JP2017538034A - Wire material excellent in strength and impact toughness and method for producing the same - Google Patents

Wire material excellent in strength and impact toughness and method for producing the same Download PDF

Info

Publication number
JP2017538034A
JP2017538034A JP2017523479A JP2017523479A JP2017538034A JP 2017538034 A JP2017538034 A JP 2017538034A JP 2017523479 A JP2017523479 A JP 2017523479A JP 2017523479 A JP2017523479 A JP 2017523479A JP 2017538034 A JP2017538034 A JP 2017538034A
Authority
JP
Japan
Prior art keywords
less
impact toughness
strength
wire
relational expression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017523479A
Other languages
Japanese (ja)
Other versions
JP6488008B2 (en
Inventor
リ,ヒョン−ジク
リュー,グン−スゥ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Holdings Inc
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Priority claimed from PCT/KR2015/011650 external-priority patent/WO2016072679A1/en
Publication of JP2017538034A publication Critical patent/JP2017538034A/en
Application granted granted Critical
Publication of JP6488008B2 publication Critical patent/JP6488008B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B2001/225Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length by hot-rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Ropes Or Cables (AREA)

Abstract

【課題】追加の熱処理工程を要することなく熱間圧延及び連続冷却工程だけで高強度及び優れた衝撃靭性を有するようにした線材及びこれを製造する方法を提供する。【解決手段】重量%で、炭素(C):0.05〜0.15%、シリコン(Si):0.2%以下、マンガン(Mn):3.0〜4.0%、リン(P):0.020%以下、硫黄(S):0.020%以下、ボロン(B):0.0010〜0.0030%、チタン(Ti):0.010〜0.030%、窒素(N):0.0050%以下、アルミニウム(Al):0.010〜0.050%、残りはFe及び不可避不純物を含み、微細組織は、面積分率で、90%以上のベイニティックフェライト及び残りは島状マルテンサイト(M/A)を含む。The present invention provides a wire rod having high strength and excellent impact toughness only by hot rolling and continuous cooling steps without requiring an additional heat treatment step, and a method for producing the same. Carbon (C): 0.05 to 0.15%, silicon (Si): 0.2% or less, manganese (Mn): 3.0 to 4.0%, phosphorus (P ): 0.020% or less, sulfur (S): 0.020% or less, boron (B): 0.0010-0.0030%, titanium (Ti): 0.010-0.030%, nitrogen (N ): 0.0050% or less, aluminum (Al): 0.010 to 0.050%, the remainder includes Fe and inevitable impurities, and the microstructure is an area fraction of bainitic ferrite of 90% or more and the remainder Includes island martensite (M / A).

Description

本発明は、様々な外部負荷環境に曝される産業機械や自動車などの部品に用いることができる、強度及び衝撃靭性に優れた線材及びその製造方法に関する。   The present invention relates to a wire rod excellent in strength and impact toughness that can be used for parts such as industrial machines and automobiles that are exposed to various external load environments, and a method for manufacturing the same.

近年、環境汚染の主因とされる二酸化炭素の排出を減らす試みが世界的な関心事となっており、その一環として、自動車の排気ガス規制の動きが活発である。このような動きに対し自動車メーカーは、燃費向上を通じてこの問題を解決しようとしている。
このような燃費向上のためには、自動車の軽量化や高性能化が必要とされ、自動車用素材や部品についても更なる高強度化が要求されている。同時に、自動車用素材や部品については外部衝撃に対する安定性の向上も強く要求されており、素材や部品の衝撃靭性が重要な物性項目として認識されてきている。
In recent years, attempts to reduce carbon dioxide emissions, which are the main cause of environmental pollution, have become a global concern, and as part of this, movements to regulate automobile exhaust gas are active. Automobile manufacturers are trying to solve this problem by improving fuel efficiency.
In order to improve the fuel efficiency, it is necessary to reduce the weight and performance of automobiles, and further increase the strength of automobile materials and parts. At the same time, automotive materials and parts are also strongly required to improve stability against external impacts, and impact toughness of materials and parts has been recognized as an important physical property item.

フェライトやパーライト組織の線材は、高強度で優れた衝撃靭性を確保することに限界がある。これらの組織を有する素材は、通常、衝撃靭性に優れるものの、強度が相対的に低い傾向にある。また、強度を高めるために冷間伸線を行うという方法が知られているが、冷間伸線による方法は、高強度を得ることができるものの衝撃靭性が強度向上に比例して急激に低下するという短所を有している。   Ferrite and pearlite-structured wire rods have limitations in securing high strength and excellent impact toughness. A material having such a structure is usually excellent in impact toughness but tends to have a relatively low strength. In addition, a method of performing cold wire drawing to increase the strength is known, but the method using cold wire drawing can provide high strength, but the impact toughness rapidly decreases in proportion to the strength improvement. Has the disadvantage of

このため、高強度と優れた衝撃靭性をともに実現するために、ベイナイト組織又は焼戻しマルテンサイト組織を用いることが一般的である。ベイナイト組織は、熱間圧延した鋼材を用いて恒温変態熱処理を行うことにより得ることができ、焼戻しマルテンサイト組織は、焼入れ及び焼戻し熱処理を行うことにより得ることができる。しかし、一般の熱間圧延及び連続冷却工程だけではこれらの組織を安定的に得ることができないため、熱間圧延した鋼材を用いて上述のような追加の熱処理工程を経る必要がある。   For this reason, in order to realize both high strength and excellent impact toughness, it is common to use a bainite structure or a tempered martensite structure. The bainite structure can be obtained by performing isothermal transformation heat treatment using a hot-rolled steel material, and the tempered martensite structure can be obtained by performing quenching and tempering heat treatment. However, since these structures cannot be obtained stably only by a general hot rolling and continuous cooling process, it is necessary to go through an additional heat treatment process as described above using a hot rolled steel material.

このような追加の熱処理をしなくても、要求される強度及び衝撃靭性を確保することができれば、素材から部品生産に至る工程の一部を省略したり、単純化することができるため、生産性を向上させて製造コストを下げることができる。   If the required strength and impact toughness can be secured without such additional heat treatment, part of the process from material production to parts production can be omitted or simplified. The manufacturing cost can be reduced by improving the performance.

しかし、追加の熱処理工程をすることなく熱間圧延及び連続冷却工程を用いてベイナイト又はマルテンサイト組織を安定的に得ることができる線材は未だ開発されておらず、かかる線材の開発が強く望まれている。   However, a wire rod that can stably obtain a bainite or martensite structure using a hot rolling and continuous cooling step without an additional heat treatment step has not yet been developed, and development of such a wire rod is strongly desired. ing.

本発明は上記従来技術の課題に鑑みてなされたものであって、本発明の目的は、追加の熱処理工程を要することなく熱間圧延及び連続冷却工程だけで高強度及び優れた衝撃靭性を有するようにした線材及びこれを製造する方法を提供することにある。   The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to have high strength and excellent impact toughness only by hot rolling and continuous cooling processes without requiring an additional heat treatment process. An object of the present invention is to provide a wire rod and a method of manufacturing the same.

本発明の解決課題は、上記課題に限定されるものではなく、言及されていない他の課題についても以下の記載から当業者が明確に理解できるものである。   The problem to be solved by the present invention is not limited to the above problem, and other problems not mentioned can be clearly understood by those skilled in the art from the following description.

上記目的を達成するために、本発明の一実施形態に係る強度及び衝撃靭性に優れた線材は、重量%で、炭素(C):0.05〜0.15%、シリコン(Si):0.2%以下、マンガン(Mn):3.0〜4.0%、リン(P):0.020%以下、硫黄(S):0.020%以下、ボロン(B):0.0010〜0.0030%、チタン(Ti):0.010〜0.030%、窒素(N):0.0050%以下、アルミニウム(Al):0.010〜0.050%、残りはFe及び不可避不純物を含み、微細組織は、面積分率で、90%以上のベイニティックフェライト及び残りは島状マルテンサイト(M/A)を含むことを特徴とする。   In order to achieve the above-mentioned object, the wire material having excellent strength and impact toughness according to an embodiment of the present invention is carbon (C): 0.05 to 0.15%, silicon (Si): 0 by weight%. 0.2% or less, manganese (Mn): 3.0 to 4.0%, phosphorus (P): 0.020% or less, sulfur (S): 0.020% or less, boron (B): 0.0010 0.0030%, Titanium (Ti): 0.010 to 0.030%, Nitrogen (N): 0.0050% or less, Aluminum (Al): 0.010 to 0.050%, the remainder is Fe and inevitable impurities The fine structure contains 90% or more of bainitic ferrite and the remainder includes island martensite (M / A) in area fraction.

上記目的を達成するために、本発明の一実施形態に係る強度及び衝撃靭性に優れた線材の製造方法は、重量%で、炭素(C):0.05〜0.15%、シリコン(Si):0.2%以下、マンガン(Mn):3.0〜4.0%、リン(P):0.020%以下、硫黄(S):0.020%以下、ボロン(B):0.0010〜0.0030%、チタン(Ti):0.010〜0.030%、窒素(N):0.0050%以下、アルミニウム(Al):0.010〜0.050%、残りはFe及び不可避不純物を含む鋼材を再加熱する段階と、前記再加熱された鋼材を熱間圧延する段階と、前記熱間圧延後に、相変態終了温度BfからBf−50℃の温度範囲まで0.1〜2℃/sの速度で冷却する段階と、前記冷却された鋼材を空冷する段階と、を含むことを特徴とする。   In order to achieve the above object, a method for manufacturing a wire rod having excellent strength and impact toughness according to an embodiment of the present invention is represented by weight%, carbon (C): 0.05 to 0.15%, silicon (Si ): 0.2% or less, manganese (Mn): 3.0-4.0%, phosphorus (P): 0.020% or less, sulfur (S): 0.020% or less, boron (B): 0 0.0010% to 0.0030%, titanium (Ti): 0.010 to 0.030%, nitrogen (N): 0.0050% or less, aluminum (Al): 0.010 to 0.050%, the rest is Fe And a step of reheating the steel material containing inevitable impurities, a step of hot rolling the reheated steel material, and after the hot rolling, a phase transformation finish temperature Bf to a temperature range of Bf-50 ° C. is 0.1. A step of cooling at a rate of ˜2 ° C./s, and a step of air-cooling the cooled steel material , Characterized in that it comprises a.

本発明によれば、熱間圧延及び連続冷却工程だけを用いて産業機械及び自動車用素材又は部品に要求される強度及び衝撃靭性に優れた線材を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the wire excellent in the intensity | strength and impact toughness which are requested | required of an industrial machine and the raw material or components for motor vehicles only using a hot rolling and a continuous cooling process can be provided.

また、従来の追加の熱処理工程を省略することができるため、全体の製造コストを削減するのに非常に有利である。   In addition, since the conventional additional heat treatment step can be omitted, it is very advantageous to reduce the entire manufacturing cost.

以下、本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

まず、本発明の実施形態に係る線材について詳細に説明する。本実施形態の線材は、重量%で、炭素(C):0.05〜0.15%、シリコン(Si):0.2%以下、マンガン(Mn):3.0〜4.0%、リン(P):0.020%以下、硫黄(S):0.020%以下、ボロン(B):0.0010〜0.0030%、チタン(Ti):0.010〜0.030%、窒素(N):0.0050%以下、アルミニウム(Al):0.010〜0.050%、残りはFe及び不可避不純物を含む。   First, the wire according to the embodiment of the present invention will be described in detail. The wire of the present embodiment is, by weight, carbon (C): 0.05 to 0.15%, silicon (Si): 0.2% or less, manganese (Mn): 3.0 to 4.0%, Phosphorus (P): 0.020% or less, sulfur (S): 0.020% or less, boron (B): 0.0010 to 0.0030%, titanium (Ti): 0.010 to 0.030%, Nitrogen (N): 0.0050% or less, Aluminum (Al): 0.010-0.050%, the remainder contains Fe and inevitable impurities.

以下、本実施形態の線材の鋼成分及び組成範囲を限定する理由について詳細に説明する(以下、重量%である)。   Hereinafter, the reason for limiting the steel component and the composition range of the wire rod according to the present embodiment will be described in detail (hereinafter referred to as weight%).

炭素(C):0.05〜0.15%。
炭素は、強度を確保するための必須の元素で、鋼中に固溶されるか、炭化物又はセメンタイトの形態で存在する。強度を増加させるための最も簡単な方法は、炭素含有量を増加させて炭化物又はセメンタイトを形成させることであるが、炭素含有量を増加させると逆に延性及び衝撃靭性が低下するため、炭素の含有量を一定の範囲内に調節する必要がある。本実施形態では、炭素の含有量が0.05〜0.15%の範囲となるように添加することが好ましい。これは、炭素含有量が0.05%未満の場合は目標強度を得ることが難しく、0.15%を超えると衝撃靭性が急激に低下する可能性があるためである。
Carbon (C): 0.05 to 0.15%.
Carbon is an essential element for ensuring strength, and is dissolved in steel, or exists in the form of carbide or cementite. The simplest way to increase strength is to increase the carbon content to form carbides or cementite, but increasing the carbon content conversely reduces ductility and impact toughness, so It is necessary to adjust the content within a certain range. In the present embodiment, it is preferable to add so that the carbon content is in the range of 0.05 to 0.15%. This is because when the carbon content is less than 0.05%, it is difficult to obtain the target strength, and when it exceeds 0.15%, the impact toughness may rapidly decrease.

シリコン(Si):0.2%以下。
シリコンは、アルミニウムとともに脱酸元素として知られており、強度を向上させる元素である。シリコンは、添加時にフェライトに固溶されて鋼材の固溶強化による強度の増加に非常に大きい効果を奏する元素として知られている。しかし、シリコンの添加により強度は大きく増加するが、延性及び衝撃靭性は急激に低下するため、十分な延性を必要とする冷間鍛造部品の場合は、シリコンの添加を非常に制限している。本実施形態では、強度の低下を最小限に抑えながらも、優れた衝撃靭性を確保するために、シリコンの含有量を0.2%以下とする。これは、シリコン含有量が0.2%を超えると、目標衝撃靭性を確保することが難しくなるおそれがあり、0.1%以下とすることが更に好ましい。
Silicon (Si): 0.2% or less.
Silicon, together with aluminum, is known as a deoxidizing element and is an element that improves strength. Silicon is known as an element that is dissolved in ferrite at the time of addition and has a very large effect on the increase in strength due to solid solution strengthening of the steel material. However, the strength is greatly increased by the addition of silicon, but the ductility and impact toughness are drastically reduced. Therefore, in the case of cold forged parts that require sufficient ductility, the addition of silicon is very limited. In the present embodiment, the silicon content is set to 0.2% or less in order to ensure excellent impact toughness while minimizing the decrease in strength. If the silicon content exceeds 0.2%, it may be difficult to ensure the target impact toughness, and it is more preferably 0.1% or less.

マンガン(Mn):3.0〜4.0%。
マンガンは、鋼材の強度を増加させ、硬化能を向上させることで、広い範囲の冷却速度でベイナイトまたはマルテンサイトのような低温組織の形成を容易にする。しかし、マンガン含有量が3.0%未満であると硬化能が十分でないため、熱間圧延後の連続冷却工程で低温組織を安定的に確保することが難しくなる。また、4.0%を超えると、硬化能が高くなりすぎ、空冷時にもマルテンサイト組織を形成する可能性があるため適さない。これを考慮して、本実施形態では、マンガンの含有量を3.0〜4.0%とすることが好ましい。
Manganese (Mn): 3.0-4.0%.
Manganese increases the strength of the steel and improves the hardenability, thereby facilitating the formation of low temperature structures such as bainite or martensite at a wide range of cooling rates. However, if the manganese content is less than 3.0%, the hardenability is not sufficient, and thus it is difficult to stably secure a low temperature structure in the continuous cooling step after hot rolling. On the other hand, if it exceeds 4.0%, the curing ability becomes too high and a martensite structure may be formed even during air cooling, which is not suitable. Considering this, in the present embodiment, the manganese content is preferably set to 3.0 to 4.0%.

リン(P):0.020%以下。
リンは、結晶粒界に偏析して靭性を低下させ、遅延破壊抵抗性を減少させる主な原因となるため、可能な限り含まないことが好ましく、この理由により、本実施形態では、その上限を0.020%と限定する。
Phosphorus (P): 0.020% or less.
Phosphorus segregates at the grain boundaries to lower the toughness and cause a major cause of reduced delayed fracture resistance, so it is preferable not to include phosphorus as much as possible.For this reason, the upper limit is set in this embodiment. It is limited to 0.020%.

硫黄(S):0.020%以下。
硫黄は、結晶粒界に偏析して靭性を低下させ、低融点硫化物を形成して熱間圧延を阻害するため、可能な限り含まないことが好ましい。この理由により、本実施形態では、その上限を0.020%と限定する。
Sulfur (S): 0.020% or less.
Sulfur segregates at the grain boundaries to reduce toughness and forms a low melting point sulfide to inhibit hot rolling, so it is preferable that sulfur is not contained as much as possible. For this reason, the upper limit is limited to 0.020% in this embodiment.

ボロン(B):0.0010〜0.0030%。
ボロンは、硬化能を向上させる元素で、オーステナイト結晶粒界に拡散して冷却時のフェライトの生成を抑制し、ベイナイト又はマルテンサイトの形成を容易にする元素である。しかし、ボロンの添加量が0.0010%未満であると、添加による効果を期待することができず、0.0030%を超えると、それ以上の効果の上昇を期待することができなくなるとともに、ボロン系窒化物が粒界に析出することが原因で粒界の強度が低下して熱間加工性を低下させかねない。したがって、このような点を考慮して、本実施形態では、ボロンの添加範囲を0.0010〜0.0030%とする。
Boron (B): 0.0010 to 0.0030%.
Boron is an element that improves the hardenability and is an element that diffuses into the austenite grain boundaries to suppress the formation of ferrite during cooling and facilitates the formation of bainite or martensite. However, if the added amount of boron is less than 0.0010%, the effect due to addition cannot be expected, and if it exceeds 0.0030%, further increase in the effect cannot be expected, The boron-based nitride is precipitated at the grain boundary, so that the grain boundary strength is lowered and hot workability may be lowered. Therefore, in consideration of such points, in this embodiment, the boron addition range is set to 0.0010 to 0.0030%.

チタン(Ti):0.010〜0.030%。
チタンは、窒素との反応性が最も大きいため、真っ先に窒化物を形成する。チタンの添加によりTiNが形成されて鋼中の窒素がほとんど使い尽くされると、BNの析出を防ぐことにより、ホウ素が溶解(soluble)した状態で存在できるようにすることで硬化能を向上させる効果を得ることができる。しかし、チタンの添加量が0.010%未満であると添加による効果が不十分となり、0.030%を超えると、粗大な窒化物を形成させて機械的物性を低下させる可能性がある。このような点を考慮して、本実施形態では、チタンの含有量を0.010〜0.030%とする。
Titanium (Ti): 0.010 to 0.030%.
Since titanium has the highest reactivity with nitrogen, nitride is formed first. The effect of improving hardenability by allowing boron to exist in a dissolved state by preventing the precipitation of BN when TiN is formed by the addition of titanium and the nitrogen in the steel is almost exhausted. Can be obtained. However, if the amount of titanium added is less than 0.010%, the effect of the addition becomes insufficient, and if it exceeds 0.030%, coarse nitrides may be formed and mechanical properties may be lowered. Considering such points, in this embodiment, the content of titanium is set to 0.010 to 0.030%.

窒素(N):0.0050%以下。
窒素は、ボロンと溶解(soluble)した状態で維持される。硬化能を向上させる効果を十分に奏するようにするために、可能な限り含まないことが好ましい。したがって、本実施形態では、窒素の含有量を0.0050%以下とすることが好ましい。
Nitrogen (N): 0.0050% or less.
Nitrogen is maintained in a dissolved state with boron. In order to sufficiently exhibit the effect of improving the curability, it is preferable not to include as much as possible. Therefore, in this embodiment, the nitrogen content is preferably 0.0050% or less.

アルミニウム(Al):0.010〜0.050%。
アルミニウムは、強力な脱酸元素で、鋼中の酸素を除去することで清浄度を高めるだけでなく、鋼中に固溶された窒素と結合してAlNを形成することにより、衝撃靭性を向上させることができる。本実施形態では、アルミニウムを積極的に添加するが、含有量が0.010%未満であると、上記アルミニウムの添加効果を期待することが難しく、0.050%を超えると、アルミナ介在物が多量に生成して機械的物性を大きく低下させる可能性がある。このような点を考慮して、本実施形態では、アルミニウムの含有量を0.010〜0.050%の範囲にすることが好ましい。
Aluminum (Al): 0.010 to 0.050%.
Aluminum is a powerful deoxidizing element that not only improves the cleanliness by removing oxygen in the steel, but also improves the impact toughness by forming AlN by combining with the solid solution nitrogen in the steel. Can be made. In the present embodiment, aluminum is positively added. However, if the content is less than 0.010%, it is difficult to expect the effect of adding aluminum. If the content exceeds 0.050%, alumina inclusions are present. It may be produced in large quantities and the mechanical properties may be greatly reduced. In consideration of such points, in the present embodiment, the aluminum content is preferably in the range of 0.010 to 0.050%.

上記組成以外に、クロム(Cr)を0.3%未満更に含むことができる。クロムは、マンガンと同様に、鋼材の強度及び硬化能を増加させる。クロム含有量が0.3%以上であると、硬化能の向上及び固溶強化の効果により強度は増加し得るが、衝撃靭性は逆に低下するおそれがある。これを考慮して、本実施形態では、クロムの含有量を0.3%未満の範囲とすることが好ましい。   In addition to the above composition, chromium (Cr) may further be contained in an amount of less than 0.3%. Chromium, like manganese, increases the strength and hardenability of the steel. When the chromium content is 0.3% or more, the strength can be increased by the effect of improving the hardening ability and strengthening the solid solution, but the impact toughness may be lowered. In consideration of this, in this embodiment, it is preferable that the chromium content is in a range of less than 0.3%.

本実施形態の線材は、上記組成以外に、残りはFe及び不可避不純物を含む。本実施形態では、上記言及した合金組成に加えて、他の合金の追加を排除しない。   The wire of this embodiment contains Fe and unavoidable impurities in addition to the above composition. In this embodiment, in addition to the alloy composition mentioned above, addition of other alloys is not excluded.

一方、本実施形態では、前述のマンガン(Mn)、チタン(Ti)、ボロン(B)、及び窒素(N)が下記関係式1を満たすように含有されることが好ましい。   On the other hand, in the present embodiment, it is preferable that the aforementioned manganese (Mn), titanium (Ti), boron (B), and nitrogen (N) are contained so as to satisfy the following relational expression 1.

[関係式1]
Mn+5(Ti−3.5N)/B≧5.0
(但し、上記関係式1において、マンガン(Mn)、チタン(Ti)、ボロン(B)、及び窒素(N)のそれぞれは、該当元素の重量基準含有量を意味する。)
[Relational expression 1]
Mn + 5 (Ti-3.5N) /B≧5.0
(However, in the above relational expression 1, each of manganese (Mn), titanium (Ti), boron (B), and nitrogen (N) means the weight-based content of the corresponding element.)

本実施形態において、マンガンは硬化能を高めることで、冷却速度が相対的に小さい場合にも、ベイニティックフェライトが容易に生成されるように働く。また、チタンは窒素と結合して窒化物を形成し、ボロンが鋼中に十分に固溶されるようにすることにより、フェライトの生成を抑制してベイニティックフェライトが容易に生成されるようにする。   In the present embodiment, manganese enhances the hardenability so that bainitic ferrite is easily generated even when the cooling rate is relatively low. In addition, titanium combines with nitrogen to form nitrides, and boron is sufficiently dissolved in steel to suppress the formation of ferrite so that bainitic ferrite is easily generated. To.

本発明の発明者らは、上記のような点に着目して研究と実験を重ねた結果、マンガン、チタン、ボロン、及び窒素の関係が重量%を基準にMn+5(Ti−3.5N)/B≧5.0を満たすとき、より優れた強度及び衝撃靭性を有するベイニティックフェライト組織の線材を提供することができることを認知し、上記関係式1を導出した。   As a result of repeated research and experiment focusing on the above points, the inventors of the present invention have found that the relationship between manganese, titanium, boron, and nitrogen is Mn + 5 (Ti-3.5N) / When satisfying B ≧ 5.0, it was recognized that a wire material having a bainitic ferrite structure having better strength and impact toughness can be provided, and the above relational expression 1 was derived.

また、本実施形態のマンガン(Mn)及びシリコン(Si)は、下記関係式2を満たすように含有されることが好ましい。   Moreover, it is preferable that manganese (Mn) and silicon (Si) of this embodiment are contained so as to satisfy the following relational expression 2.

[関係式2]
Mn/Si≧18
(但し、上記関係式2において、マンガン(Mn)及びシリコン(Si)のそれぞれは、該当元素の重量基準含有量を意味する。)
[Relational expression 2]
Mn / Si ≧ 18
(However, in the above relational expression 2, each of manganese (Mn) and silicon (Si) means the weight-based content of the corresponding element.)

本実施形態において、マンガンは硬化能を高めることで、冷却速度が相対的に小さい場合にも、ベイナイトが容易に生成されるようにする。また、シリコンには、鋼中に固溶して強度を増加させる一方で衝撃靭性を低下させるという短所がある。   In the present embodiment, manganese increases the hardenability so that bainite can be easily generated even when the cooling rate is relatively low. In addition, silicon has a disadvantage that it dissolves in steel and increases strength while decreasing impact toughness.

本発明者らは、上記のような点に着目して研究と実験を重ねた結果、マンガン及びシリコンの関係が重量%を基準にMn/Si≧18を満たすとき、より優れた強度及び衝撃靭性を有するベイニティックフェライト組織の線材を提供することができることを確認し、本組成成分の関係式を提示するに至った。   As a result of repeated research and experiments focusing on the above points, the present inventors have obtained superior strength and impact toughness when the relationship between manganese and silicon satisfies Mn / Si ≧ 18 based on weight%. It has been confirmed that a wire material having a bainitic ferrite structure having the above can be provided, and the relational expressions of the present composition components have been presented.

一方、本実施形態の線材は、任意の断面領域におけるマンガンの最大濃度[Mnmax]と最小濃度[Mnmin]の比が下記関係式3を満たすことが好ましい。 On the other hand, in the wire according to the present embodiment, it is preferable that the ratio of the maximum manganese concentration [Mn max ] and the minimum concentration [Mn min ] in an arbitrary cross-sectional region satisfies the following relational expression 3.

[関係式3]
[Mnmax]/[Mnmin]≦3
[Relational expression 3]
[Mn max ] / [Mn min ] ≦ 3

本実施形態において、マンガンは硬化能を高めることで、冷却速度が相対的に小さい場合にも、ベイニティックフェライトが容易に生成されるようにする。しかし、局部的にマンガンが偏析する場合、マルテンサイトが容易に生成する可能性があり、マンガンが枯渇した領域では、フェライトが形成される可能性があるため、微細組織が不均一になり衝撃靭性が低下するおそれがある。   In the present embodiment, manganese enhances the hardenability so that bainitic ferrite is easily generated even when the cooling rate is relatively low. However, when manganese is segregated locally, martensite may be easily formed, and ferrite may be formed in the area depleted of manganese, resulting in uneven microstructure and impact toughness. May decrease.

本発明者らは、上記のような点に着目して研究と実験を重ねた結果、上記線材の任意の断面領域におけるマンガンの最大濃度と最小濃度の比が3以下であるとき、優れた強度及び衝撃靭性を有するベイニティックフェライト組織の線材を提供することができることを確認し、本関係式を提示するに至った。   As a result of repeating research and experiment focusing on the above points, the present inventors have obtained excellent strength when the ratio of the maximum concentration and the minimum concentration of manganese in any cross-sectional area of the wire is 3 or less. In addition, the present inventors have confirmed that a wire rod having a bainitic ferrite structure having impact toughness can be provided, and have come to present this relational expression.

以下、本実施形態の微細組織について詳細に説明する。   Hereinafter, the microstructure of this embodiment will be described in detail.

本実施形態の線材の微細組織は、90面積%以上のベイニティックフェライト及び残部の島状マルテンサイト(Martensite Austenite constituent、M/A)を含むことが好ましい。一方、ベイナイトは、炭素含有量または形態(morphology)に応じて様々な用語で呼ばれることができる。一般に、中炭素(約0.2〜0.45wt%)以上では、上部/下部ベイナイト(upper/lower bainite)と呼ばれる。しかし、0.2%以下の低炭素範囲では、温度領域に応じてベイニティック(bainitic)フェライト、針状(acicular)フェライト、グラニューラ(granular)フェライトなどと呼ばれる。本実施形態では、低炭素領域であるため、ベイニティックフェライト組織を含む。   It is preferable that the microstructure of the wire according to this embodiment includes 90 area% or more bainitic ferrite and the remaining island martensite (M / A). Bainite, on the other hand, can be referred to in various terms depending on the carbon content or morphology. Generally, above medium carbon (about 0.2-0.45 wt%), it is called upper / lower bainite. However, in the low carbon range of 0.2% or less, it is called bainitic ferrite, acicular ferrite, granular ferrite, etc. depending on the temperature range. In the present embodiment, since it is a low carbon region, a bainitic ferrite structure is included.

本実施形態において、線材の微細組織は、ベイニティックフェライトを90面積%以上含むため、優れた強度及び衝撃靭性を確保することができる。ベイニティックフェライトではない一般のフェライトの相分率が多すぎると、衝撃靭性の面では有利となり得るが、強度の低下を防ぐことができないため好ましくない。   In the present embodiment, since the microstructure of the wire includes 90% by area or more of bainitic ferrite, it is possible to ensure excellent strength and impact toughness. If the phase fraction of a general ferrite that is not bainitic ferrite is too large, it may be advantageous in terms of impact toughness, but it is not preferable because a decrease in strength cannot be prevented.

一方、上記島状マルテンサイトは、柱状のベイニティックフェライト結晶粒界に沿って形成され、その分率が高い場合には鋼材の強度が高くなり得るが、衝撃靭性を低下させるおそれがあるため、可能な限りその分率を低く管理することが好ましい。これを考慮して、本実施形態では、上記島状マルテンサイトの分率が、面積%で、10%以下(換言すると、柱状のベイニティックフェライト組織を90%以上)に管理することが好ましい。このような線材の微細組織を得るために、本実施形態では、鋼材を熱間圧延した後、冷却時の冷却終了温度及び冷却速度を調節することにより、上記線材の微細組織を得ることを効果的に達成することができる。   On the other hand, the island-shaped martensite is formed along the columnar bainitic ferrite crystal grain boundaries, and when the fraction is high, the strength of the steel material can be increased, but there is a risk of reducing the impact toughness. It is preferable to manage the fraction as low as possible. In consideration of this, in this embodiment, it is preferable to manage the fraction of the island-shaped martensite to 10% or less (in other words, the columnar bainitic ferrite structure is 90% or more) in area%. . In order to obtain such a microstructure of the wire, in this embodiment, after the steel material is hot-rolled, it is effective to obtain the microstructure of the wire by adjusting the cooling end temperature and the cooling rate during cooling. Can be achieved.

また、上記島状マルテンサイト(M/A)の結晶粒度は5μm以下であることが好ましい。島状マルテンサイト(M/A)の結晶粒度が5μmを超えると、ベイニティックフェライト基地と接する界面の面積が大きくなるため衝撃靭性が低下する可能性がある。   The crystal grain size of the island martensite (M / A) is preferably 5 μm or less. If the crystal grain size of the island martensite (M / A) exceeds 5 μm, the area of the interface in contact with the bainitic ferrite matrix increases, so that impact toughness may be reduced.

次に、本実施形態の線材を製造する方法について詳細に説明する。   Next, a method for manufacturing the wire rod according to the present embodiment will be described in detail.

本実施形態の線材の製造方法は、上述した組成を有する鋼を形成した後、これを再加熱する段階と、再加熱した鋼材を熱間圧延する段階と、熱間圧延した後、相変態終了温度BfからBf−50℃の温度範囲まで0.1〜2℃/sの速度で冷却する段階と、冷却された鋼材を空冷する段階と、を含む。   The method of manufacturing the wire according to the present embodiment includes a step of reheating the steel having the above-described composition, a step of hot rolling the reheated steel material, a hot rolling, and then completing the phase transformation. A step of cooling from a temperature Bf to a temperature range of Bf-50 ° C. at a rate of 0.1 to 2 ° C./s, and a step of air-cooling the cooled steel material.

まず、本実施形態では、上述した組成成分を有する鋼材を設けた後、これを再加熱する。本実施形態で採用することができる再加熱温度範囲は、1000〜1100℃の範囲を利用すればよい。   First, in this embodiment, after providing the steel material which has the composition component mentioned above, this is reheated. The reheating temperature range that can be employed in the present embodiment may use a range of 1000 to 1100 ° C.

上記鋼材の形態は特に限定されないが、一般に、ブルーム(bloom)またはビレット(billet)の形態であることが好ましい。   The form of the steel material is not particularly limited, but in general, it is preferably in the form of a bloom or billet.

続いて、再加熱された鋼材を熱間圧延して線材を製造する。熱間圧延における仕上げ熱間圧延温度は、特に限定されないが、850〜950℃の範囲で管理することが好ましい。   Subsequently, the reheated steel material is hot-rolled to produce a wire. Although the finish hot rolling temperature in hot rolling is not specifically limited, It is preferable to manage in the range of 850-950 degreeC.

熱間圧延された鋼材は冷却処理されるが、この冷却は相変態終了温度BfからBf−50℃の温度範囲まで0.1〜2℃/sの冷却速度で冷却することが好ましい。冷却終了温度がBfより高いと、十分な量のベイニティックフェライト組織を確保することが難しく、冷却終了温度がBf−50℃より低い場合には、鋼材が十分に冷えて取り扱いは容易であるが、生産性を落とすため、冷却終了温度は、相変態終了温度BfからBf−50℃の温度範囲にすることが好ましい。上記Bfとは、オーステナイトからベイナイト又はベイニティックフェライトへの相変態が終了する温度のことである。   The hot-rolled steel material is cooled, and this cooling is preferably performed at a cooling rate of 0.1 to 2 ° C / s from the phase transformation end temperature Bf to a temperature range of Bf-50 ° C. When the cooling end temperature is higher than Bf, it is difficult to secure a sufficient amount of bainitic ferrite structure. When the cooling end temperature is lower than Bf-50 ° C., the steel is sufficiently cooled and easy to handle. However, in order to reduce productivity, it is preferable that the cooling end temperature is in a temperature range from the phase transformation end temperature Bf to Bf−50 ° C. The Bf is a temperature at which the phase transformation from austenite to bainite or bainitic ferrite is completed.

本実施形態では、熱間圧延後に連続冷却を行うことにより、ベイニティックフェライト組織を確保することで鋼材の優れた強度及び衝撃靭性を確保する。これによって、従来行っていた焼入れ及び焼戻しのような熱処理を省略することができるため、追加の工程を必要とせず、本実施形態の方法は製造原価の面で非常に有利である。   In this embodiment, the continuous cooling after hot rolling ensures the strength and impact toughness of the steel material by securing the bainitic ferrite structure. As a result, heat treatment such as quenching and tempering that has been conventionally performed can be omitted. Therefore, no additional steps are required, and the method of the present embodiment is very advantageous in terms of manufacturing cost.

また、本実施形態では、冷却開始温度から冷却終了温度までの区間を0.1〜2℃/sの冷却速度で冷却することが好ましい。この冷却速度が0.1℃/s未満であると、初析フェライトの形成が多くなり、2℃/sを超えると、マルテンサイトの形成が多くなって強度及び衝撃靭性が低下するため、本実施形態の冷却速度は0.1〜2℃/sで管理することが好ましい。   In the present embodiment, it is preferable to cool the section from the cooling start temperature to the cooling end temperature at a cooling rate of 0.1 to 2 ° C./s. If this cooling rate is less than 0.1 ° C./s, the formation of proeutectoid ferrite increases, and if it exceeds 2 ° C./s, the formation of martensite increases and the strength and impact toughness decrease. It is preferable to manage the cooling rate of embodiment at 0.1-2 degreeC / s.

上述のように、冷却区間における冷却速度を確保することにより、面積分率90%以上のベイニティックフェライトを有する強度及び衝撃靭性に優れた線材を得ることができる。   As described above, by securing the cooling rate in the cooling section, it is possible to obtain a wire having excellent strength and impact toughness having bainitic ferrite having an area fraction of 90% or more.

以下、本発明の実施例について詳細に説明する。下記実施例は、本発明の理解を助けるためのものであるだけで、実施例によって本発明を限定するものではない。   Examples of the present invention will be described in detail below. The following examples are only for helping understanding of the present invention, and are not intended to limit the present invention.

下記表1の組成成分を有する溶鋼を鋳造し、これを1100℃で再加熱して直径15mmとなるように線材圧延した後、表2の冷却速度で相変態終了温度Bf以下の300℃まで冷却してから空冷して線材を製造した。一方、ベイナイトの相変態終了温度であるBfは、膨張計(Dilatometer)を用いて測定しており、化学組成に応じてやや異なっているが、300〜350℃の範囲であった。   After casting molten steel having the composition components shown in Table 1 below, reheating at 1100 ° C. and rolling the wire to a diameter of 15 mm, cooling to 300 ° C. below the phase transformation end temperature Bf at the cooling rate shown in Table 2. Then, the wire was manufactured by air cooling. On the other hand, Bf, which is the bainite phase transformation end temperature, was measured using a dilatometer, and was slightly different depending on the chemical composition, but was in the range of 300 to 350 ° C.

このように製造された線材の微細組織を分析して表2に示し、引張強度及び衝撃靭性を測定して表2に示した。この線材の微細組織のうち島状マルテンサイト(M/A)の面積分率及び結晶粒度は画像分析器(Image Analyzer)を用いて測定し、マンガンの濃度はEPMA(Electron Probe Micro−Analysis)を用いて測定した。   The microstructure of the wire thus produced was analyzed and shown in Table 2, and the tensile strength and impact toughness were measured and shown in Table 2. The area fraction and crystal grain size of island martensite (M / A) in the microstructure of the wire are measured using an image analyzer, and the manganese concentration is EPMA (Electron Probe Micro-Analysis). And measured.

また、常温引張試験は、クロスヘッド速度(cross head speed)を降伏点までは0.9mm/min、その後は6mm/minの速度で行って測定した。なお、衝撃試験は、試片に衝撃を加えるストライカー(striker)のエッジ(edge)部の曲率が2mmで、試験容量が500Jである衝撃試験機を用いて常温で行って測定した。   In the room temperature tensile test, the cross head speed was measured at a speed of 0.9 mm / min until the yield point and then 6 mm / min. The impact test was carried out at room temperature using an impact tester in which the curvature of the edge portion of the striker that applies impact to the specimen is 2 mm and the test capacity is 500 J.

Figure 2017538034
(上記表1において、関係式1はMn+5(Ti−3.5N)/B、関係式2はMn/Siであり、残りはFe及び不可避不純物である。)
Figure 2017538034
(In Table 1 above, relational expression 1 is Mn + 5 (Ti−3.5N) / B, relational expression 2 is Mn / Si, and the rest are Fe and inevitable impurities.)

Figure 2017538034
(上記表2において、関係式3は[Mnmax]/[Mnmin]である。)
Figure 2017538034
(In Table 2 above, relational expression 3 is [Mn max ] / [Mn min ].)

上記表1及び2に示されているように、本発明の鋼の組成及び製造方法を満たす実施例1〜11は、すべて90面積%以上のベイニティックフェライトが得られ、機械的物性も、600〜700MPaの引張強度及び150〜200Jの優れた衝撃靭性を示すことが分かる。   As shown in Tables 1 and 2 above, Examples 1 to 11 satisfying the composition and manufacturing method of the steel of the present invention all obtained bainitic ferrite of 90 area% or more, and mechanical properties were also It can be seen that a tensile strength of 600 to 700 MPa and an excellent impact toughness of 150 to 200 J are exhibited.

実施例8は、シリコンの含有量が0.1重量%以下で、衝撃靭性がさらに向上することが確認できる。上記発明例のうち、マンガン、チタン、ボロン、及び窒素の関係式1(Mn+5(Ti−3.5N)/B≧5.0)と、マンガン及びシリコンの関係式2(Mn/Si≧18)をすべて満たす発明例2、3、5、7、6、9、及び11は、そうでない場合と比較するとき、衝撃靭性がさらに優れることが分かる。   In Example 8, it can be confirmed that when the silicon content is 0.1% by weight or less, the impact toughness is further improved. Among the above invention examples, the relational expression 1 of manganese, titanium, boron and nitrogen (Mn + 5 (Ti−3.5N) /B≧5.0) and the relational expression 2 of manganese and silicon (Mn / Si ≧ 18) It can be seen that Invention Examples 2, 3, 5, 7, 6, 9, and 11 satisfying all of the above are further superior in impact toughness when compared with the cases other than those.

すなわち、上記実施例のうち、関係式1(Mn+5(Ti−3.5N)/B≧5.0)及び/又は関係式2(Mn/Si≧18)を満たしていない実施例1、4、6、及び10は、衝撃靭性がやや劣ることが分かる。   That is, among the above Examples, Examples 1 and 4 that do not satisfy Relational Expression 1 (Mn + 5 (Ti−3.5N) /B≧5.0) and / or Relational Expression 2 (Mn / Si ≧ 18), 6 and 10 show that the impact toughness is slightly inferior.

これに対し、比較例12は、炭素含有量が高くなって引張強度には優れるが、衝撃靭性は劣ることが確認できる。これは、炭素がM/A相に固溶されて安定したM/A相を増加させたためである。比較例13は、シリコン含有量が本発明の範囲を外れる場合で、シリコンも、炭素と同様に、シリコンの添加量が多くなるにつれて基地に添加されるシリコン含有量も増加し、最終的には固溶強化の効果を奏するようになる。すなわち、シリコン添加量が0.25%のレベルでも、引張強度は非常に大きくなるが、それとともに衝撃靭性は急激に減少するようになる。比較例14は、マンガン及びボロンの添加量が少なく鋼材の硬化能を低下させるため、冷却条件を満たしても、フェライトとベイニティックフェライトの組織が混粒して引張強度が低下することが確認できる。   On the other hand, although the comparative example 12 has high carbon content and is excellent in tensile strength, it can confirm that impact toughness is inferior. This is because carbon was dissolved in the M / A phase to increase the stable M / A phase. Comparative Example 13 is a case where the silicon content is outside the scope of the present invention, and silicon, like carbon, the silicon content added to the base increases as the amount of silicon added increases. The effect of solid solution strengthening comes to be produced. That is, even when the silicon addition amount is at a level of 0.25%, the tensile strength becomes very large, but the impact toughness decreases rapidly with that. In Comparative Example 14, since the addition amount of manganese and boron is small and the hardenability of the steel material is lowered, it is confirmed that even when the cooling condition is satisfied, the structure of ferrite and bainitic ferrite is mixed and the tensile strength is lowered. it can.

一方、比較例15は、鋼の組成成分は本発明の範囲を満たしているが、製造工程において冷却速度が速くなるにつれてマルテンサイトが形成されるため、強度は増加したが、衝撃靭性は悪化することを示している。比較例16は、鋼の組成成分は本発明の範囲を満たしているが、製造工程において冷却速度が遅い場合で、フェライトが形成されるため強度は低下することを示している。   On the other hand, in Comparative Example 15, although the steel composition components satisfy the scope of the present invention, martensite is formed as the cooling rate increases in the manufacturing process, so that the strength increases, but the impact toughness deteriorates. It is shown that. Comparative Example 16 shows that the steel composition components satisfy the scope of the present invention, but the strength decreases because ferrite is formed when the cooling rate is low in the manufacturing process.

また、比較例17は、チタンの添加量が少ない場合で、溶解ボロン量が減少するため硬化能が低下し、冷却速度も遅い場合は、初析フェライトの析出量が多くなって引張強度が低下することを示している。   In Comparative Example 17, when the amount of titanium added is small, the amount of dissolved boron decreases, so that the hardenability decreases, and when the cooling rate is slow, the precipitation amount of pro-eutectoid ferrite increases and the tensile strength decreases. It shows that

さらに、比較例18は、マンガンが多く添加される場合、相対的に硬化能が大きすぎるようになるため、本発明の実施形態で提示した冷却速度で冷却しても、マルテンサイトが生成されて強度が増加したのに対し、衝撃靭性は低下することを示している。また、鋼中にマンガンが偏析しているため、局部的に不均一な組織が形成されることが原因で衝撃靭性が劣るようになることを示している。   Further, in Comparative Example 18, when a large amount of manganese is added, the hardening ability is relatively too large, so that martensite is generated even when cooled at the cooling rate presented in the embodiment of the present invention. While the strength increased, the impact toughness decreased. Moreover, since manganese segregates in steel, it shows that impact toughness becomes inferior due to the formation of a locally non-uniform structure.

Claims (12)

重量%で、炭素(C):0.05〜0.15%、シリコン(Si):0.2%以下、マンガン(Mn):3.0〜4.0%、リン(P):0.020%以下、硫黄(S):0.020%以下、ボロン(B):0.0010〜0.0030%、チタン(Ti):0.010〜0.030%、窒素(N):0.0050%以下、アルミニウム(Al):0.010〜0.050%、残りはFe及び不可避不純物を含み、
微細組織は、面積分率で、90%以上のベイニティックフェライト及び残りは島状マルテンサイト(M/A)を含むことを特徴とする強度及び衝撃靭性に優れた線材。
Carbon (C): 0.05 to 0.15%, silicon (Si): 0.2% or less, manganese (Mn): 3.0 to 4.0%, phosphorus (P): 0.0% by weight. 020% or less, sulfur (S): 0.020% or less, boron (B): 0.0010 to 0.0030%, titanium (Ti): 0.010 to 0.030%, nitrogen (N): 0.0. 0050% or less, aluminum (Al): 0.010 to 0.050%, the rest includes Fe and inevitable impurities,
A wire having excellent strength and impact toughness, characterized in that the microstructure contains an area fraction of bainitic ferrite of 90% or more and the rest is island martensite (M / A).
前記線材はクロム(Cr):0.3%未満をさらに含むことを特徴とする請求項1に記載の強度及び衝撃靭性に優れた線材。   The wire according to claim 1, wherein the wire further includes chromium (Cr): less than 0.3%. 前記マンガン(Mn)、チタン(Ti)、ボロン(B)、及び窒素(N)の含有量は下記関係式1を満たすことを特徴とする請求項1に記載の強度及び衝撃靭性に優れた線材。
[関係式1]
Mn+5(Ti−3.5N)/B≧5.0
The wire material excellent in strength and impact toughness according to claim 1, wherein the contents of manganese (Mn), titanium (Ti), boron (B), and nitrogen (N) satisfy the following relational expression 1. .
[Relational expression 1]
Mn + 5 (Ti-3.5N) /B≧5.0
前記マンガン(Mn)及びシリコン(Si)の含有量は下記関係式2を満たすことを特徴とする請求項1に記載の強度及び衝撃靭性に優れた線材。
[関係式2]
Mn/Si≧18
The wire material excellent in strength and impact toughness according to claim 1, wherein the contents of manganese (Mn) and silicon (Si) satisfy the following relational expression 2.
[Relational expression 2]
Mn / Si ≧ 18
前記線材は、任意の断面におけるマンガンの最大濃度[Mnmax]と最小濃度[Mnmin]の比が下記関係式3を満たすことを特徴とする請求項1に記載の強度及び衝撃靭性に優れた線材。
[関係式3]
[Mnmax]/[Mnmin]≦3
2. The wire has excellent strength and impact toughness according to claim 1, wherein the ratio of the maximum manganese concentration [Mn max ] and the minimum concentration [Mn min ] in an arbitrary cross section satisfies the following relational expression 3. wire.
[Relational expression 3]
[Mn max ] / [Mn min ] ≦ 3
前記島状マルテンサイト(M/A)の結晶粒度は5μm以下であることを特徴とする請求項1に記載の強度及び衝撃靭性に優れた線材。   The wire rod excellent in strength and impact toughness according to claim 1, wherein the island-shaped martensite (M / A) has a crystal grain size of 5 μm or less. 重量%で、炭素(C):0.05〜0.15%、シリコン(Si):0.2%以下、マンガン(Mn):3.0〜4.0%、リン(P):0.020%以下、硫黄(S):0.020%以下、ボロン(B):0.0010〜0.0030%、チタン(Ti):0.010〜0.030%、窒素(N):0.0050%以下、アルミニウム(Al):0.010〜0.050%、残りはFe及び不可避不純物を含む鋼材を再加熱する段階と、
前記再加熱された鋼材を熱間圧延する段階と、
前記熱間圧延後に、相変態終了温度BfからBf−50℃の温度範囲まで0.1〜2℃/sの速度で冷却する段階と、
前記冷却された鋼材を空冷する段階と、を含むことを特徴とする強度及び衝撃靭性に優れた線材の製造方法。
Carbon (C): 0.05 to 0.15%, silicon (Si): 0.2% or less, manganese (Mn): 3.0 to 4.0%, phosphorus (P): 0.0% by weight. 020% or less, sulfur (S): 0.020% or less, boron (B): 0.0010 to 0.0030%, titanium (Ti): 0.010 to 0.030%, nitrogen (N): 0.0. 0050% or less, aluminum (Al): 0.010 to 0.050%, the rest is a stage of reheating the steel material containing Fe and inevitable impurities;
Hot rolling the reheated steel material;
After the hot rolling, cooling from the phase transformation end temperature Bf to a temperature range of Bf-50 ° C. at a rate of 0.1-2 ° C./s;
And a step of air-cooling the cooled steel material. A method for producing a wire material having excellent strength and impact toughness.
前記鋼材はクロム(Cr):0.3%未満をさらに含むことを特徴とする請求項7に記載の強度及び衝撃靭性に優れた線材の製造方法。   The method for producing a wire rod having excellent strength and impact toughness according to claim 7, wherein the steel material further contains chromium (Cr): less than 0.3%. 前記マンガン(Mn)、チタン(Ti)、ボロン(B)、及び窒素(N)の含有量は下記関係式1を満たすことを特徴とする請求項7に記載の強度及び衝撃靭性に優れた線材の製造方法。
[関係式1]
Mn+5(Ti−3.5N)/B≧5.0
The wire material excellent in strength and impact toughness according to claim 7, wherein the contents of manganese (Mn), titanium (Ti), boron (B), and nitrogen (N) satisfy the following relational expression 1. Manufacturing method.
[Relational expression 1]
Mn + 5 (Ti-3.5N) /B≧5.0
前記マンガン(Mn)及びシリコン(Si)の含有量は、下記関係式2を満たすことを特徴とする請求項7に記載の強度及び衝撃靭性に優れた線材の製造方法。
[関係式2]
Mn/Si≧18
The method for producing a wire rod having excellent strength and impact toughness according to claim 7, wherein the contents of manganese (Mn) and silicon (Si) satisfy the following relational expression 2.
[Relational expression 2]
Mn / Si ≧ 18
前記再加熱する段階は1000〜1100℃の温度範囲で行うことを特徴とする請求項7に記載の強度及び衝撃靭性に優れた線材の製造方法。   The method for producing a wire rod having excellent strength and impact toughness according to claim 7, wherein the reheating step is performed in a temperature range of 1000 to 1100 ° C. 前記熱間圧延する段階における仕上げ熱間圧延は850〜950℃の温度範囲で行うことを特徴とする請求項7に記載の強度及び衝撃靭性に優れた線材の製造方法。   The method for producing a wire rod having excellent strength and impact toughness according to claim 7, wherein the finish hot rolling in the hot rolling step is performed in a temperature range of 850 to 950 ° C.
JP2017523479A 2014-11-03 2015-11-02 Wire material excellent in strength and impact toughness and method for producing the same Expired - Fee Related JP6488008B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR20140151494 2014-11-03
KR10-2014-0151494 2014-11-03
KR10-2015-0144758 2015-10-16
KR1020150144758A KR101714903B1 (en) 2014-11-03 2015-10-16 Steel wire rod having high strength and impact toughness, and method for manufacturing thereof
PCT/KR2015/011650 WO2016072679A1 (en) 2014-11-03 2015-11-02 Wire rod having enhanced strength and impact toughness and preparation method for same

Publications (2)

Publication Number Publication Date
JP2017538034A true JP2017538034A (en) 2017-12-21
JP6488008B2 JP6488008B2 (en) 2019-03-20

Family

ID=56023559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017523479A Expired - Fee Related JP6488008B2 (en) 2014-11-03 2015-11-02 Wire material excellent in strength and impact toughness and method for producing the same

Country Status (6)

Country Link
US (1) US20170298471A1 (en)
JP (1) JP6488008B2 (en)
KR (1) KR101714903B1 (en)
CN (1) CN107075648B (en)
DE (1) DE112015004992T5 (en)
MX (1) MX2017005038A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101879068B1 (en) * 2016-12-13 2018-07-16 주식회사 포스코 High strength wire rod having excellent impact toughness and method for manufacturing the same
KR101858851B1 (en) 2016-12-16 2018-05-17 주식회사 포스코 High strength wire rod having excellent ductility and method for manufacturing same
KR102175586B1 (en) * 2019-06-04 2020-11-06 주식회사 포스코 Non-heat treated wire rod having excellent drawability and impact toughness and method for manufacturing thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5351121A (en) * 1976-10-20 1978-05-10 Sumitomo Metal Ind Ltd Production of medium or low carbn high tensile wire rod
JPS61124524A (en) * 1984-11-22 1986-06-12 Sumitomo Metal Ind Ltd Manufacture of bar steel for steel reinforced concrete
JPS6487746A (en) * 1987-06-19 1989-03-31 Kobe Steel Ltd Ultra-high-strength extra fine wire
CN101619420A (en) * 2009-07-29 2010-01-06 马鞍山钢铁股份有限公司 10.9-grade chromium-containing non-quenched and tempered cold-heading steel and rolling method of hot finished rod thereof
JP2011174137A (en) * 2010-02-24 2011-09-08 Jfe Steel Corp Method for manufacturing steel material for reinforcing bar
JP2011208257A (en) * 2010-03-30 2011-10-20 Jfe Steel Corp High-strength steel for reinforcing bar and method for producing the same
JP2011236449A (en) * 2010-05-06 2011-11-24 Kobe Steel Ltd Steel for machine structure, method for producing the same and method for producing worked component using steel for machine structure

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6439326A (en) * 1987-08-05 1989-02-09 Kobe Steel Ltd Production of steel wire for non-tempered high-strength spring
JP3489655B2 (en) * 1997-02-27 2004-01-26 住友金属工業株式会社 High-strength, high-toughness free-cut non-heat treated steel
JP2002003998A (en) * 2000-06-20 2002-01-09 Daido Steel Co Ltd Wire rod and its manufacturing method
DE10109136A1 (en) * 2001-02-26 2002-09-12 Cytotools Gmbh Using inhibitor of thrombospondin-1 interaction for promoting wound healing, also for treating living skin replacements, inhibits apoptosis of wound-repair cells
JP4777112B2 (en) * 2006-03-30 2011-09-21 新日本製鐵株式会社 Manufacturing method of high strength wire rod with excellent weldability
JP5030200B2 (en) * 2006-06-05 2012-09-19 株式会社神戸製鋼所 High strength steel plate with excellent elongation, stretch flangeability and weldability
KR100797327B1 (en) * 2006-10-11 2008-01-22 주식회사 포스코 Steel wire rod for high strength and high toughness spring having excellent cold workability, method for producing the same and method for producing spring by using the same
JP5092554B2 (en) * 2007-01-17 2012-12-05 Jfeスチール株式会社 Manufacturing method of high strength steel for reinforcing steel
KR101018131B1 (en) * 2007-11-22 2011-02-25 주식회사 포스코 High strength and low yield ratio steel for structure having excellent low temperature toughness
KR20110000395A (en) * 2009-06-26 2011-01-03 현대제철 주식회사 Steel sheet having ultra-high strength, and method for producing the same
KR101253852B1 (en) * 2009-08-04 2013-04-12 주식회사 포스코 Non-heat Treatment Rolled Steel and Drawn Wire Rod Having High Toughness and Method Of Manufacturing The Same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5351121A (en) * 1976-10-20 1978-05-10 Sumitomo Metal Ind Ltd Production of medium or low carbn high tensile wire rod
JPS61124524A (en) * 1984-11-22 1986-06-12 Sumitomo Metal Ind Ltd Manufacture of bar steel for steel reinforced concrete
JPS6487746A (en) * 1987-06-19 1989-03-31 Kobe Steel Ltd Ultra-high-strength extra fine wire
CN101619420A (en) * 2009-07-29 2010-01-06 马鞍山钢铁股份有限公司 10.9-grade chromium-containing non-quenched and tempered cold-heading steel and rolling method of hot finished rod thereof
JP2011174137A (en) * 2010-02-24 2011-09-08 Jfe Steel Corp Method for manufacturing steel material for reinforcing bar
JP2011208257A (en) * 2010-03-30 2011-10-20 Jfe Steel Corp High-strength steel for reinforcing bar and method for producing the same
JP2011236449A (en) * 2010-05-06 2011-11-24 Kobe Steel Ltd Steel for machine structure, method for producing the same and method for producing worked component using steel for machine structure

Also Published As

Publication number Publication date
CN107075648A (en) 2017-08-18
KR101714903B1 (en) 2017-03-10
US20170298471A1 (en) 2017-10-19
DE112015004992T5 (en) 2017-07-13
JP6488008B2 (en) 2019-03-20
KR20160053776A (en) 2016-05-13
MX2017005038A (en) 2017-07-19
CN107075648B (en) 2018-09-21

Similar Documents

Publication Publication Date Title
JP7018510B2 (en) Wear-resistant steel with excellent hardness and impact toughness and its manufacturing method
JP2012062557A (en) High-strength hot rolled steel sheet having excellent toughness and method for producing the same
JP2013181208A (en) High strength hot-rolled steel sheet having excellent elongation, hole expansibility and fatigue characteristics, and method for producing the same
JP7032537B2 (en) High-strength hot-rolled steel sheet with excellent bendability and low-temperature toughness and its manufacturing method
KR20130046941A (en) High strength steel sheet and method of manufacturing the steel sheet
JP6488008B2 (en) Wire material excellent in strength and impact toughness and method for producing the same
JP2011246784A (en) Rolled non-heat treated steel bar having excellent strength and toughness and method for producing the same
JP2019535889A (en) High strength high manganese steel with excellent low temperature toughness and method for producing the same
JP6806905B2 (en) High-strength wire with excellent impact toughness and its manufacturing method
KR101736590B1 (en) Non heat treated wire rod having excellent high strength and method for manafacturing thereof
JP6459704B2 (en) Steel for cold forging parts
JP2017071859A (en) Non-heat-treated steel and method for producing the same
JP6475831B2 (en) Wire rod excellent in impact toughness and manufacturing method thereof
KR101736602B1 (en) Wire rod having excellent impact toughness and method for manafacturing the same
KR101676111B1 (en) Wire having high strength and method for manufacturing thereof
JP2019151866A (en) Non-heat-treated steel and method for producing the same
JP7018138B2 (en) Heat treatment curable high carbon steel sheet and its manufacturing method
KR101620738B1 (en) Wire rod having high strength and impact toughness and method for manufacturing thereof
KR101639895B1 (en) Wire rod having high strength and impact toughness and method for manufacturing thereof
KR101735941B1 (en) High strength cold-rolled steel sheet and method of manufacturing the same
KR101676110B1 (en) Wire rod having high strength and impact toughness, and method for manufacturing thereof
KR20160063553A (en) Wire having high strength, and method for manufacturing thereof
KR101676116B1 (en) Wire rod having high strength, and method for manufacturing thereof
US20220251675A1 (en) Wire rod and steel wire for high strength spring, and manufacturing method therefor
KR20140130258A (en) HIGH STRENGTH COLD-ROLLED STEEL SHEET FOR AUTOMOBILE WITH EXCELLENT FORMABILITY and Bendability and METHOD OF MANUFACTURING THE STEEL SHEET

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190222

R150 Certificate of patent or registration of utility model

Ref document number: 6488008

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees