KR20160125967A - 일반적인 뉴런 모델들의 효율적인 구현을 위한 방법 및 장치 - Google Patents

일반적인 뉴런 모델들의 효율적인 구현을 위한 방법 및 장치 Download PDF

Info

Publication number
KR20160125967A
KR20160125967A KR1020167023030A KR20167023030A KR20160125967A KR 20160125967 A KR20160125967 A KR 20160125967A KR 1020167023030 A KR1020167023030 A KR 1020167023030A KR 20167023030 A KR20167023030 A KR 20167023030A KR 20160125967 A KR20160125967 A KR 20160125967A
Authority
KR
South Korea
Prior art keywords
neuron model
instances
state variables
memory
neuron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
KR1020167023030A
Other languages
English (en)
Korean (ko)
Inventor
앤서니 사라
제프리 알렉산더 레빈
제프리 바긴스키 겔하르
Original Assignee
퀄컴 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 퀄컴 인코포레이티드 filed Critical 퀄컴 인코포레이티드
Publication of KR20160125967A publication Critical patent/KR20160125967A/ko
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/06Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
    • G06N3/063Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/10Interfaces, programming languages or software development kits, e.g. for simulating neural networks
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • G06N3/0454
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/0499Feedforward networks
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/082Learning methods modifying the architecture, e.g. adding, deleting or silencing nodes or connections

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computing Systems (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Physics (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computational Linguistics (AREA)
  • Artificial Intelligence (AREA)
  • Neurology (AREA)
  • Image Analysis (AREA)
  • Semiconductor Memories (AREA)
  • User Interface Of Digital Computer (AREA)
  • Stored Programmes (AREA)
KR1020167023030A 2014-02-28 2015-02-12 일반적인 뉴런 모델들의 효율적인 구현을 위한 방법 및 장치 Withdrawn KR20160125967A (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201461946051P 2014-02-28 2014-02-28
US61/946,051 2014-02-28
US14/267,394 2014-05-01
US14/267,394 US9672464B2 (en) 2014-02-28 2014-05-01 Method and apparatus for efficient implementation of common neuron models
PCT/US2015/015637 WO2015130476A2 (en) 2014-02-28 2015-02-12 Method and apparatus for efficient implementation of common neuron models

Publications (1)

Publication Number Publication Date
KR20160125967A true KR20160125967A (ko) 2016-11-01

Family

ID=54006937

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020167023030A Withdrawn KR20160125967A (ko) 2014-02-28 2015-02-12 일반적인 뉴런 모델들의 효율적인 구현을 위한 방법 및 장치

Country Status (7)

Country Link
US (1) US9672464B2 (enExample)
EP (1) EP3111378A2 (enExample)
JP (1) JP2017510890A (enExample)
KR (1) KR20160125967A (enExample)
CN (1) CN106068519B (enExample)
CA (1) CA2937945A1 (enExample)
WO (1) WO2015130476A2 (enExample)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180125734A (ko) * 2017-05-16 2018-11-26 한국전자통신연구원 파라미터 공유 장치 및 방법
WO2021137601A1 (ko) * 2019-12-30 2021-07-08 매니코어소프트주식회사 강화 학습 기반의 프로그램 최적화 방법

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10068170B2 (en) * 2013-09-23 2018-09-04 Oracle International Corporation Minimizing global error in an artificial neural network
US11507806B2 (en) * 2017-09-08 2022-11-22 Rohit Seth Parallel neural processor for Artificial Intelligence
US11195079B2 (en) * 2017-11-22 2021-12-07 Intel Corporation Reconfigurable neuro-synaptic cores for spiking neural network
US11347998B2 (en) * 2018-02-26 2022-05-31 Fredric William Narcross Nervous system on a chip
CN108830379B (zh) * 2018-05-23 2021-12-17 电子科技大学 一种基于参数量化共享的神经形态处理器
CN109886384B (zh) * 2019-02-15 2021-01-05 北京工业大学 一种基于鼠脑海马网格细胞重构的仿生导航方法
US11270195B2 (en) 2019-03-05 2022-03-08 International Business Machines Corporation Neuromorphic computing in dynamic random access memory

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5222196A (en) * 1990-02-20 1993-06-22 International Business Machines Corporation Neural network shell for application programs
JPH05128083A (ja) * 1991-10-31 1993-05-25 Ricoh Co Ltd 信号処理装置
US6167390A (en) * 1993-12-08 2000-12-26 3M Innovative Properties Company Facet classification neural network
EP1172763A3 (en) 2000-07-13 2008-11-05 International Business Machines Corporation Method and circuits for associating a norm to each component of an input pattern presented to a neural network
TW538381B (en) * 2000-07-13 2003-06-21 Ibm Method and circuits for associating a norm to each component of an input pattern presented to a neural network
US8027942B2 (en) * 2000-12-13 2011-09-27 International Business Machines Corporation Method and circuits for associating a complex operator to each component of an input pattern presented to an artificial neural network
JP4710931B2 (ja) 2008-07-09 2011-06-29 ソニー株式会社 学習装置、学習方法、およびプログラム
CN102947818B (zh) 2010-05-19 2015-07-22 加利福尼亚大学董事会 神经处理单元
US8650008B2 (en) 2010-08-05 2014-02-11 International Business Machines Corporation Method and system of developing corner models for various classes on nonlinear systems
KR101888468B1 (ko) 2011-06-08 2018-08-16 삼성전자주식회사 Stdp 기능 셀을 위한 시냅스, stdp 기능 셀 및 stdp 기능 셀을 이용한 뉴로모픽 회로
US9111224B2 (en) * 2011-10-19 2015-08-18 Qualcomm Incorporated Method and apparatus for neural learning of natural multi-spike trains in spiking neural networks
US9111225B2 (en) * 2012-02-08 2015-08-18 Qualcomm Incorporated Methods and apparatus for spiking neural computation
US9256823B2 (en) 2012-07-27 2016-02-09 Qualcomm Technologies Inc. Apparatus and methods for efficient updates in spiking neuron network
US9256215B2 (en) 2012-07-27 2016-02-09 Brain Corporation Apparatus and methods for generalized state-dependent learning in spiking neuron networks

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180125734A (ko) * 2017-05-16 2018-11-26 한국전자통신연구원 파라미터 공유 장치 및 방법
WO2021137601A1 (ko) * 2019-12-30 2021-07-08 매니코어소프트주식회사 강화 학습 기반의 프로그램 최적화 방법
US12026487B2 (en) 2019-12-30 2024-07-02 Moreh Corp. Method for optimizing program using reinforcement learning

Also Published As

Publication number Publication date
US9672464B2 (en) 2017-06-06
WO2015130476A3 (en) 2015-10-22
JP2017510890A (ja) 2017-04-13
WO2015130476A2 (en) 2015-09-03
CA2937945A1 (en) 2015-09-03
CN106068519A (zh) 2016-11-02
CN106068519B (zh) 2018-12-18
US20150248607A1 (en) 2015-09-03
EP3111378A2 (en) 2017-01-04

Similar Documents

Publication Publication Date Title
KR101793011B1 (ko) 스파이킹 네트워크들의 효율적인 하드웨어 구현
CN105637541B (zh) 用于神经模拟器的共享存储器架构
US9330355B2 (en) Computed synapses for neuromorphic systems
KR20160125967A (ko) 일반적인 뉴런 모델들의 효율적인 구현을 위한 방법 및 장치
KR20160076520A (ko) 인과적 현출성 시간 추론
KR20160123309A (ko) 확률적 스파이킹 베이지안망들에 대한 이벤트-기반 추론 및 학습
KR20160084401A (ko) 스파이킹 뉴럴 네트워크들에서 리플레이를 사용한 시냅스 학습의 구현
EP3097517A1 (en) Monitoring neural networks with shadow networks
US9959499B2 (en) Methods and apparatus for implementation of group tags for neural models
WO2015053864A1 (en) Compiling network descriptions to multiple platforms
KR20160145636A (ko) 스파이킹 뉴럴 네트워크에서의 글로벌 스칼라 값들에 의한 가소성 조절
KR20160135206A (ko) 역치하 변조를 통한 아날로그 신호 재구성 및 인식
KR101825937B1 (ko) 가소성 시냅스 관리
US9460384B2 (en) Effecting modulation by global scalar values in a spiking neural network
KR101782760B1 (ko) 시냅스 지연의 동적 할당 및 검사
US9418332B2 (en) Post ghost plasticity
US20140365413A1 (en) Efficient implementation of neural population diversity in neural system

Legal Events

Date Code Title Description
PA0105 International application

Patent event date: 20160823

Patent event code: PA01051R01D

Comment text: International Patent Application

PG1501 Laying open of application
PC1203 Withdrawal of no request for examination
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid