JP2017513505A5 - - Google Patents

Download PDF

Info

Publication number
JP2017513505A5
JP2017513505A5 JP2016564251A JP2016564251A JP2017513505A5 JP 2017513505 A5 JP2017513505 A5 JP 2017513505A5 JP 2016564251 A JP2016564251 A JP 2016564251A JP 2016564251 A JP2016564251 A JP 2016564251A JP 2017513505 A5 JP2017513505 A5 JP 2017513505A5
Authority
JP
Japan
Prior art keywords
bcl11a
nucleic acid
acid molecule
isolated nucleic
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016564251A
Other languages
English (en)
Other versions
JP2017513505A (ja
JP6514717B2 (ja
Filing date
Publication date
Application filed filed Critical
Priority claimed from PCT/US2015/027527 external-priority patent/WO2015164750A2/en
Publication of JP2017513505A publication Critical patent/JP2017513505A/ja
Publication of JP2017513505A5 publication Critical patent/JP2017513505A5/ja
Application granted granted Critical
Publication of JP6514717B2 publication Critical patent/JP6514717B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

1つの局面において、本明細書は、本明細書に記載の少なくとも1種類の合成BCL11AマイクロRNAを対象の胚性幹細胞、体性幹細胞、始原細胞、骨髄細胞、造血幹細胞または造血始原細胞において発現させる段階であって発現がエクスビボまたはインビトロまたはインビボである段階を含む、細胞によって発現されるBCL11Aレベルを低下させるための方法を提供する。1つの態様において、発現は、胚性幹細胞、体性幹細胞、始原細胞、骨髄細胞、造血幹細胞または造血始原細胞を、本明細書に記載の組成物の有効量、または少なくとも、本明細書に記載の単離された核酸分子の有効量と接触させ、それによって胎児型ヘモグロビンの発現が、細胞またはその子孫において、そのような接触の前の細胞に比して増加する段階を含む。いくつかの態様において、組成物は、SEQ ID NO:1〜10、13〜18、25〜44からなる群より選択されるヌクレオチド配列を含む少なくとも1種類の核酸分子または本明細書に記載の合成BCL11AマイクロRNAを含む、少なくとも1種類のベクターまたは細胞を含む。
図1は、開示される合成BCL11AマイクロRNAの2つの態様、すなわちBCL11A miR1およびBCL11A miR2オリゴヌクレオチドの略図である。オリゴヌクレオチド中のBCL11A標的指向性配列の相補的配列(太字で大文字のヌクレオチド塩基)によって、ステム/ループ構造が生じる。BCL11A標的指向性配列はBCL11Aセグメントである。続いて、ステム/ループ構造をmiR-223/miR-30バックグラウンド(マイクロRNAバックグラウンド)中にクローニングする。続いて、miRNA/shRNA構造全体を、導入遺伝子レポーター(Venus)を含むSINレンチウイルスベクターを含むSFFV/LCR/TETカセット中にクローニングする。 図2は、SFFVプロモーター、TETプロモーターおよびLCRプロモーターを有するレンチウイルスベクタープロウイルスの概略図である。 図3は、SFFV-LVがBCL11Aを効率的にノックダウンしてεγ-グロビン発現を誘導することを示している2本の棒グラフのパネルである。 図4は、LCR/TET-LVがBCL11Aを効率的にノックダウンしてεγ-グロビン発現を誘導することを描写している2本の棒グラフのパネルである。 図5は、形質導入されたCD34+ HSCがエクスビボで赤血球に分化してHbFを発現することを示している顕微鏡写真およびグラフのパネルである。 図6は、LCR-LVが形質導入されてNSGマウスに移植された、SCDを有する患者由来のCD34+ HSCを描写している散布図のパネルである。 図7は、リンパ系発生におけるBCL11Aの毒性に関する試験を示している顕微鏡写真およびグラフのパネルである。 pol IIIおよびpol II発現系におけるBCL11Aを標的とするshRNAのスクリーニングおよび評価を示している。shRNAカセットに埋め込まれた、それぞれRNAポリメラーゼIII(pol III、U6プロモーター、左側)およびRNAポリメラーゼII(pol II、SFFVプロモーター、右側)により駆動するshRNAおよびmiRNA(223)の概略図。いずれの発現カセットもレンチウイルスベクター中に人工的に導入した。さまざまな枠は、表記の通りのパッセンジャー鎖、ガイド鎖およびループ構造を表している。miRNA223スカフォールドは点線の枠で表わされている。BCL11Aを標的とする種々のshRNA配列をこれらの2種のバックボーンにおいて発現させて、ノックダウン効率に関して評価した。 pol IIIおよびpol II発現系におけるBCL11Aを標的とするshRNAのスクリーニングおよび評価を示している。pol IIIベースのレンチウイルスベクターを用いたノックダウン効率に関する、BCL11A mRNAにおけるさまざまな領域を標的とする複数のshRNA配列のハイスループットスクリーニング(表記の通りの、XL/L共有アイソフォーム配列、XLに特異なコード配列およびXLアイソフォームの3'-UTR)。qPCRによるε-γの誘導およびFACSによるmCherryレポーターの誘導(レポーター細胞株におけるε-γ誘導の代用として)の両方を、BCL11Aノックダウンに関する機能的読み取りとして用いた。非標的指向性対照を基準とするε-γ mRNAの規格化された発現をy軸にプロットし、非形質導入対照を基準とするmCherry発現の平均蛍光強度(MFI)をx軸にプロットした。さらに試験した11種のshRNAには丸印を付している。 pol IIIおよびpol II発現系におけるBCL11Aを標的とするshRNAのスクリーニングおよび評価を示している。図8Cおよび8Dは、pol IIIベースおよびpol IIベースの系における選択されたshRNAのノックダウン効率の比較を示す。MEL細胞に対して、表記のshRNAを発現させるためにLKOベクターまたはLEGOベクターによる形質導入を行い、形質導入細胞をピューロマイシンの存在下で選択するか(LKO)、またはVenus発現に関して選別した(LEGO)。miR1 shRNAは、Sankaran et al.()によって以前に報告されている。BCL11Aタンパク質レベルは、β-アクチンを対照とするイムノブロットによって示されている(図8C)。XLおよびLは、BCL11Aタンパク質の各アイソフォームの位置を示している。(図8D)バンド強度はImageJソフトウェアを用いて分析した。 詳細は図8Cの説明に記載の通り。 pol IIIおよびpol II発現系におけるBCL11Aを標的とするshRNAのスクリーニングおよび評価を示している。非標的指向性対照と比較したε-γの規格化された発現の誘導倍数値を、qPCRによって測定した。非標的指向性shRNAが形質導入されたMEL細胞を用い、発現を1に設定した。データは、三重反復試験として実施した3回の独立した実験のうち代表的な実験による平均±SDを表している。*P<0.05、**P<0.01、***P<0.001。 pol III転写物とpol II転写物とのプロセシングの差異を明示している、低分子RNA配列解析から収集したデータである。miR1またはC4 shRNAのいずれかを発現する、形質導入された、選別された、またはピューロマイシンにより選択されたMEL細胞から、全RNAを単離した。その結果得られたRNAを、続いてRNAディープシークエンシングに供した。(図9A)pol III(LKO)(SEQ ID NO:103)から転写された、プロセシングされた最終的なガイド鎖およびパッセンジャー鎖の配列をx軸上に表示し、各鎖の100万の総リード当たりの対応するリード数をy軸上にプロットしている。 pol III転写物とpol II転写物とのプロセシングの差異を明示している、低分子RNA配列解析から収集したデータである。miR1またはC4 shRNAのいずれかを発現する、形質導入された、選別された、またはピューロマイシンにより選択されたMEL細胞から、全RNAを単離した。その結果得られたRNAを、続いてRNAディープシークエンシングに供した。(図9B)pol II(LEGO)(SEQ ID NO:104)から転写された、プロセシングされた最終的なガイド鎖およびパッセンジャー鎖の配列をx軸上に表示し、各鎖の100万の総リード当たりの対応するリード数をy軸上にプロットしている。 pol III転写物とpol II転写物とのプロセシングの差異を明示している、低分子RNA配列解析から収集したデータである。(図9C)pol IIIプロモーターから転写された、miR1のプロセシングされた変異体ガイド鎖の配列をy軸上にプロットし、総リード数をx軸上にプロットしている。 pol III転写物とpol II転写物とのプロセシングの差異を明示している、低分子RNA配列解析から収集したデータである。(図9D)pol IIプロモーターから転写された、miR1のプロセシングされた変異体ガイド鎖の配列をy軸上にプロットし、総リード数をx軸上にプロットしている。 pol III転写物とpol II転写物とのプロセシングの差異を明示している、低分子RNA配列解析から収集したデータである。(図9E)pol IIIプロモーターから転写された、C4のプロセシングされた変異体ガイド鎖種の配列をy軸上にプロットし、総リード数をx軸にプロットしている。 pol III転写物とpol II転写物とのプロセシングの差異を明示している、低分子RNA配列解析から収集したデータである。(図9F)pol IIプロモーターから転写された、C4のプロセシングされた変異体ガイド鎖種の配列をy軸上にプロットし、総リード数をx軸にプロットしている。 shRNA配列の改変が、ノックダウンの増加およびガイド鎖とパッセンジャー鎖との比の向上をもたらすことを示している。4つの5'塩基が欠失し、GCGCが3'末端に付加されて、miR1 G5およびC4G5と名づけられた改変shRNAが生じるように、mIR1およびC4 shRNAを改変した。 shRNA配列の改変が、ノックダウンの増加およびガイド鎖とパッセンジャー鎖との比の向上をもたらすことを示している。改変shRNA配列および親shRNA配列のノックダウン効率の比較。MEL細胞に対して、pol IIプロモーターを介して表記のshRNAを発現させるためにLEGOによる形質導入を行い、形質導入細胞をVenus発現に関して選別した。BCL11Aタンパク質レベルを、β-アクチンをローディング対照とするイムノブロットによって測定した。XLおよびLは、BCL11Aタンパク質のこれらのアイソフォームの位置を指し示している。 shRNA配列の改変が、ノックダウンの増加およびガイド鎖とパッセンジャー鎖との比の向上をもたらすことを示している。イムノブロットのバンド強度を、ImageJソフトウェアを用いて分析した。 shRNA配列の改変が、ノックダウンの増加およびガイド鎖とパッセンジャー鎖との比の向上をもたらすことを示している。qPCRによって測定した、改変/非改変shRNA配列によるε-γの非標的指向性対照と比較した規格化された発現の誘導倍数値。データは、同様の結果を示す三重反復試験として実施した3回の独立した実験のうち代表的な実験による平均±SDを表している。*P<0.05、**P<0.01。 図11A〜11Cは、4塩基対改変shRNAのRNA配列分析により、忠実度の高いプロセシングが示されたことを示している。図11A:改変miR1 shRNAおよび改変C4 shRNAを発現する、形質導入されて選別されたMELから、すべての低分子RNA(SEQ ID NO:141)を単離して、シークエンシングを行った。pol IIプロモーターから転写された改変miR1(miR1-G5およびC4G5)のプロセシングされたガイド鎖種の頻度分布をx軸上にプロットし、100万の総リード当たりのリードの割合をy軸にプロットしている。図11Bおよび11C:mIR1-G5およびC4-G5のプロセシングされた変異体ガイド鎖種の配列をy軸上に表示し、リードの頻度をx軸上に示している。 pLKOベクターを用いた、BCL11Aを標的とするshRNAスクリーニングによる候補。 PLKOにおけるガイド鎖配列の組成および分布。pLKO構築物を用いる場合には常に5'末端にシフトがあり、これは3'末端でのTリッチ配列の伸長に起因する可能性がある。付加されたTはpol III終止配列の一部である。成熟shRNA配列におけるこのシフトは、ダイサー媒介性プロセシングの間には3'カウントルール(3' counting rule)が優位であることを指し示しており、これはshRNAの切断が3'末端から21ntの箇所で開始されることを意味する。これは5'末端に3塩基対または4塩基対のシフトをもたらし、標的認識のための、同じくシフトしたシード領域ももたらす(ガイド鎖の塩基2〜7)。 LEGOにおけるガイド鎖配列の組成および分布。低分子RNAのディープシークエンシング分析により、pol III転写物とpol II転写物とのプロセシングの差異が明示されている。lego構築物を用いた場合には5'末端にシフトがなく、ガイド鎖はダイサーによって忠実にプロセシングされ、その結果、予想される産物が生じる。このため、pol III駆動性構築物とpol II駆動性構築物との間では最終的なガイド鎖が異なる。 pLKOベクターで産生される、成熟ガイド鎖を模倣する新たなshRNAのデザイン。shRNAをすべて、5'側の4塩基が欠失してGCGCが3'末端に付加されるように改変することで、miR1G5、E3G5、B5G5、D8G5、B11G5、50D12G5、50B11G5、50A5G5、50C4G5と名づけられた改変shRNAを生じさせた。このシフトを組み入れた場合には、BCL11Aノックダウンおよびε-γ誘導に関してE3G5、D8G5およびC4G5の有意な改善が観察された。「xxxx」は、非改変miR1、E3、B5、D8、B11、50D12(D12とも称される)、50B11、50A5(A5とも称される)および50C4(C4とも称される)からの4塩基の除去をもたらす4塩基対(bp)フレームシフトの位置を表している。 改変LEGOにおけるガイド鎖配列の組成および分布。改変shRNAのRNAディープシークエンシング分析により、4bpシフトを伴う忠実度の高いプロセシングが示されており、このことは、シフトを導入することによって本発明者らがpLKO-ベクターの産物を完全に模倣しうることを指し示している。有効なshRNAのスクリーニングのためにpLKOベクターを用いたことから、この改変は、pol II駆動性バックボーンの中にshRNAカセットを移入した場合に、正確な成熟産物ガイド配列を模倣する。 改変されたガイド配列によるBCL11Aノックダウンの比較。改変shRNA配列および親shRNA配列のノックダウン効率の比較。BCL11A発現を示しているウエスタンブロット(XLアイソフォームおよびLアイソフォーム、上のパネル)。赤の丸印は、4bpシフトの導入によってBCL11Aノックダウンの改善が達成されたshRNAを指し示している。下のパネル:qPCRによる測定で、改変/非改変shRNA配列によるε-γの規格化された発現の誘導倍数値を、非標的指向性対照と比較した。 改変されたガイド配列によるmiR発現の比較。ノーザン分析を改変された構築物において行い、改変されていないもの、特にE3G5、D8G5およびC4G5を用いて比較したところ、ノックダウン効率およびε-y誘導の増大に一致して、ガイド鎖発現は高度であった(これはノックダウン効率の増大につながる)。 LEGOベクターによるBCL11Aノックダウン効率およびεγ誘導。pLKOpol IIIベースの系およびpLEGO pol IIベースの系における、選択されたshRNAのノックダウン効率の比較。MEL細胞に対して、pLKOベクターまたはpLEGOベクターのいずれかの中にある表記のshRNAによる形質導入を行い、形質導入細胞をピューロマイシンの存在下で選択するか(pLKO)、またはVenus発現に関して選別した(pLEGO)。BCL11Aタンパク質レベルは、β-アクチンを対照とするイムノブロットによって測定した。非標的指向性対照と比較した規格化されたε-γの誘導倍数値はqPCRによって測定している。非標的指向性shRNAが形質導入されたMEL細胞を陰性対照として用いた。フレームシフトはノックダウン効率およびεγ誘導の両方に対して強い効果を及ぼす。XLアイソフォームを標的とするshRNAのみでも、εγ誘導に対して強い影響を及ぼす。データは、それぞれ三重反復試験として実施した3回の独立した実験による平均±SDを表している。*P<0.05。 図18は、pol-IIIshRNAベクターおよびpol-IIマイクロRNA適合shRNAベクターにおけるプロセシングの差異を示している。 図19A〜19Dは、pol III発現系およびpol II発現系におけるBCL11Aを標的とするshRNAのスクリーニングおよび評価を示している。図19A:LKO-U6-BCL11A-shRNA(左側)およびLEGO-SFFV-BCL11A-shRNAmiR(右側)の略図。両方の発現カセットを、材料および方法の項に記載したように、レンチウイルスベクター中に設計した。ライトグレーの枠はセンス鎖を表している;白の枠はアンチセンス鎖を表している;ダークグレーの枠はループ構造を表しており、miRNA223スカフォールドは点線によって指し示されている。ヘアピン構造は下方に示されている。BCL11Aを標的とする種々のshRNA配列をこれらの2種のバックボーンにおいて発現させ、ノックダウン効率に関して評価した。図19B:pol IIIベースのレンチウイルスベクターを用いた、BCL11A mRNAを標的とする複数のshRNA配列のノックダウン効率に関するハイスループットスクリーニング。qRT-PCRによるHbb-y mRNAの誘導、およびFACSによるmCherryレポーターの誘導(レポーター細胞株におけるε-γ誘導に関する代用として)の両方を、BCL11Aノックダウンに関する機能的読み取り値として用いた。非標的指向性対照を基準とするHbb-y mRNAの規格化された発現をy軸にプロットし、非形質導入対照を基準とするmCherry発現(平均蛍光強度、MFIによる)の誘導倍数値をx軸にプロットしている。スクリーニングにより単離されたshRNAのうち成績の良い上位8種をさらに試験し、1から8までのラベルを付した。図19C:pol III(U6)ベースおよびpol II(SFFV)ベースの系における選択されたshRNAのノックダウン効率の比較。MEL細胞に対して、表記のshRNAを発現させるためにU6-ベクター(上のパネル)またはSFFV-ベクター(下のパネル)による形質導入を行い、形質導入細胞をピューロマイシンの存在下で選択するか(pol III)、またはVenus発現に関して選別した(pol II)。BCL11Aタンパク質レベルは、β-アクチンを対照とするイムノブロットによって示されている。パネルの左側にあるXLおよびLは、BCL11Aタンパク質の各アイソフォームの位置を表している。図19D:qPCRによって測定した、非標的指向性対照と比較したHbb-yの規格化された発現の誘導倍数値。非標的指向性(NT)shRNAが形質導入されたMEL細胞における発現を1に設定した。黒のバーはU6プロモーターにより駆動されるshRNAによる相対的発現を表し、白のバーはSFFVプロモーターにより駆動されるshRNAを表している。データは、三重反復試験として実施した3回の独立した実験のうち代表的な実験による平均±SDを表している。*P<0.05。 低分子RNA配列分析により、pol III転写物とpol II転写物とのプロセシングの差異が明示されたことを示している。U6-shRNAおよびSFF V-shRNAmiR 1、2、3、4、7または8が形質導入されたMEL細胞の低分子RNAシークエンシングの結果。RNA配列を、各パネルの上部に太字で示された対応する参照ガイド鎖配列およびグレーで示された隣接配列に対してアラインメントした。(図20A)U6-shRNAから産生されたガイド鎖の種々の変異体をy軸上にプロットしている。各変異体の相対的寄与(%)を、参照shRNA配列と一致するリードの総数に基づいて算出してx軸上に示している。 低分子RNA配列分析により、pol III転写物とpol II転写物とのプロセシングの差異が明示されたことを示している。U6-shRNAおよびSFF V-shRNAmiR 1、2、3、4、7または8が形質導入されたMEL細胞の低分子RNAシークエンシングの結果。RNA配列を、各パネルの上部に太字で示された対応する参照ガイド鎖配列およびグレーで示された隣接配列に対してアラインメントした。(図20B)SFFV-shRNAmiRから産生されたガイド鎖の種々の変異体をy軸上にプロットしている。各変異体の相対的寄与(%)を、参照shRNA配列と一致するリードの総数に基づいて算出してx軸上に示している。 shRNA配列の改変が、MEL細胞において、ノックダウンの増加およびガイド鎖とパッセンジャー鎖との比の向上をもたらすことを示している。SFFV-shRNAmiRを、ガイド配列から最初の4塩基を欠失させて3'末端にGCGCを付加することによって改変した(改変shRNA)。 shRNA配列の改変が、MEL細胞において、ノックダウンの増加およびガイド鎖とパッセンジャー鎖との比の向上をもたらすことを示している。MEL細胞においてSFFV-pol IIプロモーターから発現させた改変shRNAmiR配列および親shRNAmiR配列のノックダウン効率の比較。BCL11Aタンパク質レベルは、FACSで選別された形質導入細胞において、β-アクチンをローディング対照とするイムノブロットによって測定した。上のパネルの左側にあるXLおよびLは、BCL11Aタンパク質のこれらのアイソフォームの位置を指し示している。PIII:pol IIIプロモーターベクター;PII:pol IIプロモーターベクター;PIIM:改変shRNAmiR配列を含むpol IIプロモーターベクター。 shRNA配列の改変が、MEL細胞において、ノックダウンの増加およびガイド鎖とパッセンジャー鎖との比の向上をもたらすことを示している。qRT-PCRによって測定した、非改変(白のバー)および改変(網掛けバー)shRNAmiR配列による、非標的指向性対照と比較したHbb-yの誘導倍数値。データは平均±SDを表している。**P<0.01。 shRNA配列の改変が、MEL細胞において、ノックダウンの増加およびガイド鎖とパッセンジャー鎖との比の向上をもたらすことを示している。複数のshRNAおよびshRNAmiRが形質導入された細胞から抽出した全RNAのノーザンブロット分析。shRNAおよびshRNAmiRの位置1から20までのガイド鎖およびパッセンジャー鎖に対して相補的なプローブ(20nt)を、プロセシングされた低分子RNAの存在量を測定するために利用した。5S RNAに対して相補的なプローブを、RNAローディングを判定するための内部対照として用いた。PIII:pol IIIプロモーターベクター;PII:pol IIプロモーターベクター;PIIM:改変shRNAmiR配列を含むpol IIプロモーターベクター。 shRNA配列の改変が、MEL細胞において、ノックダウンの増加およびガイド鎖とパッセンジャー鎖との比の向上をもたらすことを示している。shRNA 1、2、3、4、7または8を発現する形質導入MEL細胞の均質集団のRNAシークエンシングの結果。これらのRNAの配列を、各パネルの上部に示された対応する参照ガイド鎖配列に対してアラインメントした。種々のガイド鎖種の配列をy軸上に表示し、頻度をアラインメントされたリードのパーセンテージとしてx軸上に示している。 図22A〜22Eは、改変shRNAmiRが、ヒトCD34+由来赤血球系細胞におけるBCL11Aノックダウン効率の増大およびγグロビン誘導を招くことを示している。図22A:改変を伴うかまたは伴わない種々のshRNAを発現するpol IIIまたはpol IIベクターにより形質導入されたCD34+細胞を、ピューロマイシンの存在下で選択するか(pol III)、またはVenus発現に関して選別した(pol IIおよび改変pol II)。BCL11A発現は、分化第11日に、β-アクチンをローディング対照とするイムノブロットによって測定した。図22B:γ-グロビンmRNAの誘導を、分化第18日にqRT-PCRにより判定した。データは、β-遺伝子座産物全体(γ-グロビン+β-グロビン)のうちγ-グロビンのパーセンテージを、pol III(黒のバー)、pol II(白のバー)および改変pol II(グレーのバー)に関して表している。*p0.05;***p0.001。図22C:赤血球系分化マーカー(CD71、GpA)の定量および統計的分析、さらに核除去をフローサイトメトリーによって評価した。CTRL:対照ベクターSFFV-shRNAmiRNTおよびSEW;PIII:pol IIIベクター;PII:pol IIベクター;PIIM:改変shRNAmiR配列を含むpol IIベクター。データは3回の独立した実験による平均±SDを表している。***p0.001。図22D:細胞溶解物のヘモグロビンFを、分化第18日にHPLCによって測定した。矢印はHbFピークを指し示しており、ヘモグロビン全体に占めるHbFのパーセンテージをクロマトグラムの下方に示している。図22E:qRT-PCRによって評価したγ-グロビンmRNA発現とHPLCによるHbFとの相関グラフ。黒の丸印はpol IIIベクターを表し、白抜き丸印およびグレーの丸印はそれぞれpol IIshRNAmiRまたは改変shRNAmiRを表している。相関係数(r2)を全データについて示している。 インビボでのHSCに対するBCL11Aノックダウンの悪影響が、発現を赤血球系細胞に限定することによって妨げられることを示している。β-YACマウスから単離された系列陰性骨髄細胞(CD45.2)に対して、エクスビボで、BCL11Aを標的とするshRNAmiR*を発現するLeGOベクター、または非標的指向性対照ベクター(SFF-shRNAmiRNT)による形質導入を行い、致死的な放射線照射BoyJレシピエント(CD45.1)に移植した。非形質導入対照細胞を対照として移植した。生着分析を、末梢血および骨髄のそれぞれにおいて移植後4週、8週および12週に行った(n=各群当たりマウス4匹)。 インビボでのHSCに対するBCL11Aノックダウンの悪影響が、発現を赤血球系細胞に限定することによって妨げられることを示している。これらのマウスにおける遺伝子改変細胞(Venus+細胞)の比率を、末梢血および骨髄において移植後4週、8週および12週に決定した。 インビボでのHSCに対するBCL11Aノックダウンの悪影響が、発現を赤血球系細胞に限定することによって妨げられることを示している。表記のベクターによって形質導入されたCD45.1およびCD45.2ドナー細胞を用いて競合的移植片を用意し、CD45.1/2ヘテロ接合性マウスに移植した(上方のパネル)。または、青色蛍光性タンパク質をコードする中立的ベクター(SFFV-BFP)を、CD45.2レシピエント環境でのCD45.1ドナーにおける競合体集団を同定するために用いた(下方のパネル)。示されているのは、形質導入から3日後に移植に用いた種々の混在性集団の代表的なドットブロットである。2種の競合性ベクターは各パネルの上方に指し示されており、最初のものはそれぞれCD45.2またはSFFV-BFPにより形質導入された集団を指し示している。 インビボでのHSCに対するBCL11Aノックダウンの悪影響が、発現を赤血球系細胞に限定することによって妨げられることを示している。競合的に再増殖させたマウスにおける遺伝子改変細胞の寄与を、末梢血(PB)において移植4週後および8週後に、または骨髄(BM)および脾臓(Spl)において第12週に分析した。2種の競合性ベクターにより形質導入された遺伝子改変細胞の相対的寄与を示している。言及した第1のベクターは造血性アウトプットを優位にした。各ドットは個々のレシピエントマウスを表している。 インビボでのHSCに対するBCL11Aノックダウンの悪影響が、発現を赤血球系細胞に限定することによって妨げられることを示している。BCL11A標的指向性ベクターと対照ベクター(SFF-shRNAmiRNTとSFFV-BFP、左のパネル)の間での、細胞の形質導入画分における骨髄B細胞画分のペアワイズ比較。同様に、形質導入細胞画分におけるLSK含有量も分析した。各ドットは個々のレシピエントを表しており、*および**はそれぞれp値≦0.05および≦0.01を指し示している。 インビボでのHSCに対するBCL11Aノックダウンの悪影響が、発現を赤血球系細胞に限定することによって妨げられることを示している。赤血球系特異的発現のために用いたLCR-shRNAmiRベクターの立体配置(詳細は本文中)。 インビボでのHSCに対するBCL11Aノックダウンの悪影響が、発現を赤血球系細胞に限定することによって妨げられることを示している。LCR-ベクターのインビボ発現プロフィールをさまざまな造血系列において移植12週後に分析した。各マウスにおけるVenus+細胞のパーセンテージを、CD71+/Ter119+赤血球系細胞に対して規格化した(n=4)。 インビボでのHSCに対するBCL11Aノックダウンの悪影響が、発現を赤血球系細胞に限定することによって妨げられることを示している。cおよびdに記載した通りの競合的移植実験を、shRNAmiR*を発現するLCRベクターまたはSFFVベクターを用いて行った。各ドットは個々のレシピエントを表している。 インビボでのHSCに対するBCL11Aノックダウンの悪影響が、発現を赤血球系細胞に限定することによって妨げられることを示している。動員された末梢血CD34+細胞に対して、LCR-shRNAmiR*、3および8またはSFFV-GFPモックベクターによる形質導入を行って、インビトロで赤血球系分化に供した。形質導入から7日後に、種々の赤血球系部分集団におけるSFFV-GFPベクターおよびLCR-ベクターのプロモーター活性を評価した。代表的な流れ図を示している。すべての図中でエラーバー=SDである。統計分析:t-検定。 改変shRNAmiRによる系列特異的BCL11Aノックダウンおよびγグロビン誘導を示している。LCR-shRNAmiR 3、8またはSFFV-GFPモックベクターによって形質導入されたCD34+ HSPCを、蛍光性レポーター発現に関してFACS選別し、分化第11日にBCL11A発現をβ-アクチンをローディング対照とするイムノブロットによって測定した。 改変shRNAmiRによる系列特異的BCL11Aノックダウンおよびγグロビン誘導を示している。γ-グロビンmRNAの誘導を、分化第18日にqRT-PCRにより判定した。データは、γ/(γ+β)グロビンのパーセンテージを表している。 改変shRNAmiRによる系列特異的BCL11Aノックダウンおよびγグロビン誘導を示している。フローサイトメトリー分析による赤血球系分化マーカー(CD71、GpA)および核除去の定量および統計的分析。CTRL:SFFV-GFP対照ベクター;LCRM:LCRプロモーターを介して発現される、図23Aに示されている改変shRNAmiR。データは3回の独立した実験による平均±SDを表している。 改変shRNAmiRによる系列特異的BCL11Aノックダウンおよびγグロビン誘導を示している。細胞溶解物のHbFレベルを、分化第18日にHPLCによって測定した。矢印はHbFピークを指し示しており、ヘモグロビン全体に占めるHbFのパーセンテージをクロマトグラムの下方に示している。 改変shRNAmiRによる系列特異的BCL11Aノックダウンおよびγグロビン誘導を示している。qRT-PCRによるγ-グロビン誘導とHPLCによるHbFの相関グラフ。エラーバーは、3回の独立した実験による±SDを指し示している。 改変shRNAmiRによる系列特異的BCL11Aノックダウンおよびγグロビン誘導を示している。骨髄CD34+ HSPCに対してLCR-shRNAmiR3またはNTによる形質導入を行い、致死量以下の放射線照射を行ったNSGマウス(n=1群当たり3匹)に移植した。非形質導入細胞を対照として用いた。14週後に、移植した動物の骨髄からCD34細胞を単離し、インビトロでの赤血球系分化に14日間供した。γ-グロビンおよびβ-グロビンの発現を、Venusレポーター発現に関して選別した細胞において評価した。 図25は、4種の細胞株における247種のプロセシングされたTRC shRNA産物のディープシークエンシングを示している。 図26は、LCR-shRNAmiRベクターのインビボ発現プロフィールを示している。 図27Aは、BCL11Aアイソフォーム(LおよびXL)およびローディング対照としてのβ-アクチンを示している、健常ドナー由来の形質導入CD34+細胞に由来するインビトロで分化させた赤血球系細胞のウエスタンブロットであり、BCL11A XLの有効なノックダウンを実証している。DNA PCRによって決定されたVCNを各レーンの下方に示している。図27Bは、赤血球系細胞におけるBCL11Aノックダウンの定量を示している。データは、図27Aに示すようなウエスタンブロットに由来する。データは、単一ドナー由来の細胞を用いた3回の独立した実験をまとめている(エラーバー:SD)。図27Cは、RT-qPCRによって評価した赤血球系細胞におけるγグロビンの誘導、およびHPLCによって評価したヘモグロビン(HbF)を示している(エラーバー:SD)。 図28は、RT-qPCRによって評価した、赤血球系細胞におけるγグロビンの誘導を示している。赤血球系細胞におけるγグロビン誘導の量は、細胞におけるインビボでのBCL11Aノックダウンの指標である。エラーバー:SD。1群当たり3匹ずつの移植を受けた動物によるデータを示している。 図29Aは、BCL11Aアイソフォーム(LおよびXL)およびローディング対照としてのβ-アクチンを示しているウエスタンブロットであり、BCL11A XLの有効なノックダウンを実証している。各パネル(レーンの下方のラベル表示1〜6)は、単一ドナー由来の細胞を用いた独立した実験を表している。図29Bは、赤血球系細胞におけるBCL11Aノックダウンの定量を示している。データは、図29Aに示されたウエスタンブロットに由来する(エラーバー:SD)。図29Cは、HPLCによるHbFの結果として起こる誘導を示している(エラーバー:SD)。 図30は、CD34+分化赤血球系細胞におけるBCL11AのノックダウンのためのSFFVバックボーンおよびLCRバックボーンの両方に用いた配列を示している。 図31は、CD34+分化赤血球系細胞におけるBCL11Aノックダウンのウエスタンブロットを示している。
siRNAには、低分子ヘアピン(ステムループとも呼ばれる)RNA(shRNA)も含まれる。1つの態様において、これらのshRNAは、短い(例えば、約19〜約25個のヌクレオチドの)アンチセンス鎖と、これに続く約5〜約9個のヌクレオチドのヌクレオチドループ、および類似のセンス鎖から構成される。または、センス鎖がヌクレオチドループ構造に先行してもよく、アンチセンス鎖が後に続いてもよい。これらのshRNAをプラスミド、レトロウイルス、およびレンチウイルス中に含めて、例えば、pol III U6プロモーターまたは別のプロモーターから発現させることができる(例えば、その全体が参照により本明細書に組み入れられるStewart, et al. (2003) RNA April;9(4):493-501を参照)。RNA干渉物質の標的遺伝子または配列は、細胞遺伝子またはゲノム配列、例えばBCL11A配列とすることができる。siRNAは、標的遺伝子もしくはゲノム配列、またはその断片と実質的に相同でありうる。これに関連して用いられる「相同」という用語は、標的のRNA干渉を生じさせるために、標的mRNAまたはその断片と、実質的に同一であること、十分に相補的であること、または類似していることとして定義される。標的配列の発現を阻害するかまたは発現に干渉するのに適したRNAには、ネイティブなRNA分子のほかに、RNA誘導体および類似体も含まれる。好ましくは、siRNAはその標的と同一である。siRNAはただ1つの配列を標的とすることが好ましい。siRNAなどのRNA干渉物質のそれぞれは、例えば、発現プロファイリングによって、可能性のあるオフターゲット効果についてスクリーニングすることができる。そのような方法は当業者に公知であり、例えば、Jackson et al. Nature Biotechnology 6:635-637, 2003に記載されている。発現プロファイリングに加えて、オフターゲット効果を有する可能性のある配列を同定するために、可能性のある標的配列を配列データベース中の類似配列についてスクリーニングすることもできる。例えば、配列同一性を有する15個の連続するヌクレオチド、またはおそらくは11個程度の短さの連続するヌクレオチドでも、標的としない転写産物のサイレンシングを導くのに十分である。このため、、可能性のあるオフターゲットサイレンシングを避けるために、BLASTなどの任意の公知の配列比較法による配列同一性分析を用いて、提案されたsiRNAを最初にスクリーニングすることができる。siRNA配列は、siRNAのアンチセンス(ガイド)鎖のRISCへの取り込みを最大にし、それによって分解のためにヒトGGT mRNAを標的とするRISCの能力を最大にするように選択される。これは、アンチセンス鎖の5'末端で最小の結合自由エネルギーを有する配列についてスキャニングを行うことによって達成することができる。より低い自由エネルギーはsiRNA二重鎖のアンチセンス鎖の5'末端の巻き戻しの強化を招き、それにより、アンチセンス鎖がRISCに取り込まれてヒトBCL11A mRNAの配列特異的切断を導くことを確実にする。siRNA分子は、RNAのみを含む分子に限定される必要はなく、例えば、化学的に修飾されたヌクレオチドおよび非ヌクレオチドをさらに範囲に含み、また、リボース糖分子が別の糖分子にまたは同様の機能を果たす分子に置換されている分子も含む。さらに、ヌクレオチド残基間の非天然の結合、例えば、ホスホロチオエート結合を用いることもできる。RNA鎖は、フルオロフォアなどのレポーター基の反応性官能基によって誘導体化することができる。特に有用な誘導体は、RNA鎖の一端または両端において、典型的にはセンス鎖の3'末端において修飾されている。例えば、3'末端の2'-ヒドロキシルは種々の基で容易にかつ選択的に誘導体化することができる。他の有用なRNA誘導体は、2'O-アルキル化残基または2'-O-メチルリボシル誘導体および2'-O-フルオロリボシル誘導体といった修飾された糖質部分を有するヌクレオチドを組み入れている。RNA塩基を修飾することもできる。標的配列の発現を阻害するかまたは発現に干渉するために有用な任意の修飾塩基を用いることができる。例えば、5-ブロモウラシルおよび5-ヨードウラシルなどのハロゲン化塩基を組み入れることができる。また、塩基をアルキル化することもでき、例えば、7-メチルグアノシンをグアノシン残基の代わりに組み入れることができる。好首尾な阻害を生じさせる非天然塩基を組み入れることもできる。最も好ましいsiRNA修飾には、2'-デオキシ-2'-フルオロウリジンまたはロックド核酸(LNA)ヌクレオチド、およびホスホジエステルまたはさまざまな数のホスホロチオエート結合のいずれかを含むRNA二重鎖が含まれる。そのような修飾は当業者に公知であり、例えば、Braasch et al., Biochemistry, 42: 7967-7975, 2003に記載されている。siRNA分子にとって有用な修飾のほとんどは、アンチセンスオリゴヌクレオチド技術のために確立された化学反応を用いて導入することができる。好ましくは、修飾は2'-O-メチル修飾を最小限にしか含まず、好ましくはそのような修飾は除外される。修飾からは、好ましくはsiRNAの遊離5'-ヒドロキシル基の修飾も除外される。本明細書における実施例では、BCL11A mRNAを有効に標的とするshRNA分子といった、RNA干渉物質の具体的な例を提示している。
実施例6
末梢血SCD患者由来のCD34+循環HSCを、廃棄されたアフェレーシス材料から分画した(およそ200ml、106個のCD34+細胞)。細胞に対して、フィブロネクチン上でSFFV-LV(NT=スクランブルshRNA、miR-1=標的指向性shRNA)によりMOI=2で形質導入を行い、一部変更したGiarratana et al.(Nat Biotech 2005)のように分化させた。細胞を赤血球系表面マーカー(GPA、CD71)の成熟獲得に関してフローサイトメトリーによって分析した。赤血球系細胞は赤芽球および赤血球形態を逐次的に獲得し、Venus蛍光を発現するようになる。細胞を終末分化段階で収集してRNAを抽出し、miR-1 SFFV-IVによるγ-グロビンmRNA誘導をスクランブル(NT)対照と比較して評価するためのqPCR分析を行った(図5)。
ウイルス産生および用量設定
レンチウイルスベクター上清は、10μgのレンチウイルス移入ベクター、10μgのgag-pol、5μgのrev、および2μgのVSVGパッケージングプラスミドを、10cm培養皿の中のHEK293T細胞にリン酸カルシウム試薬(INVITROGEN(商標))を用いてコトランスフェクトすることによって作製した。上清をトランスフェクションから24時間後および48時間後に収集し、0.4ミクロン膜(CORNING(登録商標), NY, USA)に通して濾過し、その後にSW-28スイングバケットを用いてBeckmann XL-90遠心分離機で23000rpm、2時間の超遠心を行うことによって濃縮した。力価を決定するには、NIH3T3細胞をポリブレン(8μg/ml)の存在下でウイルスに感染させて、形質導入から48時間後に、Venus発現に関するFACSによって(pol II構築物)、またはピューロマイシン選択(1mg/ml、pol III構築物)によって分析した。
造血再構成に対する悪影響についてさらに調べるために、定量的競合的再増殖実験を行った(図23C〜23F)。CD45.1(BoyJ)およびCD45.2(Bl/6)ドナー動物由来の系列陰性細胞に対して、遍在性に発現されるSFFV-プロモーター(SFFV-BFP)の制御下で、BCL11Aに対するSFFV-shRNAmiR、shRNAmiRNT、または青色蛍光性タンパク質(BFP)レポーターのみを発現するさまざまなベクターによる形質導入を行った。ドナー集団およびレシピエント細胞の両方の同定が可能になるように、細胞をコンジェニックCD45.1/CD45.2動物に移植した。SFFV-BFPベクターを使用する実験では、CD45.1ドナー細胞をCD45.2動物に移植し、形質導入を行ったドナー細胞集団を蛍光に基づいて同定して比較した。移植の前に、競合性ベクターによる形質導入を行った2つの集団からの同数の細胞を混合した。移植された集団において両方のベクターを用いて得られた遺伝子改変細胞の最終的な比をフローサイトメトリーによって分析したところ、55〜70%の範囲にある同等な形質導入率が確かめられた(図23C)。移植の4、8および12週後に、移植された動物における遺伝子改変細胞の寄与を末梢血、骨髄および脾臓で評価し(図23D)、注入した形質導入細胞の比のわずかな違いもこの分析では考慮に入れた。すべての事例および各時点で、BCL11Aを標的とするベクターによる形質導入を受けた細胞は、NTまたはSFFV-BFPベクターによる形質導入を受けた細胞よりも競合性が劣っており、このことはBCL11Aノックダウンの選択的不利を指し示している。2種のBCL11A標的指向性ベクターが互いに競合する場合には、初期に移植された集団の比と比較して、造血細胞の再構成の有意差は観察されなかった。図23Bにおける所見と一致して、shRNAmiRNTの過剰発現は造血再構成にも悪影響を及ぼし、この群はSFFV-BFPのみを発現してshRNAを発現しないベクターによる形質導入を受けた細胞よりも競合性が劣っていた。本発明者らは、骨髄細胞の形質導入画分におけるBリンパ球およびより原始的なHSC区画に対してより詳細な分析を行った(図23E)。BCL11A-/-マウスにB細胞が存在しないことを示した以前の研究から予期されたように(30,31)、B220陽性B細胞の数はBCL11Aノックダウンによって有意に減少した。有意には達しなかったものの、生着するHSC区画を含む、より原始的なlin-、Sca-1+、c-kit+(LSK)細胞が減少する傾向がみられた。
BCL11Aノックダウンを鎌状細胞患者の細胞において調査した。骨髄CD34を鎌状細胞患者から単離し、細胞に対してLCR-NTまたはLCR-D12G5-2による形質導入を行い(非形質導入細胞を別の対照として用いた)、インビトロでの赤血球系分化に供した。図29Aは、BCL11Aアイソフォーム(LおよびXL)およびローディング対照としてのβ-アクチンを示しているウエスタンブロットであり、BCL11A XLの有効なノックダウンを実証している。各パネル(レーンの下方のラベル表示1〜6)は、単一ドナー由来の細胞を用いた独立した実験を表している。図29Bは、赤血球系細胞におけるBCL11Aノックダウンの定量を示している。データは、図29Aに示されたウエスタンブロットに由来する。図29Cは、HPLCによる、結果として起こるHbFの誘導を示している。この患者はヒドロキシ尿素治療を受けており、それがベースラインHb Fレベルの高さの一因であった。

Claims (63)

  1. a)第1のBCL11Aセグメント、ループセグメント;および
    b)5'から3'への方向に直列に並んだ第2のBCL11Aセグメント
    を含む合成BCL11AマイクロRNAであって、
    該ループセグメントが第1および第2のBCL11Aセグメントの間にあってそれらと直接連結されており、かつ
    第1および第2のBCL11Aセグメントが塩基対合してヘアピンループを形成するように第2のBCL11Aセグメントが第1のBCL11Aセグメントに対して相補的であり、該ループセグメントがそのようにして形成されたヘアピンループのループ部分を形成している、
    前記合成BCL11AマイクロRNA。
  2. 第1および第2のBCL11Aセグメントが約18〜25ヌクレオチド長である、請求項1記載の合成BCL11AマイクロRNA。
  3. 第1のBCL11Aセグメントが、BCL11A mRNA配列に由来する配列を含む、請求項1または2記載の合成BCL11AマイクロRNA。
  4. 第1のBCL11Aセグメントが第2のBCL11Aセグメントに対して相補的である、請求項1〜3のいずれか一項記載の合成BCL11AマイクロRNA。
  5. 第1のBCL11Aセグメントが5'末端にて-GCGC-で始まり、第2のBCL11Aセグメントが3'末端にて-GCGC-で終わる、請求項1〜4のいずれか一項記載の合成BCL11AマイクロRNA。
  6. 第1のBCL11Aセグメントが、
    Figure 2017513505
    ;本明細書に記載のBCL11A miR1オリゴに由来)、
    Figure 2017513505
    ;本明細書に記載のBCL11A miR2オリゴに由来)、
    Figure 2017513505
    ;本明細書に記載のBCL11A E3オリゴまたはshRNA1またはE3に由来)、
    Figure 2017513505
    ;本明細書に記載のshRNA2またはB5に由来)、
    Figure 2017513505
    ;本明細書に記載のshRNA4またはB11に由来)、
    Figure 2017513505
    ;本明細書に記載のBCL11A D8オリゴまたはshRNA3またはD8に由来)、
    Figure 2017513505
    ;本明細書に記載のshRNA5または50D12もしくはD12に由来)、
    Figure 2017513505
    ;本明細書に記載のshRNA5または50A5に由来)、
    Figure 2017513505
    ;本明細書に記載のshRNA7または50B11に由来)、
    Figure 2017513505
    ;本明細書に記載のBCL11A XLC4、shRNA8および50C4に由来)、
    Figure 2017513505
    ;本明細書に記載のBCL11A非標的指向性オリゴに由来)、
    Figure 2017513505
    ;本明細書に記載のmiR1G5オリゴに由来)、
    Figure 2017513505
    ;本明細書に記載のE3G5またはE3 modオリゴまたはshRNA1modに由来)、
    Figure 2017513505
    ;本明細書に記載のB5G5またはshRNA2modに由来)、
    Figure 2017513505
    ;本明細書に記載のB11G5またはshRNA4modに由来)、
    Figure 2017513505
    ;本明細書に記載の50D12G5、D12G4またはshRNA5modに由来)、
    Figure 2017513505
    ;本明細書に記載の50A5G5またはshRNA6modに由来)、
    Figure 2017513505
    ;本明細書に記載の50B11G5またはshRNA7modに由来)、
    Figure 2017513505
    ;本明細書に記載のBCL11A D8G5またはD8 modまたはshRNA3modに由来)、
    Figure 2017513505
    ;本明細書に記載のBCL11A C4G5またはC4 modまたはshRNA8modに由来)、
    Figure 2017513505
    ;本明細書に記載のBCL11A D12G5-2に由来)、および
    Figure 2017513505
    ;本明細書に記載のBCL11A D12G5-2に由来)
    からなる群より選択される、
    請求項1〜5のいずれか一項記載の合成BCL11AマイクロRNA。
  7. ループセグメントがマイクロRNAに由来する、請求項1〜6のいずれか一項記載の合成BCL11AマイクロRNA。
  8. 前記マイクロRNAが造血特異的マイクロRNAである、請求項7記載の合成BCL11AマイクロRNA。
  9. 前記マイクロRNAがmiR223である、請求項8記載の合成BCL11AマイクロRNA。
  10. ループセグメントがctccatgtggtagagである、請求項9記載の合成BCL11AマイクロRNA。
  11. SEQ ID NO:1〜10、13〜18および25〜44からなる群より選択されるヌクレオチド配列を含む、請求項1〜10のいずれか一項記載の合成BCL11AマイクロRNA。
  12. SEQ ID NO:1〜10、13〜18および25〜44からなる群より選択されるヌクレオチド配列を含む、単離された核酸分子。
  13. SEQ ID NO:1のヌクレオチド配列を含む、請求項12記載の単離された核酸分子。
  14. SEQ ID NO:2のヌクレオチド配列を含む、請求項12記載の単離された核酸分子。
  15. SEQ ID NO:3のヌクレオチド配列を含む、請求項12記載の単離された核酸分子。
  16. SEQ ID NO:4のヌクレオチド配列を含む、請求項12記載の単離された核酸分子。
  17. SEQ ID NO:5のヌクレオチド配列を含む、請求項12記載の単離された核酸分子。
  18. SEQ ID NO:6のヌクレオチド配列を含む、請求項12記載の単離された核酸分子。
  19. SEQ ID NO:7のヌクレオチド配列を含む、請求項12記載の単離された核酸分子。
  20. SEQ ID NO:8のヌクレオチド配列を含む、請求項12記載の単離された核酸分子。
  21. SEQ ID NO:9のヌクレオチド配列を含む、請求項12記載の単離された核酸分子。
  22. SEQ ID NO:10のヌクレオチド配列を含む、請求項12記載の単離された核酸分子。
  23. SEQ ID NO:13のヌクレオチド配列を含む、請求項12記載の単離された核酸分子。
  24. SEQ ID NO:14のヌクレオチド配列を含む、請求項12記載の単離された核酸分子。
  25. SEQ ID NO:15のヌクレオチド配列を含む、請求項12記載の単離された核酸分子。
  26. SEQ ID NO:16のヌクレオチド配列を含む、請求項12記載の単離された核酸分子。
  27. SEQ ID NO:17のヌクレオチド配列を含む、請求項12記載の単離された核酸分子。
  28. SEQ ID NO:18のヌクレオチド配列を含む、請求項12記載の単離された核酸分子。
  29. SEQ ID NO:25のヌクレオチド配列を含む、請求項12記載の単離された核酸分子。
  30. SEQ ID NO:26のヌクレオチド配列を含む、請求項12記載の単離された核酸分子。
  31. SEQ ID NO:27のヌクレオチド配列を含む、請求項12記載の単離された核酸分子。
  32. SEQ ID NO:28のヌクレオチド配列を含む、請求項12記載の単離された核酸分子。
  33. SEQ ID NO:29のヌクレオチド配列を含む、請求項12記載の単離された核酸分子。
  34. SEQ ID NO:30のヌクレオチド配列を含む、請求項12記載の単離された核酸分子。
  35. SEQ ID NO:31のヌクレオチド配列を含む、請求項12記載の単離された核酸分子。
  36. SEQ ID NO:33のヌクレオチド配列を含む、請求項12記載の単離された核酸分子。
  37. SEQ ID NO:34のヌクレオチド配列を含む、請求項12記載の単離された核酸分子。
  38. SEQ ID NO:35のヌクレオチド配列を含む、請求項12記載の単離された核酸分子。
  39. SEQ ID NO:36のヌクレオチド配列を含む、請求項12記載の単離された核酸分子。
  40. SEQ ID NO:37のヌクレオチド配列を含む、請求項12記載の単離された核酸分子。
  41. SEQ ID NO:38のヌクレオチド配列を含む、請求項12記載の単離された核酸分子。
  42. SEQ ID NO:39のヌクレオチド配列を含む、請求項12記載の単離された核酸分子。
  43. SEQ ID NO:40のヌクレオチド配列を含む、請求項12記載の単離された核酸分子。
  44. SEQ ID NO:41のヌクレオチド配列を含む、請求項12記載の単離された核酸分子。
  45. SEQ ID NO:42のヌクレオチド配列を含む、請求項12記載の単離された核酸分子。
  46. SEQ ID NO:43のヌクレオチド配列を含む、請求項12記載の単離された核酸分子。
  47. SEQ ID NO:44のヌクレオチド配列を含む、請求項12記載の単離された核酸分子。
  48. 請求項12記載の単離された核酸分子を含むベクター。
  49. 脾臓フォーカス形成ウイルスプロモーター、テトラサイクリン誘導性プロモーター、またはβ-グロビン遺伝子座制御領域およびβ-グロビンプロモーターをさらに含む、請求項48記載のベクター。
  50. 請求項48または49記載のベクターを含む宿主細胞。
  51. 胚性幹細胞、体性幹細胞、始原細胞、骨髄細胞、造血幹細胞または造血始原細胞である、請求項50記載の細胞。
  52. 赤血球である、請求項50記載の細胞。
  53. 請求項12記載の単離された核酸分子を含む細菌。
  54. 請求項12記載の単離された核酸分子を含むウイルス。
  55. レンチウイルスである、請求項54記載のウイルス。
  56. レンチウイルスが、ヒト免疫不全ウイルス1型(HIV-1)、ヒト免疫不全ウイルス2型(HIV-2)、ヤギ関節炎脳炎ウイルス(CAEV)、ウマ伝染性貧血ウイルス(EIAV)、ネコ免疫不全ウイルス(FIV)、ウシ免疫不全ウイルス(BIV)、およびサル免疫不全ウイルス(SIV)からなる群より選択される、請求項55記載のウイルス。
  57. 請求項1〜11のいずれか一項記載の合成BCL11AマイクロRNA、請求項1247のいずれか一項記載の単離された核酸分子、請求項48もしくは49記載のベクター、請求項5052のいずれか一項記載の宿主細胞、または請求項5456のいずれか一項記載のウイルスを含む組成物。
  58. 請求項48もしくは49記載のベクター、請求項5052のいずれか一項記載の宿主細胞、または請求項5456のいずれか一項記載のウイルスを含む組成物。
  59. 薬学的に許容される担体または希釈剤をさらに含む、請求項57または58記載の組成物。
  60. 対象における異常ヘモグロビン症の治療にまたはそれを発症するリスクを減少させるために用いるための、請求項5759のいずれか一項記載の組成物。
  61. 対象における異常ヘモグロビン症の治療におけるまたはそれを発症するリスクを減少させるための医薬の製造に用いるための、請求項5759のいずれか一項記載の組成物。
  62. 細胞によって発現される胎児型ヘモグロビンレベルを上昇させるのに用いるための、請求項5759のいずれか一項記載の組成物。
  63. 細胞が胚性幹細胞、体性幹細胞、始原細胞、骨髄細胞、造血幹細胞または造血始原細胞である、請求項62記載の組成物。
JP2016564251A 2014-04-25 2015-04-24 異常ヘモグロビン症を治療するための組成物および方法 Active JP6514717B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201461984247P 2014-04-25 2014-04-25
US61/984,247 2014-04-25
US201462066783P 2014-10-21 2014-10-21
US62/066,783 2014-10-21
PCT/US2015/027527 WO2015164750A2 (en) 2014-04-25 2015-04-24 Compositions and methods to treating hemoglobinopathies

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019076242A Division JP6713073B2 (ja) 2014-04-25 2019-04-12 異常ヘモグロビン症を治療するための組成物および方法

Publications (3)

Publication Number Publication Date
JP2017513505A JP2017513505A (ja) 2017-06-01
JP2017513505A5 true JP2017513505A5 (ja) 2018-03-08
JP6514717B2 JP6514717B2 (ja) 2019-05-15

Family

ID=54333430

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016564251A Active JP6514717B2 (ja) 2014-04-25 2015-04-24 異常ヘモグロビン症を治療するための組成物および方法
JP2019076242A Active JP6713073B2 (ja) 2014-04-25 2019-04-12 異常ヘモグロビン症を治療するための組成物および方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2019076242A Active JP6713073B2 (ja) 2014-04-25 2019-04-12 異常ヘモグロビン症を治療するための組成物および方法

Country Status (17)

Country Link
US (4) US10287588B2 (ja)
EP (2) EP3134130B1 (ja)
JP (2) JP6514717B2 (ja)
KR (1) KR102390629B1 (ja)
CN (2) CN112852812A (ja)
AU (1) AU2015249381B2 (ja)
BR (1) BR112016024565A2 (ja)
CA (1) CA2946309C (ja)
DK (1) DK3134130T3 (ja)
ES (1) ES2744186T3 (ja)
IL (1) IL248469B (ja)
MX (1) MX2016013832A (ja)
RU (1) RU2707540C2 (ja)
SA (1) SA516380143B1 (ja)
SG (2) SG11201608482UA (ja)
WO (1) WO2015164750A2 (ja)
ZA (1) ZA201607540B (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109554350B (zh) 2012-11-27 2022-09-23 儿童医疗中心有限公司 用于胎儿血红蛋白再诱导的靶向bcl11a远端调控元件
AU2015249381B2 (en) 2014-04-25 2020-04-30 Children's Medical Center Corporation Compositions and methods to treating hemoglobinopathies
WO2016182917A1 (en) 2015-05-08 2016-11-17 Children's Medical Center Corporation Targeting bcl11a enhancer functional regions for fetal hemoglobin reinduction
BR112018013065A2 (pt) * 2015-12-28 2018-12-11 Intellia Therapeutics Inc composições e métodos para o tratamento de hemoglobinopatias
CN117757794A (zh) * 2016-03-07 2024-03-26 美国政府(由卫生和人类服务部的部长所代表) 微小rna及其使用方法
WO2018071898A1 (en) 2016-10-14 2018-04-19 Children's Medical Center Corporation Compositions and methods for treating diseases and disorders of the central nervous system
CA3050691A1 (en) 2017-01-17 2018-07-26 Dana-Farber Cancer Institute, Inc. Compositions and methods for treating lysosomal storage diseases and disorders
TW201839136A (zh) 2017-02-06 2018-11-01 瑞士商諾華公司 治療血色素異常症之組合物及方法
US11261441B2 (en) * 2017-03-29 2022-03-01 Bluebird Bio, Inc. Vectors and compositions for treating hemoglobinopathies
EP3600448A4 (en) * 2017-03-29 2021-01-27 Bluebird Bio, Inc. VECTORS AND COMPOSITIONS FOR THE TREATMENT OF HEMOGLOBINOPATHIES
WO2018218135A1 (en) 2017-05-25 2018-11-29 The Children's Medical Center Corporation Bcl11a guide delivery
EP3635121A1 (en) * 2017-06-02 2020-04-15 Institut National de la Sante et de la Recherche Medicale (INSERM) Viral vector combining gene therapy and genome editing approaches for gene therapy of genetic disorders
US10648728B2 (en) 2017-09-29 2020-05-12 Nxp Usa, Inc. Multifunctional radio frequency systems and methods for UV sterilization, air purification, and defrost operations
CN109722414A (zh) * 2017-10-27 2019-05-07 博雅辑因(北京)生物科技有限公司 一种高效制备成熟红细胞的方法以及用于制备成熟红细胞的培养基
CN111629747A (zh) * 2017-12-05 2020-09-04 沃泰克斯药物股份有限公司 Crispr-cas9修饰的cd34+人血色素干细胞和祖细胞及其用途
WO2019213013A1 (en) * 2018-05-02 2019-11-07 The Children's Medical Center Corporation Improved bcl11a micrornas for treating hemoglobinopathies
EP3942046A1 (en) * 2019-03-22 2022-01-26 INSERM (Institut National de la Santé et de la Recherche Médicale) Bifunctional vectors allowing bcl11a silencing and expression of an anti-sickling hbb and uses thereof for gene therapy of b- hemoglobinopathies
WO2021067613A1 (en) * 2019-10-01 2021-04-08 Children's Medical Center Corporation Compositions and methods for treating amyotrophic lateral sclerosis
KR20230023612A (ko) 2020-04-02 2023-02-17 마이레큘, 인크. 조작된 올리고뉴클레오티드를 사용한 표적화된 억제
WO2022266366A1 (en) * 2021-06-16 2022-12-22 Duke University Compositions and methods for the prevention and treatment of hemoglobinopathies
CN114990164B (zh) * 2022-06-16 2023-12-05 北京大学 中介体复合物亚基抑制剂及其应用

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5061620A (en) 1990-03-30 1991-10-29 Systemix, Inc. Human hematopoietic stem cell
US5635387A (en) 1990-04-23 1997-06-03 Cellpro, Inc. Methods and device for culturing human hematopoietic cells and their precursors
EP0632722A4 (en) 1992-03-20 1997-07-30 Baylor College Medicine DNA TRANSPORTATION SYSTEM AND INSTRUCTIONS FOR USE.
US5460964A (en) 1992-04-03 1995-10-24 Regents Of The University Of Minnesota Method for culturing hematopoietic cells
US5409813A (en) 1993-09-30 1995-04-25 Systemix, Inc. Method for mammalian cell separation from a mixture of cell populations
US5677136A (en) 1994-11-14 1997-10-14 Systemix, Inc. Methods of obtaining compositions enriched for hematopoietic stem cells, compositions derived therefrom and methods of use thereof
US5928638A (en) 1996-06-17 1999-07-27 Systemix, Inc. Methods for gene transfer
US8101349B2 (en) * 1997-12-23 2012-01-24 Novartis Vaccines And Diagnostics, Inc. Gene products differentially expressed in cancerous cells and their methods of use II
FR2777909B1 (fr) 1998-04-24 2002-08-02 Pasteur Institut Utilisation de sequences d'adn de structure triplex pour le tranfert de sequences de nucleotides dans des cellules, vecteurs recombinants contenant ces sequences triplex
AU3988799A (en) 1998-05-13 1999-11-29 Genetix Pharmaceuticals, Inc. Novel lentiviral packaging cells
CZ302719B6 (cs) 2000-12-01 2011-09-21 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Izolovaná molekula dvouretezcové RNA, zpusob její výroby a její použití
AU2003295600A1 (en) 2002-11-14 2004-06-15 Dharmacon, Inc. Functional and hyperfunctional sirna
WO2004054512A2 (en) 2002-12-13 2004-07-01 Genetix Pharmaceuticals, Inc. Therapeutic retroviral vectors for gene therapy
EP1752536A4 (en) 2004-05-11 2008-04-16 Alphagen Co Ltd POLYNUCLEOTIDE CAUSING RNA INTERFERENCE AND METHOD OF REGULATING GENE EXPRESSION WITH THE USE OF THE SAME
ES2527592T3 (es) * 2006-01-05 2015-01-27 The Ohio State University Research Foundation Métodos basados en microARN para el diagnóstico del cáncer de colon
US20080051431A1 (en) 2006-05-26 2008-02-28 Dominique Verhelle Methods and compositions using immunomodulatory compounds in combination therapy
US9051391B2 (en) 2007-06-11 2015-06-09 Takara Bio Inc. Method for expression of specific gene
GB0713183D0 (en) 2007-07-06 2007-08-15 King S College London Method
ES2738980T3 (es) * 2008-09-15 2020-01-28 Childrens Medical Ct Corp Modulación de BCL11A para el tratamiento de hemoglobinopatías
US20110294114A1 (en) 2009-12-04 2011-12-01 Cincinnati Children's Hospital Medical Center Optimization of determinants for successful genetic correction of diseases, mediated by hematopoietic stem cells
EP2509418A4 (en) 2009-12-08 2013-03-20 Hemaquest Pharmaceuticals Inc METHODS AND REGIMES AT LOW DOSE FOR TREATING RED GLOBULAR DISORDERS
PT2561078T (pt) 2010-04-23 2018-12-03 Cold Spring Harbor Laboratory Sharn com uma conceção estrutural inovadora
GB201012420D0 (en) * 2010-07-23 2010-09-08 Univ Erasmus Medical Ct Foetal heamoglobin inhibitor
WO2012073047A2 (en) 2010-12-03 2012-06-07 Genome Research Limited Compositions and methods
WO2012079046A2 (en) * 2010-12-10 2012-06-14 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of klf-1 and bcl11a genes
KR101528440B1 (ko) 2011-06-10 2015-06-26 블루버드 바이오, 인코포레이티드. 부신백질이영양증 및 부신척수신경병증을 위한 유전자 요법 벡터
KR102011532B1 (ko) 2011-09-30 2019-08-16 블루버드 바이오, 인코포레이티드. 개선된 바이러스 형질도입을 위한 화합물
KR101833589B1 (ko) 2012-02-24 2018-03-02 프레드 헛친슨 켄서 리서치 센터 이상혈색소증 치료를 위한 조성물 및 방법
EP2850188A4 (en) 2012-05-16 2016-01-20 Rana Therapeutics Inc COMPOSITIONS AND METHODS FOR MODULATING THE EXPRESSION OF THE MULTIGENIC FAMILY OF HEMOGLOBIN
DE202013012242U1 (de) 2012-05-25 2016-02-02 Emmanuelle Charpentier Zusammensetzungen für die durch RNA gesteuerte Modifikation einer Ziel-DNA und für die durch RNA gesteuerte Modulation der Transkription
CN109554350B (zh) 2012-11-27 2022-09-23 儿童医疗中心有限公司 用于胎儿血红蛋白再诱导的靶向bcl11a远端调控元件
MX2015007549A (es) 2012-12-12 2017-01-20 Broad Inst Inc Modificaciones de sistemas, métodos y composiciones guía optimizadas para la manipulación de secuencias.
US10106816B2 (en) 2012-12-14 2018-10-23 Case Western Reserve University Genomic RNA packaging enhancer element
CN105683376A (zh) 2013-05-15 2016-06-15 桑格摩生物科学股份有限公司 用于治疗遗传病状的方法和组合物
WO2015065964A1 (en) 2013-10-28 2015-05-07 The Broad Institute Inc. Functional genomics using crispr-cas systems, compositions, methods, screens and applications thereof
SI3068881T1 (sl) 2013-11-13 2019-05-31 Children's Medical Center Corporation Z nukleazo posredovano uravnavanje izražanja genov
US11242525B2 (en) 2014-03-26 2022-02-08 Editas Medicine, Inc. CRISPR/CAS-related methods and compositions for treating sickle cell disease
US20170049819A1 (en) 2014-04-25 2017-02-23 Bluebird Bio, Inc. Kappa/lambda chimeric antigen receptors
AU2015249381B2 (en) 2014-04-25 2020-04-30 Children's Medical Center Corporation Compositions and methods to treating hemoglobinopathies
CN110938655A (zh) 2014-04-25 2020-03-31 蓝鸟生物公司 Mnd启动子嵌合抗原受体
JP7026440B2 (ja) 2014-05-28 2022-02-28 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア ハイブリッドtRNA/プレmiRNA分子および使用方法
EP3230321B1 (en) 2014-12-12 2019-08-28 Bluebird Bio, Inc. Bcma chimeric antigen receptors
WO2016182893A1 (en) 2015-05-08 2016-11-17 Teh Broad Institute Inc. Functional genomics using crispr-cas systems for saturating mutagenesis of non-coding elements, compositions, methods, libraries and applications thereof
US11535871B2 (en) 2015-05-14 2022-12-27 University Of Southern California Optimized gene editing utilizing a recombinant endonuclease system
WO2017040529A1 (en) 2015-08-31 2017-03-09 Bluebird Bio, Inc. Anti-sialyl tn chimeric antigen receptors
GB201522243D0 (en) 2015-12-16 2016-01-27 Ucl Business Plc Treatment
AU2017217813B2 (en) 2016-02-12 2023-08-03 Bluebird Bio, Inc. VCN enhancer compositions and methods of using the same
US20190093128A1 (en) 2016-03-31 2019-03-28 The Regents Of The University Of California Methods for genome editing in zygotes
WO2018218135A1 (en) 2017-05-25 2018-11-29 The Children's Medical Center Corporation Bcl11a guide delivery

Similar Documents

Publication Publication Date Title
JP2017513505A5 (ja)
US11124794B2 (en) Compositions and methods to treating hemoglobinopathies
Counsell et al. Lentiviral vectors can be used for full-length dystrophin gene therapy
Breda et al. Therapeutic hemoglobin levels after gene transfer in β-thalassemia mice and in hematopoietic cells of β-thalassemia and sickle cells disease patients
Ngom et al. UM171 enhances lentiviral gene transfer and recovery of primitive human hematopoietic cells
US20230303975A1 (en) Modified lymphocytes
JP2015212310A (ja) ランダムRNAiライブラリ、その生成方法、及びそれを使用したスクリーニング方法
CN113718030B (zh) 与白血病诊疗相关的靶点pabpc1及其应用
Taylor et al. Foamy virus vectors expressing anti-HIV transgenes efficiently block HIV-1 replication
US20210085707A1 (en) Improved bcl11a micrornas for treating hemoglobinopathies
WO2019119036A1 (en) Cd70 deficient cells, and methods and reagents for producing same
Hernández-Hoyos et al. Analysis of T-cell development by using short interfering RNA to knock down protein expression
Terskikh et al. Long-term persistence of a nonintegrated lentiviral vector in mouse hematopoietic stem cells
Michienzi et al. Novel ribozyme, RNA decoy, and siRNA approaches to inhibition of HIV in a gene therapy setting
Jin et al. Advancing the genetic engineering toolbox by combining AsCas12a knock-in mice with ultra-compact screening
WO2023196880A2 (en) Human t-cell lymphotropic virus type 1 targeting proteins and methods of use
McIntyre Antiviral shRNA (for HIV-1)
Breda et al. Therapeutic Hemoglobin Levels after Gene Transfer in b-Thalassemia Mice and in
Costa The role of the stem cell marker, melanoma cell adhesion molecule MCAM/CD146
Wen-Hsin Lentiviral-based RNA interference of genes in leukaemic cells