JP2017228614A - 電子部品の製造方法 - Google Patents

電子部品の製造方法 Download PDF

Info

Publication number
JP2017228614A
JP2017228614A JP2016122800A JP2016122800A JP2017228614A JP 2017228614 A JP2017228614 A JP 2017228614A JP 2016122800 A JP2016122800 A JP 2016122800A JP 2016122800 A JP2016122800 A JP 2016122800A JP 2017228614 A JP2017228614 A JP 2017228614A
Authority
JP
Japan
Prior art keywords
sealing material
wiring
component
volume
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016122800A
Other languages
English (en)
Inventor
靖志 小林
Yasushi Kobayashi
靖志 小林
中田 義弘
Yoshihiro Nakada
義弘 中田
歩 岡野
Ayumi Okano
歩 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2016122800A priority Critical patent/JP2017228614A/ja
Publication of JP2017228614A publication Critical patent/JP2017228614A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/96Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being encapsulated in a common layer, e.g. neo-wafer or pseudo-wafer, said common layer being separable into individual assemblies after connecting

Landscapes

  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

【課題】本願は、部品と配線基板とを電気的に繋ぐ配線層の形成における各部のダメージを可及的に抑制する技術を開示する。【解決手段】本願で開示する電子部品の製造方法は、支持基板に搭載された部品を可溶性の封止材で封止する工程と、封止材から部品を残したまま支持基板を剥がす工程と、封止材の部品が露出する面に配線層を形成する工程と、配線層から封止材を溶媒で除去する工程と、を有する。【選択図】図1

Description

本願は、電子部品の製造方法に関する。
近年、様々な電子装置が提案されている(例えば、特許文献1−4を参照)。
特開2015−82528号公報 特開2011−187845号公報 特開2004−146602号公報 特開2005−142267号公報
電子機器の小型化に伴い、半導体チップ等の部品と配線基板とを電気的に繋ぐ配線層も薄型化の一途を辿っている。配線層を取り扱う手法としては、例えば、支持基板上で配線層を形成した後に配線基板へ転写する方法が考えられる。しかし、転写のプロセスにおいては、配線層の形成に用いた支持基板を溶解させて配線層を表出させるために使用される溶剤が、部品や配線層に形成された微細配線にダメージを与える可能性がある。
そこで、本願は、部品と配線基板とを電気的に繋ぐ配線層の形成における各部のダメージを可及的に抑制する技術を開示する。
本願は、次のような電子部品の製造方法を開示する。すなわち、本願で開示する電子部品の製造方法は、支持基板に搭載された部品を可溶性の封止材で封止する工程と、封止材から部品を残したまま支持基板を剥がす工程と、封止材の部品が露出する面に配線層を形成する工程と、配線層から封止材を溶媒で除去する工程と、を有する。
上記の電子部品の製造方法であれば、部品と配線基板とを電気的に繋ぐ配線層の形成における各部のダメージを可及的に抑制することができる。
図1は、実施形態に係る電子部品の製造方法を示した図である。
以下、実施形態について説明する。以下に示す実施形態は、単なる例示であり、本開示の技術的範囲を以下の態様に限定するものではない。
図1は、実施形態に係る電子部品の製造方法を示した図である。本実施形態では、以下のような工程を経て電子部品が製造される。すなわち、本実施形態では、表面に仮接着層1が設けられた支持基板2に部品3を固定する工程が行われる(図1の「工程1」を参照)。次に、仮接着層1によって支持基板2に固定された部品3を可溶性の封止材4で封止する工程が行われる(図1の「工程2」を参照)。次に、封止材4から部品3を残したまま支持基板2を剥がす工程が行われる(図1の「工程3」を参照)。次に、封止材4の部
品3が露出する面に配線層5を形成する工程が行われる(図1の「工程4」を参照)。次に、配線基板6への実装や、配線層5から封止材4を溶媒で除去する工程が行われる(図1の「工程5」を参照)。なお、図1では、支持基板2に2つの部品3が固定されているが、支持基板2に固定される部品3は1つでもよいし3つ以上でもよい。
部品3は、微小な如何なる部品であってもよく、例えば、半導体チップ等の各種部品を適用可能である。配線層5は、部品3と配線基板6とを電気的に繋ぐ配線を形成する層である。
支持基板2は、仮接着層1を介して部品3を保持することができるものであれば如何なるものであってもよい。支持基板2として適用可能な素材としては、Si、ガラス、石英、モールド樹脂、銅、樹脂フィルム、およびプリプレグ等が挙げられる。なお、支持基板2は、上述したように工程3で剥がされて不要となる。よって、支持基板2の素材は、廃棄や再利用を踏まえて選定されることが好ましい。
仮接着層1は、支持基板2上に部品3を保持することができるものであれば如何なるものであってもよい。仮接着層1として適用可能な素材としては、熱可塑性接着剤、UV剥離接着材、溶剤溶解性接着剤、酸・アルカリ溶解性接着剤および物理剥離弱粘着性接着剤等が挙げられる。しかし、上述した工程3における仮接着層1の剥離工程において、各部の溶解や消失を招く可能性を低減するには、熱可塑性接着剤、UV剥離接着材または物理剥離弱粘着性接着剤が好ましい。
封止材4の材料としては、例えば、水、温水または有機溶剤に溶解することが可能な水溶性高分子材料等が好適である。水および温水に溶解する素材としては、例えば、ポリビニルピロリドン、ポリビニルアルコール、ポリアルキル酸、ポリアルキル酸中和物、ポリアクリルアミド、ポリアクリル酸、ポリアクリル酸中和物、ポリエチレンオキシド、ポリエチレンイミン等の合成高分子、天然デンプン、天然デンプンを酸化、エーテル化またはエステル化処理した加工デンプン、チルセルロース、カルボキシメチルセルロース、カゼイン、セラック、アラビアゴム、デキストリン等が挙げられる。また、有機溶剤に溶解する素材としては、天然ゴム、アスファルト、クロロプレン系樹脂、ニトリルゴム系樹脂、スチレン系樹脂、ブチルゴム、ポリサルファイド、シリコーンゴム、酢酸ビニル、ニトロセスロース等が挙げられる。しかし、本実施形態の各プロセスにおいて配線等に加わるダメージを抑制するには、ポリビニルピロリドン、ポリビニルアルコール、ポリアルキル酸ナトリウム、ポリアクリルアミド、ポリエチレンオキシド、ポリエチレンイミンから選ばれた単一または混合物であることが好ましい。
また、封止材4には、配線層5を形成する工程において印加される熱プロセスによる各部の熱収縮、熱膨張率(CTE:Coefficient of Thermal Expansion)低減による反りの抑制のため、フィラーが含まれていることが好ましい。封止材4に含有させるフィラーとしては、例えば、アルミナ、シリカ、水酸化アルミニウムおよび窒化アルミニウム等が挙げられる。
ところで、封止材4の上記材料に架橋材として用いることが可能な材料としては、グリシジル基含有化合物が挙げられる。グリシジル基含有化合物としては、加熱することにより架橋反応が促進するタイプ、又は紫外線を照射することにより架橋反応が促進するタイプがある。グリシジル基含有化合物としては、何れのタイプも使用可能である。また、グリシジル基含有化合物として、両タイプを混合して用いても良い。このような、グリシジル基含有化合物としては、例えば、n−ブチルグリシジルエーテル、アリルグリシジルエーテル、2−エチルヘキシルグリシジルエーテル、スチレンオキサイド、フェニルグリシジルエーテル、クレジルグリシジルエーテル、ラウリルグリシジルエーテル、p−sec
−ブチルフェニルグリシジルエーテル、ノニルフェニルグリシジルエーテル、カルビノールのグリシジルエーテル、グリシジルメタクリレート、ビニルシクロヘキセンモノエポキサイド、α−ピネンオキサイド、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ブタンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、ジグリシジルアニリン、トリメチロールプロパンジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、グリセリンジグリシジルエーテル、グリセリントリグリシジルエーテル、3級カルボン酸グリシジルエーテル、ジグリシジルエーテル、ポリエチレングリコールグリシジルエーテル、ポリプロピレングリコールグリシジルエーテル、重合脂肪酸ポリグリシジルエーテル、ビニルシクロヘキセンジオキサイド、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ノボラック型エポキシ樹脂、脂環式エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノール,ナフトール等のキシリレン結合によるアラルキル樹脂
のエポキシ化物、ジシクロペンタジエン型エポキシ樹脂、水素化ビスフェノール樹脂、ジヒドロキシナフタリン型エポキシ樹脂等のグリシジルエーテル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ハロゲン化エポキシ樹脂などが挙げられる。
なお、加熱することにより、架橋反応が促進するグリシジル基含有化合物としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ノボラック型エポキシ樹脂、脂環式エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルエーテル型エポキシ樹脂、ビフェニル型エポキシ樹脂等が挙げられる。
また、紫外線を照射することにより架橋反応が促進するグリシジル基含有化合物としては、例えば、水素化ビスフェノール樹脂、ジシクロペンタジエン型エポキシ樹脂等が挙げられる。また、紫外線を照射することにより架橋反応が促進するグリシジル基含有化合物として、上述した加熱することにより架橋反応が促進するグリシジル基含有化合物と、光カチオン重合開始剤とを混合させた混合物を用いても良い。
上記の工程5において配線層5から封止材4を除去するのに用いる溶媒は、封止材4が水溶性材料の場合には水や温水であり、封止材4が有機溶剤に溶解する非水溶性材料の場合には有機溶剤である。水や温水を用いる場合は、各部へのダメージを抑制する観点から純水が好ましい。上記の工程5においては、封止材4を短時間で溶解し、部品3や配線基板6へのダメージが可及的に抑制されるように、水、温水あるいは有機溶剤に浸漬、スプレー、スピン塗布等に曝す処理が行われる。なお、封止材4が水溶性材料である場合に、配線層5から封止材4を除去するのに用いる溶媒として酸水溶液またはアルカリ水溶液を用いることは、配線等へのダメージの観点から好ましくない。
上記実施形態によって製造される電子部品7としては、例えば、Fan−out WLP, 2.5D, 3D他、集積デバイス形成技術による各種の電子部品が挙げられる。上記実施形態の製造方法では、部品3を可溶性の封止材4で保持した状態で配線層5の形成が行われ、その後に溶媒による封止材4の除去が行われるので、各部に加わるダメージが比較的小さく、歩留まりおよび信頼性の高い電子部品7を製造可能である。
近年、電子機器の小型化に伴い、部品の高密度実装の要求が高まっており、特に、半導体チップの多端子、狭ピッチ化に伴いこれを搭載する多層回路基板にも微細配線化が求められている。そこで、配線基板の微細化に向けて、集積回路を有する半導体チップと配線基板とを微細配線で接続するFan−out WLP構造等の開発が行われている。このような電子部品の微細配線形成においては、例えば、支持基板と微細配線部との間に形成
された剥離層を配線基板へ実装後に溶解し、支持基板から剥がし取る方法(以下、「第1の方法」という)や、支持基板上に形成した微細配線部を配線基板に実装した後、支持基板全体を溶解除去して微細配線部を表出する方法(以下、「第2の方法」という)が考えられる。しかしながら、第1の方法では、支持基板と微細配線部との間に配置した剥離層を溶解するために、溶剤と接触するのは剥離層の側面の極一部のみであり、剥離層全体を溶解させるには非常に時間を要する。一方、第2の方法では、製造上のハンドリングの観点から基板が厚くなり、溶解除去する基板の体積が大きいことから、基板の溶解除去に大量の高濃度溶剤を用いて長時間処理することになる。このようなことから、いずれの技術においても、剥離工程中に溶剤に曝された微細配線部および配線基板は腐食・溶解等を生じ、信頼性を著しく低下する可能性が高い。
この点、上記実施形態の製造方法であれば、仮接着層1によって支持基板2に保持された部品3を可溶性の封止材4で封止した後に支持基板2が除去され、それから配線層5の形成が行われ、溶媒による封止材4の除去が行われる。なお、封止材4は水溶性高分子材料の他に、フィラー、架橋材を含むことから封止材4全てを溶解除去する必要はなく、溶媒により水溶性高分子材料部が溶解することにより、形状性を失い短時間で溶媒中に分散し配線層5および部品3から除去が行われるので、上記第1の方法や第2の方法に比べると各部に加わるダメージが比較的小さく、歩留まりおよび信頼性の高い電子部品7を製造可能である。すなわち、上記実施形態の製造方法であれば、封止材4が水または温水、有機溶剤へ浸漬により溶解して除去することが可能であるため、上記第1の方法や第2の方法において各部へ加わるダメージが抑制される。また、上記実施形態の製造方法であれば、封止材4に含まれるフィラーの含有率を適正に調整することで各部の熱膨張差によるダメージを抑制することが可能であるため、熱履歴による剥離やクラック等の発生を防止することができる。また、上記実施形態の製造方法によって製造される電子部品7は、部品3が露出しているので、部品3から発生する熱の放熱が容易である。
実際に電子部品を作成し、上記実施形態の製造方法の効果を検証したのでその結果を以下に示す。
<実施例>
まず、SUS製の支持基板を用意し、熱可塑性仮接着剤を形成した後、この仮接着剤を介して支持基板上に部品を回路面を支持基板側に向けて貼付けた(実施形態の「工程1」に相当)。次に、封止材を滴下し、鋳型で10kPaにて加圧することにより、部品内蔵の樹脂基板を成型した(実施形態の「工程2」に相当)。続けて、当該構造体を80℃〜170℃の温度で加熱して熱可塑性接着剤を反応させ、支持基板から剥がし取った部品内蔵の樹脂基板を180℃〜250℃のオーブン中で1時間焼成して、部品仮固定基板を形成した(実施形態の「工程3」に相当)。
続いて、部品仮固定基板の部品露出面への微細配線形成を行った(実施形態の「工程4」に相当)。すなわち、第1の絶縁層として感光性ポリイミド樹脂材をスピンコートで塗布し、150℃のホットプレートで2分の仮硬化を行った後、部品表面に配置された電極に重なるよう配置されたビアパターンを有するガラスマスクを用いてコンタクトアライナーで露光し、現像して、部品の電極と連通するビア溝を形成した。その後、窒素雰囲気のオーブンを用いて180℃〜250℃、1時間で本硬化させた。このとき、部品の電極サイズはφ100μmであり、第一絶縁層の膜厚は約10μm、形成したビア溝の径はφ70μmであった。続いて、密着層として厚さ0.1μmのTiおよびシード層として厚さ0.5μmのCuをスパッタ法により順次形成した。その後、ノボラック型の液状レジストをスピンコート法により塗布し、前記φ70μmの径のビア溝と重なるよう配置されたφ100μmのランドパターンおよび5μm幅の配線パターンを有するガラスマスクを用いてコンタクトアライナーで該レジストを露光し、現像して、所定の位置にφ100μm
のランドパターンと5μmの配線パターンを形成した。続いて電気Cuめっきによりランドパターン部および配線部へめっきした。このとき、電気Cuめっきは高さが5μm程度になるようにめっきした。次に、該レジストをN−メチル−2−ピロリジノンを用いて剥離した後、レジストの被覆によってめっきされなかった部分のシード層Cuを過硫酸アンモニウム溶液にて、Tiをフッ化アンモニウム溶液にて順次エッチングして、ランドおよび配線を形成した。その後、第2の絶縁層として感光性ポリイミド樹脂材をスピンコートで塗布し、150℃のホットプレートで2分の仮硬化を行った後、φ100μmのランドパターンに重なるよう配置されたφ70μmのビアパターンを有するガラスマスクを用いてコンタクトアライナーで露光し、現像して、φ100μmと連通するφ70μmのビア溝を形成した。その後、窒素雰囲気のオーブンを用いて180℃〜250℃1時間で本硬化させた。このとき第2絶縁層の膜厚は約10μmであった。
さらに上記と同様にして、密着層として厚さ0.1μmのTiおよびシード層として厚さ0.5μmのCuをスパッタ法により順次形成した。その後、ノボラック型の液状レジストをスピンコート法により塗布し、前記φ70μmのビア溝と重なるよう配置されたφ100μmのランドパターンおよび5μm幅の配線パターンを有するガラスマスクを用いてコンタクトアライナーで該レジストを露光し、現像して、所定の位置にφ100μmのランドパターンと5μmの配線パターンを形成した。続いて電気Cuめっきによりランドパターン部および配線部へめっきした。このとき、電気Cuめっきは高さが5μm程度になるようにめっきした。次に、該レジストをN−メチル−2−ピロリジノンを用いて剥離した後、レジストの被覆によってめっきされなかった部分のシード層Cuを過硫酸アンモニウム溶液にて、Tiをフッ化アンモニウム溶液にて順次エッチングして、ランドおよび配線を形成した。その後、第3の絶縁層として感光性ポリイミド樹脂材をスピンコートで塗布し、150℃のホットプレートで2分の仮硬化を行った後、φ100μmのランドパターンに重なるよう配置されたφ70μmのビアパターンを有するガラスマスクを用いてコンタクトアライナーで露光し、現像して、φ100μmと連通するφ70μmのビア溝を形成した。その後、窒素雰囲気のオーブンを用いて180℃〜250℃1時間で本硬化させた。このとき第3絶縁層の膜厚は約10μmであった。
続いて、密着層として厚さ0.1μmのTiおよびシード層として厚さ0.5μmのCuをスパッタ法により順次形成した。その後、ノボラック型の液状レジストをスピンコート法により塗布し、微細配線部の最上層に形成されたφ70μmのビア溝と重なるよう配置されたφ700μmのバンプパターンを有するガラスマスクを用いてコンタクトアライナーで該レジストを露光し、現像して、所定の位置にφ700μmのバンプパターンを形成した。続いて電気Cuめっき、電気Niめっきおよび電気SnAgめっきを順次バンプパターン部へめっきした。このとき、電気Cuめっきは高さ30μm程度、電気Niめっきは高さ10μm程度、電気SnAgめっきは高さ30μm程度になるようにめっきした。次に、該レジストをN−メチル−2−ピロリジノンを用いて剥離した後、レジストの被覆によってめっきされなかった部分のシード層Cuを過硫酸アンモニウム溶液にて、Tiをフッ化アンモニウム溶液にて順次エッチングして、バンプを形成した。
次に、上記バンプ部にてビルドアップ基板を接合した。上記構造体とビルドアップ基板の間にアンダーフィル材を注入し、120℃で加熱してビルドアップ基板に固定した後、60℃の温水に浸漬し、部品仮固定用基板を溶解・除去した(実施形態の「工程5」に相当)。
上記実施例において、ポリビニルピロリドンを封止材として用いた場合の評価結果は次の通りである。ポリビニルピロリドンの含有量は、5体積%(実施例1)、10体積%(実施例2)、15体積%(実施例3)、20体積%(実施例4)、25体積%(実施例5)、30体積%(実施例6)の6種類を用意して評価を行った。また、比較例として、こ
の6種類の他に、3体積%(比較例1)、35体積%(比較例2)の2種類を用意して評価を行った。評価は、封止材を溶解除去した際の配線ダメージの評価であり、配線の電気的な接続状態を確認することで行った。具体的には、配線ダメージが発生した場合には電気抵抗が上昇または無限大になるため、これを確認することで配線ダメージの有無を判定した。その結果を以下の表1に示す。
Figure 2017228614
次に、上記実施例において、ポリビニルアルコールを封止材として用いた場合の評価結果は次の通りである。ポリビニルアルコールの含有量は、5体積%(実施例7)、10体積%(実施例8)、15体積%(実施例9)、20体積%(実施例10)、25体積%(実施例11)、30体積%(実施例12)の6種類を用意して評価を行った。また、比較例として、この6種類の他に、3体積%(比較例3)、35体積%(比較例4)の2種類を用意して評価を行った。評価は、封止材を溶解除去した際の配線ダメージの評価であり、配線の電気的な接続状態を確認することで行った。具体的には、配線ダメージが発生した場合には電気抵抗が上昇または無限大になるため、これを確認することで配線ダメージの有無を判定した。その結果を以下の表2に示す。
Figure 2017228614
次に、上記実施例において、ポリアルキル酸ナトリウムを封止材として用いた場合の評価結果は次の通りである。ポリアルキル酸ナトリウムの含有量は、5体積%(実施例13)、10体積%(実施例14)、15体積%(実施例15)、20体積%(実施例16)、25体積%(実施例17)、30体積%(実施例18)の6種類を用意して評価を行った。また、比較例として、この6種類の他に、3体積%(比較例5)、35体積%(比較例6)の2種類を用意して評価を行った。評価は、封止材を溶解除去した際の配線ダメージの評価であり、配線の電気的な接続状態を確認することで行った。具体的には、配線ダメージが発生した場合には電気抵抗が上昇または無限大になるため、これを確認することで配線ダメージの有無を判定した。その結果を以下の表3に示す。
Figure 2017228614
次に、上記実施例において、ポリアクリルアミドを封止材として用いた場合の評価結果は次の通りである。ポリアクリルアミドの含有量は、5体積%(実施例19)、10体積
%(実施例20)、15体積%(実施例21)、20体積%(実施例22)、25体積%(実施例23)、30体積%(実施例24)の6種類を用意して評価を行った。また、比較例として、この6種類の他に、3体積%(比較例7)、35体積%(比較例8)の2種類を用意して評価を行った。評価は、封止材を溶解除去した際の配線ダメージの評価であり、配線の電気的な接続状態を確認することで行った。具体的には、配線ダメージが発生した場合には電気抵抗が上昇または無限大になるため、これを確認することで配線ダメージの有無を判定した。その結果を以下の表4に示す。
Figure 2017228614
次に、上記実施例において、ポリエチレンオキシドを封止材として用いた場合の評価結果は次の通りである。ポリエチレンオキシドの含有量は、5体積%(実施例25)、10体積%(実施例26)、15体積%(実施例27)、20体積%(実施例28)、25体積%(実施例29)、30体積%(実施例30)の6種類を用意して評価を行った。また、比較例として、この6種類の他に、3体積%(比較例9)、35体積%(比較例10)の2種類を用意して評価を行った。評価は、封止材を溶解除去した際の配線ダメージの評価であり、配線の電気的な接続状態を確認することで行った。具体的には、配線ダメージが発生した場合には電気抵抗が上昇または無限大になるため、これを確認することで配線ダメージの有無を判定した。その結果を以下の表5に示す。
Figure 2017228614
次に、上記実施例において、ポリエチレンイミンを封止材として用いた場合の評価結果は次の通りである。ポリエチレンイミンの含有量は、5体積%(実施例31)、10体積%(実施例32)、15体積%(実施例33)、20体積%(実施例34)、25体積%(実施例35)、30体積%(実施例36)の6種類を用意して評価を行った。また、比較例として、この6種類の他に、3体積%(比較例11)、35体積%(比較例12)の2種類を用意して評価を行った。評価は、封止材を溶解除去した際の配線ダメージの評価であり、配線の電気的な接続状態を確認することで行った。具体的には、配線ダメージが発生した場合には電気抵抗が上昇または無限大になるため、これを確認することで配線ダメージの有無を判定した。その結果を以下の表6に示す。
Figure 2017228614
上記評価結果より、封止材を水溶性高分子材料で形成する場合は水溶性高分子材料の体積比率が5乃至30%の場合、上記実施形態の製造方法においては各部にダメージを与えることなく電子部品7を製造できることが判る。
1・・仮接着層:2・・支持基板:3・・部品:4・・封止材:5・・配線層:6・・配線基板:7・・電子部品

Claims (6)

  1. 支持基板に搭載された部品を可溶性の封止材で封止する工程と、
    前記封止材から前記部品を残したまま前記支持基板を剥がす工程と、
    前記封止材の前記部品が露出する面に配線層を形成する工程と、
    前記配線層から前記封止材を溶媒で除去する工程と、を有する、
    電子部品の製造方法。
  2. 前記封止材に形成された状態の前記配線層を配線基板に固定する工程を更に有し、
    前記配線層から前記封止材を溶媒で除去する工程においては、前記配線基板に固定された状態の前記配線層から前記封止材を溶媒で除去する、
    請求項1に記載の電子部品の製造方法。
  3. 前記封止材は、水溶性であり、
    前記溶媒は、水である、
    請求項1または2に記載の電子部品の製造方法。
  4. 前記封止材は、水溶性高分子材料の体積比率が5乃至30%である、
    請求項1から3の何れか一項に記載の電子部品の製造方法。
  5. 前記水溶性高分子材料は、ポリビニルピロリドン、ポリビニルアルコール、ポリアルキル酸ナトリウム、ポリアクリルアミド、ポリエチレンオキシド、ポリエチレンイミンから選ばれた単一または混合物である、
    請求項4に記載の電子部品の製造方法。
  6. 前記支持基板に搭載される部品は、半導体チップである、
    請求項1から5の何れか一項に記載の電子部品の製造方法。
JP2016122800A 2016-06-21 2016-06-21 電子部品の製造方法 Pending JP2017228614A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016122800A JP2017228614A (ja) 2016-06-21 2016-06-21 電子部品の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016122800A JP2017228614A (ja) 2016-06-21 2016-06-21 電子部品の製造方法

Publications (1)

Publication Number Publication Date
JP2017228614A true JP2017228614A (ja) 2017-12-28

Family

ID=60889264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016122800A Pending JP2017228614A (ja) 2016-06-21 2016-06-21 電子部品の製造方法

Country Status (1)

Country Link
JP (1) JP2017228614A (ja)

Similar Documents

Publication Publication Date Title
JP6416324B2 (ja) 配線基板の製造方法
CN107134414B (zh) 半导体装置及其制造方法、倒装芯片型半导体装置及其制造方法
JP6416323B2 (ja) 配線基板の製造方法
JP6299290B2 (ja) 回路基板の製造方法
US20190006196A1 (en) Method for packaging chip and chip package structure
JP6929936B2 (ja) 樹脂組成物用のエッチング液及びエッチング方法
JP2018041074A (ja) 感光性樹脂組成物、感光性樹脂膜、および電子装置
JP2016066789A (ja) 配線基板の製造方法、および半導体パッケージの製造方法
JP2014011283A (ja) 半導体装置の製造方法及びポジ型感光性接着剤組成物
JP2018056296A (ja) 支持基板、回路基板の製造方法及び半導体装置の製造方法
JP2017161881A (ja) 感光性樹脂シート、電子装置、および電子装置の製造方法
JP2017228614A (ja) 電子部品の製造方法
KR20200027032A (ko) 네거티브형 감광성 수지 조성물, 반도체 장치 및 전자기기
JP2017211617A (ja) 感光性樹脂組成物、感光性樹脂膜、および電子装置
KR101341634B1 (ko) 비지에이 패키지에 사용되는 회로 기판
JP6656027B2 (ja) ソルダーレジストパターンの形成方法
JP2016004975A (ja) 積層回路基板の製造方法
JP2019095719A (ja) 配線基板の製造方法、半導体装置の製造方法
JP6511830B2 (ja) 半導体装置の製造方法
JP2017017168A (ja) 配線板の製造方法
JP2019033205A (ja) 配線基板の製造方法、半導体装置の製造方法
TW202043921A (zh) 乾膜及印刷配線板
JP2019033206A (ja) 配線基板の製造方法、半導体装置の製造方法
JP2018151475A (ja) 電子装置の製造方法
JP2018141945A (ja) 電子装置の製造方法