以下、図面を参照して種々の実施形態について詳細に説明する。なお、各図面において同一又は相当の部分に対しては同一の符号を附すこととする。
まず、円盤状の被加工物を処理するための処理装置、及び、当該処理装置に被処理体を搬送するための搬送装置を有する処理システムについて説明する。図1は、処理システムを例示する図である。処理システム1は、台2a〜2d、容器4a〜4d、ローダモジュールLM、アライナAN、ロードロックモジュールLL1,LL2、プロセスモジュールPM1〜PM6、トランスファーモジュールTF、及び、制御部MCを備えている。なお、台2a〜2dの個数、容器4a〜4dの個数、ロードロックモジュールLL1,LL2の個数、及び、プロセスモジュールPM1〜PM6の個数は限定されるものではなく、一以上の任意の個数であり得る。
台2a〜2dは、ローダモジュールLMの一縁に沿って配列されている。容器4a〜4dはそれぞれ、台2a〜2d上に搭載されている。容器4a〜4dの各々は、例えば、FOUP(Front Opening Unified Pod)と称される容器である。容器4a〜4dのそれぞれは、被加工物Wを収容するように構成されている。被加工物Wは、ウエハのように略円盤形状を有する。
ローダモジュールLMは、大気圧状態の搬送空間をその内部に画成するチャンバ壁を有している。この搬送空間内には搬送装置TU1が設けられている。搬送装置TU1は、例えば、多関節ロボットであり、制御部MCによって制御される。搬送装置TU1は、容器4a〜4dとアライナANとの間、アライナANとロードロックモジュールLL1〜LL2の間、ロードロックモジュールLL1〜LL2と容器4a〜4dの間で被加工物Wを搬送するように構成されている。
アライナANは、ローダモジュールLMと接続されている。アライナANは、被加工物Wの位置の調整(位置の較正)を行うように構成されている。図2は、アライナを例示する斜視図である。アライナANは、支持台6T、駆動装置6D、及び、センサ6Sを有している。支持台6Tは、鉛直方向に延びる軸線中心に回転可能な台であり、その上に被加工物Wを支持するように構成されている。支持台6Tは、駆動装置6Dによって回転される。駆動装置6Dは、制御部MCによって制御される。駆動装置6Dからの動力により支持台6Tが回転すると、当該支持台6T上に載置された被加工物Wも回転するようになっている。
センサ6Sは、光学センサであり、被加工物Wが回転されている間、被加工物Wのエッジを検出する。センサ6Sは、エッジの検出結果から、基準角度位置に対する被加工物WのノッチWN(或いは、別のマーカー)の角度位置のずれ量、及び、基準位置に対する被加工物Wの中心位置のずれ量を検出する。センサ6Sは、ノッチWNの角度位置のずれ量及び被加工物Wの中心位置のずれ量を制御部MCに出力する。制御部MCは、ノッチWNの角度位置のずれ量に基づき、ノッチWNの角度位置を基準角度位置に補正するための支持台6Tの回転量を算出する。制御部MCは、この回転量の分だけ支持台6Tを回転させるよう、駆動装置6Dを制御する。これにより、ノッチWNの角度位置を基準角度位置に補正することができる。また、制御部MCは、搬送装置TU1のエンドエフェクタ(end effector)上の所定位置に被加工物Wの中心位置が一致するよう、アライナANから被加工物Wを受け取る際の搬送装置TU1のエンドエフェクタの位置を、被加工物Wの中心位置のずれ量に基づき、制御する。
図2に戻り、ロードロックモジュールLL1及びロードロックモジュールLL2の各々は、ローダモジュールLMとトランスファーモジュールTFとの間に設けられている。ロードロックモジュールLL1及びロードロックモジュールLL2の各々は、予備減圧室を提供している。
トランスファーモジュールTFは、ロードロックモジュールLL1及びロードロックモジュールLL2にゲートバルブを介して接続されている。トランスファーモジュールTFは、減圧可能な減圧室を提供している。この減圧室には、搬送装置TU2が設けられている。搬送装置TU2は、例えば、多関節ロボットであり、制御部MCによって制御される。搬送装置TU2は、ロードロックモジュールLL1〜LL2とプロセスモジュールPM1〜PM6との間、及び、プロセスモジュールPM1〜PM6のうち任意の二つのプロセスモジュール間において、被加工物Wを搬送するように構成されている。
プロセスモジュールPM1〜PM6は、トランスファーモジュールTFにゲートバルブを介して接続されている。プロセスモジュールPM1〜PM6の各々は、被加工物Wに対してプラズマ処理といった専用の処理を行うよう構成された処理装置である。
この処理システム1において被加工物Wの処理が行われる際の一連の動作は以下の通り例示される。ローダモジュールLMの搬送装置TU1が、容器4a〜4dの何れかから被加工物Wを取り出し、当該被加工物WをアライナANに搬送する。次いで、搬送装置TU1は、その位置が調整された被加工物WをアライナANから取り出して、当該被加工物WをロードロックモジュールLL1及びロードロックモジュールLL2のうち一方のロードロックモジュールに搬送する。次いで、一方のロードロックモジュールが、予備減圧室の圧力を所定の圧力に減圧する。次いで、トランスファーモジュールTFの搬送装置TU2が、一方のロードロックモジュールから被加工物Wを取り出し、当該被加工物WをプロセスモジュールPM1〜PM6のうち何れかに搬送する。そして、プロセスモジュールPM1〜PM6のうち一以上のプロセスモジュールが被加工物Wを処理する。そして、搬送装置TU2が、処理後の被加工物WをプロセスモジュールからロードロックモジュールLL1及びロードロックモジュールLL2のうち一方のロードロックモジュールに搬送する。次いで、搬送装置TU1が被加工物Wを一方のロードロックモジュールから容器4a〜4dの何れかに搬送する。
この処理システム1は、上述したように制御部MCを備えている。制御部MCは、プロセッサ、メモリといった記憶装置、表示装置、入出力装置、通信装置等を備えるコンピュータであり得る。上述した処理システム1の一連の動作は、記憶装置に記憶されたプログラムに従った制御部MCによる処理システム1の各部の制御により、実現されるようになっている。
図3は、プロセスモジュールPM1〜PM6の何れかとして採用され得るプラズマ処理装置の一例を示す図である。図3に示すプラズマ処理装置10は、容量結合型プラズマエッチング装置である。プラズマ処理装置10は、略円筒形状のチャンバ本体12を備えている。チャンバ本体12は、例えば、アルミニウムから形成されており、その内壁面には、陽極酸化処理が施され得る。このチャンバ本体12は保安接地されている。
チャンバ本体12の底部上には、略円筒形状の支持部14が設けられている。支持部14は、例えば、絶縁材料から構成されている。支持部14は、チャンバ本体12内に設けられており、チャンバ本体12の底部から上方に延在している。また、チャンバ本体12によって提供されるチャンバS内には、載置台PDが設けられている。載置台PDは、支持部14によって支持されている。
載置台PDは、下部電極LE及び静電チャックESCを有している。下部電極LEは、第1プレート18a及び第2プレート18bを含んでいる。第1プレート18a及び第2プレート18bは、例えばアルミニウムといった金属から構成されており、略円盤形状をなしている。第2プレート18bは、第1プレート18a上に設けられており、第1プレート18aに電気的に接続されている。
第2プレート18b上には、静電チャックESCが設けられている。静電チャックESCは、導電膜である電極を一対の絶縁層又は絶縁シート間に配置した構造を有しており、略円盤形状を有している。静電チャックESCの電極には、直流電源22がスイッチ23を介して電気的に接続されている。この静電チャックESCは、直流電源22からの直流電圧により生じたクーロン力等の静電力により被加工物Wを吸着する。これにより、静電チャックESCは、被加工物Wを保持することができる。
第2プレート18bの周縁部上には、フォーカスリングFRが設けられている。このフォーカスリングFRは、被加工物Wのエッジ及び静電チャックESCを囲むように設けられている。フォーカスリングFRは、第1部分P1及び第2部分P2を有している(図8参照)。第1部分P1及び第2部分P2は環状板形状を有している。第2部分P2は、第1部分P1上に設けられている。第2部分P2の内縁P2iは第1部分P1の内縁P1iの直径よりも大きい直径を有している。被加工物Wは、そのエッジ領域が、フォーカスリングFRの第1部分P1上に位置するように、静電チャックESC上に載置される。このフォーカスリングFRは、シリコン、炭化ケイ素、酸化シリコンといった種々の材料のうち何れかから形成され得る。
第2プレート18bの内部には、冷媒流路24が設けられている。冷媒流路24は、温調機構を構成している。冷媒流路24には、チャンバ本体12の外部に設けられたチラーユニットから配管26aを介して冷媒が供給される。冷媒流路24に供給された冷媒は、配管26bを介してチラーユニットに戻される。このように、冷媒流路24とチラーユニットとの間では、冷媒が循環される。この冷媒の温度を制御することにより、静電チャックESCによって支持された被加工物Wの温度が制御される。
載置台PDには、当該載置台PDを貫通する複数(例えば、三つ)の貫通孔25が形成されている。これら、複数の貫通孔25には、複数本(例えば、3本)のリフトピン25aがそれぞれ挿入されている。なお、図3においては、一本のリフトピン25aが挿入された一つの貫通孔25が描かれている。
図4は、載置台PDを構成する静電チャックESCを示す平面図である。図4に示すように、複数のリフトピン25aは、静電チャックESCの中心軸線、即ち載置台PDの中心軸線を共有する円に直交し且つ鉛直方向に延びる複数の直線に沿ってそれぞれ配置されている。複数のリフトピン25aは、この中心軸線に対して周方向に等間隔で配置され得る。これらリフトピン25aは、例えばアクチュエータによって昇降するリンクに支持されている。リフトピン25aは、その先端が静電チャックESCの上方に突き出た状態で、当該リフトピン25aの先端に被加工物Wを支持する。しかる後に、リフトピン25aが下降することにより被加工物Wが静電チャックESC上に載置される。また、被加工物Wのプラズマ処理後には、リフトピン25aが上昇することにより、被加工物Wが静電チャックESCから引き離される。即ち、リフトピン25aは、被加工物Wのローディング及びアンローディングのために用いられる。
また、プラズマ処理装置10には、ガス供給ライン28が設けられている。ガス供給ライン28は、伝熱ガス供給機構からの伝熱ガス、例えばHeガスを、静電チャックESCの上面と被加工物Wの裏面との間に供給する。
また、プラズマ処理装置10は、上部電極30を備えている。上部電極30は、載置台PDの上方において、当該載置台PDと対向配置されている。上部電極30は、絶縁性遮蔽部材32を介して、チャンバ本体12の上部に支持されている。上部電極30は、天板34及び支持体36を含み得る。天板34はチャンバSに面しており、当該天板34には複数のガス吐出孔34aが設けられている。この天板34は、シリコン又は石英から形成され得る。或いは、天板34は、アルミニウム製の母材の表面に酸化イットリウムといった耐プラズマ性の膜を形成することによって構成され得る。
支持体36は、天板34を着脱自在に支持するものであり、例えばアルミニウムといった導電性材料から構成され得る。この支持体36は、水冷構造を有し得る。支持体36の内部には、ガス拡散室36aが設けられている。このガス拡散室36aからは、ガス吐出孔34aに連通する複数のガス通流孔36bが下方に延びている。また、支持体36には、ガス拡散室36aに処理ガスを導くガス導入口36cが形成されており、このガス導入口36cには、ガス供給管38が接続されている。
ガス供給管38には、バルブ群42及び流量制御器群44を介して、ガスソース群40が接続されている。ガスソース群40は、複数種のガス用の複数のガスソースを含んでいる。バルブ群42は複数のバルブを含んでおり、流量制御器群44はマスフローコントローラといった複数の流量制御器を含んでいる。ガスソース群40の複数のガスソースはそれぞれ、バルブ群42の対応のバルブ及び流量制御器群44の対応の流量制御器を介して、ガス供給管38に接続されている。
また、プラズマ処理装置10では、チャンバ本体12の内壁に沿ってデポシールド46が着脱自在に設けられている。デポシールド46は、支持部14の外周にも設けられている。デポシールド46は、チャンバ本体12にエッチング副生物(デポ)が付着することを防止するものであり、アルミニウム材に酸化イットリウム等のセラミックスを被覆することにより構成され得る。
チャンバ本体12の底部側、且つ、支持部14とチャンバ本体12の側壁との間には排気プレート48が設けられている。排気プレート48は、例えば、アルミニウム材に酸化イットリウム等のセラミックスを被覆することにより構成され得る。排気プレート48には、その板厚方向に貫通する複数の孔が形成されている。この排気プレート48の下方、且つ、チャンバ本体12には、排気口12eが設けられている。排気口12eには、排気管52を介して排気装置50が接続されている。排気装置50は、圧力調整弁及びターボ分子ポンプなどの真空ポンプを有しており、チャンバ本体12内の空間を所望の真空度まで減圧することができる。また、チャンバ本体12の側壁には被加工物Wの搬入出口12gが設けられており、この搬入出口12gはゲートバルブ54により開閉可能となっている。
また、プラズマ処理装置10は、第1の高周波電源62及び第2の高周波電源64を更に備えている。第1の高周波電源62は、プラズマ生成用の第1の高周波を発生する電源であり、例えば、27〜100MHzの周波数を有する高周波を発生する。第1の高周波電源62は、整合器66を介して上部電極30に接続されている。整合器66は、第1の高周波電源62の出力インピーダンスと負荷側(上部電極30側)の入力インピーダンスを整合させるための回路を有している。なお、第1の高周波電源62は、整合器66を介して下部電極LEに接続されていてもよい。
第2の高周波電源64は、被加工物Wにイオンを引き込むための第2の高周波を発生する電源であり、例えば、400kHz〜13.56MHzの範囲内の周波数の高周波を発生する。第2の高周波電源64は、整合器68を介して下部電極LEに接続されている。整合器68は、第2の高周波電源64の出力インピーダンスと負荷側(下部電極LE側)の入力インピーダンスを整合させるための回路を有している。
このプラズマ処理装置10では、複数のガスソースのうち選択された一以上のガスソースからのガスがチャンバSに供給される。また、チャンバSの圧力が排気装置50によって所定の圧力に設定される。さらに、第1の高周波電源62からの第1の高周波によってチャンバS内のガスが励起される。これにより、プラズマが生成される。そして、発生した活性種によって被加工物Wが処理される。なお、必要に応じて、第2の高周波電源64の第2の高周波に基づくバイアスにより、被加工物Wにイオンが引き込まれてもよい。
以下、測定器について説明する。図5は、測定器を例示する斜視図である。図6は、図5に示す測定器を底面側から見て示す平面図である。図5及び図6に示す測定器100は、ベース基板102を備えている。ベース基板102は、例えば、シリコンから形成されており、被加工物Wの形状と同様の形状、即ち略円盤形状を有している。ベース基板102の直径は、被加工物Wの直径と同様の直径であり、例えば、300mmである。測定器100の形状及び寸法は、このベース基板102の形状及び寸法によって規定される。したがって、測定器100は、被加工物Wの形状と同様の形状を有し、且つ、被加工物Wの寸法と同様の寸法を有する。また、ベース基板102のエッジには、ノッチ102N(或いは、別のマーカー)が形成されている。
ベース基板102は、下側部分102a及び上側部分102bを有している。下側部分102aは、測定器100が静電チャックESCの上方に配置されるときに、上側部分102bよりも静電チャックESCの近くに位置する部分である。ベース基板102の下側部分102aには、静電容量測定用の複数の第1センサ104A〜104Dが設けられている。なお、測定器100に設けられる第1センサの個数は、三個以上の任意の個数であり得る。複数の第1センサ104A〜104Dは、ベース基板102のエッジに沿って、例えば当該エッジの全周において等間隔に、配列されている。具体的には、複数の第1センサ104A〜104Dの各々の前側端面104fがベース基板102の下側部分102aのエッジに沿うように設けられている。
ベース基板102の上側部分102bの上面は、凹部102rを提供している。凹部102rは、中央領域102c及び複数の放射領域102hを含んでいる。中央領域102cは、中心軸線AX100と交差する領域である。中心軸線AX100は、ベース基板102の中心を板厚方向に通過する軸線である。中央領域102cには、回路基板106が設けられている。複数の放射領域102hは、中央領域102cから複数の第1センサ104A〜104Dが配置されている領域の上方まで中心軸線AX100に対して放射方向に延在している。複数の放射領域102hには、複数の第1センサ104A〜104Dと回路基板106とをそれぞれ電気的に接続するための配線群108A〜108Dが設けられている。なお、複数の第1センサ104A〜104Dはベース基板102の上側部分102bに設けられていてもよい。
また、ベース基板102には、静電容量測定用の複数の第2センサ105A〜105Cが設けられている。なお、測定器100に設けられる第2センサの個数は、一以上の任意の個数であり得る。一実施形態では、三つの第2センサ105A〜105Cが、ベース基板102の中心軸線AX100を共有する円に沿って、周方向に等間隔で配置されている。なお、第2センサ105A〜105Cの各々の後述の底部電極と中心軸線AX100との間の距離は、載置台PDの中心軸線とリフトピン25aの各々との間の距離に略一致し得る。
以下、第1センサについて詳細に説明する。図7は、センサの一例を示す斜視図である。図8は、図7のVIII−VIII線に沿ってとった断面図であり、センサと共に測定器のベース基板及びフォーカスリングを示している。図9は、図8のIX−IX線に沿ってとった断面図である。図7〜図9に示す第1センサ104は、測定器100の複数の第1センサ104A〜104Dとして利用されるセンサであり、一例では、チップ状の部品として構成されている。なお、以下の説明では、XYZ直交座標系を適宜参照する。X方向は、第1センサ104の前方向を示しており、Y方向は、X方向に直交する一方向であって第1センサ104の幅方向を示しており、Z方向は、X方向及びY方向に直交する方向であって第1センサ104の上方向を示している。
図7〜図9に示すように、第1センサ104は、前側端面104f、上面104t、下面104b、一対の側面104s、及び、後側端面104rを有している。前側端面104fは、X方向において第1センサ104の前側表面を構成している。第1センサ104は、前側端面104fが中心軸線AX100に対して放射方向に向くように、測定器100のベース基板102に搭載される(図5参照)。また、第1センサ104がベース基板102に搭載されている状態では、前側端面104fは、ベース基板102のエッジに沿って延在する。したがって、測定器100が静電チャックESC上に配置されるときに、前側端面104fは、フォーカスリングFRの内縁に対面する。
後側端面104rは、X方向において第1センサ104の後側表面を構成している。第1センサ104がベース基板102に搭載されている状態では、後側端面104rは、前側端面104fよりも中心軸線AX100の近くに位置する。上面104tはZ方向において第1センサ104の上側表面を構成しており、下面104bはZ方向において第1センサ104の下側表面を構成している。また、一対の側面104sは、Y方向において第1センサ104の表面を構成している。
第1センサ104は、電極(側部電極)143を有している。第1センサ104は、電極141及び電極142を更に有していてもよい。電極141は、導体から形成されている。電極141は、第1部分141aを有している。図7及び図8に示すように、第1部分141aは、X方向及びY方向に延在している。
電極142は、導体から形成されている。電極142は、第2部分142aを有している。第2部分142aは、第1部分141aの上で延在している。第1センサ104内において、電極142は、電極141から絶縁されている。図7及び図8に示すように、第2部分142aは、第1部分141aの上で、X方向及びY方向に延在している。
電極143は、導体から形成されたセンサ電極である。電極143は、電極141の第1部分141a及び電極142の第2部分142aの上に設けられている。電極143は、第1センサ104内において電極141及び電極142から絶縁されている。電極143は、前面143fを有している。この前面143fは、第1部分141a及び第2部分142aに交差する方向に延びている。また、前面143fは、第1センサ104の前側端面104fに沿って延在している。一実施形態では、前面143fは、第1センサ104の前側端面104fの一部を構成している。或いは、第1センサ104は、電極143の前面143fの前側に当該前面143fを覆う絶縁膜を有していてもよい。
図7〜図9に示すように、電極141及び電極142は、電極143の前面143fが配置されている領域の側(X方向)で開口し、且つ、電極143の周囲を囲むように延在していてもよい。即ち、電極141及び電極142は、電極143の上方、後方、及び、側方において、当該電極143を囲むように延在していてもよい。
また、第1センサ104の前側端面104fは、所定の曲率を有する曲面であり得る。この場合に、前側端面104fは、当該前側端面の任意の位置で一定の曲率を有しており、当該前側端面104fの曲率は、測定器100の中心軸線AX100と当該前側端面104fとの間の距離の逆数であり得る。この第1センサ104は、前側端面104fの曲率中心が中心軸線AX100に一致するように、ベース基板102に搭載される。
また、第1センサ104は、基板部144、絶縁領域146〜148、パッド151〜153、及び、ヴィア配線154を更に有し得る。基板部144は、本体部144m及び表層部144fを有している。本体部144mは、例えばシリコンから形成されている。表層部144fは、本体部144mの表面を覆っている。表層部144fは、絶縁材料から形成されている。表層部144fは、例えば、シリコンの熱酸化膜である。
電極142の第2部分142aは、基板部144の下方において延在しており、基板部144と電極142との間には、絶縁領域146が設けられている。絶縁領域146は、例えば、SiO2、SiN、Al2O3、又は、ポリイミドから形成されている。
電極141の第1部分141aは、基板部144及び電極142の第2部分142aの下方において延在している。電極141と電極142との間には絶縁領域147が設けられている。絶縁領域147は、例えば、SiO2、SiN、Al2O3、又は、ポリイミドから形成されている。
絶縁領域148は、第1センサ104の上面104tを構成している。絶縁領域148は、例えば、SiO2、SiN、Al2O3、又は、ポリイミドから形成されている。この絶縁領域148には、パッド151〜153が形成されている。パッド153は、導体から形成されており、電極143に接続されている。具体的には、絶縁領域146、電極142、絶縁領域147、及び、電極141を貫通するヴィア配線154によって、電極143とパッド153が互いに接続されている。ヴィア配線154の周囲には絶縁体が設けられており、当該ヴィア配線154は電極141及び電極142から絶縁されている。パッド153は、ベース基板102内に設けられたヴィア配線123、及び、凹部102rの放射領域102hに設けられた配線183を介して回路基板106に接続されている。パッド151及びパッド152も同様に導体から形成されている。パッド151及びパッド152はそれぞれ、対応のヴィア配線を介して、電極141、電極142に接続されている。また、パッド151及びパッド152は、ベース基板102に設けられた対応のヴィア配線及び凹部102rの放射領域102hに設けられた対応の配線を介して回路基板106に接続される。
以下、第2センサについて詳細に説明する。図10は、図6のX−X線に沿ってとった断面図である。なお、図10では、リフトピン25aによって測定器100が支持されている状態を示している。以下、図5、図6、及び、図10を参照する。第2センサ105A〜105Cの各々は、底部電極161を含んでいる。一実施形態では、第2センサ105A〜105Cの各々は、周辺電極162a〜162d、及び、貫通電極165a〜165eを更に含んでいる。底部電極161及び周辺電極162a〜162dは、ベース基板102の底面に沿って形成されている。貫通電極165a〜165eは、ベース基板102を貫通している。底部電極161、周辺電極162a〜162d、及び、貫通電極165a〜165eは、導体から形成されている。
底部電極161は、円形状を有し得る。底部電極161の大きさは、例えばリフトピン25aの上端面の大きさと略同じである。周辺電極162a〜162dは、底部電極161を囲む円上に配列されている。周辺電極162a〜162dの各々は、底部電極1611の中心を共有し且つ異なる半径を有する二つの円弧によって規定される平面形状を有している。また、周辺電極162a〜162dは、底部電極161の中心に対して周方向に配列されている。ベース基板102の底面には、絶縁膜169が形成されている。絶縁膜169は、底部電極161及び周辺電極162a〜162dを覆っている。この絶縁膜169は、例えばSiO2、SiN、Al2O3、又は、ポリイミドから形成されている。
複数の貫通電極165a〜165eの一端は、周辺電極162a〜162d及び底部電極161にそれぞれ接続されている。また、複数の貫通電極165a〜165eのそれぞれの他端は、回路基板106に電気的に接続されている(図5参照)。複数の貫通電極165a〜165eは、例えばTSV(Through−Silicon Via)技術を用いて形成され得る。
以下、回路基板106の構成について説明する。図11は、測定器の回路基板の構成を例示する図である。図11に示すように、回路基板106は、高周波発振器171、複数のC/V変換回路172A〜172D、複数のC/V変換回路180A〜180O、A/D変換器173、プロセッサ174、記憶装置175、通信装置176、及び、電源177を有している。
複数の第1センサ104A〜104Dの各々は、複数の配線群108A〜108Dのうち対応の配線群を介して回路基板106に接続されている。また、複数の第1センサ104A〜104Dの各々は、対応の配線群に含まれる幾つかの配線を介して、複数のC/V変換回路172A〜172Dのうち対応のC/V変換回路に接続されている。また、複数の第2センサ105A〜105Cの各々は、複数の配線184を介して、複数のC/V変換回路180A〜180Oのうち対応のC/V変換回路(一実施形態では五つのC/V変換回路)に接続されている。以下、複数の第1センサ104A〜104Dの各々と同構成の一つの第1センサ104、複数の配線群108A〜108Dの各々と同構成の一つの配線群108、複数のC/V変換回路172A〜172Sの各々と同構成の一つのC/V変換回路172、複数の第2センサ105A〜105Cの各々と同構成の一つの第2センサ105、及び、複数のC/V変換回路180A〜180Oの各々と同構成のC/V変換回路180について説明する。
配線群108は、配線181〜183を含んでいる。配線181の一端は、電極141に接続されたパッド151に接続されている。この配線181は、回路基板106のグランドGCに接続されたグランド電位線GLに接続されている。なお、配線181は、グランド電位線GLにスイッチSWGを介して接続されていてもよい。また、配線182の一端は、電極142に接続されたパッド152に接続されており、配線182の他端はC/V変換回路172に接続されている。また、配線183の一端は、電極143に接続されたパッド153に接続されており、配線183の他端はC/V変換回路172に接続されている。
第2センサ105の周辺電極162a〜162d及び底部電極161は、回路基板106に対して個別に接続されている。即ち、周辺電極162a〜162dにそれぞれ接続された貫通電極165a〜165dと、底部電極161に接続された貫通電極165eとは、個別の配線184を介して複数のC/V変換回路180(一実施形態では五つのC/V変換回路)にそれぞれ接続されている。
高周波発振器171は、バッテリーといった電源177に接続されており、当該電源177からの電力を受けて高周波信号を発生するよう構成されている。なお、電源177は、プロセッサ174、記憶装置175、及び、通信装置176にも接続されている。高周波発振器171は、複数の出力線を有している。高周波発振器171は、発生した高周波信号を複数の出力線を介して、配線182、配線183、及び、配線184に与えるようになっている。したがって、高周波発振器171は、第1センサ104の電極142及び電極143に電気的に接続されており、当該高周波発振器171からの高周波信号は、電極142及び電極143に与えられるようになっている。また、高周波発振器171は、第2センサ105の底部電極161及び周辺電極162a〜162dに電気的に接続されており、当該高周波発振器171からの高周波信号は、底部電極161及び周辺電極162a〜162dに与えられるようになっている。
C/V変換回路172の入力には配線182及び配線183が接続されている。即ち、C/V変換回路172の入力には、第1センサ104の電極142及び電極143が接続されている。また、複数のC/V変換回路180の入力には、底部電極161及び周辺電極162a〜162dがそれぞれ接続されている。C/V変換回路172及びC/V変換回路180は、その入力における電圧振幅から、当該入力に接続された電極の静電容量を表す電圧信号を生成し、当該電圧信号を出力するよう構成されている。なお、C/V変換回路172に接続された電極の静電容量が大きいほど、当該C/V変換回路172が出力する電圧信号の電圧の大きさは大きくなる。同様に、C/V変換回路180に接続された電極の静電容量が大きいほど、当該C/V変換回路180が出力する電圧信号の電圧の大きさは大きくなる。
A/D変換器173の入力には、複数のC/V変換回路172A〜172D及び複数のC/V変換回路180A〜180Oの出力が接続している。また、A/D変換器173は、プロセッサ174に接続している。A/D変換器173は、プロセッサ174からの制御信号によって制御され、複数のC/V変換回路172A〜172Dの出力信号(電圧信号)及び複数のC/V変換回路180A〜180Oの出力信号(電圧信号)を、デジタル値に変換する。即ち、A/D変換器173は、電極143の静電容量を表す第1の測定値を生成する。また、A/D変換器173は、底部電極161の静電容量を表す第2の測定値を生成し、周辺電極162a〜162dそれぞれの静電容量を表す複数の第3の測定値を生成する。A/D変換器173は、第1の測定値、第2の測定値、及び、第3の測定値をプロセッサ174に出力する。
プロセッサ174には記憶装置175が接続されている。記憶装置175は、揮発性メモリといった記憶装置であり、後述する測定データを記憶するよう構成されている。また、プロセッサ174には、別の記憶装置178が接続されている。記憶装置178は、不揮発性メモリといった記憶装置であり、プロセッサ174によって読み込まれて実行されるプログラムが記憶されている。
通信装置176は、任意の無線通信規格に準拠した通信装置である。例えば、通信装置176は、Bluetooth(登録商標)に準拠している。通信装置176は、記憶装置175に記憶されている測定データを無線送信するように構成されている。
プロセッサ174は、上述したプログラムを実行することにより、測定器100の各部を制御するように構成されている。例えば、プロセッサ174は、電極142、電極143、底部電極161、及び、周辺電極162a〜162dに対する高周波発振器171からの高周波信号の供給、記憶装置175に対する電源177からの電力供給、通信装置176に対する電源177からの電力供給等を制御するようになっている。さらに、プロセッサ174は、上述したプログラムを実行することにより、第1〜第3の測定値の取得、第1〜第3の測定値の記憶装置175への記憶、及び、第1〜第3の測定値の送信等を実行するようになっている。
以上説明した測定器100では、第1センサ104A〜104Dによって提供される複数の電極143(側部電極)がベース基板102のエッジに沿って配列されている。測定器100がフォーカスリングFRによって囲まれた領域に配置されている状態では、複数の電極143はフォーカスリングFRの内縁と対面する。これら電極143における電圧振幅から生成される複数の第1の測定値は、複数の電極143それぞれとフォーカスリングとの間の距離を反映する静電容量を表している。なお、静電容量Cは、C=εS/dで表される。εは電極143の前面143fとフォーカスリングFRの内縁との間の媒質の誘電率であり、Sは電極143の前面143fの面積であり、dは電極143の前面143fとフォーカスリングFRの内縁との間の距離と見なすことができる。したがって、測定器100によれば、被加工物Wを模した当該測定器100とフォーカスリングFRとの相対的な位置関係を反映する測定データが得られる。例えば、測定器100によって取得される複数の第1の測定値は、電極143の前面143fとフォーカスリングFRの内縁との間の距離が大きくなるほど、小さくなる。
また、測定器100では、第2センサ105A〜105Cそれぞれの底部電極161が、ベース基板102の底面に沿って配置されている。底部電極161における電圧振幅から生成される第2の測定値は、底部電極161と測定器100の下方にある物体との間の静電容量を表している。即ち、第2の測定値は、底部電極161と測定器100の下方にある物体との相対的位置関係を反映している。一実施形態では、第2の測定値は、底部電極161と測定器100の下方にある物体であるリフトピン25aとの相対的位置関係を反映している。具体的には、第2の測定値は、底部電極161とリフトピン25aの先端とが対面しているときには、大きくなり、一方、底部電極161の位置がリフトピン25aの先端位置からずれている場合には、小さくなる。上述したように、第2センサ105A〜105Cのそれぞれ底部電極161と測定器100の中心軸線AX100との間の位置関係は、載置台PDの中心軸線とリフトピン25aのそれぞれとの位置関係に略一致している。したがって、第2の測定値が所定値以上の値である場合には、リフトピン25aの下降によって測定器100は、フォーカスリングFRによって囲まれた領域に配置されたものと確認され得る。故に、第2の測定値によれば、測定器100がフォーカスリングFRに囲まれた領域内で載置台PD上に配置されたか否かを確認することができる。かかる第2の測定値を用いることにより、上述した第1の測定値の信頼性を確認することが可能となる。したがって、測定器100によれば、被加工物Wを模した当該測定器100とフォーカスリングFRとの位置関係を反映する信頼性の高いデータを取得することが可能となる。
また、第2センサ105A〜105Cの各々には、底部電極161を囲むように周辺電極162a〜162dが設けられている。これら周辺電極162a〜162dのそれぞれにおける電圧振幅から求められる複数の第3の測定値を第2の測定値と共に用いることにより、測定器100がフォーカスリングFRに囲まれた領域内で載置台PD上に配置されたか否かをより正確に確認することができる。
また、上述したように、測定器100に搭載される第1センサ104では、電極143(センサ電極)が、電極141の上に設けられており、電極141と電極143との間には電極142の第2部分が介在している。この第1センサ104の利用時には、スイッチSWGが閉じられて電極141の電位がグランド電位に設定され、電極142と電極143には高周波信号が供給される。このとき、電極143の電圧振幅は、当該電極143に対して電極141が設けられている方向、即ち第1センサ104の下方からの静電容量の影響を受けず、特定方向、即ち、電極143の前面143fが向いている方向(X方向)における静電容量を反映した電圧振幅となる。したがって、第1センサ104によれば、特定方向に高い指向性をもって静電容量を測定することが可能となる。
また、電極141及び電極142は、電極143の前面が配置されている領域の側(X方向)で開口し、且つ、電極143の周囲を囲むように延在している。したがって、電極141及び電極142によって、電極143が特定方向以外の方向に対して遮蔽される。故に、静電容量の測定において、特定方向に対する第1センサ104の指向性が更に向上される。
また、第1センサ104の前側端面104fは所定の曲率を有する曲面として構成されており、電極143の前面143fは、前側端面104fに沿って延在している。したがって、電極143の前面143fの各位置とフォーカスリングFRの内縁との間の径方向の距離を略等距離に設定することができる。故に、静電容量の測定の精度が更に向上される。
以下、測定器100に搭載することができる第1センサの別の例について説明する。図12は、第1センサの別の例を示す縦断面図である。図12には、第1センサ204の縦断面図が示されており、また、第1センサ204と共にフォーカスリングFRが示されている。
第1センサ204は、電極241、電極242、及び、電極243を有している。第1センサ204は、基板部244及び絶縁領域247を更に有し得る。基板部244は、本体部244m及び表層部244fを有している。本体部244mは、例えばシリコンから形成されている。表層部244fは本体部244mの表面を覆っている。表層部244fは絶縁材料から形成されている。表層部244fは、例えば、シリコンの熱酸化膜である。
基板部244は、上面244a、下面244b、及び、前側端面244cを有している。電極242は、基板部244の下面244bの下方に設けられており、X方向及びY方向に延在している。また、電極241は、絶縁領域247を介して電極242の下方に設けられており、X方向及びY方向に延在している。
基板部244の前側端面244cは、段状に形成されている。前側端面244cの下側部分244dは、当該前側端面244cの上側部分244uよりもフォーカスリングFRの側に向けて突出している。電極243は、前側端面244cの上側部分244uに沿って延在している。
この第1センサ204を測定器100のセンサとして用いる場合には、電極241が配線181に接続され、電極242が配線182に接続され、電極243が配線183に接続される。
第1センサ204においては、センサ電極である電極243が、電極241及び電極242によって、第1センサ204の下方に対して遮蔽されている。したがって、この第1センサ204によれば、特定方向、即ち、電極243の前面243fが向いている方向(X方向)に高い指向性をもって静電容量を測定することが可能となる。
以下、第2センサ105A〜105Cに代えて測定器100に搭載することができる第2センサの別の例について説明する。図13の(a)は、別の例の第2センサの複数の電極を測定器の底面側から見て示す平面図であり、図13の(b)は第2センサを測定器の上面側からみて示す平面図である。また、図14は、図13の(b)のXIV−XIV線に沿ってとった断面図である。なお、図14では、リフトピン25aによって測定器100が支持されている状態を示している。
第2センサ305は、複数の電極365を含んでいる。複数の電極365は、ベース基板102の上面から当該ベース基板102の板厚方向に延びるよう、ベース基板102に設けられている。第2センサ305では、複数の電極365は、ベース基板102を貫通している。複数の電極365の各々は、ベース基板102の底面の側に端面365aを提供している。複数の電極365の端面365aは、底部電極及び複数の周辺電極を構成している。具体的には、図13の(a)に示すように、複数の電極365の端面365aのうち、中央の円形の領域361内に存在する幾つかの電極365の端面365aは底部電極を構成している。また、領域361を囲む周辺領域362a〜362dのそれぞれに存在する幾つかの電極365の端面365aが、周辺電極を構成している。なお、図13に示す例では、周辺領域の個数は四つである。これらの周辺領域362a〜362dは、異なる半径を有する二つの円弧によって規定され、領域361の中心に対して周方向に配列されている。図14に示すように、ベース基板102の底面には、絶縁膜169が形成されている。この絶縁膜169は、複数の電極365の端面365aを覆っている。
ベース基板102の上面には、周辺領域362a〜362d及び領域361にそれぞれ対向し、且つ、周辺領域362a〜362d及び領域361とそれぞれ略同形状を有するパターン電極366a〜366eが形成されている。周辺領域362aにおいて端面365aを提供する電極365は、パターン電極366aに接続している。周辺領域362bにおいて端面365aを提供する電極365は、パターン電極366bに接続している。周辺領域362cにおいて端面365aを提供する電極365は、パターン電極366cに接続している。周辺領域362dにおいて端面365aを提供する電極365は、パターン電極366dに接続している。また、領域361において端面365aを提供する電極365は、パターン電極366eに接続している。上述した第2センサ105A〜105Cの各々の作成においては貫通電極165a〜165eとは別に底部電極及び周辺電極を形成する工程が必要である。一方、第2センサ305では貫通電極165a〜165eと同様にベース基板102の板厚方向に延びる複数の電極365が底部電極及び周辺電極を提供するので、第2センサ305の作成においては底部電極及び周辺電極を形成する別途の工程が不要となる。
以下、第2センサ105A〜105Cに代えて測定器100に搭載することができる第2センサの更に別の例について説明する。図15は、第2センサの更に別の例を示す断面図である。
図15に示す第2センサ405は、複数の電極465を有している。複数の電極465は、ベース基板102の上面から当該ベース基板102の板厚方向に延びるよう、ベース基板102に設けられている。第2センサ405では、複数の電極465は、ベース基板102の上面と底面との間の途中において端面465aを提供している。第2センサ305の複数の電極365の端面365aと同様に、複数の電極465の端面465aは、底部電極及び複数の周辺電極を構成している。第2センサ405を搭載する測定器100では、ベース基板102は、例えばガラス基板であり得る。第2センサ405の作成においても、底部電極及び複数の周辺電極を別途に形成する工程が不要となる。
以下、第2センサ105A〜105Cに代えて測定器100に搭載することができる第2センサの更に別の例について説明する。図16は、第2センサの更に別の例を示す断面図である。
図16に示す第2センサ505は、第2センサ305と同様に、領域361及び周辺領域362a〜362dの各々に配置された複数の電極365を有している。そして、第2センサ505は、包囲電極370a〜370eを更に有している。包囲電極370a〜370eは、導体から形成されており、第2センサ505内において電極365から絶縁されている。包囲電極370aは、周辺領域362a内に配置された一群の電極365の端面365aを一括で囲むようにベース基板の底面に沿って形成されている。包囲電極370aにはベース基板を貫通するヴィア電極371aが接続されている。また、包囲電極370bは、周辺領域362b内に配置された一群の電極365の端面365aを一括で囲むようにベース基板の底面に沿って形成されている。包囲電極370bにはベース基板を貫通するヴィア電極371bが接続されている。また、包囲電極370cは、周辺領域362c内に配置された一群の電極365の端面365aを一括で囲むようにベース基板の底面に沿って形成されている。包囲電極370cにはベース基板を貫通するヴィア電極371cが接続されている。また、包囲電極370dは、周辺領域362d内に配置された一群の電極365の端面365aを一括で囲むようにベース基板の底面に沿って形成されている。包囲電極370dにはベース基板を貫通するヴィア電極371dが接続されている。また、包囲電極370eは、領域361内に配置された一群の電極365の端面365aを一括で囲むようにベース基板の底面に沿って形成されている。包囲電極370eにはベース基板を貫通するヴィア電極371eが接続されている。ヴィア電極371a〜371eの各々には、高周波発振器171が電気的に接続されており、包囲電極370a〜370eの各々に高周波信号が与えられるようになっている。第2センサ505では、一群の電極365の端面365aが、包囲電極370a〜370eのうち当該一群の電極365の端面365aを囲む包囲電極によって、当該包囲電極の外側に対して遮蔽される。したがって、静電容量の測定において、第2センサ505の指向性が向上される。
以上、種々の実施形態について説明してきたが、上述した実施形態に限定されることなく種々の変形態様を構成可能である。例えば、プロセスモジュールPM1〜PM6の例として、プラズマ処理装置を例示したが、プロセスモジュールPM1〜PM6は、静電チャック及びフォーカスリングを利用するものであれば、任意の処理装置であることができる。また、上述したプラズマ処理装置10は、容量結合型のプラズマ処理装置であったが、プロセスモジュールPM1〜PM6として利用可能なプラズマ処理装置は、誘導結合型のプラズマ処理装置、マイクロ波といった表面波を利用するプラズマ処理装置のように、任意のプラズマ処理装置であり得る。
また、上述した実施形態では、複数の第2センサの底部電極と測定器100の中心軸線AX100の位置関係は、載置台PDの中心軸線とリフトピン25aとの位置関係に略一致しているが、複数の第2センサの底部電極と測定器100の中心軸線AX100の位置関係は、これに限定されるものではない。例えば、複数の第2センサの底部電極のそれぞれと測定器100の中心軸線AX100との間の距離は、載置台PDの中心軸線と静電チャックのエッジとの間の距離に略一致していてもよい。
以下、このような別の実施形態に係る測定器について説明する。即ち、複数の第2センサの底部電極のそれぞれと測定器の中心軸線AX100との間の距離が載置台PDの中心軸線と静電チャックのエッジとの間の距離に略一致する測定器について説明する。なお、当該別の実施形態に係る測定器も図1に示される処理システムにおいて使用され得る。図17は、測定器を底面側から見て示す平面図である。図17に示す測定器600は、ベース基板102を備えている。ベース基板102の下側部分102aには、静電容量測定用の四個の第1センサ104A〜104Dが設けられている。また、ベース基板102の下側部分102aには、図6に示した第2センサ105A〜105Cに代えて、四個の第2センサ605A〜605Dが設けられている。なお、測定器600に設けられる第2センサの個数は、三以上の任意の個数であり得る。第2センサ605A〜605Dは、ベース基板102の中心軸線AX100を共有する円に沿って、周方向に等間隔で配置されている。また、第2センサ605A〜605Dと第1センサ104A〜104Dは、周方向において交互に配置されている。四個の第2センサ605A〜605Dの各々は、ベース基板102の底面に沿って設けられた底部電極606を有している。
図18は、静電チャックの断面図であり、静電チャックに被加工物が載置された状態を示す。一実施形態では、静電チャックESCは、導電膜である電極Eを一対の絶縁層又は絶縁シート間に配置した構造を有しており、略円盤形状を有している。静電チャックESCは、被加工物W及び測定器600がその上に載置される載置領域Rを有している。載置領域Rは、円形のエッジを有している。被加工物W及び測定器600は、載置領域Rの外径よりも大きい外径を有している。
図19は、図17の部分拡大図であり、一つの第2センサを示す。底部電極606のエッジは部分的に円弧形状をなしている。即ち、底部電極606は、中心軸線AX100を中心とした異なる半径を有する二つの円弧606a,606bによって規定される平面形状を有している。複数の第2センサ605A〜605Dそれぞれの底部電極606における径方向外側の円弧606bは、共通する円上で延在する。また、複数の第2センサ605A〜605Dそれぞれの底部電極606における径方向内側の円弧606aは、他の共通する円上で延在する。底部電極606のエッジの一部の曲率は、静電チャックESC(載置領域R)のエッジの曲率に一致している。一実施形態では、底部電極606における径方向外側のエッジを形成する円弧606bの曲率が、静電チャックESCの載置領域Rのエッジの曲率に一致している。なお、円弧606bの曲率中心、即ち、円弧606bがその上で延在する円の中心は、中心軸線AX100を共有している。
一実施形態では、第2センサ605A〜605Dの各々は、底部電極606を囲む電極607を更に含んでいる。電極607は、枠状をなしており、底部電極606をその全周にわたって囲んでいる。電極607と底部電極606は、それらの間に絶縁領域608が介在するよう、互いに離間している。また、一実施形態では、第2センサ605A〜605Dの各々は、電極607の外側で当該電極607を囲む電極609を更に含んでいる。電極609は、枠状をなしており、電極607をその全周にわたって囲んでいる。電極607と電極609は、それらの間に絶縁領域610が介在するよう互いに離間している。
図20は、測定器の回路基板の構成を例示する図である。測定器600は、回路基板106Aを有している。回路基板106Aは、測定器100における回路基板106に相当する。図20に示すように、回路基板106Aは、高周波発振器171、複数のC/V変換回路172A〜172D、複数のC/V変換回路680A〜680D、A/D変換器173、プロセッサ174、記憶装置175、通信装置176、電源177、及び、記憶装置178を有している。
第2センサ605A〜605Dの底部電極606は、対応の配線681を介して、C/V変換回路680A〜680Dのうち対応のC/V変換回路に接続されている。また、第2センサ605A〜605Dの電極607は、対応の配線682を介して、C/V変換回路680A〜680Dのうち対応のC/V変換回路に接続されている。第2センサ605A〜605Dの各々の底部電極606及び電極607は、それらに高周波発振器171からの高周波信号が与えられるよう、高周波発振器171に電気的に接続されている。C/V変換回路680A〜680Dの各々は、その入力における電圧振幅から、当該入力に接続された電極の静電容量を表す電圧信号を生成し、当該電圧信号を出力するよう構成されている。また、第2センサ605A〜605Dの電極609は、対応の配線683を介して、グランド電位線GLに接続されている。なお、配線683は、グランド電位線GLにスイッチSWGを介して接続されていてもよい。
A/D変換器173の入力には、複数のC/V変換回路680A〜680Dの出力が接続している。これにより、A/D変換器173は、底部電極606の静電容量を表すデジタル値(測定値)を生成する。A/D変換器173は、生成されたデジタル値をプロセッサ174に出力する。
以下、測定器600を用いて処理システム1における搬送位置データを較正する方法について説明する。なお、上述の通り、処理システム1における搬送装置TU2は、制御部MCによって制御される。一実施形態では、搬送装置TU2は、制御部MCから送信される搬送位置データに基づき静電チャックESCの載置領域R上に被加工物W及び測定器600を搬送し得る。図21は、一実施形態に係る処理システムの搬送装置の較正方法を示す流れ図である。
図21に示す方法MTでは、まず、工程ST1が実行される。工程ST1では、搬送位置データによって特定される載置領域R上の位置に、搬送装置TU2によって測定器600が搬送される。具体的には、搬送装置TU1が、ロードロックモジュールLL1及びロードロックモジュールLL2のうち一方のロードロックモジュールに測定器600を搬送する。そして、搬送装置TU2が、搬送位置データに基づいて、一方のロードロックモジュールから、プロセスモジュールPM1〜PM6のうち何れかに測定器600を搬送し、当該測定器600を静電チャックESCの載置領域R上に載置する。搬送位置データは、例えば載置領域Rの中心位置に測定器600の中心軸線AX100の位置が一致するように予め定められた座標データである。
続く工程ST2では、測定器600が静電容量の測定を行う。具体的には、測定器600は、静電チャックESCの載置領域Rと第2センサ605A〜605Dのそれぞれの底部電極606との間の静電容量の大きさに応じた複数のデジタル値(測定値)を取得し、当該複数のデジタル値を記憶装置175に記憶する。なお、複数のデジタル値は、プロセッサ174による制御の下で予め定められたタイミングで取得され得る。一実施形態では、第2センサ605A〜605Dによる静電容量の測定のタイミングで、第1センサ104A〜104Dによる静電容量の測定が実行されてもよい。
続く工程ST3では、測定器600がプロセスモジュールから搬出され、トランスファーモジュールTF、ロードロックモジュールLL1,LL2、ローダモジュールLM及び容器4a〜4dの何れかに戻される。続く工程ST4では、測定器600が搬送された載置領域R上の位置と載置領域R上の所定の搬送位置との誤差が導出される。なお、所定の搬送位置は、載置領域Rの中心位置であり得る。一実施形態の工程ST3では、まず、記憶装置175に記憶されている複数のデジタル値が制御部MCに送信される。複数のデジタル値は、制御部MCからの指令によって通信装置176から制御部MCに送信されてもよく、或いは、回路基板106Aに設けられたタイマのカウントに基づくプロセッサ174の制御により、所定のタイミングで制御部MCに送信されてもよい。続いて、制御部MCが、受信した複数のデジタル値に基づき、測定器600の搬送位置の誤差を導出する。一実施形態では、制御部MCは、載置領域R上の測定器600の搬送位置と第2センサ605A〜605Dによって取得されるデジタル値との関係を示すデータテーブルを有している。このデータテーブルには、例えば、載置領域Rの各径方向における底部電極606の位置と当該位置における底部電極606の静電容量を表すデジタル値との関係が登録されている。
図22は、静電チャックの載置領域に対する測定器の搬送位置を示す図である。図22の(a)は、所定の搬送位置に測定器600が搬送された場合における載置領域Rと一つの底部電極606との位置関係を示す。図22の(b),(c)は、所定の搬送位置からずれて測定器600が搬送された場合における載置領域Rと一つの底部電極606との位置関係を示す。図22の(b)に示すように、底部電極606が載置領域Rに対して載置領域Rの径方向の外側にずれた場合、底部電極606によって測定される静電容量は、所定の搬送位置に測定器600が搬送された場合(図22の(a))の静電容量に比べて小さくなる。図22の(c)に示すように、底部電極606が載置領域Rに対して載置領域Rの径方向の内側にずれた場合、電極Eの影響によって、底部電極606によって測定される静電容量は、所定の搬送位置に測定器600が搬送された場合(図22の(a))の静電容量に比べて大きくなる。したがって、第2センサ605A〜605Dの各々の底部電極606の静電容量を表すデジタル値を用いてデータテーブルを参照することによって、載置領域Rの各径方向における各底部電極606のずれ量を求めることができる。そして、各径方向における第2センサ605A〜605Dの各々の底部電極606のずれ量から、測定器600の搬送位置の誤差を求めることができる。
測定器600の搬送位置の誤差が、所定の閾値よりも大きい場合には、続く工程ST5において、搬送位置データの較正が必要であると判定される。この場合、工程ST6において、誤差を除去するように搬送位置データが制御部MCによって修正される。そして、工程ST7において、直前に測定器600が搬送されていたプロセスモジュールと同じプロセスモジュールに再び測定器600が搬送され、工程ST2〜工程ST5が再度実行される。一方、測定器600の搬送位置の誤差が、所定の閾値よりも小さい場合には、工程ST5において、搬送位置データの較正が必要ないものと判定される。この場合、工程ST8において、次に測定器600が搬送されるべき別のプロセスモジュールに測定器600を搬送するか否かが判定される。次に測定器600が搬送されるべき別のプロセスモジュールが残っている場合には、続く工程ST9において、当該別のプロセスモジュールに測定器600が搬送され、工程ST2〜工程ST5が実行される。一方、次に測定器600が搬送されるべき別のプロセスモジュールが残っていない場合には、方法MTが終了する。
このように測定器600を用いる方法MTによれば、搬送装置TU2による搬送に利用される搬送位置データの較正において利用可能な複数のデジタル値が測定器600によって提供される。かかる複数のデジタル値を用いることにより、必要に応じて搬送位置データを較正することが可能となる。このように較正された搬送位置データを搬送装置TU2による被加工物Wの搬送に用いることにより、被加工物Wを所定の搬送位置に搬送することが可能となる。
また、一実施形態では、第2センサ605A〜605Dの各々の底部電極606が、ベース基板102の中心軸線AX100を共有する円に沿って配置されている。この場合には、所定の搬送位置である載置領域Rの中心にベース基板102の中心軸線AX100が一致するように測定器600が搬送された場合には、第2センサ605A〜605Dそれぞれの底部電極606の静電容量を表すデジタル値は理想的には同一になる。したがって、容易に測定器600の搬送位置の誤差を求めることができる。
また、第2センサ605A〜605Dの各々の底部電極606のエッジの一部は、円弧形状を有しており、載置領域Rの直径と略一致する直径を有する円上で延在している。また、底部電極606のエッジの当該一部の曲率は、載置領域Rのエッジの曲率に一致している。したがって、測定器600の搬送位置と所定の搬送位置との間の各径方向におけるずれ量を精度良く測定することができる。