KR20160125967A - 일반적인 뉴런 모델들의 효율적인 구현을 위한 방법 및 장치 - Google Patents
일반적인 뉴런 모델들의 효율적인 구현을 위한 방법 및 장치 Download PDFInfo
- Publication number
- KR20160125967A KR20160125967A KR1020167023030A KR20167023030A KR20160125967A KR 20160125967 A KR20160125967 A KR 20160125967A KR 1020167023030 A KR1020167023030 A KR 1020167023030A KR 20167023030 A KR20167023030 A KR 20167023030A KR 20160125967 A KR20160125967 A KR 20160125967A
- Authority
- KR
- South Korea
- Prior art keywords
- neuron model
- instances
- state variables
- memory
- neuron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/06—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
- G06N3/063—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/10—Interfaces, programming languages or software development kits, e.g. for simulating neural networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G06N3/0454—
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0499—Feedforward networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/082—Learning methods modifying the architecture, e.g. adding, deleting or silencing nodes or connections
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computing Systems (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Data Mining & Analysis (AREA)
- Mathematical Physics (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computational Linguistics (AREA)
- Artificial Intelligence (AREA)
- Neurology (AREA)
- Image Analysis (AREA)
- Semiconductor Memories (AREA)
- User Interface Of Digital Computer (AREA)
- Stored Programmes (AREA)
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201461946051P | 2014-02-28 | 2014-02-28 | |
| US61/946,051 | 2014-02-28 | ||
| US14/267,394 | 2014-05-01 | ||
| US14/267,394 US9672464B2 (en) | 2014-02-28 | 2014-05-01 | Method and apparatus for efficient implementation of common neuron models |
| PCT/US2015/015637 WO2015130476A2 (en) | 2014-02-28 | 2015-02-12 | Method and apparatus for efficient implementation of common neuron models |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| KR20160125967A true KR20160125967A (ko) | 2016-11-01 |
Family
ID=54006937
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| KR1020167023030A Withdrawn KR20160125967A (ko) | 2014-02-28 | 2015-02-12 | 일반적인 뉴런 모델들의 효율적인 구현을 위한 방법 및 장치 |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US9672464B2 (enExample) |
| EP (1) | EP3111378A2 (enExample) |
| JP (1) | JP2017510890A (enExample) |
| KR (1) | KR20160125967A (enExample) |
| CN (1) | CN106068519B (enExample) |
| CA (1) | CA2937945A1 (enExample) |
| WO (1) | WO2015130476A2 (enExample) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20180125734A (ko) * | 2017-05-16 | 2018-11-26 | 한국전자통신연구원 | 파라미터 공유 장치 및 방법 |
| WO2021137601A1 (ko) * | 2019-12-30 | 2021-07-08 | 매니코어소프트주식회사 | 강화 학습 기반의 프로그램 최적화 방법 |
Families Citing this family (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10068170B2 (en) * | 2013-09-23 | 2018-09-04 | Oracle International Corporation | Minimizing global error in an artificial neural network |
| US11507806B2 (en) * | 2017-09-08 | 2022-11-22 | Rohit Seth | Parallel neural processor for Artificial Intelligence |
| US11195079B2 (en) * | 2017-11-22 | 2021-12-07 | Intel Corporation | Reconfigurable neuro-synaptic cores for spiking neural network |
| US11347998B2 (en) * | 2018-02-26 | 2022-05-31 | Fredric William Narcross | Nervous system on a chip |
| CN108830379B (zh) * | 2018-05-23 | 2021-12-17 | 电子科技大学 | 一种基于参数量化共享的神经形态处理器 |
| CN109886384B (zh) * | 2019-02-15 | 2021-01-05 | 北京工业大学 | 一种基于鼠脑海马网格细胞重构的仿生导航方法 |
| US11270195B2 (en) | 2019-03-05 | 2022-03-08 | International Business Machines Corporation | Neuromorphic computing in dynamic random access memory |
Family Cites Families (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5222196A (en) * | 1990-02-20 | 1993-06-22 | International Business Machines Corporation | Neural network shell for application programs |
| JPH05128083A (ja) * | 1991-10-31 | 1993-05-25 | Ricoh Co Ltd | 信号処理装置 |
| US6167390A (en) * | 1993-12-08 | 2000-12-26 | 3M Innovative Properties Company | Facet classification neural network |
| EP1172763A3 (en) | 2000-07-13 | 2008-11-05 | International Business Machines Corporation | Method and circuits for associating a norm to each component of an input pattern presented to a neural network |
| TW538381B (en) * | 2000-07-13 | 2003-06-21 | Ibm | Method and circuits for associating a norm to each component of an input pattern presented to a neural network |
| US8027942B2 (en) * | 2000-12-13 | 2011-09-27 | International Business Machines Corporation | Method and circuits for associating a complex operator to each component of an input pattern presented to an artificial neural network |
| JP4710931B2 (ja) | 2008-07-09 | 2011-06-29 | ソニー株式会社 | 学習装置、学習方法、およびプログラム |
| CN102947818B (zh) | 2010-05-19 | 2015-07-22 | 加利福尼亚大学董事会 | 神经处理单元 |
| US8650008B2 (en) | 2010-08-05 | 2014-02-11 | International Business Machines Corporation | Method and system of developing corner models for various classes on nonlinear systems |
| KR101888468B1 (ko) | 2011-06-08 | 2018-08-16 | 삼성전자주식회사 | Stdp 기능 셀을 위한 시냅스, stdp 기능 셀 및 stdp 기능 셀을 이용한 뉴로모픽 회로 |
| US9111224B2 (en) * | 2011-10-19 | 2015-08-18 | Qualcomm Incorporated | Method and apparatus for neural learning of natural multi-spike trains in spiking neural networks |
| US9111225B2 (en) * | 2012-02-08 | 2015-08-18 | Qualcomm Incorporated | Methods and apparatus for spiking neural computation |
| US9256823B2 (en) | 2012-07-27 | 2016-02-09 | Qualcomm Technologies Inc. | Apparatus and methods for efficient updates in spiking neuron network |
| US9256215B2 (en) | 2012-07-27 | 2016-02-09 | Brain Corporation | Apparatus and methods for generalized state-dependent learning in spiking neuron networks |
-
2014
- 2014-05-01 US US14/267,394 patent/US9672464B2/en active Active
-
2015
- 2015-02-12 WO PCT/US2015/015637 patent/WO2015130476A2/en not_active Ceased
- 2015-02-12 CN CN201580010482.1A patent/CN106068519B/zh active Active
- 2015-02-12 EP EP15707008.7A patent/EP3111378A2/en not_active Ceased
- 2015-02-12 CA CA2937945A patent/CA2937945A1/en not_active Abandoned
- 2015-02-12 KR KR1020167023030A patent/KR20160125967A/ko not_active Withdrawn
- 2015-02-12 JP JP2016554451A patent/JP2017510890A/ja not_active Ceased
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20180125734A (ko) * | 2017-05-16 | 2018-11-26 | 한국전자통신연구원 | 파라미터 공유 장치 및 방법 |
| WO2021137601A1 (ko) * | 2019-12-30 | 2021-07-08 | 매니코어소프트주식회사 | 강화 학습 기반의 프로그램 최적화 방법 |
| US12026487B2 (en) | 2019-12-30 | 2024-07-02 | Moreh Corp. | Method for optimizing program using reinforcement learning |
Also Published As
| Publication number | Publication date |
|---|---|
| US9672464B2 (en) | 2017-06-06 |
| WO2015130476A3 (en) | 2015-10-22 |
| JP2017510890A (ja) | 2017-04-13 |
| WO2015130476A2 (en) | 2015-09-03 |
| CA2937945A1 (en) | 2015-09-03 |
| CN106068519A (zh) | 2016-11-02 |
| CN106068519B (zh) | 2018-12-18 |
| US20150248607A1 (en) | 2015-09-03 |
| EP3111378A2 (en) | 2017-01-04 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR101793011B1 (ko) | 스파이킹 네트워크들의 효율적인 하드웨어 구현 | |
| CN105637541B (zh) | 用于神经模拟器的共享存储器架构 | |
| US9330355B2 (en) | Computed synapses for neuromorphic systems | |
| KR20160125967A (ko) | 일반적인 뉴런 모델들의 효율적인 구현을 위한 방법 및 장치 | |
| KR20160076520A (ko) | 인과적 현출성 시간 추론 | |
| KR20160123309A (ko) | 확률적 스파이킹 베이지안망들에 대한 이벤트-기반 추론 및 학습 | |
| KR20160084401A (ko) | 스파이킹 뉴럴 네트워크들에서 리플레이를 사용한 시냅스 학습의 구현 | |
| EP3097517A1 (en) | Monitoring neural networks with shadow networks | |
| US9959499B2 (en) | Methods and apparatus for implementation of group tags for neural models | |
| WO2015053864A1 (en) | Compiling network descriptions to multiple platforms | |
| KR20160145636A (ko) | 스파이킹 뉴럴 네트워크에서의 글로벌 스칼라 값들에 의한 가소성 조절 | |
| KR20160135206A (ko) | 역치하 변조를 통한 아날로그 신호 재구성 및 인식 | |
| KR101825937B1 (ko) | 가소성 시냅스 관리 | |
| US9460384B2 (en) | Effecting modulation by global scalar values in a spiking neural network | |
| KR101782760B1 (ko) | 시냅스 지연의 동적 할당 및 검사 | |
| US9418332B2 (en) | Post ghost plasticity | |
| US20140365413A1 (en) | Efficient implementation of neural population diversity in neural system |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PA0105 | International application |
Patent event date: 20160823 Patent event code: PA01051R01D Comment text: International Patent Application |
|
| PG1501 | Laying open of application | ||
| PC1203 | Withdrawal of no request for examination | ||
| WITN | Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid |