JP2017510890A - 一般的なニューロンモデルの効率的な実装のための方法および装置 - Google Patents
一般的なニューロンモデルの効率的な実装のための方法および装置 Download PDFInfo
- Publication number
- JP2017510890A JP2017510890A JP2016554451A JP2016554451A JP2017510890A JP 2017510890 A JP2017510890 A JP 2017510890A JP 2016554451 A JP2016554451 A JP 2016554451A JP 2016554451 A JP2016554451 A JP 2016554451A JP 2017510890 A JP2017510890 A JP 2017510890A
- Authority
- JP
- Japan
- Prior art keywords
- neuron model
- memory
- instance
- neuron
- parameters
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/06—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
- G06N3/063—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/10—Interfaces, programming languages or software development kits, e.g. for simulating neural networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0499—Feedforward networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/082—Learning methods modifying the architecture, e.g. adding, deleting or silencing nodes or connections
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computing Systems (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Data Mining & Analysis (AREA)
- Mathematical Physics (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computational Linguistics (AREA)
- Artificial Intelligence (AREA)
- Neurology (AREA)
- Image Analysis (AREA)
- Semiconductor Memories (AREA)
- User Interface Of Digital Computer (AREA)
- Stored Programmes (AREA)
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201461946051P | 2014-02-28 | 2014-02-28 | |
| US61/946,051 | 2014-02-28 | ||
| US14/267,394 | 2014-05-01 | ||
| US14/267,394 US9672464B2 (en) | 2014-02-28 | 2014-05-01 | Method and apparatus for efficient implementation of common neuron models |
| PCT/US2015/015637 WO2015130476A2 (en) | 2014-02-28 | 2015-02-12 | Method and apparatus for efficient implementation of common neuron models |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2017510890A true JP2017510890A (ja) | 2017-04-13 |
| JP2017510890A5 JP2017510890A5 (enExample) | 2018-03-01 |
Family
ID=54006937
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2016554451A Ceased JP2017510890A (ja) | 2014-02-28 | 2015-02-12 | 一般的なニューロンモデルの効率的な実装のための方法および装置 |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US9672464B2 (enExample) |
| EP (1) | EP3111378A2 (enExample) |
| JP (1) | JP2017510890A (enExample) |
| KR (1) | KR20160125967A (enExample) |
| CN (1) | CN106068519B (enExample) |
| CA (1) | CA2937945A1 (enExample) |
| WO (1) | WO2015130476A2 (enExample) |
Families Citing this family (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10068170B2 (en) * | 2013-09-23 | 2018-09-04 | Oracle International Corporation | Minimizing global error in an artificial neural network |
| KR102372423B1 (ko) * | 2017-05-16 | 2022-03-10 | 한국전자통신연구원 | 파라미터 공유 장치 및 방법 |
| US11507806B2 (en) * | 2017-09-08 | 2022-11-22 | Rohit Seth | Parallel neural processor for Artificial Intelligence |
| US11195079B2 (en) * | 2017-11-22 | 2021-12-07 | Intel Corporation | Reconfigurable neuro-synaptic cores for spiking neural network |
| US11347998B2 (en) * | 2018-02-26 | 2022-05-31 | Fredric William Narcross | Nervous system on a chip |
| CN108830379B (zh) * | 2018-05-23 | 2021-12-17 | 电子科技大学 | 一种基于参数量化共享的神经形态处理器 |
| CN109886384B (zh) * | 2019-02-15 | 2021-01-05 | 北京工业大学 | 一种基于鼠脑海马网格细胞重构的仿生导航方法 |
| US11270195B2 (en) | 2019-03-05 | 2022-03-08 | International Business Machines Corporation | Neuromorphic computing in dynamic random access memory |
| WO2021137601A1 (ko) * | 2019-12-30 | 2021-07-08 | 매니코어소프트주식회사 | 강화 학습 기반의 프로그램 최적화 방법 |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH05128083A (ja) * | 1991-10-31 | 1993-05-25 | Ricoh Co Ltd | 信号処理装置 |
| WO1995016244A1 (en) * | 1993-12-08 | 1995-06-15 | Minnesota Mining And Manufacturing Company | Facet classification neural network |
| US8027942B2 (en) * | 2000-12-13 | 2011-09-27 | International Business Machines Corporation | Method and circuits for associating a complex operator to each component of an input pattern presented to an artificial neural network |
Family Cites Families (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5222196A (en) * | 1990-02-20 | 1993-06-22 | International Business Machines Corporation | Neural network shell for application programs |
| EP1172763A3 (en) | 2000-07-13 | 2008-11-05 | International Business Machines Corporation | Method and circuits for associating a norm to each component of an input pattern presented to a neural network |
| TW538381B (en) * | 2000-07-13 | 2003-06-21 | Ibm | Method and circuits for associating a norm to each component of an input pattern presented to a neural network |
| JP4710931B2 (ja) | 2008-07-09 | 2011-06-29 | ソニー株式会社 | 学習装置、学習方法、およびプログラム |
| CN102947818B (zh) | 2010-05-19 | 2015-07-22 | 加利福尼亚大学董事会 | 神经处理单元 |
| US8650008B2 (en) | 2010-08-05 | 2014-02-11 | International Business Machines Corporation | Method and system of developing corner models for various classes on nonlinear systems |
| KR101888468B1 (ko) | 2011-06-08 | 2018-08-16 | 삼성전자주식회사 | Stdp 기능 셀을 위한 시냅스, stdp 기능 셀 및 stdp 기능 셀을 이용한 뉴로모픽 회로 |
| US9111224B2 (en) * | 2011-10-19 | 2015-08-18 | Qualcomm Incorporated | Method and apparatus for neural learning of natural multi-spike trains in spiking neural networks |
| US9111225B2 (en) * | 2012-02-08 | 2015-08-18 | Qualcomm Incorporated | Methods and apparatus for spiking neural computation |
| US9256823B2 (en) | 2012-07-27 | 2016-02-09 | Qualcomm Technologies Inc. | Apparatus and methods for efficient updates in spiking neuron network |
| US9256215B2 (en) | 2012-07-27 | 2016-02-09 | Brain Corporation | Apparatus and methods for generalized state-dependent learning in spiking neuron networks |
-
2014
- 2014-05-01 US US14/267,394 patent/US9672464B2/en active Active
-
2015
- 2015-02-12 WO PCT/US2015/015637 patent/WO2015130476A2/en not_active Ceased
- 2015-02-12 CN CN201580010482.1A patent/CN106068519B/zh active Active
- 2015-02-12 EP EP15707008.7A patent/EP3111378A2/en not_active Ceased
- 2015-02-12 CA CA2937945A patent/CA2937945A1/en not_active Abandoned
- 2015-02-12 KR KR1020167023030A patent/KR20160125967A/ko not_active Withdrawn
- 2015-02-12 JP JP2016554451A patent/JP2017510890A/ja not_active Ceased
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH05128083A (ja) * | 1991-10-31 | 1993-05-25 | Ricoh Co Ltd | 信号処理装置 |
| WO1995016244A1 (en) * | 1993-12-08 | 1995-06-15 | Minnesota Mining And Manufacturing Company | Facet classification neural network |
| US8027942B2 (en) * | 2000-12-13 | 2011-09-27 | International Business Machines Corporation | Method and circuits for associating a complex operator to each component of an input pattern presented to an artificial neural network |
Also Published As
| Publication number | Publication date |
|---|---|
| KR20160125967A (ko) | 2016-11-01 |
| US9672464B2 (en) | 2017-06-06 |
| WO2015130476A3 (en) | 2015-10-22 |
| WO2015130476A2 (en) | 2015-09-03 |
| CA2937945A1 (en) | 2015-09-03 |
| CN106068519A (zh) | 2016-11-02 |
| CN106068519B (zh) | 2018-12-18 |
| US20150248607A1 (en) | 2015-09-03 |
| EP3111378A2 (en) | 2017-01-04 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP6130056B2 (ja) | スパイキングネットワークの効率的なハードウェア実装 | |
| JP2016536679A (ja) | ニューラルシミュレータ用の共有メモリアーキテクチャ | |
| JP6275868B2 (ja) | ニューラルウォッチドッグ | |
| JP2017510890A (ja) | 一般的なニューロンモデルの効率的な実装のための方法および装置 | |
| JP2017509982A (ja) | 原位置ニューラルネットワークコプロセッシング | |
| JP2017509952A (ja) | シャドウネットワークでニューラルネットワークを監視すること | |
| JP2016539414A (ja) | スパイキングニューラルネットワークにおいてリプレーを使用するシナプス学習を実装すること | |
| JP2017511936A (ja) | 現在の計算リソースへのニューラルネットワーク適応 | |
| JP2016530630A (ja) | ニューラルデバイスのトレーニングを調節するための方法および装置 | |
| WO2015053864A1 (en) | Compiling network descriptions to multiple platforms | |
| JP2016536657A (ja) | ニューラルモデルのためのグループタグの実装のための方法および装置 | |
| JP2017519268A (ja) | スパイキングニューラルネットワークにおけるグローバルスカラ値によって可塑性を調節すること | |
| JP2017513108A (ja) | サブしきい値変調を介するアナログ信号再構築および認識 | |
| JP2017509980A (ja) | 動的な空間ターゲット選択 | |
| WO2015153150A2 (en) | Probabilistic representation of large sequences using spiking neural network | |
| JP6193509B2 (ja) | 可塑性シナプス管理 | |
| JP2016537711A (ja) | スパイキングニューロンのネットワークにおける輻輳回避 | |
| JP2017509956A (ja) | 値をスパイクに変換するための方法 | |
| JP6219509B2 (ja) | シナプス遅延を動的に割り当てることおおよび検査すること | |
| JP2017509973A (ja) | 座標変換のための位相コーディング | |
| JP2017513110A (ja) | ニューロモーフィックモデル開発のためのコンテキストリアルタイムフィードバック | |
| JP2016536676A (ja) | ニューラルモデル実行をリモートで制御および監視するための方法および装置 | |
| JP2017509979A (ja) | 空間ターゲット選択のためのアンバランスな交差抑制メカニズム |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161027 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180117 |
|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180117 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190226 |
|
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190312 |
|
| A045 | Written measure of dismissal of application [lapsed due to lack of payment] |
Free format text: JAPANESE INTERMEDIATE CODE: A045 Effective date: 20190730 |