JP2011174137A - Method for manufacturing steel material for reinforcing bar - Google Patents

Method for manufacturing steel material for reinforcing bar Download PDF

Info

Publication number
JP2011174137A
JP2011174137A JP2010039384A JP2010039384A JP2011174137A JP 2011174137 A JP2011174137 A JP 2011174137A JP 2010039384 A JP2010039384 A JP 2010039384A JP 2010039384 A JP2010039384 A JP 2010039384A JP 2011174137 A JP2011174137 A JP 2011174137A
Authority
JP
Japan
Prior art keywords
less
mass
steel
temperature
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010039384A
Other languages
Japanese (ja)
Other versions
JP5540764B2 (en
Inventor
Takashi Iwamoto
岩本  隆
Seishi Uei
清史 上井
Hideto Kimura
秀途 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010039384A priority Critical patent/JP5540764B2/en
Publication of JP2011174137A publication Critical patent/JP2011174137A/en
Application granted granted Critical
Publication of JP5540764B2 publication Critical patent/JP5540764B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a steel material for a reinforcing bar having high strength and ductility under a superior balance, and further having tensile strength and ductility which have equal levels to those of the base metal when having been welded, at a low cost without adding an expensive alloy element. <P>SOLUTION: This manufacturing method includes: hot-rolling a steel raw material containing a predetermined composition at a heating temperature between the Ac<SB>3</SB>point and 1,100°C and a termination temperature between the Ar<SB>3</SB>point and 950°C; and subsequently cooling the material in a temperature range of 300-800°C at a rate of 2-20°C/s to adjust a bainite transformation starting temperature to 500°C or lower and a transformation completion temperature to a temperature higher than 300°C. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、例えば、鉄筋コンクリート構造物に用いられる剪断補強筋の素材として使用される高強度の鉄筋用鋼材の製造方法に関する。   The present invention relates to a method for manufacturing a high-strength steel for reinforcing bars used as a material for shear reinforcing bars used in reinforced concrete structures, for example.

例えば、鉄筋コンクリート構造物には、その崩壊を防ぐために、補強材として剪断補強筋が使用される。剪断補強筋を使用した鉄筋コンクリート構造物では、鉄筋コンクリート構造物が剪断変形する際に、剪断補強筋が伸びて塑性変形することにより、鉄筋コンクリート構造物の変形エネルギーが剪断補強筋に吸収され鉄筋コンクリート構造物の崩壊が防がれる。しかし、これまでの剪断補強筋は、伸び特性という点からは必ずしも十分なものではない。すなわち、剪断補強筋は、曲げ加工により断面が円形や角形等に成形されるものであるから、伸び特性に優れていれば、曲げ加工が容易となり、加工性の面からも大きなメリットとなる。   For example, in a reinforced concrete structure, a shear reinforcing bar is used as a reinforcing material in order to prevent its collapse. In a reinforced concrete structure using shear reinforcement, when the reinforced concrete structure undergoes shear deformation, the shear reinforcement extends and plastically deforms, so that the deformation energy of the reinforced concrete structure is absorbed by the shear reinforcement and the reinforced concrete structure Collapse is prevented. However, conventional shear reinforcements are not always sufficient in terms of elongation characteristics. That is, since the shear reinforcing bar is formed into a circular shape, a square shape, or the like by bending, if it has excellent elongation characteristics, bending becomes easy, which is a great merit from the viewpoint of workability.

また、近年は、剪断補強筋を溶接施工して鉄筋コンクリート構造物を補強する、施工性のよい溶接閉鎖型の需要が高まっている。この溶接閉鎖型の剪断補強筋では、溶接後の強度や延性を低下させないことが大切であり、溶接部の継手伸びも重要な特性となる。通常、剪断補強筋の溶接では、フラッシュバット溶接やアプセットバット溶接と呼ばれる、高能力かつ高生産性の抵抗溶接が利用される。
ここで、フラッシュバット溶接とは、2本の棒鋼の端面どうしを接触させ2つの端面の間に大電圧をかけ、アークの接触と短絡を繰り返して端部に溶融部を形成し、最後にこの溶融部をアプセット(据え込み変形)により排出し、2本の棒鋼の端部に接合部を形成する溶接法である。また、アプセットバット溶接とは、完全に突き合わせられた2本の棒鋼の端面の間に大電圧をかけ、抵抗発熱により端部をアプセットし2本の棒鋼の端部に接合部を形成する溶接法である。
In recent years, there has been an increasing demand for a welded closed type with good workability, in which a shear reinforcing bar is welded to reinforce a reinforced concrete structure. In this welded-type shear reinforcement, it is important not to lower the strength and ductility after welding, and the joint elongation at the welded portion is also an important characteristic. Usually, the welding of the shear reinforcement uses a high capacity and high productivity resistance welding called flash butt welding or upset butt welding.
Here, the flash butt welding means that two end faces of steel bars are brought into contact with each other, a large voltage is applied between the two end faces, and arc contact and short-circuiting are repeated to form a molten portion at the end. This is a welding method in which the molten part is discharged by upset (upsetting deformation) and a joining part is formed at the ends of two steel bars. Upset butt welding is a welding method in which a large voltage is applied between the end faces of two steel bars that are completely butted, the ends are upset by resistance heat generation, and a joint is formed at the ends of the two steel bars. It is.

このような剪断補強筋に用いる鉄筋用鋼材として、例えば、特許文献1および特許文献2には、圧延後に焼入れや焼き戻し等の熱処理を施さなくとも強度と延性に優れ、溶接しても母材と同等レベルの引張強さや延性を有する非調質の鉄筋用鋼材が開示されている。   As a steel material for reinforcing bars used for such a shear reinforcing bar, for example, in Patent Document 1 and Patent Document 2, excellent strength and ductility are obtained without performing heat treatment such as quenching and tempering after rolling. Non-tempered steel for rebar having a tensile strength and ductility equivalent to that of the steel is disclosed.

特開平8−325637号公報JP-A-8-325637 特許2973909号公報Japanese Patent No. 2973909

しかしながら、特許文献1に記載の非調質鉄筋用鋼材は、Mo添加を必須とするため、コストが高いという問題がある。また、特許文献2に記載の高強度鉄筋用非調質鋼材は、Tiを0.003%以上含有するため、TiNの生成により靭性が低下する場合がある。   However, the steel material for non-tempered rebar described in Patent Document 1 has a problem of high cost because it requires the addition of Mo. Moreover, since the non-tempered steel material for high-strength reinforcing steel described in Patent Document 2 contains 0.003% or more of Ti, the toughness may be reduced due to the generation of TiN.

また、これらの鋼材では、低温靭性について考慮されていないため、寒冷地での使用に際して割れが発生する、おそれもある。   Moreover, in these steel materials, since low temperature toughness is not taken into consideration, there is a possibility that cracking may occur when used in a cold region.

さらに、これら特許文献に記載の技術はいずれも、圧延ままでの高い強度−延性バランスの達成を目的としているが、熱間圧延後の線材冷却履歴等のばらつきを起因とする、特性ばらつきが大きく、優れた特性を安定的に得ることが困難であるのが実情である。   Furthermore, all of the techniques described in these patent documents are aimed at achieving a high strength-ductility balance in the as-rolled state, but there is a large variation in characteristics due to variations in wire rod cooling history after hot rolling. In fact, it is difficult to stably obtain excellent characteristics.

そこで、本発明は、高い強度と延性を優れたバランスの下に有し、しかも溶接した際に母材と同等レベルの引張強さや延性を有する高強度の鉄筋用鋼材を、高価な合金元素を添加することなく低コストにて製造するための方法について提案することを目的とする。   Therefore, the present invention has a high strength and ductility in an excellent balance, and when welded, a high-strength steel material for reinforcing steel having a tensile strength and ductility equivalent to that of the base material, and an expensive alloy element. It aims at proposing about the method for manufacturing at low cost, without adding.

発明者らは、まず、非調質であっても強度と延性に優れ、しかも、溶接しても母材と同等レベルの引張強さや延性をもつ、非調質の鉄筋用鋼材を製造するために、種々の実験、研究を行った。その際に、焼入れ焼きもどしを行わずに、圧延のままで降伏強さが785MPa以上、引張強さが930MPa以上、母材伸び(EL)が8%以上および溶接継手伸びが5%以上、そして曲げ加工時折損なし、という強度と延性を兼ね備えた機械的性質を有する、非調質鉄筋用鋼材を製造することを目標とした。また、低温靭性として、母材の0℃でのシャルピー衝撃値(uEO)が80J以上であることも目標とした。   In order to produce non-tempered steel for reinforcing steel, the inventors firstly have excellent strength and ductility even if they are not tempered, and have the same level of tensile strength and ductility as the base metal even if they are welded. In addition, various experiments and research were conducted. At that time, without quenching and tempering, the yield strength is 785 MPa or more, the tensile strength is 930 MPa or more, the base material elongation (EL) is 8% or more, and the welded joint elongation is 5% or more. The goal was to produce a steel for non-tempered rebars with mechanical properties that had both strength and ductility, with no breakage during bending. Another target for low temperature toughness was that the Charpy impact value (uEO) of the base material at 0 ° C. was 80 J or more.

その結果、非調質鉄筋用鋼材において、溶接後の強度や延性の低下を防止するには、接合部付近の溶接熱影響部(HAZ)の軟化抑制が効果的であること、また、Tiの含有量を少なくし、TiNの生成抑制により低温靭性の劣化を防止することが効果的であることを見出した。しかし一方で、製造した鋼材の延性特性、特に「絞り値」のばらつきが大きく、曲げ加工を行う際に、折れが発生する場合があり、この点を改良すべく検討を重ねた。   As a result, it is effective to suppress softening of the weld heat-affected zone (HAZ) in the vicinity of the joint in order to prevent deterioration in strength and ductility after welding in non-heat treated steel. It was found that it is effective to reduce the content and prevent the deterioration of low temperature toughness by suppressing the formation of TiN. However, on the other hand, the ductility characteristics of manufactured steel materials, especially the “drawing value”, vary greatly, and bending may occur during bending, and studies were made to improve this point.

発明者らは、鋼中の残留水素と鋼材の引張特性との関係に着目し、種々調査を行った。その結果、従来の鋼中には0.5〜1.5ppm程度の水素が残留しており、これが鋼材の延性に著しく悪影響を及ぼしていることを見出した。すなわち、残留水素を低減すると、引張特性、中でも曲げ加工性への影響が大きい絞り値の絶対値が上昇し、ばらつきが低減して、引張特性が大幅に改善されることが確認できた。そして、鋼材中の水素含有量と引張試験時の絞り値との関係を調査し、圧延まま鋼材中の水素含有量を0.4ppm以下に制御することによって、引張試験時に35%以上の高い絞り値を達成し、高いレベルで安定した曲げ加工性が得られることを見出した。   The inventors conducted various investigations by paying attention to the relationship between residual hydrogen in steel and the tensile properties of steel. As a result, it was found that about 0.5 to 1.5 ppm of hydrogen remains in the conventional steel, which has a significant adverse effect on the ductility of the steel material. That is, it has been confirmed that when the residual hydrogen is reduced, the absolute value of the drawing value, which has a great influence on the tensile properties, particularly the bending workability, is increased, the variation is reduced, and the tensile properties are greatly improved. Then, the relationship between the hydrogen content in the steel and the drawing value during the tensile test was investigated, and the hydrogen content in the steel as rolled was controlled to 0.4 ppm or less, so that a high drawing of 35% or more during the tensile test. The value was achieved, and it was found that stable bending workability was obtained at a high level.

一方、鋼材の圧延後に、所定の温度で所定の時間保持を行うことにより、鋼材中の水素含有量を低下させることができるが、その実行に当たり、製造プロセスコストが上昇するとともに、当該処理炉が他の製造設備に比して処理能力不足の場合には、プロセス全体の製造量に制約が加わる場合があることも判明した。
そこで、発明者らは、さらに鋭意検討を進めたところ、必ずしも脱水素を目的とした特別な処理を施さずとも、目的とする低残留水素の鋼を圧延ままで得られる方途を見出し、本発明を完成するに到った。
On the other hand, by holding for a predetermined time at a predetermined temperature after rolling the steel material, it is possible to reduce the hydrogen content in the steel material. It has also been found that if the processing capacity is insufficient compared to other manufacturing facilities, there may be restrictions on the production volume of the entire process.
Therefore, the inventors have further studied diligently, and found a way to obtain the desired low residual hydrogen steel as it is rolled without necessarily performing a special treatment for dehydrogenation. It came to complete.

ここで、圧延ままで当該鋼の残留水素が低位に制御される機構は必ずしも明確でないが、おおよそ以下の通りと考えられる。
まず、組織がオーステナイトの状態にあると、鋼中の水素固溶限は極めて高く、圧延後未変態の鋼中には高濃度の水素が残留する。圧延後の冷却中に、フェライト、パーライト、ベイナイト、マルテンサイトなどの組織へ変態が完了した後にオーステナイト中に残留した水素の大部分は大気中への放出を開始する。
すなわち、脱水素の観点からは、より高温で変態が完了することが有利である。一方で、変態温度が極度に高くなると、高強度の達成が困難となるため、ベイナイト変態開始温度が500℃以下であること、かつベイナイト変態完了温度が300℃超であることが、所期した特性を得るために有効であるを新たに見出したのである。
Here, the mechanism by which the residual hydrogen of the steel is controlled to a low level as it is rolled is not necessarily clear, but is considered as follows.
First, when the structure is in the austenite state, the hydrogen solid solubility limit in the steel is extremely high, and a high concentration of hydrogen remains in the untransformed steel after rolling. During cooling after rolling, most of the hydrogen remaining in the austenite after the transformation to the structure of ferrite, pearlite, bainite, martensite, etc. is completed starts to be released into the atmosphere.
That is, from the viewpoint of dehydrogenation, it is advantageous that the transformation is completed at a higher temperature. On the other hand, when the transformation temperature becomes extremely high, it is difficult to achieve high strength, so that the bainite transformation start temperature is 500 ° C or lower and the bainite transformation completion temperature is higher than 300 ° C. It was newly found that it is effective for obtaining characteristics.

すなわち、本発明の要旨構成は、次のとおりである。
1.C:0.15質量%以上0.30質量%以下、
Si:0.05質量%以上0.50質量%以下、
Mn:0.2質量%以上2.0質量%以下、
Cr:0.1質量%以上1.0質量%以下、
Al:0.01質量%以上1.00質量%以下、
Nb:0.001質量%以上0.300質量%以下、
V:0.01質量%以上1.00質量%以下、
Ti:0.003質量%未満、
Ni:0.5質量%未満、
Cu:0.5質量%未満、
N:0.0060質量%未満、
P:0.03質量%以下および
S:0.03質量%以下
を含有し、かつ下記式(1)を満足し、残部がFeおよび不可避的不純物からなる鋼素材に、加熱温度:Ac点以上1100℃以下および終了温度:Ar点以上950℃以下にて熱間圧延を施し、その後800℃以下300℃以上の温度範囲を2℃/s以上20℃/s以下にて冷却を行って、その際のベイナイト変態開始温度を500℃以下かつ変態完了温度を300℃超に調整することを特徴とする鉄筋用鋼材の製造方法。

2[Si]+1[Mn]+1.2[Cr]≦3.0 …(1)
ここで、[]は該括弧内成分の含有量(質量%)
That is, the gist configuration of the present invention is as follows.
1. C: 0.15 mass% or more and 0.30 mass% or less,
Si: 0.05 mass% or more and 0.50 mass% or less,
Mn: 0.2% by mass or more and 2.0% by mass or less,
Cr: 0.1% by mass or more and 1.0% by mass or less,
Al: 0.01 mass% or more and 1.00 mass% or less,
Nb: 0.001 mass% or more and 0.300 mass% or less,
V: 0.01% by mass or more and 1.00% by mass or less,
Ti: less than 0.003 mass%,
Ni: less than 0.5% by mass,
Cu: less than 0.5% by mass,
N: less than 0.0060% by mass,
P: 0.03% by mass or less and S: 0.03% by mass or less, satisfying the following formula (1), the balance being Fe and inevitable impurities, heating temperature: Ac 3 points or more and 1100 ° C or less And end temperature: Ar Hot rolling at 3 points or more and 950 ° C or less, and then cooling at a temperature range of 800 ° C or less and 300 ° C or more at 2 ° C / s or more and 20 ° C / s or less. A method for producing a steel material for reinforcing steel, comprising adjusting a bainite transformation start temperature to 500 ° C. or less and a transformation completion temperature to more than 300 ° C.
2 [Si] +1 [Mn] +1.2 [Cr] ≦ 3.0 (1)
Here, [] is the content of the component in parentheses (% by mass)

2.前記鋼材は、さらにBを、下記式(2)を満足する範囲にて含有することを特徴とする前記1に記載の鉄筋用鋼材の製造方法。

0.0100≧B(質量%)≧{[N]/14−[Ti]/27}×11+0.0005 …(2)
ここで、[]は該括弧内成分の含有量(質量%)
2. 2. The method for producing a steel material for reinforcing steel as described in 1 above, wherein the steel material further contains B in a range satisfying the following formula (2).
Record
0.0100 ≧ B (mass%) ≧ {[N] / 14− [Ti] / 27} × 11 + 0.0005 (2)
Here, [] is the content of the component in parentheses (% by mass)

3.前記鋼材は、さらに、
Mo:0.01質量%以上1.0質量%以下
を含有することを特徴とする前記1または2に記載の鉄筋用鋼材の製造方法。
3. The steel material is further
Mo: 0.01 mass% or more and 1.0 mass% or less is contained, The manufacturing method of the steel material for reinforcing bars of said 1 or 2 characterized by the above-mentioned.

本発明によれば、冷間曲げ加工時の延性と、最終強度バランスが高く、延性特性のばらつきが小さく、溶接した場合の母材伸びや溶接継手伸びに優れた錮材を、高価な合金元素を添加することなく低コストで製造できる。また低温靭性に優れた高強度の鉄筋用鋼材を製造できる。   According to the present invention, a high-strength alloy element having a high balance between ductility during cold bending and a high balance of final strength, small variation in ductility characteristics, and excellent base material elongation and weld joint elongation when welded is an expensive alloy element. Can be produced at low cost without adding. In addition, a high-strength steel material for rebar excellent in low-temperature toughness can be produced.

互いに突き合わされた鉄筋と、その溶接後の断面硬さプロファイルを示す図である。It is a figure which shows the reinforcing bar faced mutually and the cross-sectional hardness profile after the welding.

以下、本発明の鉄筋用鋼材の製造方法について詳しく説明する。まず、本発明の方法における鋼素材の成分限定理由から順に説明する。なお、以下の説明において、「%」で示す単位は、特に断らない限り「質量%」を意味する。
C:0.15%以上0.30%以下
Cは、目的とする強度を確保するために0.15%以上は必要である。しかし、0.30%を超えて添加すると、溶接性や延性、特に鋼中に水素が残存する場合の延性が著しく劣化するため0.30%以下とする。
Hereinafter, the manufacturing method of the steel material for reinforcing bars of the present invention will be described in detail. First, it demonstrates in order from the reason for the component limitation of the steel raw material in the method of this invention. In the following description, the unit indicated by “%” means “mass%” unless otherwise specified.
C: 0.15% or more and 0.30% or less C is required to be 0.15% or more in order to ensure the intended strength. However, if added over 0.30%, the weldability and ductility, particularly when hydrogen remains in the steel, is significantly deteriorated, so the content is made 0.30% or less.

Si:0.05%以上0.50%以下
Siは、鋼の脱酸及び強化のために0.05%以上で添加する。一方、0.50%を超えて添加すると、最終的に形成された母相組織を脆化するとともに、ベイナイト変態完了温度を低下させる結果、溶接継手の曲げ性を低下させるため、0.50%以下とする。
Si: 0.05% or more and 0.50% or less
Si is added at 0.05% or more for deoxidation and strengthening of steel. On the other hand, if added over 0.50%, the finally formed parent phase structure is embrittled and the bainite transformation completion temperature is lowered. As a result, the bendability of the welded joint is lowered.

Mn:0.2%以上2.0%以下
Mnは、焼入性を確保し目標の強度を得るために0.2%以上の添加が必要である。しかし、2.0%を超えて添加すると、延性や溶接性の劣化を招くとともに、べイナイト変態完了温度を低下させて圧延後の鋼中水素残留量を増加させるため、2.0%以下とする。
Mn: 0.2% or more and 2.0% or less
Mn needs to be added in an amount of 0.2% or more in order to ensure hardenability and obtain the target strength. However, if added over 2.0%, ductility and weldability are deteriorated, and the bainite transformation completion temperature is lowered to increase the residual amount of hydrogen in the steel after rolling.

Cr:0.1%以上1.0%以下
Crは、焼入性を高める元素であり、強度を上昇させるために0.1%以上の添加が必要である。しかし、1.0%を超えて添加すると、焼入性が過大となり延性や溶接性を劣化させるとともに、ベイナイト変態完了温度を低下させて圧延後の鋼中水素残留量を増加させるため1.0%以下とする。
Cr: 0.1% to 1.0%
Cr is an element that enhances hardenability and needs to be added in an amount of 0.1% or more in order to increase the strength. However, if added over 1.0%, the hardenability becomes excessive and the ductility and weldability are deteriorated, and the bainite transformation completion temperature is lowered to increase the residual amount of hydrogen in the steel after rolling, so the amount is made 1.0% or less. .

2[Si]+1[Mn]+1.2[Cr]≦3.0 …(1)
本発明において、上記したSi,MnおよびCrは、それぞれ目標強度達成のために必須の添加元素であるが、同時に、そのいずれもがベイナイト変態の完了温度を低下させるものである。それぞれ単独の添加量が本発明の範囲内にあっても、上記式(1)が満足されない場合には、ベイナイト変態完了温度が低下し、圧延ままの鋼中に水素を残留させることになる。
2 [Si] +1 [Mn] +1.2 [Cr] ≦ 3.0 (1)
In the present invention, the above-described Si, Mn and Cr are additive elements essential for achieving the target strength, but at the same time, all of them lower the completion temperature of the bainite transformation. Even if the respective addition amounts are within the range of the present invention, when the above formula (1) is not satisfied, the bainite transformation completion temperature is lowered, and hydrogen remains in the as-rolled steel.

Nb:0.001%以上0.300%以下
Nbは、鋼中に徽細な炭窒化物を形成し、母材の強度上昇とともに、溶接熱影響部軟化抑制に有効な元素である。析出炭窒化物がTiNと比較してもさらに微細であるため、靭性への悪影響も小さい。さらには変態完了温度への影響も小さい。しかし、0.001%未満の添加では十分な効果が得られず、一方0.300%を超えると、Nb炭窒化物であっても溶接熱影響部の靭性劣化が著しくなるため、Nb含有量は0.001%以上0.300%以下とする。
Nb: 0.001% or more and 0.300% or less
Nb is an element that forms fine carbonitrides in steel and is effective in suppressing softening of the weld heat affected zone as the strength of the base material increases. Since the precipitated carbonitride is finer than TiN, the adverse effect on toughness is small. Furthermore, the influence on the transformation completion temperature is small. However, if the addition is less than 0.001%, a sufficient effect cannot be obtained. On the other hand, if it exceeds 0.300%, the Nb content is 0.001% or more because the toughness deterioration of the weld heat affected zone becomes remarkable even with Nb carbonitride. 0.300% or less.

V:0.01%以上1.00%以下
Vは、鋼材の焼き入れ性を向上させるとともに炭窒化、溶接熱影響部の軟化抑制にも有効な元素である。0.01%未満の添加では十分な効果が得られず、1.0%を超えると著しく溶接熱影響部の靭性を劣化させるため、0.01%以上1.00%以下とする。
V: 0.01% or more and 1.00% or less V is an element that improves the hardenability of the steel material and is effective in suppressing softening of the carbonitriding and welding heat affected zone. If the addition is less than 0.01%, a sufficient effect cannot be obtained. If the addition exceeds 1.0%, the toughness of the weld heat affected zone is remarkably deteriorated, so 0.01% or more and 1.00% or less.

Al:0.01%以上1.00%以下
Alは、鋼の脱酸のために添加するが、0.01%未満ではその効果が少ないため0.01%以上で添加する。しかし、1.00%を超えて添加すると、溶接継手の曲げ性を低下させるため1.00%以下とする。
Al: 0.01% or more and 1.00% or less
Al is added for deoxidation of steel, but if less than 0.01%, the effect is small, so 0.01% or more is added. However, if added over 1.00%, the bendability of the welded joint is lowered, so the content is made 1.00% or less.

Ti:0.003%未満
Tiは、Nを固定し粗大な窒化物(TiN)を生成し、靭性の低下を促進するため、基本的に添加しないことが望ましい。許容し得る含有量は、0.003%未満である。
Ti: Less than 0.003%
Since Ti fixes N, produces | generates coarse nitride (TiN) and promotes the fall of toughness, it is desirable not to add fundamentally. The acceptable content is less than 0.003%.

P:0.03%以下
Pは、鋼材を脆化し、母材と溶接後の延性および低温靭性を劣化させるため、基本的に含有しないことが望ましい。不可避不純物として許容しうる含有量の上限は、0.03%である。
P: 0.03% or less P is basically desirably not contained in order to embrittle the steel material and deteriorate the ductility and low temperature toughness after welding with the base material. The upper limit of the content acceptable as an inevitable impurity is 0.03%.

S:0.03%以下
Sは、鋼中でMnなどの金属と結合して粗大な硫化物を形成し、母材と溶接後の延性および低温靭性を劣化させるため、基本的に含有しないことが望ましい。不可避不純物として許容し得る含有量の上限は、0.03%である。
S: 0.03% or less S is desirably basically not contained because it combines with metals such as Mn to form coarse sulfides in steel and deteriorates the base metal and ductility after welding and low-temperature toughness. . The upper limit of the content acceptable as an inevitable impurity is 0.03%.

N:0.0060%未満
Nは、不可避的不純物であり、0.0060%を超えて含有された場合、溶接時にTiNやVN等の粗大な析出物を形成し、溶接継手の引張強さ及び曲げ性を低下させるため、0.0060%未満とする。
N: Less than 0.0060% N is an unavoidable impurity. When it exceeds 0.0060%, coarse precipitates such as TiN and VN are formed during welding, and the tensile strength and bendability of welded joints are reduced. Therefore, the content is less than 0.0060%.

Ni:0.5%未満
Niは、鋼材の圧延まま強度の上昇には有効であるが、一方でベイナイト変態完了温度を著しく低下する。従って、本発明においては添加しないことが望ましいが、0.5%までの含有は許容できる。
Ni: Less than 0.5%
Ni is effective for increasing the strength of steel as it is rolled, but significantly lowers the bainite transformation completion temperature. Therefore, it is desirable not to add in the present invention, but the content up to 0.5% is acceptable.

Cu:0.5%未満
CuもNiと同様に、鋼材の圧延まま強度の上昇には有効であるが、一方でベイナイト変態完了温度を著しく低下する。従って、本発明においては添加しないことが望ましいが、0.5%までの含有は許容できる。
Cu: Less than 0.5%
Cu, as well as Ni, is effective in increasing the strength of rolled steel, but on the other hand, the bainite transformation completion temperature is significantly reduced. Therefore, it is desirable not to add in the present invention, but the content up to 0.5% is acceptable.

また、鋼素材は、必要に応じてBを添加することが可能である。
Bは、焼入性を向上させる元素であり、母材の強度上昇を特に必要とする場合には、添加することが有効である。一方、0.0100%を超えて添加しても焼入性向上効果が飽和し、溶接性が劣化する原因にもなるため、0.0100%以下とする。また、強度上昇効果を得るためには、Bが鋼中に固溶している必要がある。しかし、鋼中に固溶Nが存在すると鋼中のBはBNの形成に消費され、このようにBがBNとして鋼中に存在する場合には、Bは焼き入れ性の向上に寄与しない。しかしTiが存在すると、その存在量に応じて鋼中のNをTiNとして固定し、TiNとなったNはBNの形成に寄与しなくなる。従って、Bを添加する場合にはBNの形成に消費される以上の量を添加する必要があり、そのためには、鋼中のB量とN量とTi量との間に次式(2)にて示される関係が成り立つことが必要になる。なお、強度上昇効果を得る上では、0.0020%以上で添加することが好ましい。
0.0100≧B(質量%)≧{[N]/14−[Ti]/27}×11+0.0005 …(2)
ここで、[]は該括弧内成分の含有量(質量%)
Moreover, B can be added to the steel material as necessary.
B is an element that improves hardenability, and it is effective to add it when it is particularly necessary to increase the strength of the base material. On the other hand, even if added over 0.0100%, the effect of improving hardenability is saturated and the weldability is deteriorated. Moreover, in order to obtain the strength increasing effect, B needs to be dissolved in the steel. However, if solid solution N is present in the steel, B in the steel is consumed for the formation of BN. Thus, when B is present in the steel as BN, B does not contribute to the improvement of hardenability. However, when Ti is present, N in the steel is fixed as TiN according to the amount of Ti present, and N that becomes TiN does not contribute to the formation of BN. Therefore, when adding B, it is necessary to add more than is consumed for the formation of BN. For that purpose, the following formula (2) is added between the B content, N content and Ti content in the steel. It is necessary that the relationship indicated by is established. In order to obtain the effect of increasing the strength, it is preferable to add at 0.0020% or more.
0.0100 ≧ B (mass%) ≧ {[N] / 14− [Ti] / 27} × 11 + 0.0005 (2)
Here, [] is the content of the component in parentheses (% by mass)

さらに、鋼材の強度−延性バランスを向上することを目的として、必要に応じてMoを添加することができる。すなわち、Moは、変態完了温度への影響が小さい一方で焼入性を高めることから、組織を改善して延性を向上させるために添加することができる。添加する場合には、0.01%以上とすることが好ましい。しか、1.00%を超えて添加すると、コストが上昇し、また過剰な添加は溶接性が劣化するとともに、変態完了温度低下の原因となるため、1.00%以下とすることが好ましい。
上記した成分以外の残部は、Fe及び上記以外の不可避的不純物からなる。
Furthermore, Mo can be added as needed for the purpose of improving the strength-ductility balance of the steel material. That is, Mo increases the hardenability while having little influence on the transformation completion temperature, so it can be added to improve the structure and improve ductility. When adding, it is preferable to set it as 0.01% or more. However, if adding over 1.00%, the cost increases, and excessive addition deteriorates the weldability and causes a decrease in the transformation completion temperature. Therefore, it is preferably made 1.00% or less.
The balance other than the above components is composed of Fe and inevitable impurities other than those described above.

上記の成分組成を有する鋼素材には、加熱温度:Ac点以上1100℃以下および終了温度:Ar点以上950℃以下にて熱間圧延を施す。その後、800℃以下300℃以上の温度範囲を2℃/s以上20℃/s以下にて冷却を行って、その際のベイナイト変態開始温度を500℃以下かつ変態完了温度を300℃超に調整することによって、ベイナイトの体積比率が90%以上の組織を有し、残留水素濃度が0.3ppm以下であって、強度と延性バランスに優れ、特性のばらつきも小さい高強度の鉄筋用鋼材を製造することができる。 The steel material having the above component composition is hot-rolled at a heating temperature: Ac 3 points to 1100 ° C. and an end temperature: Ar 3 points to 950 ° C. Thereafter, cooling is performed at a temperature range of 800 ° C. or lower and 300 ° C. or higher at 2 ° C./s or higher and 20 ° C./s or lower. As a result, a high-strength steel material for reinforcing steel having a structure with a volume ratio of bainite of 90% or more, a residual hydrogen concentration of 0.3 ppm or less, excellent balance between strength and ductility, and small variation in properties is manufactured. be able to.

すなわち、熱間圧延における加熱温度が1100℃を超える場合には、初期のγ粒径が粗大化し、冷却時の変態が遅延する。その結果、変態完了温度の低下をもたらす。同様に、熱間圧延の終了温度が950℃を超える場合にも、やはり変態前のγ粒径が粗大化し、冷却時の変態が遅延する結果、変態完了温度の低下をもたらす。   That is, when the heating temperature in hot rolling exceeds 1100 ° C., the initial γ grain size becomes coarse and the transformation during cooling is delayed. As a result, the transformation completion temperature is lowered. Similarly, even when the end temperature of hot rolling exceeds 950 ° C., the γ grain size before transformation also becomes coarse and the transformation at the time of cooling is delayed, resulting in a decrease in transformation completion temperature.

一方、熱間圧延における加熱温度がAc点未満になると、変形抵抗の増大により、ミルの負荷が増大し圧延による成形が困難となる。また、熱間圧延の終了温度がAr点未満になると、同様に変形抵抗の増大により圧延が困難となるとともに、常温まで冷却したのちも圧延時のひずみが残留し、鋼材の延性に悪影響を及ぼす。 On the other hand, when the heating temperature in the hot rolling is less than Ac 3 , the load on the mill increases due to an increase in deformation resistance, making it difficult to form by rolling. Also, when the end temperature of hot rolling is less than Ar 3 point, similarly, rolling becomes difficult due to an increase in deformation resistance, and strain after rolling remains after cooling to room temperature, which adversely affects the ductility of the steel material. Effect.

次いで、熱間圧延後に、800℃以下300℃以上の温度範囲を2℃/s以上20℃/s以下にて冷却を行う。まず、冷却速度が2℃/sを下回る場合には、フェライトの分率が上昇し、上記した成分組成の下に90%以上のベイナイト組織を得られなくなり、十分な鋼材強度を得られなくなる。一方、冷却速度が20℃/sを超える場合には、変態完了温度が300℃以下となり、圧延後の水素残留をもたらすとともにマルテンサイトの組織分率が増加し、強度―延性バランスが悪化する。   Next, after hot rolling, cooling is performed at a temperature range of 800 ° C. or lower and 300 ° C. or higher at 2 ° C./s or higher and 20 ° C./s or lower. First, when the cooling rate is lower than 2 ° C./s, the ferrite fraction increases, and a bainite structure of 90% or more cannot be obtained under the above-described component composition, and sufficient steel strength cannot be obtained. On the other hand, when the cooling rate exceeds 20 ° C./s, the transformation completion temperature becomes 300 ° C. or lower, resulting in residual hydrogen after rolling, increasing the martensite structure fraction, and worsening the strength-ductility balance.

また、上記の冷却速度を規定する温度範囲を800℃以下300℃以上とするのは、フェライト変態およびベイナイト変態がこの温度領域にて進行するからであり、この温度領域でのフェライト生成を抑制し、ベイナイト変態完了温度を規定内とするためには、この温度領域の温度履歴制御が重要なためである。   In addition, the reason why the temperature range defining the cooling rate is set to 800 ° C. or lower and 300 ° C. or higher is because ferrite transformation and bainite transformation proceed in this temperature region, and ferrite formation in this temperature region is suppressed. This is because temperature history control in this temperature region is important in order to keep the bainite transformation completion temperature within the specified range.

以上の工程を経て得られる圧延後の冷却ままの鋼材は、実質的にベイナイト組織からなる。ここで、実質的にベイナイト組織からなるとは、本発明の作用効果を無くさない限り、ベイナイト以外の組織を含有するものが、本発明の範囲に含まれることを意味する。なお、ベイナイト以外の組織を含有すると、強度−延性バランスが悪化するため、ベイナイト以外の組織は少ないほど望ましい。しかし、ベイナイト以外の組織の割合が低い場合は影響が無視できるため、ベイナイトの体積比率が90%以上であればよい。ベイナイト以外の組織を含有する場合は、フェライトおよび/またはマルテンサイトから構成されるものとする。しかしながら、目的とする強度の達成のためにはフェライトの含有率が低い方が望ましく、一方で鋼材の延性確保、特に水素に起因する低延性化回避のためにはマルテンサイト含有率はやはり低い方が望ましい。従って、マルテンサイトやフェライトを含有する場合には、トータルの体積比率で島状マルテンサイトおよびフェライトの割合はそれぞれ5%未満であることが望ましい。   The steel as-cooled after rolling obtained through the above steps substantially consists of a bainite structure. Here, being substantially composed of a bainite structure means that a structure containing a structure other than bainite is included in the scope of the present invention unless the effects of the present invention are lost. In addition, when a structure other than bainite is contained, the strength-ductility balance is deteriorated. However, since the influence can be ignored when the proportion of the structure other than bainite is low, the volume fraction of bainite may be 90% or more. When a structure other than bainite is contained, it is composed of ferrite and / or martensite. However, in order to achieve the desired strength, it is desirable that the ferrite content is low. On the other hand, the martensite content is still low in order to ensure the ductility of the steel material, especially to avoid the low ductility caused by hydrogen. Is desirable. Therefore, when martensite and ferrite are contained, it is desirable that the ratio of island martensite and ferrite is less than 5% in the total volume ratio.

また、上記冷却後の鋼材は、残留水素濃度が0.4ppm以下となる。ここで、残留水素濃度を0.4ppm以下とするのは、水素の残留に起因する延性の低下を抑制し、曲げ加工を可能とすることを目的としている。   Further, the steel material after cooling has a residual hydrogen concentration of 0.4 ppm or less. Here, the purpose of setting the residual hydrogen concentration to 0.4 ppm or less is to suppress a reduction in ductility caused by the residual hydrogen and to enable bending.

上述したように、TiはNを固定し粗大な窒化物TiNを生成し靭性の低下を促進するため、本発明においては基本的には含有しないことが望ましいが、0.003%未満であれば許容される。微量のTiでも鋼中のNをTiNとして固定するが、靭性低下を抑制する観点から、折出するTiNの粒径は10μm以下とすることが望ましい。Tiを0.003%未満にすることでTiNの粒径を10μm以下とすることが可能となる。   As described above, Ti fixes N and generates coarse nitride TiN to promote a decrease in toughness. Therefore, in the present invention, it is basically desirable not to contain it, but it is acceptable if it is less than 0.003%. The Even in a small amount of Ti, N in the steel is fixed as TiN. From the viewpoint of suppressing a decrease in toughness, it is desirable that the particle size of the TiN to be bent out is 10 μm or less. By making Ti less than 0.003%, the particle size of TiN can be made 10 μm or less.

かくして得られる鋼材は、圧延のままで降伏強さが785MPa以上、引張強さが930MPa以上、母材伸び(EL)が8%以上および溶接継手伸びが5%以上、そして曲げ加工時折損なし、という強度と延性を兼ね備えた機械的性質を有するものとなる。   The steel material thus obtained has a yield strength of 785 MPa or more, a tensile strength of 930 MPa or more, a base material elongation (EL) of 8% or more, a welded joint elongation of 5% or more, and no breakage during bending. It has mechanical properties that have both strength and ductility.

なお、本発明は必ずしも熱間圧延後の熱処理を必要としないが、熱間圧延−冷却後に、下記(3)式を満足する温度および時間に保持する工程を経ることによって、さらに延性に優れた鋼材を得ることも可能である。

T×log t≧1700 …(3)
ここで、T:保持温度(K)
t:保持時間(秒)
但し、保持温度を450℃以上にすると、ベイナイトおよびマルテンサイトの焼戻しが進行しすぎて、強度が低下するため、上記(3)式におけるTは450℃以下とする。好ましくは400℃以下である。
In addition, although this invention does not necessarily require the heat processing after hot rolling, it was further excellent in ductility by passing through the process hold | maintained at the temperature and time which satisfy | fill following (3) Formula after hot rolling and cooling. It is also possible to obtain steel.
T × log t ≧ 1700 (3)
Where T: holding temperature (K)
t: Retention time (seconds)
However, if the holding temperature is set to 450 ° C. or higher, tempering of bainite and martensite proceeds excessively and the strength decreases, so T in the above formula (3) is set to 450 ° C. or lower. Preferably it is 400 degrees C or less.

ちなみに、熱間圧延においては、丸棒または異形形状に圧延して、棒鋼または異形棒鋼の鉄筋用鋼材とするのが通例である。
また、上記以外の製造工程は特に限定されず、通常の鉄筋の製造工程を用いることができる。
Incidentally, in hot rolling, it is customary to roll into a round bar or a deformed shape to form a steel bar for a reinforcing steel bar or a deformed bar steel.
Moreover, the manufacturing process other than the above is not particularly limited, and a normal reinforcing bar manufacturing process can be used.

表1に示す化学成分の鋼(鋼種A〜N)を溶製、そして鋳造してビレットとし、表2に示す各温度に加熱して、同表に示す温度で完了する熱間圧延を行い、表2に示す冷却速度で300℃〜800℃の温度範囲を冷却して、直径13mmの異形棒鋼No.1〜19を製造した。   Steel of chemical composition (steel types A to N) shown in Table 1 is melted and cast into billets, heated to the temperatures shown in Table 2, and hot rolled to complete at the temperatures shown in the table, The steel bars No. 1-19 having a diameter of 13 mm were manufactured by cooling the temperature range of 300 ° C. to 800 ° C. at the cooling rate shown in Table 2.

Figure 2011174137
Figure 2011174137

Figure 2011174137
Figure 2011174137

製造した各棒鋼から、熱間圧延−冷却後1h以内に試験片を採取し、該試験片について鋼材中の残留水素濃度を測定した。また、製造時に測定した圧延後の冷却速度を実験的に再現し、その際の熱膨張挙動よりベイナイト変態の開始温度および変態完了温度を測定した。   A test piece was collected from each manufactured steel bar within 1 h after hot rolling and cooling, and the residual hydrogen concentration in the steel material was measured for the test piece. Moreover, the cooling rate after rolling measured at the time of manufacture was experimentally reproduced, and the start temperature of bainite transformation and the transformation completion temperature were measured from the thermal expansion behavior at that time.

製造した各棒鋼について顕微鏡観察により組織とその体積比率を調べた。また、母材の特性を調べるために引張試験を行ない、降伏強さ(YS)、引張強さ(TS)、母材伸び(EL)をそれぞれ測定した。また、引張試験において、絞り値を各棒鋼について20箇所ずつ測定して絞り値の標準偏差を求めた。   About each manufactured steel bar, the structure | tissue and its volume ratio were investigated by microscope observation. In addition, a tensile test was conducted to investigate the characteristics of the base material, and the yield strength (YS), tensile strength (TS), and base material elongation (EL) were measured. Further, in the tensile test, the drawing value was measured at 20 locations for each bar, and the standard deviation of the drawing value was obtained.

次に、図1に示すように、節10aおよび20aをそれぞれ有する2本の異形棒鋼10および20をアプセットバット溶接して溶接継手を作製し、これを引強試験に供して溶接継手伸び(溶接部を含む棒鋼そのものを引張試験した際の全伸びの値)を測定するとともに、破断位置を確認した。破断位置は、溶接部近傍について0.5mmピッチでビッカース硬さを測定して、図1に示すような長手方向の硬さプロファイルを求め、母材硬さより硬さが大きい部分を溶接部、母材硬さよりも硬さが小さい部分を軟化部として、破断位置がいずれの部分であるかを評価した。   Next, as shown in FIG. 1, two deformed steel bars 10 and 20 having nodes 10a and 20a, respectively, are upset butt welded to produce a welded joint, which is subjected to a tensile test and welded joint elongation (welded) The value of the total elongation when the steel bar itself including the part was subjected to a tensile test) was measured, and the breaking position was confirmed. The fracture position is determined by measuring the Vickers hardness at a pitch of 0.5 mm in the vicinity of the weld and obtaining a longitudinal hardness profile as shown in FIG. The part whose hardness is smaller than the hardness was regarded as a softened part, and it was evaluated which part the fracture position was.

次に、母材の曲げ特性を調べるために、異形棒鋼を長さ500mmに切断した後、公称直径の1倍の曲げ直径で180°まで曲げた後、これを90°まで曲げ戻す、曲げ−曲げ戻し試験を行い、異形棒鋼20本中の折損本数の割合(折損率)を算出することにより、曲げ加工性を評価した。   Next, in order to examine the bending characteristics of the base metal, the deformed steel bar is cut to a length of 500 mm, bent to 180 ° with a bending diameter that is one time the nominal diameter, and then bent back to 90 °. The bending workability was evaluated by performing a bending return test and calculating the ratio (breakage rate) of the number of breaks in 20 deformed bars.

さらに、低温靭性として、母材の0℃でのシャルピー衝撃値(uE0)を測定した。その結果を表2に併せて示す。なお、表2には、上記の硬さプロファイルにおいて最小の硬さをHAZビッカース硬さとして併記する。   Further, the Charpy impact value (uE0) of the base material at 0 ° C. was measured as the low temperature toughness. The results are also shown in Table 2. In Table 2, the minimum hardness in the above-described hardness profile is also shown as HAZ Vickers hardness.

なお、降伏強さが785MPa以上、引張強さ930MPa以上、母材伸び(EL)8%以上、母材絞り値平均が40%以上、絞り値標準偏差が10以下を、延性のばらつきの小さい鋼材として評価した。溶接継手伸び5%以上および曲げ加工時折損率0%を、本発明の鋼材に必要な特性とした。そして、シャルピー衝撃値(uE0)は80J以上を良好とした。   Steel with small variation in ductility, yield strength is 785 MPa or more, tensile strength is 930 MPa or more, base material elongation (EL) is 8% or more, base material drawing value average is 40% or more, drawing value standard deviation is 10 or less. As evaluated. The weld joint elongation of 5% or more and the bending loss rate of 0% were the characteristics required for the steel material of the present invention. The Charpy impact value (uE0) was 80 J or more.

表1および2に示すように、化学成分が本発明の範囲内にあるものの、圧延後の冷却速度が2℃/sよりも低いNo.7、N量が0.0070%と高くかつB量が上記式(2)を満足しないNo.15、およびV無添加のNo.14さらには、C,Si,Mn量がそれぞれ本発明の範囲を満足しないNo.17,18,19は、それぞれ鋼中ミクロ組織のフェライト含有率が高く、本発明で規定しは体積比率で90%以上のベイナイトを満足していない。そのため、表2に示すように、降伏強さ(YS)、引張強さ(TS)がそれぞれ目標値に達していない。   As shown in Tables 1 and 2, although the chemical components are within the scope of the present invention, the cooling rate after rolling is No. 7, which is lower than 2 ° C./s, the N amount is as high as 0.0070%, and the B amount is the above No. 15 which does not satisfy the formula (2), No. 14 which does not contain V, and No. in which the amounts of C, Si and Mn do not satisfy the scope of the present invention. Nos. 17, 18, and 19 each have a high ferrite content in the microstructure in the steel and do not satisfy bainite of 90% or more by volume ratio as defined in the present invention. Therefore, as shown in Table 2, the yield strength (YS) and the tensile strength (TS) do not reach the target values, respectively.

一方、圧延後の冷却速度が本発明規定よりも高いNo.8、および圧延前加熱温度や圧延完了温度が本発明の規定よりも高いNo.9および10は、鋼中ミクロ組織のマルテンサイト含有率が高く、曲げ加工時に折損を生じるサンプルが存在するとともに、低温靭性が目標値に達していない。   On the other hand, No. 8 whose cooling rate after rolling is higher than that of the present invention, and No. 9 and 10 whose heating temperature before rolling and rolling completion temperature are higher than those of the present invention include martensite in the microstructure in the steel. The rate is high, there are samples that break during bending, and the low temperature toughness does not reach the target value.

個別の添加元素量は本発明の規定を満足するものの、上記式(1)の値が3を超えるNo.11およびNi量が本発明範囲外となるNo.12は、圧延後の冷却で得られるミクロ組織が本発明の規定を満足するものの、冷却時の変態完了温度が本発明の規定よりも低くなり、冷却後の残留水素量が高く、引張試験時の絞り値が低く、曲げ加工試験時に折損を生じるサンプルが存在した。   Although the individual additive element amounts satisfy the provisions of the present invention, No. 11 in which the value of the above formula (1) exceeds 3 and No. 12 in which the Ni amount is outside the scope of the present invention are obtained by cooling after rolling. Although the microstructure to be satisfied the provisions of the present invention, the transformation completion temperature during cooling is lower than the provisions of the present invention, the amount of residual hydrogen after cooling is high, the drawing value during the tensile test is low, and the bending test There were samples that sometimes broke.

Ti量が本発明の規定外となるNo.13では、変態温度、ミクロ組織とも目標とするものが得られたにも関わらず、曲げ加工試験時に折損を生じるとともに、シャルピー衝撃値が低い値を示した。   In No. 13, where the amount of Ti is outside the scope of the present invention, although the target transformation temperature and microstructure were both obtained, breakage occurred during the bending test, and the Charpy impact value was low. Indicated.

C量が本発明の規定外となるNo.16では、溶接後の引張試験において、溶接接合面から破断を生じて伸びが十分に得られず、また曲げ加工試験時に全ての鋼材に折損が発生した。これに対して、本発明の規定を満足するNo.1〜5では、YS、TS、母材伸び、絞り値(平均値、標準偏差)、溶接縦手の伸び、曲げ加工時折損率とも、それぞれ、目標とする値が得られ、溶接割れの発生も無かった。また、低温靭性も良好であった。   In No.16 where the amount of C is outside the limits of the present invention, in the tensile test after welding, the weld joint surface is broken and sufficient elongation cannot be obtained, and breakage occurs in all steel materials during the bending test. did. On the other hand, in No. 1 to 5 satisfying the provisions of the present invention, YS, TS, base material elongation, drawing value (average value, standard deviation), welding longitudinal elongation, bending breakage rate, The target values were obtained, respectively, and there were no weld cracks. Moreover, the low temperature toughness was also good.

10、20 異形棒鋼
10a、20a 節
10, 20 deformed steel bar
Sections 10a and 20a

Claims (3)

C:0.15質量%以上0.30質量%以下、
Si:0.05質量%以上0.50質量%以下、
Mn:0.2質量%以上2.0質量%以下、
Cr:0.1質量%以上1.0質量%以下、
Al:0.01質量%以上1.00質量%以下、
Nb:0.001質量%以上0.300質量%以下、
V:0.01質量%以上1.00質量%以下、
Ti:0.003質量%未満、
Ni:0.5質量%未満、
Cu:0.5質量%未満、
N:0.0060質量%未満、
P:0.03質量%以下および
S:0.03質量%以下
を含有し、かつ下記式(1)を満足し、残部がFeおよび不可避的不純物からなる鋼素材に、加熱温度:Ac点以上1100℃以下および終了温度:Ar点以上950℃以下にて熱間圧延を施し、その後800℃以下300℃以上の温度範囲を2℃/s以上20℃/s以下にて冷却を行って、その際のベイナイト変態開始温度を500℃以下かつ変態完了温度を300℃超に調整することを特徴とする鉄筋用鋼材の製造方法。

2[Si]+1[Mn]+1.2[Cr]≦3.0 …(1)
ここで、[]は該括弧内成分の含有量(質量%)
C: 0.15 mass% or more and 0.30 mass% or less,
Si: 0.05 mass% or more and 0.50 mass% or less,
Mn: 0.2% by mass or more and 2.0% by mass or less,
Cr: 0.1% by mass or more and 1.0% by mass or less,
Al: 0.01 mass% or more and 1.00 mass% or less,
Nb: 0.001 mass% or more and 0.300 mass% or less,
V: 0.01% by mass or more and 1.00% by mass or less,
Ti: less than 0.003 mass%,
Ni: less than 0.5% by mass,
Cu: less than 0.5% by mass,
N: less than 0.0060% by mass,
P: 0.03% by mass or less and S: 0.03% by mass or less, satisfying the following formula (1), the balance being Fe and inevitable impurities, heating temperature: Ac 3 points or more and 1100 ° C or less And end temperature: Ar Hot rolling at 3 points or more and 950 ° C or less, and then cooling at a temperature range of 800 ° C or less and 300 ° C or more at 2 ° C / s or more and 20 ° C / s or less. A method for producing a steel material for reinforcing steel, comprising adjusting a bainite transformation start temperature to 500 ° C. or less and a transformation completion temperature to more than 300 ° C.
2 [Si] +1 [Mn] +1.2 [Cr] ≦ 3.0 (1)
Here, [] is the content of the component in parentheses (% by mass)
前記鋼材は、さらにBを、下記式(2)を満足する範囲にて含有することを特徴とする請求項1に記載の鉄筋用鋼材の製造方法。

0.0100≧B(質量%)≧{[N]/14−[Ti]/27}×11+0.0005 …(2)
ここで、[]は該括弧内成分の含有量(質量%)
The said steel material contains B in the range which satisfies following formula (2) further, The manufacturing method of the steel material for reinforcing bars of Claim 1 characterized by the above-mentioned.
Record
0.0100 ≧ B (mass%) ≧ {[N] / 14− [Ti] / 27} × 11 + 0.0005 (2)
Here, [] is the content of the component in parentheses (% by mass)
前記鋼材は、さらに、
Mo:0.01質量%以上1.0質量%以下
を含有することを特徴とする請求項1または2に記載の鉄筋用鋼材の製造方法。
The steel material is further
Mo: 0.01 mass% or more and 1.0 mass% or less is contained, The manufacturing method of the steel material for reinforcing bars of Claim 1 or 2 characterized by the above-mentioned.
JP2010039384A 2010-02-24 2010-02-24 Manufacturing method for steel for rebar Active JP5540764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010039384A JP5540764B2 (en) 2010-02-24 2010-02-24 Manufacturing method for steel for rebar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010039384A JP5540764B2 (en) 2010-02-24 2010-02-24 Manufacturing method for steel for rebar

Publications (2)

Publication Number Publication Date
JP2011174137A true JP2011174137A (en) 2011-09-08
JP5540764B2 JP5540764B2 (en) 2014-07-02

Family

ID=44687250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010039384A Active JP5540764B2 (en) 2010-02-24 2010-02-24 Manufacturing method for steel for rebar

Country Status (1)

Country Link
JP (1) JP5540764B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104357745A (en) * 2014-11-07 2015-02-18 武汉钢铁(集团)公司 Compound reinforcing steel bar with yield strength of more than or equal to 600MPa and production method
CN104372251A (en) * 2014-11-07 2015-02-25 武汉钢铁(集团)公司 Heat-resisting reinforcing steel bar with yield strength of higher than or equal to 500Mpa and production method thereof
JP2016145415A (en) * 2015-01-29 2016-08-12 Jfeスチール株式会社 Steel material for reinforcement and manufacturing method therefor
JP2017538034A (en) * 2014-11-03 2017-12-21 ポスコPosco Wire material excellent in strength and impact toughness and method for producing the same
CN111455281A (en) * 2020-04-17 2020-07-28 柳州钢铁股份有限公司 Method for controlling yield strength fluctuation of same ring of HRB400E wire rod twisted steel and HRB400E wire rod twisted steel
CN115125443A (en) * 2022-06-17 2022-09-30 武汉钢铁有限公司 High-toughness easy-welding steel and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008196046A (en) * 2007-01-17 2008-08-28 Jfe Steel Kk Steel for high strength reinforcing rod, high strength reinforcing rod, and method for producing them

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008196046A (en) * 2007-01-17 2008-08-28 Jfe Steel Kk Steel for high strength reinforcing rod, high strength reinforcing rod, and method for producing them

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017538034A (en) * 2014-11-03 2017-12-21 ポスコPosco Wire material excellent in strength and impact toughness and method for producing the same
CN104357745A (en) * 2014-11-07 2015-02-18 武汉钢铁(集团)公司 Compound reinforcing steel bar with yield strength of more than or equal to 600MPa and production method
CN104372251A (en) * 2014-11-07 2015-02-25 武汉钢铁(集团)公司 Heat-resisting reinforcing steel bar with yield strength of higher than or equal to 500Mpa and production method thereof
JP2016145415A (en) * 2015-01-29 2016-08-12 Jfeスチール株式会社 Steel material for reinforcement and manufacturing method therefor
CN111455281A (en) * 2020-04-17 2020-07-28 柳州钢铁股份有限公司 Method for controlling yield strength fluctuation of same ring of HRB400E wire rod twisted steel and HRB400E wire rod twisted steel
CN111455281B (en) * 2020-04-17 2021-05-14 柳州钢铁股份有限公司 Method for controlling yield strength fluctuation of same ring of HRB400E wire rod twisted steel and HRB400E wire rod twisted steel
CN115125443A (en) * 2022-06-17 2022-09-30 武汉钢铁有限公司 High-toughness easy-welding steel and preparation method thereof
CN115125443B (en) * 2022-06-17 2023-04-25 武汉钢铁有限公司 High-toughness easy-to-weld steel and preparation method thereof

Also Published As

Publication number Publication date
JP5540764B2 (en) 2014-07-02

Similar Documents

Publication Publication Date Title
JP5205820B2 (en) Steel material for high-strength rebar, high-strength rebar, and manufacturing method
JP5521705B2 (en) Steel material for high-strength reinforcing bars and method for producing the same
JP4844687B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
JP6149951B2 (en) Steel for rebar and method for manufacturing the same
JP4940882B2 (en) Thick high-strength hot-rolled steel sheet and manufacturing method thereof
JP5476763B2 (en) High tensile steel plate with excellent ductility and method for producing the same
JP5644982B1 (en) ERW welded steel pipe
JP5540764B2 (en) Manufacturing method for steel for rebar
JP2006233263A (en) Method for producing high strength welded steel tube having excellent low yield ratio and weld zone toughness
JP4379085B2 (en) Manufacturing method of high strength and high toughness thick steel plate
JP2006342421A (en) Method for producing high-tension steel excellent in weld crack resistance
JP4978146B2 (en) Thick high-strength hot-rolled steel sheet and manufacturing method thereof
JP6056235B2 (en) Method for producing high-tensile steel sheet with excellent weldability and delayed fracture resistance and tensile strength of 950 MPa or more
JP6303628B2 (en) Hot rolled steel sheet for ERW steel pipe with a thickness of 15mm or more
KR20170128575A (en) Steel plate for structural pipe, method for producing steel plate for structural pipe, and structural pipe
JP5151693B2 (en) Manufacturing method of high-strength steel
JP4715166B2 (en) Non-heat treated steel for rebar and manufacturing method thereof
JP2008189987A (en) Hot rolled steel sheet for tailored blank, and tailored blank
JP5907063B2 (en) Steel for rebar and method for manufacturing the same
JP4770415B2 (en) High tensile steel plate excellent in weldability and method for producing the same
JP5028761B2 (en) Manufacturing method of high strength welded steel pipe
JPH10121200A (en) High strength steel material for shear reinforcing bar, and its production
JP2012188749A (en) Thick steel plate with high toughness in multi-pass welded part and multi-pass welded joint
JP6051735B2 (en) Method for producing high-tensile steel sheet with excellent weldability and delayed fracture resistance
JP5205815B2 (en) Steel for rebar and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140421

R150 Certificate of patent or registration of utility model

Ref document number: 5540764

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250