JP6806905B2 - High-strength wire with excellent impact toughness and its manufacturing method - Google Patents

High-strength wire with excellent impact toughness and its manufacturing method Download PDF

Info

Publication number
JP6806905B2
JP6806905B2 JP2019531080A JP2019531080A JP6806905B2 JP 6806905 B2 JP6806905 B2 JP 6806905B2 JP 2019531080 A JP2019531080 A JP 2019531080A JP 2019531080 A JP2019531080 A JP 2019531080A JP 6806905 B2 JP6806905 B2 JP 6806905B2
Authority
JP
Japan
Prior art keywords
less
wire rod
strength
present
strength wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019531080A
Other languages
Japanese (ja)
Other versions
JP2020509169A (en
Inventor
ジク イ,ヒョン
ジク イ,ヒョン
ギュ パク,イン
ギュ パク,イン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Holdings Inc
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2020509169A publication Critical patent/JP2020509169A/en
Application granted granted Critical
Publication of JP6806905B2 publication Critical patent/JP6806905B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/28Normalising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • C21D9/5732Continuous furnaces for strip or wire with cooling of wires; of rods
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • C21D9/5735Details
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、衝撃靭性に優れた高強度線材及びその製造方法に関し、より詳細には、多様な外部負荷環境に露出する産業機械や自動車などの素材として好適に用いることができる衝撃靭性に優れた高強度線材及びその製造方法に関する。 The present invention relates to a high-strength wire rod having excellent impact toughness and a method for manufacturing the same. More specifically, the present invention has excellent impact toughness that can be suitably used as a material for industrial machines and automobiles exposed to various external load environments. Regarding high-strength wire rod and its manufacturing method.

最近、環境汚染の主要原因の一つとして指摘されている二酸化炭素の排出を減らすことが世界的な課題となってその対策に多大な努力が払われている。その一環として、自動車の排気ガスを規制する動きが活発であり、この対策として、自動車メーカーでは、燃費向上を通じてこの問題を解決しようとしている。ところが、燃費向上のためには自動車の軽量化と高性能化が要求される。これに伴い、自動車用素材や部品に対しても高強度を有する必要性が増大しつつある。また、外部衝撃に対する安定性のニーズも高まっているため、衝撃靭性も素材や部品の重要な物性として認識されている。 Recently, reducing carbon dioxide emissions, which has been pointed out as one of the major causes of environmental pollution, has become a global issue, and great efforts have been made to deal with it. As part of this, there is an active movement to regulate automobile exhaust gas, and as a countermeasure, automobile manufacturers are trying to solve this problem by improving fuel efficiency. However, in order to improve fuel efficiency, it is required to reduce the weight and performance of automobiles. Along with this, there is an increasing need for high strength for automobile materials and parts. In addition, as the need for stability against external impact is increasing, impact toughness is also recognized as an important physical property of materials and parts.

フェライトまたはパーライト組織の線材は、優れた強度及び衝撃靭性を実現するに限界がある。これら組織を有する素材は、通常、衝撃靭性は高いものの、強度は比較的低い特徴を有し、強度を高めるために冷間伸線を行うと、高強度を得ることはできるが、衝撃靭性は強度上昇に比例して急激に低下するという欠点がある。 Wire rods with a ferrite or pearlite structure have limitations in achieving excellent strength and impact toughness. Materials with these structures usually have high impact toughness but relatively low strength, and high strength can be obtained by cold drawing to increase the strength, but the impact toughness is high. There is a drawback that it decreases sharply in proportion to the increase in strength.

したがって、一般に、高強度であるとともに優れた衝撃靭性を実現するためには、ベイナイト組織または焼戻しマルテンサイト組織を用いる。ベイナイト組織は、熱間圧延した鋼材を用いて恒温変態熱処理を介して得ることができ、焼戻しマルテンサイト組織は、焼入れ及び焼戻し熱処理を介して得ることができる。しかし、通常の熱間圧延や連続冷却工程だけでは、かかる組織を安定的に得ることができないため、熱間圧延された鋼材を用いて上記のような追加の熱処理工程を行わなければならない。 Therefore, in general, a bainite structure or a tempered martensite structure is used in order to achieve high strength and excellent impact toughness. The bainite structure can be obtained through constant temperature transformation heat treatment using hot-rolled steel, and the tempered martensitic structure can be obtained through quenching and tempering heat treatment. However, since such a structure cannot be stably obtained only by a normal hot rolling or continuous cooling step, it is necessary to perform an additional heat treatment step as described above using the hot rolled steel material.

、この追加の熱処理を行わないで高強度及び優れた衝撃靭性が達成されれば、素材から部品生産に至るまでの工程が一部が省略できるか、または単純になって、生産性を向上させ、製造コストを下げることができるという利点が出てくる。 If high strength and excellent impact toughness are achieved without this additional heat treatment, some steps from the material to the production of parts can be omitted or simplified to improve productivity. , The advantage that the manufacturing cost can be reduced comes out.

しかし、追加の熱処理工程を行うことなく熱間圧延及び連続冷却工程を用いて、ベイナイトまたはマルテンサイト組織を安定的に得ることができる線材は、未だ開発されておらず、結果として線材のさらなる開発の必要性が浮上している。 However, a wire rod capable of stably obtaining a bainite or martensite structure by using hot rolling and continuous cooling steps without performing an additional heat treatment step has not yet been developed, and as a result, further development of the wire rod. The need for is emerging.

本発明のいくつかの目的の一つは、追加の熱処理を行わなくても、衝撃靭性に優れた高強度線材及びこれを製造する方法を提供することである。 One of some objects of the present invention is to provide a high-strength wire rod having excellent impact toughness and a method for producing the same without performing additional heat treatment.

本発明の一側面は、重量%で、C:0.05%未満(0%を除く)、Si:0.05%以下(0%を除く)、Mn:3.0〜4.0%、P:0.020%以下、S:0.020%以下、Ni:1.0〜3.0%、B:0.0010〜0.0030%、Ti:0.010〜0.030%、N:0.0030%未満、Al:0.010〜0.050%、残部がFeとその他不可避不純物からなる組成で、その微細組織が、3面積%以下(0面積%を含む)の島状マルテンサイト(MA)、2面積%以下(0面積%を含む)の初析フェライト、及び95面積%以上(100面積%を含む)のベイニティックフェライトでなる高強度線材を提供する。 One aspect of the present invention is C: less than 0.05% (excluding 0%), Si: 0.05% or less (excluding 0%), Mn: 3.0 to 4.0%, by weight%. P: 0.020% or less, S: 0.020% or less, Ni: 1.0 to 3.0%, B: 0.0010 to 0.0030%, Ti: 0.010 to 0.030%, N : Less than 0.0030%, Al: 0.010 to 0.050%, the balance is composed of Fe and other unavoidable impurities, and the fine structure is 3 area% or less (including 0 area%). Provided is a high-strength wire rod composed of site (MA), an eutectoid ferrite having 2 area% or less (including 0 area%), and a vanitic ferrite having 95 area% or more (including 100 area%).

本発明の他の側面は、請求項1に記載の線材の製造方法であって、重量%で、C:0.05%未満(0%を除く)、Si:0.05%以下(0%を除く)、Mn:3.0〜4.0%、P:0.020%以下、S:0.020%以下、Ni:1.0〜3.0%、B:0.0010〜0.0030%、Ti:0.010〜0.030%、N:0.0030%未満、Al:0.010〜0.050%、残部がFeとその他の不可避不純物でなる組成の鋼材を再加熱する段階と、前記再加熱された鋼材を熱間圧延して線材を得る段階と、前記線材をBs℃から(Bs+50)℃まで10〜20℃/秒の速度で1次冷却する段階と、前記1次冷却された線材を(Bf−50)℃からBf℃まで2〜5℃/秒の速度で2次冷却する段階と、前記2次冷却された線材を空冷する段階と、を行うことを特徴とする。(但し、Bsは600〜650℃であり、Bfは350〜400℃である。)
Another aspect of the present invention is the method for producing a wire rod according to claim 1, wherein in terms of weight%, C: less than 0.05% (excluding 0%), Si: 0.05% or less (0%). ), Mn: 3.0 to 4.0%, P: 0.020% or less, S: 0.020% or less, Ni: 1.0 to 3.0%, B: 0.0010 to 0. Reheat a steel material having a composition of 0030%, Ti: 0.010 to 0.030%, N: less than 0.0030%, Al: 0.010 to 0.050%, and the balance consisting of Fe and other unavoidable impurities. The step, the step of hot rolling the reheated steel material to obtain a wire rod, the step of primary cooling the wire rod from Bs ° C. to (Bs + 50) ° C. at a rate of 10 to 20 ° C./sec, and the above 1 It is characterized by performing a step of secondary cooling the second cooled wire from (Bf-50) ° C. to Bf ° C at a rate of 2 to 5 ° C./sec and a step of air-cooling the second cooled wire. And. (However, Bs is 600 to 650 ° C. and Bf is 350 to 400 ° C.).

本発明の効果の一つとして、本発明による線材は、強度及び衝撃靭性に優れている。これにより、多様な外部負荷環境に露出する産業機械や自動車などの素材として好適に用いることができる。 As one of the effects of the present invention, the wire rod according to the present invention is excellent in strength and impact toughness. As a result, it can be suitably used as a material for industrial machines and automobiles exposed to various external load environments.

また、本発明による線材は、追加の熱処理を行わなくても、優れた強度及び衝撃靭性を確保することができ、経済的な観点で有利であるという利点がある。 Further, the wire rod according to the present invention has an advantage that excellent strength and impact toughness can be ensured without performing additional heat treatment, which is advantageous from an economical point of view.

本発明の長所及び効果は上述した内容に限定されず、本発明の具体的な実施形態を説明する過程でさらに容易に理解することができる。 The advantages and effects of the present invention are not limited to those described above, and can be more easily understood in the process of explaining the specific embodiments of the present invention.

以下、本発明の一側面による衝撃靭性に優れた高強度線材について詳細に説明する。 Hereinafter, a high-strength wire rod having excellent impact toughness according to one aspect of the present invention will be described in detail.

まず、本発明の高強度線材の合金成分及び好ましい含有量範囲について詳細に説明する。後述する各成分の含有量は、特に記載しない限り、すべて重量基準であることを予め明らかにしておく。 First, the alloy component and the preferable content range of the high-strength wire rod of the present invention will be described in detail. Unless otherwise specified, the contents of each component described later are all based on weight.

C:0.05%未満(0%を除く)
炭素は、鋼中に固溶されたり、又は炭化物或いはセメンタイトの形で存在したりして線材の強度上昇に寄与するが、本発明では、意図的に添加するものではなく、炭素を含有していなくとも物性確保の観点からは大きな支障とはならない。但し、製造上不可避的に混入する量を考慮して0%は除いている。
一方、炭素の含有量が増すほど延性及び衝撃靭性が低下するので、炭素の含有量を一定の範囲内に調整する必要がある。また、炭素の含有量が増すほど、ベイナイト変態時に島状マルテンサイト(MA)の形成が多くなり、衝撃靭性を阻害することがある。本発明では、これを考慮して、炭素の含有量を0.05%未満に制御する。
C: Less than 0.05% (excluding 0%)
Carbon contributes to increasing the strength of the wire rod by being dissolved in the steel or existing in the form of carbide or cementite, but in the present invention, it is not intentionally added and contains carbon. At least, it does not pose a big obstacle from the viewpoint of ensuring physical properties. However, 0% is excluded in consideration of the amount of unavoidable contamination in manufacturing.
On the other hand, as the carbon content increases, ductility and impact toughness decrease, so it is necessary to adjust the carbon content within a certain range. In addition, as the carbon content increases, the formation of island-like martensite (MA) during bainite transformation increases, which may inhibit impact toughness. In the present invention, in consideration of this, the carbon content is controlled to less than 0.05%.

Si:0.05%以下(0%を除く)
ケイ素は、アルミニウムとともに脱酸元素であり、フェライトに固溶されて鋼材の固溶強化を通じて強度増加に対し非常に効果が大きい元素として知られているが、本発明では、意図的に添加するものではなく、ケイ素を含有していなくとも所定の物性を確保する観点から大きな支障とはならない。但し、製造上不可避的に混入する量を考慮して0%は除いている。
一方、ケイ素を含有すると強度が大幅に増加するが、延性及び衝撃靭性は急激に減少するため、十分な延性を必要とする冷間鍛造部品の場合、ケイ素の含有量は非常に限られる。また、ケイ素は、ベイナイト変態時にセメンタイトの析出を妨害して、オーステナイト相に炭素が濃化するようにするため、島状マルテンサイト(M/A)が形成されることが容易になる。本発明では、優れた衝撃靭性を確保するために、ケイ素の含有量を0.05%以下に制御する。
Si: 0.05% or less (excluding 0%)
Silicon is a deoxidizing element together with aluminum, and is known as an element that is dissolved in ferrite and has a great effect on increasing strength through solid solution strengthening of steel materials. However, in the present invention, silicon is intentionally added. However, even if it does not contain silicon, it does not pose a major problem from the viewpoint of ensuring predetermined physical properties. However, 0% is excluded in consideration of the amount of unavoidable contamination in manufacturing.
On the other hand, when silicon is contained, the strength is significantly increased, but the ductility and impact toughness are sharply decreased, so that the silicon content is very limited in the case of cold forged parts that require sufficient ductility. In addition, silicon interferes with the precipitation of cementite during bainite transformation so that carbon is concentrated in the austenite phase, so that island-like martensite (M / A) can be easily formed. In the present invention, the silicon content is controlled to 0.05% or less in order to ensure excellent impact toughness.

Mn:3.0〜4.0%
マンガンは、鋼材の強度を増加させ、硬化能を向上させることで、広い範囲の冷却速度でベイナイトまたはマルテンサイトのような低温組織の形成を容易にする。
マンガンの含有量が3.0%未満であると、硬化能が十分ではないため、熱間圧延後の連続冷却工程で低温組織を安定的に確保することが困難になる。これに対し、4.0%を超えると、硬化能が高くなりすぎて空冷時にもマルテンサイト組織を形成する可能性があるため好ましくない。
Mn: 3.0 to 4.0%
Manganese facilitates the formation of cold structures such as bainite or martensite at a wide range of cooling rates by increasing the strength of the steel and improving its curability.
If the manganese content is less than 3.0%, the curing ability is not sufficient, and it becomes difficult to stably secure a low temperature structure in the continuous cooling step after hot rolling. On the other hand, if it exceeds 4.0%, the curing ability becomes too high and a martensite structure may be formed even during air cooling, which is not preferable.

P:0.020%以下
リンは、鋼中に必然的に含まれる不純物であって、結晶粒界に偏析されて鋼の靭性を低下させ、遅延破壊抵抗性を減少させるため、できる限り含まないことが好ましい。本発明では、リンの上限を0.020%に管理する。
P: 0.020% or less Phosphorus is an impurity that is inevitably contained in steel and is segregated at grain boundaries to reduce the toughness of steel and reduce delayed fracture resistance, so it is not contained as much as possible. Is preferable. In the present invention, the upper limit of phosphorus is controlled to 0.020%.

S:0.020%以下
硫黄は、鋼中に必然的に含まれる不純物であって、リンと同様に、結晶粒界に偏析されて靭性を低下させ、低融点硫化物を形成させて、熱間圧延を阻害するため、できる限り含まないことが好ましい。本発明では、硫黄の上限を0.020%に管理する。
S: 0.020% or less Sulfur is an impurity that is inevitably contained in steel, and like phosphorus, it segregates at grain boundaries to reduce toughness, form low melting point sulfide, and heat. It is preferable not to include it as much as possible because it hinders inter-rolling. In the present invention, the upper limit of sulfur is controlled to 0.020%.

Ni:1.0〜3.0%
ニッケルは、マンガンとともに硬化能を高める元素として作用する。これにより、島状マルテンサイト(M/A)の形成を減らすことができる。ニッケルの含有量が1.0%未満であると、硬化能が十分ではなく、島状マルテンサイト(M/A)の形成を抑制する効果が僅かである。これに対し、3.0%を超えると、硬化能が高くなり過ぎてマルテンサイト組織を形成する可能性があるため好ましくない。より有利には、1.2〜2.8%とする。
Ni: 1.0-3.0%
Nickel acts together with manganese as an element that enhances curability. This can reduce the formation of island-shaped martensite (M / A). If the nickel content is less than 1.0%, the curing ability is not sufficient and the effect of suppressing the formation of island-like martensite (M / A) is slight. On the other hand, if it exceeds 3.0%, the curing ability becomes too high and a martensite structure may be formed, which is not preferable. More preferably, it is 1.2 to 2.8%.

B:0.0010〜0.0030%
ホウ素は、硬化能を向上させる元素であり、オーステナイト結晶粒界に拡散して冷却時のフェライトの生成を抑制し、ベイナイトまたはマルテンサイトの形成を容易にする元素である。しかし、ホウ素の含有量が0.0010%未満であると、その添加効果を期待することができず、0.0030%を超えると、それ以上の効果上昇を期待することができない上、粒界にホウ素系窒化物が析出し、粒界強度が低下して熱間加工性を損なうことがある。
B: 0.0010 to 0.0030%
Boron is an element that improves curability and diffuses into austenite grain boundaries to suppress the formation of ferrite during cooling, facilitating the formation of bainite or martensite. However, if the boron content is less than 0.0010%, the effect of adding the boron cannot be expected, and if it exceeds 0.0030%, no further increase in the effect can be expected and the grain boundaries. Boron-based nitrides may be deposited on the surface, lowering the grain boundary strength and impairing hot workability.

Ti:0.010〜0.030%
チタンは、窒素との反応性が最も大きく、その結果、一番先に窒化物を形成する。チタンが加わることでTiNが形成して鋼中窒素がほとんど無くなると、BNの析出を防ぐことでホウ素が溶解(soluble)された状態で存在するように助けて、硬化能向上の効果を得ることができる。しかし、チタンの含有量が0.010%未満であると、添加効果が不十分であり、0.030%を超えると、粗大な窒化物を形成して機械的物性を損なう可能性がある。
Ti: 0.010 to 0.030%
Titanium has the highest reactivity with nitrogen, and as a result, forms a nitride first. When TiN is formed by the addition of titanium and nitrogen in the steel is almost eliminated, the effect of improving the curing ability is obtained by preventing the precipitation of BN and helping the boron to exist in a dissolved state. Can be done. However, if the titanium content is less than 0.010%, the addition effect is insufficient, and if it exceeds 0.030%, coarse nitrides may be formed and the mechanical properties may be impaired.

N:0.0030%未満
窒素は、ホウ素と溶解(soluble)された状態に維持されていて、硬化能を向上させるためには、できる限り含まないことが好ましい。また、ベイナイト変態時に島状マルテンサイト(M/A)を形成し難くするためにも制限する必要がある。本発明では、窒素の含有量を0.0030%未満に制御する。
N: Less than 0.0030% Nitrogen is maintained in a solution state with boron, and is preferably not contained as much as possible in order to improve curability. In addition, it is necessary to limit the formation of island-shaped martensite (M / A) during bainite transformation. In the present invention, the nitrogen content is controlled to less than 0.0030%.

Al:0.010〜0.050%
アルミニウムは、強力な脱酸元素であって、鋼中の酸素を除去して清浄度を高めるだけでなく、鋼中に固溶された窒素と結合してAlNを形成することにより、衝撃靭性を向上させることができる。従って、本発明では、アルミニウムを積極的に添加する。但し、アルミニウムの含有量が0.010%未満であると、その添加効果を期待することが難しく、0.050%を超えると、アルミナ介在物が多量生成されて、機械的物性を大幅に損なうことがある。
Al: 0.010 to 0.050%
Aluminum is a strong deoxidizing element that not only removes oxygen in steel to improve cleanliness, but also combines with nitrogen dissolved in steel to form AlN, thereby increasing impact toughness. Can be improved. Therefore, in the present invention, aluminum is positively added. However, if the content of aluminum is less than 0.010%, it is difficult to expect the effect of addition thereof, and if it exceeds 0.050%, a large amount of alumina inclusions are generated, which greatly impairs the mechanical characteristics. Sometimes.

上記組成以外の残りの成分は鉄(Fe)である。但し、通常の製造工程では原料又は周囲環境から意図しない不純物が不可避に混入するため、これを排除することはできない。これらの不純物は、当該技術分野における通常の知識を有する技術者であれば容易に理解されるものであるため、本明細書ではそのすべての内容について特に記載しない。 The remaining component other than the above composition is iron (Fe). However, in a normal manufacturing process, unintended impurities are inevitably mixed in from the raw material or the surrounding environment, so this cannot be eliminated. Since these impurities are easily understood by an engineer having ordinary knowledge in the technical field, all the contents thereof are not specifically described in this specification.

一方、上記のような成分範囲を有する鋼材の合金設計時に、C、Si、Niの含有量は、下記関係式1を満たすように制御することが好ましい。
[関係式1]

Figure 0006806905
On the other hand, when designing an alloy of a steel material having the above component range, it is preferable to control the contents of C, Si, and Ni so as to satisfy the following relational expression 1.
[Relationship formula 1]
Figure 0006806905

本発明において、炭素は、セメンタイトや島状マルテンサイト(M/A)を形成して衝撃靭性を低下させる可能性があり、ケイ素は、鋼中に固溶されるか、または島状マルテンサイト(M/A)を形成して衝撃靭性を低下させる可能性がある。一方、ニッケルは、硬化能を高めることで、島状マルテンサイト(M/A)の形成を抑制することができる。本発明者らは、上記の点に着目して研究及び実験を重ねた結果、上記炭素、ケイ素、及びニッケルの含有量を上記関係式1を満たすようにすると、優れた強度と衝撃靭性を有するベイニティックフェライト組織の線材が得られることを確認した。 In the present invention, carbon may form cementite and island martensite (M / A) to reduce impact toughness, and silicon may be dissolved in steel or island martensite (M / A). It may form M / A) and reduce impact toughness. On the other hand, nickel can suppress the formation of island-like martensite (M / A) by increasing the curing ability. As a result of repeated studies and experiments focusing on the above points, the present inventors have excellent strength and impact toughness when the contents of carbon, silicon, and nickel satisfy the above relational expression 1. It was confirmed that a wire rod having a bainitic ferrite structure could be obtained.

また、上記の成分範囲を有する鋼材の合金設計時に、Mn、Ti、N、Bの含有量は、下記関係式2を満たすように制御することが好ましい。下記関係式2のより好ましい範囲は10.0以上、さらに好ましい範囲は12.0以上である。
[関係式2]

Figure 0006806905
Further, when designing an alloy of a steel material having the above component range, it is preferable to control the contents of Mn, Ti, N, and B so as to satisfy the following relational expression 2. The more preferable range of the following relational expression 2 is 10.0 or more, and the more preferable range is 12.0 or more.
[Relational expression 2]
Figure 0006806905

本発明において、マンガンは、硬化能を高めることで、冷却速度が比較的低い場合でも、ベイニティックフェライトが生成し易くする。そして、チタンは、窒素と結合して窒化物を形成し、ホウ素が鋼中に十分に固溶されるようにすることにより、フェライトの生成を抑制し、ベイニティックフェライトが生成し易くする。本発明の発明者らは、上記の点に着目して研究及び実験を重ねた結果、上記マンガン、チタン、ホウ素、及び窒素の含有量が上記関係式2を満たすと、優れた強度と衝撃靭性を有するベイニティックフェライト組織の線材が得られることを確認した。 In the present invention, manganese enhances the curability to facilitate the formation of bainitic ferrite even when the cooling rate is relatively low. Then, titanium combines with nitrogen to form a nitride so that boron is sufficiently dissolved in the steel, thereby suppressing the formation of ferrite and facilitating the formation of bainitic ferrite. As a result of repeated studies and experiments focusing on the above points, the inventors of the present invention have excellent strength and impact toughness when the contents of manganese, titanium, boron, and nitrogen satisfy the above relational expression 2. It was confirmed that a wire rod having a bainitic ferrite structure was obtained.

以下、本発明の衝撃靭性に優れた高強度線材の微細組織について詳細に説明する。 Hereinafter, the fine structure of the high-strength wire rod having excellent impact toughness of the present invention will be described in detail.

本発明の線材は、その微細組織として、3面積%以下(0面積%を含む)の島状マルテンサイト(MA)、2面積%以下(0面積%を含む)の初析フェライト、及び95面積%以上(100面積%を含む)のベイニティックフェライトを含むことができる。すなわち、本発明の線材は、ベイニティックフェライトを主組織とし、第2相として島状マルテンサイト(MA)と初析フェライトを含むことができるが、これらの面積率はそれぞれ3%及び2%以下に限定される。ベイナイトは、炭素の含有量や形態(morphology)に応じて様々な用語で呼ばれるが、通常、中炭素範囲(約0.2〜0.45重量%)以上では上部/下部ベイナイト(upper/lower bainite)と呼ばれ、0.2%以下の低炭素範囲では温度領域に応じてベイニティック(bainitic)フェライト、針状(acicular)フェライト、グラニュラー(granular)フェライトなどと呼ばれる。本発明の線材の場合、これらのうちベイニティックフェライト組織を有している。 The wire rod of the present invention has island-shaped martensite (MA) of 3 area% or less (including 0 area%), proeutectoid ferrite of 2 area% or less (including 0 area%), and 95 area as its fine structure. % Or more (including 100 area%) of bainitic ferrite can be included. That is, the wire rod of the present invention has bainitic ferrite as the main structure and can contain island-like martensite (MA) and proeutectoid ferrite as the second phase, but the area ratios of these are 3% and 2%, respectively. Limited to: Bainite is referred to by various terms depending on the carbon content and morphology, but usually above the medium carbon range (about 0.2 to 0.45% by weight), upper / lower bainite (upper / lower bainite). ), And in the low carbon range of 0.2% or less, it is called bainitic ferrite, acicular ferrite, granular ferrite, or the like, depending on the temperature range. The wire rod of the present invention has a bainitic ferrite structure among these.

本発明の線材では、上記のようにベイニティックフェライトを主組織とすることにより、優れた強度と衝撃靭性をともに達成できる。ベイニティックフェライトではなく、通常のフェライトが主組織である場合には、衝撃靭性の観点では有利なことがあるが、強度の低下を防ぐことができないため好ましくない。 In the wire rod of the present invention, excellent strength and impact toughness can be achieved by using bainitic ferrite as the main structure as described above. When ordinary ferrite is the main structure instead of bainitic ferrite, it may be advantageous from the viewpoint of impact toughness, but it is not preferable because it cannot prevent a decrease in strength.

島状マルテンサイトの面積分率は高いほど、線材の強度の観点では有利であることがあるが、衝撃靭性を損なうことがある。これを考慮すると、島状マルテンサイトの面積率はできる限り低く管理することが好ましく、上述のように、本発明では3%以下に管理する。 The higher the surface integral of the island-shaped martensite, the more advantageous it is in terms of the strength of the wire, but it may impair the impact toughness. Considering this, it is preferable to control the area ratio of island-shaped martensite as low as possible, and as described above, it is controlled to 3% or less in the present invention.

初析フェライトは、主に旧オーステナイト結晶粒界に沿って形成されて衝撃靭性を大きく低下させる。したがって、初析フェライトの面積率も、できる限り低く管理することが好ましく、上述のように、本発明では2%以下に管理する。 The proeutectoid ferrite is formed mainly along the grain boundaries of the former austenite and greatly reduces the impact toughness. Therefore, it is preferable to control the area ratio of proeutectoid ferrite as low as possible, and as described above, it is controlled to 2% or less in the present invention.

一例によると、島状マルテンサイトの結晶粒度は5μm以下(0μmを除く)である。結晶粒度が5μmを超えると、ベイニティックフェライト域との接点が大きくなって衝撃靭性を悪くすることがある。ここで、結晶粒度とは、線材の一断面を観察して検出した粒子の円相当直径(equivalent circular diameter)を意味している。 According to one example, the crystal grain size of island-shaped martensite is 5 μm or less (excluding 0 μm). If the crystal grain size exceeds 5 μm, the contact point with the bainitic ferrite region may become large and the impact toughness may deteriorate. Here, the crystal grain size means the equivalent circular diameter of the particles detected by observing one cross section of the wire rod.

以上で説明した本発明の高強度線材は、種々の方法で製造することができ、その製造方法は特に制限されない。但し、好ましい一例として、以下のような方法により製造することができる。 The high-strength wire rod of the present invention described above can be produced by various methods, and the production method is not particularly limited. However, as a preferable example, it can be produced by the following method.

以下、本発明の他の側面による衝撃靭性に優れた高強度線材の製造方法について詳細に説明する。 Hereinafter, a method for producing a high-strength wire rod having excellent impact toughness according to another aspect of the present invention will be described in detail.

まず、上述した成分系を有する鋼材を設けた後、これを再加熱する。ここで、上記鋼材の形態は特に限定されないが、一般に、ブルーム(bloom)やビレット(billet)の形である。 First, a steel material having the above-mentioned component system is provided, and then this is reheated. Here, the form of the steel material is not particularly limited, but is generally in the form of bloom or billet.

このとき、再加熱温度は950〜1050℃の範囲にするのが好ましい。これは、比較的低い温度で鋼材を再加熱することで、結晶粒粗大化を防止するためである。 At this time, the reheating temperature is preferably in the range of 950 to 1050 ° C. This is to prevent coarsening of crystal grains by reheating the steel material at a relatively low temperature.

次に、再加熱された鋼材を仕上げ熱間圧延して線材を得る。
このとき、仕上げ熱間圧延温度は750〜850℃の範囲とするのが好ましい。これは、十分な低温圧延を介してオーステナイト結晶粒を微細化させ、相変態後に、最終的に微細なベイナイト組織を得ることで、衝撃靭性を向上させるためである。
Next, the reheated steel material is finished and hot-rolled to obtain a wire rod.
At this time, the finishing hot rolling temperature is preferably in the range of 750 to 850 ° C. This is because the austenite crystal grains are refined through sufficient low-temperature rolling, and after the phase transformation, a fine bainite structure is finally obtained to improve the impact toughness.

次に、線材をBs℃から(Bs+50)℃まで10〜20℃/秒の速度で1次冷却する。ここで、Bsは、連続冷却曲線上においてベイナイト相変態が始まる温度であって、本発明では、ベイナイト相変態寸前まで比較的速い速度で線材を冷却することにより、オーステナイト結晶粒界に沿って初析フェライトが形成されるのを積極的に抑制している。
本発明において、Bsは600〜650℃の温度範囲であるのが好ましい。
Next, the wire rod is first cooled from Bs ° C. to (Bs + 50) ° C. at a rate of 10 to 20 ° C./sec. Here, Bs is the temperature at which the bainite phase transformation starts on the continuous cooling curve, and in the present invention, by cooling the wire rod at a relatively high speed until just before the bainite phase transformation, it is the first time along the austenite grain boundaries. It positively suppresses the formation of bainite.
In the present invention, Bs is preferably in the temperature range of 600 to 650 ° C.

次に、1次冷却された線材を、(Bf−50)℃からBf℃まで2〜5℃/秒の速度で2次冷却してから空冷する。ここで、Bfは、連続冷却曲線上においてベイナイト相変態が終了する温度である。2次冷却終了温度がBf℃を超えると、十分な量のベイニティックフェライト組織を確保するのが難しくなり、Bf−50℃未満であると、鋼材が十分に冷えて取り扱いは容易であるが、生産性の低下を招くことがある。 Next, the primary cooled wire rod is secondarily cooled from (Bf-50) ° C. to Bf ° C. at a rate of 2 to 5 ° C./sec and then air-cooled. Here, Bf is the temperature at which the bainite phase transformation ends on the continuous cooling curve. If the secondary cooling end temperature exceeds Bf ° C, it becomes difficult to secure a sufficient amount of bainitic ferrite structure, and if it is less than Bf-50 ° C, the steel material is sufficiently cooled and easy to handle. , May lead to a decrease in productivity.

また、2次冷却速度が2℃/秒未満であると、初析フェライトが多く形成する可能性があり、5℃/秒を超えると、鋼中にマルテンサイトが形成されて、強度及び衝撃靭性を損なうことがある。 Further, if the secondary cooling rate is less than 2 ° C./sec, a large amount of proeutectoid ferrite may be formed, and if it exceeds 5 ° C./sec, martensite is formed in the steel to provide strength and impact toughness. May be damaged.

以下、実施例を通じて本発明をより詳細に説明する。しかし、かかる実施例の記載は、本発明の実施を例示するためのものであって、かかる実施例の記載によって本発明が制限されるものではない。本発明の権利範囲は、特許請求の範囲に記載された事項とそれから合理的に類推される事項によって決定されるためである。 Hereinafter, the present invention will be described in more detail through examples. However, the description of such examples is for exemplifying the practice of the present invention, and the description of such examples does not limit the present invention. This is because the scope of rights of the present invention is determined by the matters stated in the claims and the matters reasonably inferred from them.

下記表1の合金組成を有する溶鋼を鋳造し、これを1000℃で再加熱した後、直径15mmで線材圧延(仕上げ熱間圧延温度:750℃)した。その後、下記表2の条件で1次及び2次冷却し、Bf温度以下である350℃以下の温度から空冷して線材を製造した。一方、ベイナイト相変態終了温度であるBfは、膨張計(Dilatometer)を用いて測定したところ、化学組成に応じて多少異っているが、おおよそ350〜400℃の範囲であった。 A molten steel having the alloy composition shown in Table 1 below was cast, reheated at 1000 ° C., and then rolled with a wire rod having a diameter of 15 mm (finishing hot rolling temperature: 750 ° C.). Then, the wire rod was manufactured by primary and secondary cooling under the conditions shown in Table 2 below and air-cooled from a temperature of 350 ° C. or lower, which is lower than the Bf temperature. On the other hand, Bf, which is the end temperature of the bainite phase transformation, was measured using a dilatometer and found to be in the range of about 350 to 400 ° C., although it was slightly different depending on the chemical composition.

このようにして製造された線材について、微細組織の分析結果と、引張強度及び衝撃靭性の測定結果を表2に示した。上記線材の微細組織のうち島状マルテンサイト(MA)の面積分率及び結晶粒度は画像分析器(Image Analyzer)を用いて測定した。 Table 2 shows the analysis results of the microstructure and the measurement results of tensile strength and impact toughness of the wire rod produced in this manner. The area fraction and crystal grain size of island-shaped martensite (MA) among the fine structures of the wire rod were measured using an image analyzer.

常温引張試験は、クロスヘッド速度(crosshead speed)を降伏点までは0.9mm/分、それ以降は、6mm/分の速度で行って測定した。また、衝撃試験は、試験片に衝撃を与えるストライカー(striker)のエッジ(edge)部の曲率が2mmであり、試験容量が500Jである衝撃試験機を用いることで常温で行って測定した。 In the normal temperature tensile test, the crosshead speed was measured at a speed of 0.9 mm / min up to the yield point and 6 mm / min thereafter. Further, the impact test was carried out at room temperature by using an impact tester having a curvature of the edge portion of the striker that gives an impact to the test piece of 2 mm and a test capacity of 500 J.

Figure 0006806905
Figure 0006806905

Figure 0006806905
Figure 0006806905

上記表1及び2に示すように、本発明で提案する合金組成及び工程条件をすべて満たす試験片1から5では、引張強度が600MPa以上であるだけでなく、衝撃靭性が200J以上と非常に優れた結果を示した。 As shown in Tables 1 and 2 above, the test pieces 1 to 5 satisfying all of the alloy compositions and process conditions proposed in the present invention not only have a tensile strength of 600 MPa or more, but also have an extremely excellent impact toughness of 200 J or more. The results are shown.

これに対し、試験片6では、ニッケルの含有量が本発明の提案範囲に達していないため、MA相が多く形成され、衝撃靭性が劣っていた。
試験片7では、炭素の含有量が本発明の提案範囲を超えたため、引張強度には優れるが、衝撃靭性は劣っていた。これは、炭素がMA相に固溶されて、安定したMA相が形成されたためである。
試験片8では、ケイ素の含有量が本発明の提案範囲を超えた場合であって、ケイ素も、炭素と同様に、その添加量が多くなるにつれて、基地における固溶量が増加し、結果として固溶強化の効果を示すようになり、MA相も増加させるため、引張強度には優れるが、衝撃靭性は劣っていた。
試験片9では、マンガンとホウ素の含有量が本発明の提案範囲に達していないため、鋼材の硬化能が低く、その結果、本発明が提案する冷却条件を満たしても、フェライト及びベイニティックフェライト組織が混在して引張強度が劣っていた。
試験片10では、合金組成が本発明の提案範囲を満たしているが、成分関係式(関係式1)、及び製造工程における2次冷却速度が本発明の提案範囲を超えたことから、島状マルテンサイト及びマルテンサイトが形成されて引張強度には優れるものの、衝撃靭性が劣っていた。
試験片11では、合金組成が本発明の提案範囲を満たしているが、2次冷却速度が本発明の提案範囲に達していないため、フェライトが形成されて引張強度が劣っていた。
試験片12では、チタンの含有量が本発明の提案範囲に達していない場合であって、溶質(solute)のホウ素の量が減少するため、硬化能が減少し、冷却速度も低いと、初析フェライトの析出量が多くなり、引張強度が低下した。
試験片13及び14はそれぞれ、マンガン及びニッケルの含有量が本発明の提案範囲を超えた場合であって、硬化能も比較的大きくなり過ぎたため、本発明が提示した冷却速度で冷却してもマルテンサイトが生成して強度が増加したのに対し、衝撃靭性が劣っていた。
On the other hand, in the test piece 6, since the nickel content did not reach the range proposed by the present invention, many MA phases were formed and the impact toughness was inferior.
In the test piece 7, since the carbon content exceeded the range proposed by the present invention, the tensile strength was excellent, but the impact toughness was inferior. This is because carbon was dissolved in the MA phase to form a stable MA phase.
In the test piece 8, when the content of silicon exceeds the range proposed in the present invention, the amount of silicon dissolved in the matrix increases as the amount of silicon added increases, as a result. Since the effect of solid solution strengthening was exhibited and the MA phase was also increased, the tensile strength was excellent, but the impact toughness was inferior.
In the test piece 9, since the contents of manganese and boron do not reach the range proposed by the present invention, the hardening ability of the steel material is low, and as a result, ferrite and vanitic are obtained even if the cooling conditions proposed by the present invention are satisfied. Ferrite structure was mixed and the tensile strength was inferior.
In the test piece 10, the alloy composition satisfies the proposed range of the present invention, but the component relational expression (relational formula 1) and the secondary cooling rate in the manufacturing process exceed the proposed range of the present invention. Martensite and martensite were formed and the tensile strength was excellent, but the impact toughness was inferior.
In the test piece 11, the alloy composition satisfied the proposed range of the present invention, but the secondary cooling rate did not reach the proposed range of the present invention, so that ferrite was formed and the tensile strength was inferior.
In the test piece 12, when the titanium content does not reach the proposed range of the present invention and the amount of boron in the solute decreases, the curing ability decreases and the cooling rate is low. The amount of precipitated ferrite increased and the tensile strength decreased.
The test pieces 13 and 14, respectively, were in the case where the contents of manganese and nickel exceeded the proposed range of the present invention, and the curability was relatively too large. Martensite was formed and the strength was increased, but the impact toughness was inferior.

以上、本発明の実施形態について詳細に説明したが、本発明の権利範囲はこれに限定されず、特許請求の範囲に記載された本発明の技術的思想から外れない範囲内で多様な修正及び変形が可能であるということは、当技術分野の通常の知識を有する者には明らかである。

Although the embodiments of the present invention have been described in detail above, the scope of rights of the present invention is not limited to this, and various modifications and modifications and modifications are made within the scope of the technical idea of the present invention described in the claims. It is clear to those with ordinary knowledge in the art that the transformation is possible.

Claims (8)

重量%で、C:0.05%未満(0%を除く)、Si:0.05%以下(0%を除く)、Mn:3.0〜4.0%、P:0.020%以下、S:0.020%以下、Ni:1.0〜3.0%、B:0.0010〜0.0030%、Ti:0.010〜0.030%、N:0.0030%未満、Al:0.010〜0.050%、残部がFeとその他の不可避不純物でなる組成で、
その微細組織が、3面積%以下(0面積%を含む)の島状マルテンサイト(MA)、2面積%以下(0面積%を含む)の初析フェライト、及び95面積%以上(100面積%を含む)のベイニティックフェライトであることを特徴とする高強度線材。
By weight%, C: less than 0.05% (excluding 0%), Si: 0.05% or less (excluding 0%), Mn: 3.0 to 4.0%, P: 0.020% or less , S: 0.020% or less, Ni: 1.0 to 3.0%, B: 0.0010 to 0.0030%, Ti: 0.010 to 0.030%, N: less than 0.0030%, Al: 0.010 to 0.050%, with the balance consisting of Fe and other unavoidable impurities.
Its microstructure is 3 area% or less (including 0 area%) island martensite (MA), 2 area% or less (including 0 area%) proeutectoid ferrite, and 95 area% or more (100 area%). A high-strength wire rod characterized by being a bainitic ferrite (including).
下記関係式1を満たすことを特徴とする請求項1に記載の高強度線材。
[関係式1]
Figure 0006806905
The high-strength wire rod according to claim 1, wherein the high-strength wire rod satisfies the following relational expression 1.
[Relationship formula 1]
Figure 0006806905
下記関係式2を満たすことを特徴とする請求項1に記載の高強度線材。
[関係式2]
Figure 0006806905
The high-strength wire rod according to claim 1, wherein the high-strength wire rod satisfies the following relational expression 2.
[Relational expression 2]
Figure 0006806905
前記島状マルテンサイトの結晶粒度は、5μm以下(0μmを除く)であることを特徴とする請求項1に記載の高強度線材。 The high-strength wire rod according to claim 1, wherein the island-shaped martensite has a crystal grain size of 5 μm or less (excluding 0 μm). 前記Niの含有量は、1.2〜2.8重量%であることを特徴とする請求項1に記載の高強度線材。 The high-strength wire rod according to claim 1, wherein the Ni content is 1.2 to 2.8% by weight. 請求項1に記載の線材の製造方法であって、
重量%で、C:0.05%未満(0%を除く)、Si:0.05%以下(0%を除く)、Mn:3.0〜4.0%、P:0.020%以下、S:0.020%以下、Ni:1.0〜3.0%、B:0.0010〜0.0030%、Ti:0.010〜0.030%、N:0.0030%未満、Al:0.010〜0.050%、残部がFeとその他の不可避不純物でなる組成の鋼材を再加熱する段階と、
前記再加熱された鋼材を熱間圧延して線材を得る段階と、
前記線材をBs℃から(Bs+50)℃まで10〜20℃/秒の速度で1次冷却する段階と、
前記1次冷却された線材を(Bf−50)℃からBf℃まで2〜5℃/秒の速度で2次冷却する段階と、
前記2次冷却された線材を空冷する段階と、
を行うことを特徴とする高強度線材の製造方法。
(但し、Bsは600〜650℃であり、Bfは350〜400℃である。)
The method for manufacturing a wire rod according to claim 1.
By weight%, C: less than 0.05% (excluding 0%), Si: 0.05% or less (excluding 0%), Mn: 3.0 to 4.0%, P: 0.020% or less , S: 0.020% or less, Ni: 1.0 to 3.0%, B: 0.0010 to 0.0030%, Ti: 0.010 to 0.030%, N: less than 0.0030%, Al: 0.010 to 0.050%, the stage of reheating the steel material with the composition of Fe and other unavoidable impurities as the balance,
At the stage of hot rolling the reheated steel material to obtain a wire rod,
A step of primary cooling the wire from Bs ° C. to (Bs + 50) ° C. at a rate of 10 to 20 ° C./sec,
A step of secondary cooling of the primary cooled wire rod from (Bf-50) ° C. to Bf ° C. at a rate of 2 to 5 ° C./sec.
The stage of air-cooling the secondary cooled wire and
A method for manufacturing a high-strength wire rod, which is characterized by the above.
(However, Bs is 600 to 650 ° C. and Bf is 350 to 400 ° C.).
前記鋼材の再加熱時における再加熱温度は、950〜1050℃であることを特徴とする請求項6に記載の高強度線材の製造方法。 The method for producing a high-strength wire rod according to claim 6, wherein the reheating temperature at the time of reheating the steel material is 950 to 1050 ° C. 前記熱間圧延時における仕上げ熱間圧延温度は、750〜850℃であることを特徴とする請求項6に記載の高強度線材の製造方法。 The method for producing a high-strength wire rod according to claim 6, wherein the finishing hot rolling temperature at the time of hot rolling is 750 to 850 ° C.
JP2019531080A 2016-12-13 2017-11-23 High-strength wire with excellent impact toughness and its manufacturing method Active JP6806905B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2016-0169308 2016-12-13
KR1020160169308A KR101879068B1 (en) 2016-12-13 2016-12-13 High strength wire rod having excellent impact toughness and method for manufacturing the same
PCT/KR2017/013391 WO2018110850A1 (en) 2016-12-13 2017-11-23 High-strength wire rod having superior impact toughness and manufacturing method therefor

Publications (2)

Publication Number Publication Date
JP2020509169A JP2020509169A (en) 2020-03-26
JP6806905B2 true JP6806905B2 (en) 2021-01-06

Family

ID=62558832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019531080A Active JP6806905B2 (en) 2016-12-13 2017-11-23 High-strength wire with excellent impact toughness and its manufacturing method

Country Status (6)

Country Link
US (1) US20200071792A1 (en)
EP (1) EP3556885A4 (en)
JP (1) JP6806905B2 (en)
KR (1) KR101879068B1 (en)
CN (1) CN110062813B (en)
WO (1) WO2018110850A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102218441B1 (en) * 2019-10-08 2021-02-19 주식회사 포스코 High strength wire rod having non-magnetic property and method for manufacturing thereof
KR102321317B1 (en) * 2019-10-16 2021-11-02 주식회사 포스코 Wire rod for welding rod nd method for manufacturing thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61124524A (en) * 1984-11-22 1986-06-12 Sumitomo Metal Ind Ltd Manufacture of bar steel for steel reinforced concrete
JPS62287012A (en) * 1986-06-03 1987-12-12 Kobe Steel Ltd Production of low-temperature reinforcing bar having excellent weldability
KR100891866B1 (en) * 2002-12-20 2009-04-08 주식회사 포스코 Method of manufacturing high Si added medium carbon wire rod
JP4354754B2 (en) * 2003-08-06 2009-10-28 株式会社神戸製鋼所 High-tensile steel plate with excellent base metal toughness and HAZ toughness
JP5176271B2 (en) * 2005-03-22 2013-04-03 新日鐵住金株式会社 Method for producing high-strength steel sheet for line pipe with tensile strength of 760 MPa or higher with suppressed increase in yield strength after heating by coating treatment, and method for producing high-strength steel pipe for line pipe using the same
JP5034290B2 (en) * 2006-03-28 2012-09-26 Jfeスチール株式会社 Low yield ratio high strength thick steel plate and method for producing the same
JP5776398B2 (en) * 2011-02-24 2015-09-09 Jfeスチール株式会社 Low yield ratio high strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same
MX2013011750A (en) * 2011-04-13 2013-11-04 Nippon Steel & Sumitomo Metal Corp High-strength cold-rolled steel sheet with excellent local formability, and manufacturing method therefor.
KR101638707B1 (en) * 2011-07-20 2016-07-11 제이에프이 스틸 가부시키가이샤 Low yield ratio and high-strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same
CN103060678B (en) * 2012-12-25 2016-04-27 钢铁研究总院 A kind of warm-working nanometer austenite strengthens plasticising steel and preparation method thereof
KR101714903B1 (en) * 2014-11-03 2017-03-10 주식회사 포스코 Steel wire rod having high strength and impact toughness, and method for manufacturing thereof
WO2016072679A1 (en) * 2014-11-03 2016-05-12 주식회사 포스코 Wire rod having enhanced strength and impact toughness and preparation method for same

Also Published As

Publication number Publication date
JP2020509169A (en) 2020-03-26
KR20180067894A (en) 2018-06-21
CN110062813A (en) 2019-07-26
KR101879068B1 (en) 2018-07-16
EP3556885A1 (en) 2019-10-23
EP3556885A4 (en) 2019-10-30
WO2018110850A1 (en) 2018-06-21
CN110062813B (en) 2021-05-04
US20200071792A1 (en) 2020-03-05

Similar Documents

Publication Publication Date Title
JP4966316B2 (en) Steel wire rod excellent in cold workability and hardenability, and manufacturing method thereof
JP6872616B2 (en) Steel materials for pressure vessels with excellent hydrogen-induced cracking resistance and their manufacturing methods
JP7018510B2 (en) Wear-resistant steel with excellent hardness and impact toughness and its manufacturing method
JP4767590B2 (en) Production method of low yield ratio high strength steel and low yield ratio high strength steel
JP2022502569A (en) Wear-resistant steel with excellent hardness and impact toughness and its manufacturing method
JP7368461B2 (en) Wear-resistant steel with excellent hardness and impact toughness and its manufacturing method
JP6754494B2 (en) High-strength high-manganese steel with excellent low-temperature toughness and its manufacturing method
JP2012122111A (en) Method for producing tmcp and tempering process type high-strength thick steel plate having both excellent productivity and weldability, and excellent in drop-weight characteristic after pwht
JP2022510214A (en) Ultra-high-strength steel with excellent cold workability and SSC resistance and its manufacturing method
JP2021507107A (en) High-strength hot-rolled steel sheet with excellent bendability and low-temperature toughness and its manufacturing method
JP6684353B2 (en) Thick plate steel excellent in low temperature toughness and hydrogen induced cracking resistance, and method of manufacturing the same
JP6806905B2 (en) High-strength wire with excellent impact toughness and its manufacturing method
JP2017106107A (en) Non-heat-treated steel sheet having high yield strength in which degradation of low-temperature toughness of weld heat-affected zone and hardness of weld heat-affected zone are suppressed
JP6488008B2 (en) Wire material excellent in strength and impact toughness and method for producing the same
JP7018509B2 (en) Wear-resistant steel with excellent hardness and impact toughness and its manufacturing method
JP4309561B2 (en) High-tensile steel plate with excellent high-temperature strength and method for producing the same
JP2022510935A (en) High-strength steel plate with excellent low-temperature fracture toughness and elongation, and its manufacturing method
JP6921198B2 (en) High-strength hot-rolled steel sheet with excellent weldability and ductility and its manufacturing method
KR101736590B1 (en) Non heat treated wire rod having excellent high strength and method for manafacturing thereof
KR101736602B1 (en) Wire rod having excellent impact toughness and method for manafacturing the same
KR101676115B1 (en) Wire rod having high strength and impact toughness, and method for manufacturing thereof
JP6845936B2 (en) Wire rod with excellent strength and ductility and its manufacturing method
JP6475831B2 (en) Wire rod excellent in impact toughness and manufacturing method thereof
KR101696097B1 (en) Non heat treated wire rod having excellent high strength and impact toughness and method for manafacturing the same
KR101736601B1 (en) Wire rod having excellent impact toughness and method for manafacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201204

R150 Certificate of patent or registration of utility model

Ref document number: 6806905

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250