JP4780771B2 - 匂いセンシングシステム - Google Patents

匂いセンシングシステム Download PDF

Info

Publication number
JP4780771B2
JP4780771B2 JP2006138066A JP2006138066A JP4780771B2 JP 4780771 B2 JP4780771 B2 JP 4780771B2 JP 2006138066 A JP2006138066 A JP 2006138066A JP 2006138066 A JP2006138066 A JP 2006138066A JP 4780771 B2 JP4780771 B2 JP 4780771B2
Authority
JP
Japan
Prior art keywords
acoustic wave
surface acoustic
odor
gas
sensing system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006138066A
Other languages
English (en)
Other versions
JP2007309752A (ja
Inventor
高道 中本
健治 青木
恒郎 大木
慎吾 赤尾
琢也 中務
教尊 中曽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Toppan Inc
Original Assignee
Tokyo Institute of Technology NUC
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC, Toppan Inc filed Critical Tokyo Institute of Technology NUC
Priority to JP2006138066A priority Critical patent/JP4780771B2/ja
Publication of JP2007309752A publication Critical patent/JP2007309752A/ja
Application granted granted Critical
Publication of JP4780771B2 publication Critical patent/JP4780771B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2462Probes with waveguides, e.g. SAW devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/022Fluid sensors based on microsensors, e.g. quartz crystal-microbalance [QCM], surface acoustic wave [SAW] devices, tuning forks, cantilevers, flexural plate wave [FPW] devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/021Gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0256Adsorption, desorption, surface mass change, e.g. on biosensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02809Concentration of a compound, e.g. measured by a surface mass change
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0423Surface waves, e.g. Rayleigh waves, Love waves

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明は、匂いの元となる気体分子を高感度に検出し、ロバスト性を向上した匂いセンシングシステムに関する
近年、匂いセンシングシステムが、食品や飲料・化粧品・環境計測等の多くの分野で必要とされている。
例えば、食品や香料などの品質管理においては、通常、いわゆる“鼻の利く専門家”が存在し、この専門家により匂いの異常を検査するための官能検査が実施される。しかし、このような専門家による官能検査は鼻の疲労等により安定した検査結果を得ることが難しい。また、官能検査の専門家を育成するのには長い年月を要するので、検査の必要時に応じて専門家を確保することは困難である。このような理由から、安定した検査結果を得ることができる匂いセンシングシステムの必要性が増してきている。
匂いセンシングシステムは、例えば図20に示すように、特性の異なる複数のセンサU1〜U3の出力パターンを多変量解析したり、ニューラルネットワーク等を用いたパターン認識をしたりして、匂いの元となる気体分子を特定することにより匂いを識別するものである。なお、パターン認識をする際には、特定の匂いに特異的に応答するセンサを用いるのではなく、生体の嗅細胞と同様に、緩やかな選択性を持ち多数の匂いに応答するセンサを用いる。また、生体の嗅細胞においては、匂いの応答特性の異なる多数の嗅細胞の出力パターンを嗅覚神経系でパターン認識することにより匂い認識が行われる。
匂いセンシングシステムに用いられるセンサとしては、特に水晶振動子ガスセンサが挙げられる(例えば、非特許文献1参照)。水晶振動子ガスセンサは、応答・回復速度が速いので測定時間を短縮することができるからである。また、水晶振動子ガスセンサを用いる他の利点として、人間の感覚とセンサ出力との相関が高いこと、簡便な測定回路で安定に動作すること、信号処理用ディジタルLSIとの整合性が良いこと、といった点が挙げられる。
中本高道、森泉豊栄,"匂いセンシングシステム",「電子情報通信学会論文誌(C−I)」,1999年4月,Vol.J82−C−I No.4,p.156−164
上述したような従来の水晶振動子ガスセンサは、例えば図21に示すように50〜200μm程度の薄い水晶板Pの上下に銀・金等の金属薄膜電極Eが形成され、電極E上に感応膜Mが塗布される。この感応膜Mに匂い分子が吸着すると、質量負荷効果が生じる。そこで、水晶振動子ガスセンサでは、質量負荷効果による水晶振動子からの発振周波数の変化に基づいて、匂いの元となる気体分子を識別する。
しかしながら、本発明者らの検討によれば、従来の水晶振動子ガスセンサでは感度が乏しく、その結果、匂いの識別の結果が安定しなかった。また、測定条件により結果が安定せず、ロバスト性が低いものであった。
本発明は上記実情に鑑みてなされたものであり、匂いの元となる気体分子を高感度に検出し、ロバスト性を向上した匂いセンシングシステムを提供することを目的とする。
本発明は上記課題を解決するために以下の手段を講じる。
請求項1に対応する発明は、匂いの元となる気体が流入するセンサセルと、前記センサセル内に設けられた複数の弾性表面波素子と、前記各弾性表面波素子からの弾性表面波の検出信号に基づいて、前記センサセル内の匂いを識別する匂識別装置とを備えた匂いセンシングシステムであって、前記各弾性表面波素子は、球状の圧電結晶部材からなり、前記弾性表面波を多重周回させて伝搬可能な伝搬面を有する3次元基材と、前記各弾性表面波素子の伝搬面上に形成され、前記気体の種類に応じて異なる選択性を有する感応膜と、前記匂識別装置から入力される高周波信号に応じた弾性表面波を前記伝搬面に励起する励起手段と、前記励起手段により励起されて前記伝搬面を多重周回する弾性表面波を検出する検出手段とを備え、前記匂識別装置は、前記各感応膜に付着する気体の付着量を示す基準パターン情報を、該気体の種類毎に予め記憶する基準パターン記憶手段と、前記気体を、前記センサセルに流入させるための手段と、前記励起手段に高周波信号を入力して前記弾性表面波を励起するための手段と、前記検出手段により検出される弾性表面波の検出信号を収集する信号収集手段と、前記信号収集手段により収集される検出信号から、前記各感応膜に付着する気体の付着量を示す検出パターン情報を生成する検出パターン生成手段と、前記基準パターン記憶手段により記憶されている基準パターン情報と前記検出パターン生成手段により生成される検出パターン情報とを比較し、前記気体の種類を特定して匂いを識別する匂識別手段とを備え、前記センサセルには、同心円状に前記各弾性表面波素子が配置され、前記センサセルは、前記同心円の中心に前記気体が吸気あるいは排気される噴入あるいは噴出口を有するとともに、前記各弾性表面波素子が配置された同心円より外側に前記気体が排気あるいは吸気される噴出あるいは流入口を有し、前記センサセル内の前記弾性表面波素子の伝搬面が、前記同心円状に配置される前記各弾性表面波素子によって形成される面と平行である匂いセンシングシステムである。
請求項2に対応する発明は、請求項1に対応する匂いセンシングシステムにおいて、前記検出パターン生成手段は、前記弾性表面波を多重周回する際の検出信号の強度減衰量に基づいて、前記気体の付着量を算出する手段をさらに備えた匂いセンシングシステムである。
請求項3に対応する発明は、請求項1または請求項2に対応する匂いセンシングシステムにおいて、前記検出パターン生成手段は、前記弾性表面波を多重周回する際の検出信号の強度減衰量情報に加えて、該弾性表面波の周回速度変化に対応する信号の遅延時間変化または共振周波数変化に基づいて、前記気体の付着量を算出する手段をさらに備えた匂いセンシングシステムである。
請求項4に対応する発明は、請求項1乃至請求項3のいずれか1項に対応する匂いセンシングシステムにおいて、前記検出パターン生成手段は、前記弾性表面波を多重周回する際の検出信号の位相変化量または共振周波数の変化量に基づいて、前記気体の付着量を算出する手段をさらに備えた匂いセンシングシステムである。
請求項に対応する発明は、請求項1乃至請求項4のいずれか1項に対応する匂いセンシングシステムにおいて、前記センサセルは、複数積層されており、積層される境界で接続するセンサセルの前記流入口と噴出口とが接続される匂いセンシングシステムである。
なお、本発明は、各装置の集合体を「システム」として表現したが、これに限らず、各装置毎に「装置」又は「プログラム」として表現してもよく、また、システム又は各装置毎に「方法」として表現してもよい。すなわち、本発明は、任意のカテゴリーで表現可能となっている。
本発明において弾性表面波と称する場合、球形表面あるいは球形の境界にそってエネルギーを集中して伝搬する弾性波全般を指す事とする。例えばセザワ波のように多少エネルギーを球形基材に漏洩しながら伝搬するものや、SH波、また表面に膜を有する場合に伝搬可能なラブ波、あるいは球形の空洞の内壁を伝搬するもの、回廊波も指す事とする。
<作用>
従って、本発明は以上のような手段を講じたことにより、以下の作用を有する。
請求項1に対応する発明は、センサセル・複数の球状弾性表面波素子・匂識別装置を備えた匂いセンシングシステムであって、各球状弾性表面波素子は、伝搬面上に、気体の種類に応じて異なる選択性を有する感応膜を備え、匂識別装置は、各感応膜に付着する気体の付着量を示す基準パターン情報を、気体の種類毎に予め記憶する基準パターン記憶手段と、収集される検出信号から各感応膜に付着する気体の付着量を示す検出パターン情報を生成する検出パターン生成手段と、基準パターン情報と検出パターン情報とを比較し、両者が一致するときの基準パターン情報に基づき、気体の種類を特定して匂いを識別する匂識別手段とを備えているので、匂いの元となる気体分子を高感度に検出して、ロバスト性を向上した匂いセンシングシステムを提供することができる。また、請求項1に対応する発明は、センサセルには、同心円状に各弾性表面波素子が配置され、センサセルは、同心円の中心に気体が吸気あるいは排気される噴入あるいは噴出口を有するとともに、前記各弾性表面波素子が配置された同心円より外側に前記気体が排気あるいは吸気される噴出あるいは流入口を有するので、噴出口から噴出される気体が各球状弾性表面波素子に到達するまでの距離を等しくすることができる。また、請求項1に対応する発明において、各球状弾性表面波素子の3次元基材は、球状の圧電結晶部材からなるので、弾性表面波を周回させる伝搬路を形成することができる。
請求項2に対応する発明は、請求項1に対応する作用に加え、検出パターン生成手段は、弾性表面波を多重周回させた後の検出信号の強度減衰量に基づいて、気体の付着量を算出する手段を備えているので、基準パターン情報と一致するか否かを高確度に判定することができる検出パターン情報を生成できる。
請求項3に対応する発明は、請求項1・2に対応する作用に加え、検出パターン生成手段は、弾性表面波を多重周回する際の検出信号の強度減衰量情報に加えて、弾性表面波の周回速度変化に対応する信号の遅延時間変化または共振周波数変化に基づいて、気体の付着量を算出する手段を備えているので、基準パターン情報と一致するか否かを高確度に判定することができる検出パターン情報を生成できる。
請求項4に対応する発明は、請求項1〜3に対応する作用に加え、検出パターン生成手段は、弾性表面波を多重周回する際の検出信号の位相変化量または共振周波数の変化量に基づいて、前記気体の付着量を算出する手段を備えているので、基準パターン情報と一致するか否かを高確度に判定することができる検出パターン情報を生成できる。
請求項に対応する発明は、請求項1〜4に対応する作用に加え、センサセルは、複数積層されており、積層される境界で接続するセンサセルの流入口と噴出口とが接続されるので、ガスの成分や温度の均一性を向上することができる。
本発明によれば、匂いの元となる気体分子を高感度に検出し、ロバスト性を向上した匂いセンシングシステムを提供できる。
以下、図面を参照して本発明の実施形態を説明する。
<第1の実施形態>
(1−1.構成)
図1は本発明の第1の実施形態に係る匂いセンシングシステム5の構成を示す模式図である。
匂いセンシングシステム5は、センサセル10と球状弾性表面波素子20・匂識別装置30とを備えている。また、匂いセンシングシステム5においては、球状弾性表面波素子20がセンサセル10内に設けられ、この球状弾性表面波素子20からの検出信号に基づいて、センサセル10内の匂いを匂識別装置30により識別する。なお、本実施形態において、物品を総括的に説明する場合、単に数字を表記し、個別的に説明する場合、数字に添え字A〜Eを付して表記する。例えば、球状弾性表面波素子を総括的に説明する場合、球状弾性表面波素子20と表記し、個別的に説明する場合、球状弾性表面波素子20A〜20Eと表記する。
センサセル10は、匂いの元となる気体Gが流入する容器であり、流入管11と排気管12・セル制御部13とを備えている。さらに、センサセル10は、球状弾性表面波素子20A〜20Eを支えるための支持体14A〜14Eを内部に備えている。
流入管11は、センサセル10内部に気体Gを流入するものであり、セル制御部13により制御される。具体的には、円筒形の流入管11の側面に数個の噴出口があいており、気体Gが噴出されるようになっている。
排気管12は、センサセル10内の気体を排気するものである。すなわち、流入管11により流入される気体Gがセンサセル10内に残留しないようにするために、匂いを識別するタイミングに応じて、センサセル10内の気体を排気するのものである。
セル制御部13は、センサセル10を制御するものである。具体的には、流入管11を介してセンサセル10内に気体Gを流入するタイミングを制御したり、支持体14を介して球状弾性表面波素子20との電気信号の入出力を制御したりするものである。なお、セル制御部13は、後述する匂識別装置30の制御部32から流入制御信号や励起制御信号を受けると、各制御を実行する。
支持体14A〜14Eは、それぞれ球状弾性表面波素子20A〜20Eをセンサセル10内に支持するものである。また、各球状弾性表面波素子20A〜20Eに対し電気信号の伝達を行なう機能を有している。これにより、セル制御部13からの励起制御信号に基づき、弾性表面波を励起することができる。
球状弾性表面波素子20は、図2に示すように、3次元基材21と感応膜22・すだれ状電極23とを備える。なお、本実施形態では、5個の球状弾性表面波素子20A〜20Eを使用する。
3次元基材21は、弾性表面波を、多重周回させて伝搬可能な伝搬面Sを有する球状の部材である。例えば、水晶により3次元基材21を形成することができる。また、ニオブ酸リチウム(LiNbO)・タンタル酸リチウム(LiTaO)・ランガサイト(LaGaSiO14)等を用いて形成することもできる。
感応膜22A〜22Dは、球状弾性表面波素子20A〜20Dの伝搬面SA〜SDに形成される有機薄膜である。また、感応膜22A〜22Dは、気体の種類に応じて異なる選択性を有するものである。具体的には、感応膜22A〜22Dとして、Polyethylene Glycol 1000(PEG1000),Siponate DS−10,Apiezon−L,Tricresyl Phosphate(TCP)がそれぞれ伝搬面SA〜SDに形成される。他にも、Polyphenyl Ether,Cerebrosides,Thermol−1,Versamid 900,Ethyl Celluloseを用いることができる。
なお、感応膜22A〜22Dを形成する際には、スプレイ法を用いることができる。また、霧化器を用いて形成することもできる。霧化器を用いて感応膜を形成すると、スプレイ法よりも薄く均一にコーティングすることができる。霧化器を用いた方法によれば、3次元基材21を測定治具に固定した状態でコーティングすることができ、コーティング量は、弾性表面波の伝搬速度の遅延から求められる。
なお、球状弾性表面波素子20Eは、参照信号を得るためのものであるので、その伝搬面SEには感応膜を形成しない。
すだれ状電極(励起手段/検出手段)23は、匂識別装置30から高周波信号が入力された場合、弾性表面波を伝搬面Sに励起する電気音響変換手段である。詳しくは、すだれ状電極23に高周波の交流電流が流れると、その周波数と電極周期に応じてすだれ状電極23の電極部が振動し、弾性表面波が発生する。また、すだれ状電極23は、弾性表面波が伝搬面Sを周回する度に検出する。なお、検出した弾性表面波の検出信号Sigは、匂識別装置30の信号収集部33に送出される。
匂識別装置30は、基準パターン記憶部31と制御部32・信号収集部33・検出パターン生成部34・匂識別部35・出力部36とを備え、各球状弾性表面波素子20A〜20Eからの弾性表面波の検出信号に基づいて、センサセル10内の匂いを識別する。
基準パターン記憶部31は、各感応膜22A〜22Dに付着する気体分子の付着量を、基準パターン情報D1〜Dnとして、気体G1〜Gnの種類毎に予め記憶しているメモリである。例えば、気体として、アップルの匂いを生じる気体G1(以下、アップル臭と称する)、パイナップルの匂いを生じる気体G2(以下、パイナップル臭と称する)、オレンジの匂いを生じる気体G3(以下、オレンジ臭と称する)を予め準備しておく。そして、図3(A)〜図3(C)にそれぞれ示すように、アップル臭G1・パイナップル臭G2・オレンジ臭G3の分子が各感応膜22A〜22Dに付着する付着量を、それぞれアップルの基準パターン情報D1・パイナップルの基準パターン情報D2・オレンジの基準パターン情報D3として記憶する。
制御部32は、匂識別装置30の各処理部31〜36を制御するとともに、センサセル10に制御信号を送出するものである。具体的には、センサセル10のセル制御部13に流入制御信号を送出することにより、センサセル10内に気体Gを流入させるための制御を行なう機能を有する。また、センサセル10の制御部13を介して、弾性表面波素子20のすだれ状電極23に高周波信号を入力する制御を行なうことにより弾性表面波を伝搬面S上に励起する機能を有する。
信号収集部33は、すだれ状電極23により検出される弾性表面波の検出信号を収集するものである。また、収集した検出信号Sigを検出パターン生成部34に送出する。
検出パターン生成部34は、信号収集部33により収集される検出信号Sigから、各感応膜22A〜22Dに付着する気体分子の付着量を当該感応膜22A〜22Dの種類毎に示す検出パターン情報Dxを生成するものである。具体的には、弾性表面波を多重周回させた後の検出信号の強度減衰量に基づいて、気体分子の付着量を算出する。例えば、弾性表面波が伝搬面Sを5周したときの検出信号の強度が、図4に示すように、気体Gの流入前後で波形A1にから波形A2に変化したときに、波形の強度減衰量に基づいて気体の付着量を算出する。また、弾性表面波を多重周回させた後の検出信号の位相変化量に基づいて、気体の付着量を算出することもできる。付着量を算出する際、弾性表面波素子10Eからの検出信号を温度較正に用いることができる。なお、生成された検出パターン情報Dxは、匂識別部35に送出される。
匂識別部35は、基準パターン記憶部31により記憶されている基準パターン情報D1〜Dnと検出パターン生成部34により生成される検出パターン情報Dxとを比較し、両者を同一とみなせるときの基準パターン情報から気体Gの種類を特定して匂いを識別するものである。パターン認識に際しては、多変量解析による方法と、ニューラルネットワークによる方法とがある。
多変量解析による方法は、各センサについて数種類の値が観測される場合に用いられる解析手法である。例えば、センサAとセンサBとの2個のセンサを用い、未知の匂いWxが、匂いW1と匂いW2とのいずれかに属するかを判別する。詳しくは、図5に概念を示すように、匂いW1と匂いW2とに対するセンサAおよびセンサBの応答結果を予め数点記憶しておく。次に、匂いWxのセンサAおよびセンサBの応答結果を検出する。続いて、匂いW1領域の重心からの距離d1と匂いW2領域の重心からの距離d2とを求める。そして、距離d1とd2とのうち、値の小さい方の匂いに属すると判別する。図5においては、d1>d2なので、Wx=W2と判別する。
ニューラルネットワークによる方法は、ニューロンと呼ばれる要素が多数結合した回路を用いた解析手法であり、ニューロン同士の結合の強さを最適化することによりパターン認識を行なうものである。例えば、図6に概念を示すように、匂いW1の環境下において、ニューラルネットワークによる識別結果が匂いW1になるように、ニューロンN1〜N9の結合の強さを変えていく(この作業を「学習」という)。そして、最終的に、匂いW1であるとはっきり判断できるようになるまで学習が続けられる。このような学習したニューラルネットワークを用いることによりパターン認識することができる。
なお、パターン認識により特定された気体のデータは、匂い情報として出力部36に送出される。
出力部36は、匂識別部35により識別された匂い情報を出力するものである。
(1−2.動作)
次に、本実施形態に係る匂いセンシングシステム5の動作を図7を用いて説明する。
始めに、制御部32の制御により、匂いを識別対象である気体Gxが流入管11から噴出される。これにより、センサセル10内に気体Gxが充満する(ステップS1)。
続いて、制御部32の制御により、複数の球状弾性表面波素子20A〜20Eのすだれ状電極23A〜23Eに高周波信号が入力されて、伝搬面SA〜SEに弾性表面波が励起される(ステップS2)。
励起された弾性表面波が周回し、すだれ状電極23A〜23Eに到達すると、弾性表面波が電気信号に変換される。変換された電気信号は、検出信号SigA〜SigEとして、信号収集部33に送出される。
続いて、信号収集部33により、検出信号SigA〜SigEが収集され、検出パターン作成部34に送出される(ステップS3)。
検出パターン作成部34では、検出信号SigA〜SigEに基づき、弾性表面波の強度変化が解析される(ステップS4)。それから、強度変化に基づいて、各伝搬面SA〜SDにおける気体Gxの分子の付着量が算出され、検出パターン情報Dxが生成される(ステップS5)。そして、生成された検出パターン情報Dxは、匂識別部35に送出される。
次に、匂識別部35により、基準パターン記憶部31に記憶された基準パターン情報D1〜Dnと検出パターン情報Dxとが比較される(ステップS6)。ここでは、ニューラルネットワークによる比較処理が実行される。このような比較処理により、例えば、検出パターン情報Dxと基準パターン情報D2とが一致するとみなせる場合には、気体Gxは気体G2であるとして、パイナップル臭であると識別される(ステップS7)。
そして、「気体Gxは、パイナップル臭である」等を示す結果情報が出力部36に出力される(ステップS8)。
(1−3.効果)
以上説明したように、本実施形態に係る匂いセンシングシステム5は、センサセル10・複数の球状弾性表面波素子20A〜20D・匂識別装置30を備える。そして、各球状弾性表面波素子20A〜20Dは、伝搬面SA〜SD上に、気体G1〜Gnの種類に応じて異なる選択性を有する感応膜22A〜22Dを備え、匂識別装置30は、各感応膜22A〜22Dに付着する気体G1〜Gnの付着量を示す基準パターン情報D1〜Dnを、気体G1〜Gnの種類毎に予め記憶している基準パターン記憶部31と、収集される検出信号SigA〜SigDから各感応膜22A〜22Dに付着する気体の付着量を示す検出パターン情報Dxを生成する検出パターン生成部34と、基準パターン情報D1〜Dnと検出パターン情報Dxとを比較し、両者が一致したときの基準パターン情報D1〜Dnから気体G1〜Gnの種類を特定して匂いを識別する匂識別部35とを備える。このような構成を備えたことにより、匂いセンシングシステム5は、匂いの元となる気体分子を高感度に検出し、ロバスト性を向上することができる。
補足すると、球状弾性表面波素子20は、球形の圧電基材の表面に円環状の伝搬路Sを有ので、伝搬路Sに弾性表面波を周回させることにより、非常に長い距離を伝搬する弾性表面波の検出信号Sigを得ることができる。それゆえ、弾性表面波の共振周波数の変化から伝搬速度や伝搬に伴う検出信号の強度減衰量を非常に高精度に測定することができる。
例えば、信号幅1nsecのインパルス信号により伝搬面Sに弾性表面波を励起させ、空気とアップル臭G1とをセンサセル10内に交互に流入させた場合の弾性表面波の強度減衰量は図8のように示される。ここでは、所定の温度が保たれた状態で、伝搬面SAを5周したときの弾性表面波の強度減衰量を示している。図8のa1〜a4は、それぞれアップル臭G1の濃度1〜4倍したものである。図示されるように、アップル臭G1の濃度に応じて、強度減衰量が変化することがわかる。なお、このような強度の変化は、伝搬面SAに設けた選択性のある感応膜22Aに気体分子が吸着し、当該感応膜22Aの弾性物性が変化することにより生じる。また、感応膜22Aの弾性物性の変化としては、感応膜自体が柔らかくなる等の変化が生じる。
また、検出パターン生成部34において、弾性表面波を多重周回させた後の検出信号Sigの強度減衰量に基づいて、気体の付着量を算出する。それゆえ、基準パターン情報と一致するか否かを高確度に判定することができる検出パターン情報を生成できる。この結果、ニューロンネットワークにおけるパターン認識のロバスト性を向上することができる。
また、空気とアップル臭G1とをセンサセル10内に交互に流入させた場合の弾性表面波の位相変化は図9(a)のように示される。図9(a)のb1〜b4は、それぞれアップル臭G1の濃度1〜4倍したものである。ここで、弾性表面波の位相は、気体分子が感応膜22Aに吸着して伝搬速度が変化することに起因する。それゆえ、この位相変化から弾性表面波の伝搬速度の変化量を測定することができる。これにより、強度の変化だけでなく、伝搬速度の変化も測定することができ、さらに高精度に気体分子の識別が可能となる。具体的には、より広い濃度範囲において、感度の異なる感応膜を用いた場合でも正確に濃度測定ができるようになる。
なお、本実施形態に係る匂いセンシングシステム5は、球状弾性表面波素子20を用いており、実効的な伝搬長を長くすることができる。そのため、各球状弾性表面波素子20A〜20Eからなるセンサ部分を小型化でき、センサセル10を小型化することができる。
また、球状弾性表面波素子20Eには感応膜を形成しておらず、当該素子20Eからの検出信号に基づき温度較正することができ、ロバスト性を向上することができる。
図9(b)は、感応膜Sipnate DS−10を使用した球状弾性表面波素子に対して、マスカット,2−へキサン,1−ヘキサノール,アミルアセテートを作用するときの、位相の変化率と強度の変化率を2つの軸にとって濃度を変えるときの変化をプロットしたものである。この図9(b)から、マスカット香料については、ある量の濃度の匂いガスを加えたときに位相より強度に対して作用する程度が他の匂いに比較して大きく、これを持って、マスカット香料を識別できることが明らかである。ここでは一種類の感応膜による結果を示しているが、位相情報だけを用いる匂い識別方法より識別能力の高い識別方法を提供できることが明らかである。単一の感応膜を使いながら、位相とは異なる応答特性を感応膜が持つことができることは、実際に使う感応膜の数よりも最大2倍の特性の異なる感応膜を用いた測定に匹敵する情報や識別能力を得ることが理論的には可能である。
本発明はこのように、QCMなどの従来の計測方法では困難だったために着目してこなかった、強度計測(減衰量計測)を行なうことによる匂い識別が可能で有用なことを主張する。
<第2の実施形態>
図10(a)は本発明の第2の実施形態に係るセンサセル10の構造を示す模式図であり、図11は図10(a)におけるA−A’断面図である。なお、既に説明した部分と同一部分には同一符号を付し、重複した説明を省略する。また、以下の各実施形態も同様にして重複した説明を省略する。
本実施形態に係るセンサセル10の流入管11は、当該流入管11の中心軸と直交する方向に複数の噴出口を備える。
そして、各弾性表面波素子20A〜20Eを、流入管11の中心軸から噴出口に向かう方向であって、当該中心軸を中心とする同一円周上に設置するようにする。
上述した構成によれば、流入管11の噴出口から噴出される気体Gに対して、各球状弾性表面波素子20A〜20Eが等しい距離に存在する。そのため、各球状弾性表面波素子20A〜20Eに気体Gが到達する前に、その気体Gが拡散して濃度が希釈することによる付着量のバラツキの誤差を抑えることができる。この結果、匂いの元となる気体分子を高精度に検出することができ、ロバスト性を向上することができる。
また、図10(b)に、上記記載のセンサセルを積層したものを示す。図10(b)においては、3段形状になっているが、下段の排気管は上段のセンサセルの流入管に接続されており、上下2段全てのセンサセルの球状弾性表面波素子に均等にガスがあたる構造となっている。すなわち、簡便小型な構造でありながらセル数を容易に増やす事ができる。
図10(c)は、隣接するセンサセルの排気管と吸気管の接続において、ガスの成分や温度の均一性を向上する為の混合槽を設けた構造のものを示している。
<第3の実施形態>
図12は本発明の第3の実施形態に係る球状弾性表面波素子20の感応膜22をコーティングする装置の概念を示す模式図である。
本実施形態に係る球状弾性表面波素子20の感応膜22は、霧化器によりコーティングされるものである。霧化器は、乾燥空気ボンベ・マスフローコントローラ(MFC)・メスフラスコ・超音波振動子・コーティングチャンバ・排気ポンプにより構成される。
以下、霧化器により感応膜22をコーティングする方法を説明する。
(霧化器によるコーティング)
まず、コーティングチャンバCC内に球状弾性表面波素子20を設置する。
次に、感応膜材料を溶かした溶液を超音波振動子により霧化する。
続いて、霧化した感応膜材料をチューブを用いて、コーティングチャンバCC内に吐出する。この際、コーティングチャンバ内に送り込む乾燥空気の気圧は、0.06MPaとする。流量は、MFCを用いて、15〜20(ml/min)に制御する。霧の吐出されるチューブの先端と球状弾性表面波素子20との距離は1mm以下となるように調節する。感応膜材料を霧化するためのメスフラスコMF内には感応膜材料を1.8ml注入する。溶媒はクロロホルムを用い、濃度を10mg/mlに調節する。
(コーティング前後の波形の変化)
次に、コーティングした膜厚(コーティング量)を測定する。コーティング量は、パルサー/レシーバ(超音波工業,PULSER/RECEIVER X0242)から送られるパルス幅2nsecのインパルス入力に対し、特定の周回数(ここでは4又は5周目の波形)でのインパルス応答波形の遅延をオシロスコープ(LeCroy,9314C)により測定して求める。
例えば、膜材料として、SiponateDS−10,PEG1000(PolyEthyleneGlycol),Apiezon−L,TCP(Tricresyl Phosphate)の4種類のコーティングした場合、インパルス応答波形の遅延時間は図13のように示される。5周目の波形において約30〜50ns以上遅延するように感応膜材料をコーティングすると波形の減衰量が著しく増加する。そこで、5周目で50ns以下の変化量に留まるように、霧の吐出されるチューブの先端と球状弾性表面波素子20との距離と霧の発生時間を調整してコーティングを行なう。
上述したコーティング方法により、Siponate DS−10をコーティングする前後の波形はそれぞれ図14のc1およびc2のように示される。ここでは、5周目の波形を示しており、20〜30nm程度の遅延時間が生じる。
また、遅延時間に対する周波数変化は、下式(1)のように表わされる。
Δf=1380×(x/m) [Hz]・・・(1)
この式(1)から、5周目の波形で50nsの遅延時間が生じた場合、Δf=13800(Hz)となる。
以上説明したように、霧化器を用いることにより、細かい粒子を再現性よく発生させることができ、感応膜を均一にコーティングすることができる。
また、コーティングは測定治具に球状弾性表面波素子20を固定した状態で行なわないと、再現性よくコーティング量を求める事はできない。これに対し、霧化器を用いれば、球状の3次元基材21を固定したままコーティングを容易に行なうことができる。
<実施例>
次に、本発明に関連する実施例について述べる。
本実施例では、球状弾性表面波素子20で構成した匂いセンシングシステム5によるアップル臭G1・パイナップル臭G2・オレンジ臭G3の3種類の食品添加フレーバ識別実験について述べる。
図15は本発明の実施例に係る匂いセンシングシステム5の測定系を示す図である。
匂いセンシングシステム5は、球状弾性表面波素子20A〜20Eを備えたものである。すなわち、球状弾性表面波素子20A〜20Dには、それぞれ感応膜として、Siponate DS−10(DS−10),PEG1000,Apiezon−L,TCPをコーティングした。また、球状弾性表面波素子20Eには、感応膜をコーティングしないようにした。
本実施例では、まず、キャリアガスに室内空気を使用し、16成分の匂い調合装置を用いて、アップル臭G1・パイナップル臭G2・オレンジ臭G3の順に3段階の濃度でセンサセル10内に匂いを供給した。流量は、1.5(l/min)とした。
次に、球状弾性表面波素子20A〜20Eに、RFバースト信号(150MHz;持続時間0.4μs,繰返し周期1ms)を入力した。そして、遅延して戻ってきた球状弾性表面波素子の検出信号から周波数の位相と信号の減衰量を測定した。実際の減衰量の測定においては、例えば30周回目の強度を測定することで代替することが出来る。励起する弾性表面波の強度が同じ場合、減衰量は周回後の強度によっても求めることが出来るからである。なお、5つの素子20A〜20Eを、時分割で切り替えて順次その位相を測定した。
そして、各素子20A〜20Eにおける8回の測定結果を平均して平均値を求めた。1つのデータのサンプリング時間は約4sとした。
この結果、DS−10とPEG1000とに対して、それぞれ図16および図17に示すような位相変化の応答結果が得られた。図16・17では、ベースラインを空気として、空気と各フレーバとを切り替えたときの差をセンサ出力として示している。DS−10ではパイナップル臭G2に対する応答が大きく、PEG1000ではアップル臭G1に対する応答が大きいことが測定された。すなわち、素子毎に位相変化のパターンが異なることが測定された。また、図中の数字は濃度の倍率を示しており、発生する匂いの濃度に対応して位相変化が大きくなることが測定された。
素子毎の比較を行なうために各素子で得られた位相の3回分の平均値を1周あたりの位相の変化量に換算して規格化すると、図18に示すような結果が得られる。図18中添え字の1〜3は各フレーバの濃度に対応しており、例えばapple1〜apple3の順にアップル臭の濃度が濃くなっている。この結果、濃度に関係なく、フレーバごとに応答パターンが異なることが確認された。
さらに、1周あたりに規格化された位相変化量を主成分分析を用いて解析を行なうと、図19に示すような結果が得られた。主成分分析とは、多次元のデータを情報の損失を最小にして少数の次元の空間に変換する方法である。図19中のPC1,PC2はそれぞれ第1主成分,第2主成分を表わす。また、括弧内の数字は各主成分の寄与率である。図19に示されるように、アップル臭G1・パイナップル臭G2・オレンジ臭G3のそれぞれの点が明確に分かれていることから、3種類の食品添加フレーバを識別できる。
以上説明したように、アップル臭G1・パイナップル臭G2・オレンジ臭G3の各フレーバを濃度に関わらず識別できた。
なお、本実施例においては、位相情報のみの出力に基づく匂いの識別結果を示したが、図8に示したように強度減衰量(強度)の出力によっても匂いの識別結果を得ることができる。すなわち、位相と強度の両方の情報を図6に示した解析ネットワークに入力することにより、位相のみによる識別より高精度に匂い識別を行なわせることもできる。
<その他>
なお、本発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態に構成要素を適宜組み合わせてもよい。
本発明の第1の実施形態に係る匂いセンシングシステム5の構成を示す模式図である。 同実施形態に係る球状弾性表面波素子20の構成を示す模式図である。 同実施形態に係る基準パターン情報の概念を示す図である。 同実施形態に係る検出信号の波形を示す図である。 多変量解析の概念を示す図である。 ニューラルネットワークの概念を示す図である。 同実施形態に係る匂いセンシングシステム5の動作を説明するための図である。 同実施形態に係る弾性表面波の強度減衰量の例を示す図である。 同実施形態に係る弾性表面波の位相変化の例を示す図である。 同実施形態に係る感応膜Sipnate DS−10に対する物質の濃度を変えたときの変化を示す図である。 本発明の第2の実施形態に係るセンサセル10の構造を示す模式図である。 同実施形態に係るセンサセルを積層した構造のものを示す図である。 同実施形態に係るセンサセルに混合槽を設けた構造のものを示す図である。 同実施形態に係るセンサセル10のA−A'断面図である。 本発明の第3の実施形態に係る球状弾性表面波素子20の感応膜22をコーティングする装置の概念を示す模式図である。 同実施形態に係る各感応膜22A〜22Dのインパルス応答波形の遅延時間を示す図である。 同実施形態に係る感応膜をコーティングする前後での波形を示す図である。 本発明の実施例に係る匂いセンシングシステム5の測定系を示す図である。 同実施例に係るDS−10における位相変化を示す図である。 同実施例に係るPEG1000における位相変化を示す図である。 同実施例に係る気体分子に対する各素子20A〜20Dの位相変化量を示す図である。 同実施例に係る主成分分析を用いた解析結果を示す図である。 従来の匂いセンシングシステムの概念を示す図である。 従来の水晶振動子ガスセンサの構成を示す模式図である。
符号の説明
5・・・匂いセンシングシステム、10・・・センサセル、11・・・流入管、12・・・排気管、
13・・・セル制御部、14・・・支持体、20・・・球状弾性表面波素子、21・・・3次元基材、
22・・・感応膜、23・・・すだれ状電極、30・・・匂識別装置、
31・・・基準パターン記憶部、32・・・制御部、33・・・信号収集部、
34・・・検出パターン生成部、35・・・匂識別部、36・・・出力部、
G・・・気体、G1・・・アップル臭、G2・・・パイナップル臭、G3・・・オレンジ臭、
S・・・伝搬面。

Claims (5)

  1. 匂いの元となる気体が流入するセンサセルと、
    前記センサセル内に設けられた複数の弾性表面波素子と、
    前記各弾性表面波素子からの弾性表面波の検出信号に基づいて、前記センサセル内の匂いを識別する匂識別装置と
    を備えた匂いセンシングシステムであって、
    前記各弾性表面波素子は、
    球状の圧電結晶部材からなり、前記弾性表面波を多重周回させて伝搬可能な伝搬面を有する3次元基材と、
    前記各弾性表面波素子の伝搬面上に形成され、前記気体の種類に応じて異なる選択性を有する感応膜と、
    前記匂識別装置から入力される高周波信号に応じた弾性表面波を前記伝搬面に励起する励起手段と、
    前記励起手段により励起されて前記伝搬面を多重周回する弾性表面波を検出する検出手段と
    を備え、
    前記匂識別装置は、
    前記各感応膜に付着する気体の付着量を示す基準パターン情報を、該気体の種類毎に予め記憶する基準パターン記憶手段と、
    前記気体を、前記センサセルに流入させるための手段と、
    前記励起手段に高周波信号を入力して前記弾性表面波を励起するための手段と、
    前記検出手段により検出される弾性表面波の検出信号を収集する信号収集手段と、
    前記信号収集手段により収集される検出信号から、前記各感応膜に付着する気体の付着量を示す検出パターン情報を生成する検出パターン生成手段と、
    前記基準パターン記憶手段により記憶されている基準パターン情報と前記検出パターン生成手段により生成される検出パターン情報とを比較し、前記気体の種類を特定して匂いを識別する匂識別手段と
    を備え
    前記センサセルには、同心円状に前記各弾性表面波素子が配置され、
    前記センサセルは、前記同心円の中心に前記気体が吸気あるいは排気される噴入あるいは噴出口を有するとともに、前記各弾性表面波素子が配置された同心円より外側に前記気体が排気あるいは吸気される噴出あるいは流入口を有し、
    前記センサセル内の前記弾性表面波素子の伝搬面が、前記同心円状に配置される前記各弾性表面波素子によって形成される面と平行である
    とを特徴とする匂いセンシングシステム。
  2. 請求項1に記載の匂いセンシングシステムにおいて、
    前記検出パターン生成手段は、前記弾性表面波を多重周回する際の検出信号の強度減衰量に基づいて前記気体の付着量を算出する手段
    をさらに備えたことを特徴とする匂いセンシングシステム。
  3. 請求項1または請求項2に記載の匂いセンシングシステムにおいて、
    前記検出パターン生成手段は、前記弾性表面波を多重周回する際の検出信号の強度減衰量情報に加えて、該弾性表面波の周回速度変化に対応する信号の遅延時間変化または共振周波数変化に基づいて、前記気体の付着量を算出する手段
    をさらに備えたことを特徴とする匂いセンシングシステム。
  4. 請求項1乃至請求項3のいずれか1項に記載の匂いセンシングシステムにおいて、
    前記検出パターン生成手段は、前記弾性表面波を多重周回する際の検出信号の位相変化量または共振周波数の変化量に基づいて、前記気体の付着量を算出する手段
    をさらに備えたことを特徴とする匂いセンシングシステム。
  5. 請求項1乃至請求項4のいずれか1項に記載の匂いセンシングシステムにおいて、
    前記センサセルは、複数積層されており、積層される境界で接続するセンサセルの前記流入口と噴出口とが接続される
    ことを特徴とする匂いセンシングシステム。
JP2006138066A 2006-05-17 2006-05-17 匂いセンシングシステム Expired - Fee Related JP4780771B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006138066A JP4780771B2 (ja) 2006-05-17 2006-05-17 匂いセンシングシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006138066A JP4780771B2 (ja) 2006-05-17 2006-05-17 匂いセンシングシステム

Publications (2)

Publication Number Publication Date
JP2007309752A JP2007309752A (ja) 2007-11-29
JP4780771B2 true JP4780771B2 (ja) 2011-09-28

Family

ID=38842743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006138066A Expired - Fee Related JP4780771B2 (ja) 2006-05-17 2006-05-17 匂いセンシングシステム

Country Status (1)

Country Link
JP (1) JP4780771B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5141304B2 (ja) * 2008-03-07 2013-02-13 凸版印刷株式会社 ガス濃度分布計測装置
JP5470994B2 (ja) * 2008-12-26 2014-04-16 凸版印刷株式会社 弾性表面波測定装置
JP5418339B2 (ja) * 2010-03-18 2014-02-19 凸版印刷株式会社 球状弾性表面波素子の製造方法
EP2633278A4 (en) * 2010-10-28 2014-05-28 Empire Technology Dev Llc PHOTO-ACOUSTIC SENSOR
CN106662517B (zh) 2014-08-29 2020-04-28 株式会社而摩比特 嗅觉系统、气味识别装置、气味识别方法
JP6893668B2 (ja) * 2014-08-29 2021-06-23 株式会社アロマビット 嗅覚システム、匂い識別方法、匂い識別装置、携帯デバイス、ウェアラブルデバイス、空調機器、及び匂い情報識別プログラム
JP2018000044A (ja) * 2016-06-29 2018-01-11 株式会社日立製作所 分子識別方法
CN111954812B (zh) 2017-12-08 2023-03-28 耶达研究及发展有限公司 基于电子鼻的气味剂分析的利用
WO2019117099A1 (ja) * 2017-12-11 2019-06-20 株式会社レボーン 香り品質特定システム、高機能携帯端末及びプログラム
EP3662278A4 (en) * 2018-01-31 2021-03-31 Ball Wave Inc. SYSTEM, PROCEDURE AND COMPUTER PROGRAM PRODUCT FOR GAS ANALYSIS
CN115298533A (zh) * 2020-04-02 2022-11-04 爱沛股份有限公司 气味检测系统、气味检测方法以及程序

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04105061A (ja) * 1990-08-27 1992-04-07 Sony Corp ガス感応素子
JPH04238243A (ja) * 1991-01-21 1992-08-26 Masao Karube 揮発性有機物質の測定装置
JPH09304244A (ja) * 1996-05-10 1997-11-28 Nourinsuisan Sentan Gijutsu Sangyo Shinko Center 気体検出装置
JP3628227B2 (ja) * 1999-04-27 2005-03-09 三菱電機株式会社 ガス検出装置およびその感応膜材料とその成膜方法
JP2001194373A (ja) * 2000-01-06 2001-07-19 Olympus Optical Co Ltd 超小型化学操作装置
JP4611890B2 (ja) * 2003-03-26 2011-01-12 一司 山中 センサヘッド、ガスセンサ及びセンサユニット

Also Published As

Publication number Publication date
JP2007309752A (ja) 2007-11-29

Similar Documents

Publication Publication Date Title
JP4780771B2 (ja) 匂いセンシングシステム
RU2423673C2 (ru) Ультразвуковой измеритель потока с низким энергопотреблением
CN1325881C (zh) 超声波气流计和测量内燃发动机废气流量的装置
CN103874908B (zh) 超声流量计
CN102272560B (zh) 流量测量装置
TWI427290B (zh) 一種氣體偵測裝置及其方法
Wallhäußer et al. On the usage of acoustic properties combined with an artificial neural network–A new approach of determining presence of dairy fouling
WO2009117261A2 (en) Method and system of determining forthcoming failure of transducers
CN105738470B (zh) 一种声表面波气体传感器
Ferrari et al. Overview of acoustic-wave microsensors
Jiang et al. A model-based hybrid ultrasonic gas flowmeter
Shanmugam et al. Broad bandwidth air-coupled micromachined ultrasonic transducers for gas sensing
Leonte et al. Taste sensors utilizing high-frequency SH-SAW devices
Stedman et al. Distinguishing chemicals using CMUT chemical sensor array and artificial neural networks
Saha et al. A novel langasite crystal microbalance instrumentation for UV sensing application
US9140668B2 (en) Device and method for detecting at least one substance
JP5408580B2 (ja) 匂いセンシングシステム
Temurtas et al. A study on neural networks using taylor series expansion of sigmoid activation function
CA2618595C (en) Low power ultrasonic flow measurement
Chiang et al. Gas sensor array based on surface acoustic wave devices for rapid multi-detection
JPH0868780A (ja) 弾性表面波素子を用いたセンサ
Nakamoto et al. Odor sensing system using ball SAW devices
Schroder et al. A capacitance ultrasonic transducer with micromachined backplate for fast flow measurements in hot pulsating gases
KR20080101630A (ko) 압전 센서를 이용한 생체물질 검출 장치 및 검출 방법
JP2020165826A (ja) ガスセンサ及びガス検出システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees