査回路、1006 信号回路、1007 メモリ演算回路(匂い信号加算部機構)、1008 匂い識別部機構、1100 パーソナルコンピュータ

Claims (15)

  1. 入力装置、出力装置、処理装置、記憶装置を備えた情報処理装置によって実行され、前記入力装置から入力される、参照分子に対して計測された感応膜の応答特性、および、ターゲット分子に対して計測された感応膜の応答特性に基づいて情報処理を行う分子識別方法であって、
    参照分子に対する感応膜の応答特性を前記記憶装置に記憶する第1ステップと、
    前記処理装置により、主成分分析を用いて、参照分子の特徴量、特徴量の分散、参照分子の応答特性を重み付ける線形結合係数を計算する第2ステップと、
    ターゲット分子に対する感応膜の応答特性を前記記憶装置に記憶する第3ステップと、
    前記処理装置により、前記の第3ステップのターゲット分子に対する応答特性、及び、前記の第2ステップで求めた線形結合係数を用いて、ターゲット分子の特徴量を計算する第4ステップと、
    前記処理装置により、前記の第2ステップの参照分子の特徴量、前記の第4ステップのターゲット分子の特徴量、及び、識別関数を用いてターゲット分子に対する参照分子の類似度を表わす類似確率を計算する第5ステップと、
    前記処理装置により、前記の第5ステップの類似確率が閾値確率以上の参照分子を類似分子、及び、類似確率が閾値確率より小さい参照分子を非類似分子にグループ分割する第6ステップと、
    前記処理装置により、参照分子を類似分子のみに削減し、参照分子種を減少させる第7ステップと、
    前記の第1ステップに戻り、減少された参照分子種により分子に対する識別処理を繰り返す第8ステップと、
    を有することを特徴とする分子識別方法。
  2. 複数の前記参照分子に応答する複数の前記感応膜の応答特性を用いてターゲット分子を識別するため、前記第2ステップの主成分分析の機能と、前記第6ステップのグループ分割の機能をブロック単位として、前記入力装置から、分子の識別処理フローを入力設定することを特徴とする請求項1記載の分子識別方法。
  3. 前記グループ分割の機能は、前記識別関数を用いて参照分子N0 種をターゲット分子の類似分子と非類似分子に分割し、参照分子をNg(≦N0) 種に削減することを特徴とする請求項1記載の分子識別方法。
  4. 前記識別関数は、前記参照分子の特徴量、及び、前記ターゲット分子の特徴量を用いて、ターゲット分子に対する参照分子の類似度を表わすことを特徴とする請求項1記載の分子識別方法。
  5. 前記参照分子または前記ターゲット分子に対する嗅覚受容体の発現した細胞セルの応答特性を計測することを特徴とする請求項1記載の分子識別方法。
  6. 入力装置、出力装置、処理装置、記憶装置を備えた情報処理装置によって実行され、前記入力装置から入力される、参照分子に対して計測された感応膜の応答特性、および、ターゲット分子に対して計測された感応膜の応答特性に基づいて情報処理を行う分子識別方法であって、
    参照分子に対する感応膜の応答特性を前記記憶装置に記憶する第1ステップと、
    前記処理装置により、主成分分析を用いて、参照分子の特徴量、特徴量の分散、参照分子の応答特性を重み付ける線形結合係数を計算する第2ステップと、
    ターゲット分子に対する感応膜の応答特性を前記記憶装置に記憶する第3ステップと、
    前記処理装置により、前記の第3ステップのターゲット分子に対する応答特性、及び、前記の第2ステップで求めた線形結合係数を用いて、ターゲット分子の特徴量を計算する第4ステップと、
    前記処理装置により、前記の第2ステップの参照分子の特徴量、前記の第4ステップのターゲット分子の特徴量、及び、識別関数を用いてターゲット分子に対する参照分子の類似度を表わす類似確率を計算する第5ステップと、
    前記処理装置により、前記の第2ステップで求めた特徴量を用いて、仮想的な感応膜が備えた超応答性を計算する第6ステップと、
    前記処理装置により、超応答性を備えた仮想的な感応膜を導入して全感応膜種を増加させる第7ステップと、
    前記の第1ステップに戻り、増加された感応膜種により分子に対する識別処理を繰り返す第8ステップと、
    を有することを特徴とする分子識別方法。
  7. 複数の前記参照分子に応答する複数の前記感応膜の応答特性を用いてターゲット分子を識別するため、前記第2ステップの主成分分析機能と、前記第6ステップの仮想感応膜の導入機能をブロック単位として、分子の識別処理フローを入力設定することを特徴とする請求項6記載の分子識別方法。
  8. 前記仮想的な感応膜の導入機能は、前記特徴量を用いて求めた仮想的な感応膜 Ns 種の応答特性を導入し、感応膜Nr種の応答特性をNr+Ns種に増加させることを特徴とする請求項6記載の分子識別方法。
  9. 前記識別関数は、前記参照分子の特徴量、及び、前記ターゲット分子の特徴量を用いて、ターゲット分子に対する参照分子の類似度を表わすことを特徴とする請求項6記載の分子識別方法。
  10. 前記参照分子または前記ターゲット分子に対する嗅覚受容体の発現した細胞セルの応答特性を計測することを特徴とする請求項6記載の分子識別方法。
  11. 入力装置、出力装置、処理装置、記憶装置を備えた情報処理装置によって実行され、前記入力装置から入力される、参照分子に対して計測された感応膜の応答特性、および、ターゲット分子に対して計測された感応膜の応答特性に基づいて情報処理を行う分子識別方法であって、
    参照分子に対する感応膜の応答特性を前記記憶装置に記憶する第1ステップと、
    前記処理装置により、主成分分析を用いて、参照分子の特徴量を計算する第2ステップと、
    前記処理装置により、前記の第2ステップで求めた特徴量を用いて、仮想的な感応膜が備えた超応答性を計算する第3ステップと、
    前記処理装置により、超応答性を備えた仮想感応膜を導入し全感応膜種を増加させる第4ステップと、
    追加した仮想感応膜の応答特性を前記記憶装置に記憶する第5ステップと、
    前記処理装置により、主成分分析を用いて、参照分子の特徴量、特徴量の分散、参照分子の応答特性を重み付ける線形結合係数を計算する第6ステップと、
    ターゲット分子に対する感応膜の応答特性を前記記憶装置に記憶する第7ステップと、
    前記の第7ステップで求めたターゲット分子に対する応答特性、及び、前記の第6ステップで求めた線形結合係数を用いて、ターゲット分子の特徴量を計算する第8ステップと、
    前記の第6ステップの参照分子の特徴量、前記の第8ステップのターゲット分子の特徴量、及び、識別関数を用いてターゲット分子に対する参照分子の類似度を表わす類似確率を計算する第9ステップと、
    前記の第9ステップの類似確率が閾値確率以上の参照分子を類似分子、及び、類似確率が閾値確率より小さい参照分子を非類似分子にグループ分割する第10ステップと、
    参照分子を類似分子のみに削減し、参照分子種を減少させる第11ステップと、
    前記の第1ステップに戻り、前記削減した参照分子種により、少なくとも第6〜11ステップを繰り返す第12ステップと、
    を有することを特徴とする分子識別方法。
  12. 前記グループ分割の機能は、前記識別関数を用いて参照分子N0 種をターゲット分子の類似分子と非類似分子に分割し、参照分子をNg(≦N0) 種に削減することを特徴とする請求項11記載の分子識別方法。
  13. 前記仮想感応膜の導入機能は、前記特徴量を用いて求めた仮想感応膜 Ns 種の応答特性を導入し、感応膜Nr種の応答特性をNr+Ns種に増加させることを特徴とする請求項11記載の分子識別方法。
  14. 前記識別関数は、前記参照分子の特徴量、及び、前記ターゲット分子の特徴量を用いて、ターゲット分子に対する参照分子の類似度を表わすことを特徴とする請求項11記載の分子識別方法。
  15. 前記第7ステップにおいて、ターゲット分子に対する仮想感応膜の応答特性を、前記第10ステップで類似分子とされた参照分子に対する仮想感応膜の応答特性から推定することを特徴とする請求項11記載の分子識別方法。
JP2016128639A 2016-06-29 2016-06-29 分子識別方法 Pending JP2018000044A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016128639A JP2018000044A (ja) 2016-06-29 2016-06-29 分子識別方法
PCT/JP2017/009291 WO2018003186A1 (ja) 2016-06-29 2017-03-08 分子識別方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016128639A JP2018000044A (ja) 2016-06-29 2016-06-29 分子識別方法

Publications (1)

Publication Number Publication Date
JP2018000044A true JP2018000044A (ja) 2018-01-11

Family

ID=60785328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016128639A Pending JP2018000044A (ja) 2016-06-29 2016-06-29 分子識別方法

Country Status (2)

Country Link
JP (1) JP2018000044A (ja)
WO (1) WO2018003186A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019135332A1 (ja) 2018-01-04 2019-07-11 アサヒビール株式会社 液体販売管理システム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021153566A1 (ja) * 2020-01-30 2021-08-05 太陽誘電株式会社 匂い判定装置、匂い判定方法、および匂い判定システム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3130679B2 (ja) * 1992-09-17 2001-01-31 エヌオーケー株式会社 ガス識別方法とガス識別装置
JP3169715B2 (ja) * 1992-11-20 2001-05-28 エヌオーケー株式会社 ガス識別方法とガス識別装置
JPH10170422A (ja) * 1996-12-12 1998-06-26 Sanyo Electric Co Ltd 複合型匂いセンサ
JPH11125610A (ja) * 1997-10-23 1999-05-11 Shimadzu Corp におい測定用信号処理装置
JP3631382B2 (ja) * 1998-09-03 2005-03-23 長谷川香料株式会社 化学センサ用感応膜
JP4780771B2 (ja) * 2006-05-17 2011-09-28 凸版印刷株式会社 匂いセンシングシステム
JP5105535B2 (ja) * 2008-03-25 2012-12-26 国立大学法人東京工業大学 匂いセンサ用感応膜および匂いセンサ素子
JP6297769B2 (ja) * 2009-02-02 2018-03-20 クロモセル コーポレーション 新規の細胞株および方法
JP5854686B2 (ja) * 2011-07-29 2016-02-09 亮平 神崎 匂いセンサ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019135332A1 (ja) 2018-01-04 2019-07-11 アサヒビール株式会社 液体販売管理システム

Also Published As

Publication number Publication date
WO2018003186A1 (ja) 2018-01-04

Similar Documents

Publication Publication Date Title
Srinivas et al. Deep transfer learning approaches in performance analysis of brain tumor classification using MRI images
Mitteroecker et al. Linear discrimination, ordination, and the visualization of selection gradients in modern morphometrics
Yan et al. Calibration transfer and drift compensation of e-noses via coupled task learning
CN113259331B (zh) 一种基于增量学习的未知异常流量在线检测方法及系统
CN114333986A (zh) 模型训练、药物筛选和亲和力预测的方法与装置
Mandal et al. FaRoC: fast and robust supervised canonical correlation analysis for multimodal omics data
Du et al. A novel forward gene selection algorithm for microarray data
CN113299346A (zh) 分类模型训练和分类方法、装置、计算机设备和存储介质
Zhang et al. TPPFAM: Use of threshold and posterior probability for category reduction in fuzzy ARTMAP
Kumar et al. A deep neural network–based approach for prediction of mutagenicity of compounds
CN112699941A (zh) 植物病害严重程度图像分类方法、装置、计算机设备和存储介质
WO2018003186A1 (ja) 分子識別方法
Horvath et al. Deriving adequate sample sizes for ANN-based modelling of real estate valuation tasks by complexity analysis
CN115458071A (zh) 土壤重金属含量预测方法、装置与设备
Velten et al. Principles and challenges of modeling temporal and spatial omics data
Cang et al. SCAN-IT: Domain segmentation of spatial transcriptomics images by graph neural network
CN114997036A (zh) 基于深度学习的网络拓扑重构方法、装置和设备
Alnaqbi et al. Creating rutting prediction models through machine learning techniques utilizing the long-term pavement performance database
Bi et al. Critical direction projection networks for few-shot learning
Jirina Using singularity exponent in distance based classifier
Campbell et al. Ouija: incorporating prior knowledge in single-cell trajectory learning using Bayesian nonlinear factor analysis
De Stefano et al. Evolutionary computation to implement an IoT-based system for water pollution detection
Deepa et al. Fusion-based segmentation technique for improving the diagnosis of MRI brain tumor in CAD applications
Caudai et al. A Statistical Approach to Infer 3 d Chromatin Structure
Pardo et al. Models, Models Everywhere… Model Selection