JP2017224859A - Manufacturing method of solar cell module - Google Patents

Manufacturing method of solar cell module Download PDF

Info

Publication number
JP2017224859A
JP2017224859A JP2017176035A JP2017176035A JP2017224859A JP 2017224859 A JP2017224859 A JP 2017224859A JP 2017176035 A JP2017176035 A JP 2017176035A JP 2017176035 A JP2017176035 A JP 2017176035A JP 2017224859 A JP2017224859 A JP 2017224859A
Authority
JP
Japan
Prior art keywords
solar cell
adhesive film
cell module
conductive adhesive
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017176035A
Other languages
Japanese (ja)
Inventor
清水 健博
Takehiro Shimizu
健博 清水
香 岡庭
Kaoru Okaniwa
香 岡庭
福嶋 直樹
Naoki Fukushima
直樹 福嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Publication of JP2017224859A publication Critical patent/JP2017224859A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of solar cell module capable of connecting the surface electrode of solar cell and a wiring member without adversely affecting the solar cell, and capable of ensuring sufficient connection reliability.SOLUTION: A manufacturing method of a solar cell module connected by a conductive adhesive film and having such a structure that multiple solar cells having a surface electrode are connected via a wiring member connected electrically with the surface electrode has a step of connecting the surface electrode and wiring member. The conductive adhesive film contains an insulating adhesive and conductive particles, and assuming the average particle size of the conductive particle is r (μm), and the thickness of the conductive adhesive film is t(μm), the value of (t/r) is in a range of 0.75-17.5, content of the conductive particle is 1.7-15.6 vol% with reference to the total volume of the conductive adhesive film, average particle size r of the conductive particle is equal to or larger than the ten-point surface roughness Rz of the surface electrode.SELECTED DRAWING: Figure 3

Description

本発明は、太陽電池モジュールの製造方法に関する。   The present invention relates to a method for manufacturing a solar cell module.

太陽電池モジュールは、複数の太陽電池セルがその表面電極に電気的に接続された配線部材を介して直列及び/又は並列に接続された構造を有している。この太陽電池モジュールを作製する際に、太陽電池セルの表面電極と配線部材との接続には、従来、はんだが用いられてきた(例えば、特許文献1及び2参照)。はんだは、導通性、固着強度等の接続信頼性に優れ、安価で汎用性があることから広く用いられている。   The solar cell module has a structure in which a plurality of solar cells are connected in series and / or in parallel via a wiring member electrically connected to the surface electrode. In producing this solar cell module, solder has been conventionally used to connect the surface electrode of the solar cell and the wiring member (see, for example, Patent Documents 1 and 2). Solder is widely used because it is excellent in connection reliability such as electrical conductivity and fixing strength, is inexpensive and versatile.

また、はんだを使用しない配線の接続方法としては、導電性接着剤を使用した接続方法や導電性フィルムを用いた接続方法が知られている(例えば、特許文献3〜6参照)。   Moreover, as a wiring connection method that does not use solder, a connection method using a conductive adhesive or a connection method using a conductive film is known (see, for example, Patent Documents 3 to 6).

特開2004−204256号公報JP 2004-204256 A 特開2005−050780号公報JP-A-2005-050780 特開2000−286436号公報JP 2000-286436 A 特開2001−357897号公報JP 2001-357897 A 特許第3448924号公報Japanese Patent No. 3448924 特開2005−101519号公報JP 2005-101519 A

しかしながら、はんだを用いて太陽電池セルの表面電極と配線部材との接続を行う場合には、はんだの溶融温度が通常230〜260℃程度であることから、接続に伴う高温やはんだの体積収縮が太陽電池セルの半導体構造に悪影響を及ぼし、太陽電池セルの特性劣化を引き起こす場合がある。   However, when connecting the surface electrode of the photovoltaic cell and the wiring member using solder, the melting temperature of the solder is usually about 230 to 260 ° C. It may adversely affect the semiconductor structure of the solar battery cell and cause deterioration of the characteristics of the solar battery cell.

また、はんだ接続においては、はんだの特性上、被着体との接続界面の厚みをコントロールすることが難しく、パッケージにした際の寸法精度を十分に得ることが難しかった。十分な寸法精度が得られないと、パッケージングプロセスの際に、製品の歩留まりの低下につながる。   Further, in solder connection, it is difficult to control the thickness of the connection interface with the adherend due to the characteristics of the solder, and it is difficult to obtain sufficient dimensional accuracy when packaged. If sufficient dimensional accuracy cannot be obtained, it will lead to a decrease in product yield during the packaging process.

また、上記特許文献3〜5に記載のように、導電性接着剤を用いて太陽電池セルの表面電極と配線部材との接続を行う場合でも、必ずしも十分な接続信頼性が得られず、高温高湿条件下で経時的に特性が大幅に劣化してしまうことがある。   In addition, as described in Patent Documents 3 to 5, even when the connection between the surface electrode of the solar battery cell and the wiring member is performed using a conductive adhesive, sufficient connection reliability is not always obtained, and the high temperature The characteristics may deteriorate significantly over time under high humidity conditions.

更に、上記特許文献6に記載のように、導電性フィルムを用いて太陽電池セルの表面電極と配線部材との接続を行う場合では、低温で接着可能であることから、はんだを用いた場合に生じる太陽電池セルへの悪影響を抑制することができるが、被着体の表面状態の影響が考慮されておらず、接続信頼性が必ずしも十分ではなかった。   Furthermore, as described in the above-mentioned Patent Document 6, in the case where the surface electrode of the solar battery cell and the wiring member are connected using the conductive film, since it can be bonded at a low temperature, the soldering is used. Although the bad influence to the photovoltaic cell which arises can be suppressed, the influence of the surface state of a to-be-adhered body is not considered, and connection reliability was not necessarily enough.

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、単結晶、多結晶又は非結晶シリコンウエハや化合物半導体ウエハなどの太陽電池セル同士を配線部材を介して接続する際に用いられ、太陽電池セルに悪影響を及ぼすことなく太陽電池セルの表面電極と配線部材とを接続することができ、且つ、十分な接続信頼性を得ることが可能な導電性接着フィルム、及び、それを用いた太陽電池モジュールを提供することを目的とする。本発明は、単結晶、多結晶又は非結晶シリコンウエハや化合物半導体ウエハなどの太陽電池セル同士を配線部材を介して接続する際に、太陽電池セルに悪影響を及ぼすことなく太陽電池セルの表面電極と配線部材とを接続することができ、且つ、十分な接続信頼性を得ることが可能な太陽電池モジュールの製造方法を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and is used when connecting solar cells such as single crystal, polycrystalline or amorphous silicon wafers and compound semiconductor wafers via a wiring member. A conductive adhesive film capable of connecting the surface electrode of the solar battery cell and the wiring member without adversely affecting the solar battery cell and obtaining sufficient connection reliability; and It aims at providing the used solar cell module. The present invention provides a surface electrode of a solar cell without adversely affecting the solar cell when connecting solar cells such as a single crystal, polycrystalline or amorphous silicon wafer or compound semiconductor wafer via a wiring member. It is an object of the present invention to provide a method for manufacturing a solar cell module capable of connecting a wiring member to a wiring member and capable of obtaining sufficient connection reliability.

上記目的を達成するために、本発明は、太陽電池セルの表面電極と、配線部材とを電気的に接続するための導電性接着フィルムであって、絶縁性接着剤と導電性粒子とを含有し、上記導電性粒子の平均粒子径をr(μm)、上記導電性接着フィルムの厚さをt(μm)として、(t/r)の値が0.75〜17.5の範囲内であり、上記導電性粒子の含有量が、上記導電性接着フィルムの全体積を基準として1.7〜15.6体積%である、導電性接着フィルムを提供する。   In order to achieve the above object, the present invention is a conductive adhesive film for electrically connecting a surface electrode of a solar battery cell and a wiring member, and contains an insulating adhesive and conductive particles. When the average particle diameter of the conductive particles is r (μm) and the thickness of the conductive adhesive film is t (μm), the value of (t / r) is in the range of 0.75 to 17.5. And providing a conductive adhesive film in which the content of the conductive particles is 1.7 to 15.6% by volume based on the total volume of the conductive adhesive film.

上記構成を有する本発明の導電性接着フィルムによれば、太陽電池セルに悪影響を及ぼすことなく太陽電池セルの表面電極と配線部材とを接続することができ、且つ、十分な接続信頼性を得ることが可能である。   According to the conductive adhesive film of the present invention having the above configuration, the surface electrode of the solar battery cell and the wiring member can be connected without adversely affecting the solar battery cell, and sufficient connection reliability is obtained. It is possible.

また、本発明の導電性接着フィルムにおいて、上記絶縁性接着剤は、該絶縁性接着剤全量を基準として9〜34質量%のゴム成分を含むものであることが好ましい。   In the conductive adhesive film of the present invention, the insulating adhesive preferably contains 9 to 34% by mass of a rubber component based on the total amount of the insulating adhesive.

また、本発明の導電性接着フィルムの弾性率は、0.5〜4.0GPaであることが好ましい。   Moreover, it is preferable that the elasticity modulus of the electroconductive adhesive film of this invention is 0.5-4.0GPa.

更に、本発明の導電性接着フィルムにおいて、上記導電性粒子の形状は、毬栗状又は球状であることが好ましい。   Furthermore, in the conductive adhesive film of the present invention, the shape of the conductive particles is preferably a chestnut shape or a spherical shape.

本発明はまた、表面電極を有する複数の太陽電池セルが、上記表面電極に電気的に接続された配線部材を介して接続された構造を有する太陽電池モジュールであって、上記表面電極と上記配線部材とが、上記本発明の導電性接着フィルムにより接続されている、太陽電池モジュールを提供する。   The present invention is also a solar cell module having a structure in which a plurality of solar cells having a surface electrode are connected via a wiring member electrically connected to the surface electrode, the surface electrode and the wiring Provided is a solar cell module in which members are connected by the conductive adhesive film of the present invention.

かかる太陽電池モジュールは、上述した本発明の導電性接着フィルムを用いて、太陽電池セルの表面電極と配線部材とが接続されているため、太陽電池セルへの悪影響がなく、且つ、十分な接続信頼性を得ることができる。   In such a solar cell module, since the surface electrode of the solar cell and the wiring member are connected using the conductive adhesive film of the present invention described above, there is no adverse effect on the solar cell and sufficient connection is achieved. Reliability can be obtained.

本発明は、表面電極を有する複数の太陽電池セルが、上記表面電極に電気的に接続された配線部材を介して接続された構造を有する太陽電池モジュールの製造方法であって、上記表面電極と上記配線部材とを導電性接着フィルムにより接続する工程を有し、上記導電性接着フィルムは絶縁性接着剤と導電性粒子とを含有し、上記導電性粒子の平均粒子径をr(μm)、上記導電性接着フィルムの厚さをt(μm)として、(t/r)の値が0.75〜17.5の範囲内であり、上記導電性粒子の含有量が、上記導電性接着フィルムの全体積を基準として1.7〜15.6体積%であり、上記導電性粒子の平均粒子径rが、上記表面電極の十点平均表面粗さRz以上である、太陽電池モジュールの製造方法を提供する。   The present invention is a method for manufacturing a solar cell module having a structure in which a plurality of solar cells having a surface electrode are connected via a wiring member electrically connected to the surface electrode, A step of connecting the wiring member with a conductive adhesive film, the conductive adhesive film contains an insulating adhesive and conductive particles, and the average particle diameter of the conductive particles is r (μm), When the thickness of the conductive adhesive film is t (μm), the value of (t / r) is in the range of 0.75 to 17.5, and the content of the conductive particles is the conductive adhesive film. Of the solar cell module, wherein the average particle diameter r of the conductive particles is not less than the ten-point average surface roughness Rz of the surface electrode. I will provide a.

上記構成を有する導電性接着フィルムを用いた太陽電池モジュールの製造方法によれば、太陽電池セルに悪影響を及ぼすことなく太陽電池セルの表面電極と配線部材とを接続することができ、且つ、十分な接続信頼性を得ることが可能である。   According to the method for manufacturing a solar cell module using the conductive adhesive film having the above configuration, the surface electrode of the solar cell and the wiring member can be connected without adversely affecting the solar cell, and sufficient Connection reliability can be obtained.

また、本発明の太陽電池モジュールの製造方法において、上記絶縁性接着剤は、該絶縁性接着剤全量を基準として9〜34質量%のゴム成分を含むものであることが好ましい。   Moreover, in the manufacturing method of the solar cell module of this invention, it is preferable that the said insulating adhesive contains 9-34 mass% rubber | gum component on the basis of this insulating adhesive whole quantity.

また、本発明の太陽電池モジュールの製造方法において、上記導電性接着フィルムの弾性率は、0.5〜4.0GPaであることが好ましい。   Moreover, in the manufacturing method of the solar cell module of this invention, it is preferable that the elasticity modulus of the said conductive adhesive film is 0.5-4.0GPa.

更に、本発明の太陽電池モジュールの製造方法において、上記導電性粒子の形状は、毬栗状又は球状であることが好ましい。   Furthermore, in the manufacturing method of the solar cell module of this invention, it is preferable that the shape of the said electroconductive particle is a chestnut shape or spherical shape.

本発明によれば、太陽電池セルに悪影響を及ぼすことなく太陽電池セルの表面電極と配線部材とを接続することができ、且つ、十分な接続信頼性を得ることが可能な導電性接着フィルム、及び、それを用いた太陽電池モジュールを提供することができる。本発明によれば、太陽電池セルに悪影響を及ぼすことなく太陽電池セルの表面電極と配線部材とを接続することができ、且つ、十分な接続信頼性を得ることが可能な太陽電池モジュールの製造方法を提供することができる。   According to the present invention, a conductive adhesive film that can connect the surface electrode of the solar battery cell and the wiring member without adversely affecting the solar battery cell, and can obtain sufficient connection reliability, And the solar cell module using the same can be provided. ADVANTAGE OF THE INVENTION According to this invention, manufacture of the solar cell module which can connect the surface electrode and wiring member of a photovoltaic cell, and can obtain sufficient connection reliability, without having a bad influence on a photovoltaic cell. A method can be provided.

本発明の導電性接着フィルムの一実施形態を示す模式断面図である。It is a schematic cross section which shows one Embodiment of the electroconductive adhesive film of this invention. (t/r)の値が異なる導電性接着フィルムを用いた場合の被着体同士の接続状態を説明するための説明図である。It is explanatory drawing for demonstrating the connection state of to-be-adhered bodies at the time of using the conductive adhesive film from which the value of (t / r) differs. 本発明の太陽電池モジュールの要部を示す模式図である。It is a schematic diagram which shows the principal part of the solar cell module of this invention. 導電性接着フィルムの膜厚tと導電性粒子の平均粒子径rとの比率(膜厚t/粒子径r)と、85℃85%RH雰囲気下で500時間経過後の曲線因子(F.F.)変化量{F.F.(500h)/F.F.(0h)}との関係を示すグラフである。The ratio (film thickness t / particle diameter r) between the film thickness t of the conductive adhesive film and the average particle diameter r of the conductive particles and the fill factor (FF) after 500 hours in an atmosphere of 85 ° C. and 85% RH. .) Change amount {F. F. (500h) / F. F. It is a graph which shows the relationship with (0h)}.

以下、図面を参照しながら本発明の好適な実施形態について詳細に説明する。なお、図
面中、同一又は相当部分には同一符号を付し、重複する説明は省略する。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted.

図1は、本発明の導電性接着フィルムの一実施形態を示す模式断面図である。図1に示すように、本発明の導電性接着フィルム10は、導電性粒子1と絶縁性接着剤2とを少なくとも含有してなるものである。   FIG. 1 is a schematic cross-sectional view showing an embodiment of the conductive adhesive film of the present invention. As shown in FIG. 1, the conductive adhesive film 10 of the present invention contains at least conductive particles 1 and an insulating adhesive 2.

本発明の導電性接着フィルム10は、太陽電池セルの電極と太陽電池セルを直列及び/又は並列につなぐ為の配線ワイヤー(配線部材)とを接続する為のものである。太陽電池セルには、その表面及び裏面に電気を取り出す為の電極(表面電極)が形成されている。   The conductive adhesive film 10 of the present invention is for connecting an electrode of a solar battery cell and a wiring wire (wiring member) for connecting the solar battery cell in series and / or in parallel. An electrode (surface electrode) for taking out electricity is formed on the front and back surfaces of the solar battery cell.

ここで表面電極としては、電気的導通を得ることができる公知の材質のものが挙げられ、例えば、一般的な銀を含有したガラスペーストや接着剤樹脂に各種の導電性粒子を分散した銀ペースト、金ペースト、カーボンペースト、ニッケルペースト、アルミペースト及び焼成や蒸着によって形成されるITOなどが挙げられる。これらの中でも、耐熱性、導電性、安定性、及びコストの観点から、銀を含有したガラスペースト電極が好適に用いられる。   Here, examples of the surface electrode include known materials that can obtain electrical continuity, such as a general silver-containing glass paste or a silver paste in which various conductive particles are dispersed in an adhesive resin. Gold paste, carbon paste, nickel paste, aluminum paste, and ITO formed by firing or vapor deposition. Among these, a glass paste electrode containing silver is preferably used from the viewpoints of heat resistance, conductivity, stability, and cost.

太陽電池セルの場合、Siの単結晶、多結晶、非結晶の少なくとも一つ以上からなる基板上に、スクリーン印刷などによってAg電極とAl電極とが表面電極としてそれぞれ設けられることが主である。   In the case of a solar battery cell, an Ag electrode and an Al electrode are mainly provided as surface electrodes on a substrate made of at least one of Si single crystal, polycrystal, and amorphous by screen printing or the like.

このとき、電極表面は一般的に表面粗さ(十点平均表面粗さRz)3〜30μmの凹凸を有していることがある。特に太陽電池セルに形成される電極は、表面粗さRzが8〜18μmと粗いことが多い。本発明者らは鋭意検討の結果、これらの凹凸に起因して従来の導電性接着剤組成物や導電性フィルムでは接続信頼性が劣化することを見出した。   At this time, the electrode surface may generally have unevenness with a surface roughness (ten-point average surface roughness Rz) of 3 to 30 μm. In particular, an electrode formed in a solar battery cell often has a rough surface roughness Rz of 8 to 18 μm. As a result of intensive studies, the present inventors have found that the connection reliability is deteriorated in conventional conductive adhesive compositions and conductive films due to these irregularities.

すなわち、このような凹凸形状を有する電極表面の場合、導電性粒子の粒子径が小さく、配合量が適正でないと、電極表面の凹部に粒子が埋もれてしまい十分な導通性が得られない。また、導電性接着剤組成物や導電性フィルムを用いて形成される塗膜の厚さが、電極表面の凹凸高低差よりも小さい場合、被着体との十分な接着が得られず接続信頼性が低下する。   That is, in the case of an electrode surface having such a concavo-convex shape, if the particle diameter of the conductive particles is small and the blending amount is not appropriate, the particles are buried in the recesses on the electrode surface, and sufficient conductivity cannot be obtained. In addition, when the thickness of the coating film formed using the conductive adhesive composition or conductive film is smaller than the uneven height difference of the electrode surface, sufficient adhesion with the adherend cannot be obtained and the connection reliability Sex is reduced.

また、導電性粒子の粒子径に対して形成される塗膜の厚さが大きすぎると、熱圧着時に導電性粒子表面の樹脂が十分に排除されず、導電性が低下する。さらには、導電性粒子の平均粒子径r(μm)と形成される塗膜の厚さt(μm)との比(塗膜厚t/導電性粒子の平均粒子径r)が0.75未満であると、接着剤成分の充填が十分でなく、同じく接続不良を引き起こす可能性が高い。   Moreover, when the thickness of the coating film formed with respect to the particle diameter of electroconductive particle is too large, the resin of the surface of electroconductive particle is not fully excluded at the time of thermocompression bonding, but electroconductivity falls. Further, the ratio of the average particle diameter r (μm) of the conductive particles to the thickness t (μm) of the coating film to be formed (coating film thickness t / average particle diameter r of the conductive particles) is less than 0.75. In this case, the adhesive component is not sufficiently filled, and there is a high possibility of causing a connection failure.

ここで本発明者らは、被着体同士間の十分な接続信頼性を得るには、導電性接着フィルムと電極表面の凹凸のあいだで、絶縁性接着剤成分に分散されている導電性粒子の粒子径(平均粒子径)と、形成される塗膜厚(導電性接着フィルムの厚さ)との比が大きく関係することを見出した。   Here, in order to obtain sufficient connection reliability between the adherends, the conductive particles dispersed in the insulating adhesive component between the conductive adhesive film and the unevenness of the electrode surface. It was found that the ratio of the particle size (average particle size) of the film to the thickness of the coating film formed (thickness of the conductive adhesive film) is greatly related.

なお、本発明で規定する導電性接着フィルムの厚さは、マイクロメータによって測定することができる。また、導電性粒子の平均粒子径は、走査型電子顕微鏡(SEM)を用いて導電性粒子を観察し、3,000倍にした際の粒子の粒子径を20個計測し、その平均の粒子径を採用することができる。   In addition, the thickness of the electroconductive adhesive film prescribed | regulated by this invention can be measured with a micrometer. The average particle diameter of the conductive particles is determined by observing the conductive particles using a scanning electron microscope (SEM), measuring 20 particle diameters when the particle size is 3,000 times, and measuring the average particle diameter. Diameter can be employed.

本発明の導電性接着フィルム10は、導電性接着フィルム10中の導電性粒子の平均粒子径r(μm)と導電性接着フィルム10の厚さt(μm)との比(膜厚t/平均粒子径r)が0.75〜17.5であり、且つ、導電性接着フィルム10中の導電性粒子1の含有量が、導電性接着フィルム10の全体積を基準として1.7〜15.6体積%であることが必要である。   The conductive adhesive film 10 of the present invention has a ratio (film thickness t / average) of the average particle diameter r (μm) of the conductive particles in the conductive adhesive film 10 and the thickness t (μm) of the conductive adhesive film 10. The particle diameter r) is 0.75 to 17.5, and the content of the conductive particles 1 in the conductive adhesive film 10 is 1.7 to 15.5 based on the total volume of the conductive adhesive film 10. It must be 6% by volume.

導電性粒子1の平均粒子径rと導電性接着フィルム10の厚さtとの比率(t/r)が0.75〜17.5であり、導電性粒子1の配合量が、導電性接着フィルム10の全体積を基準として1.7〜15.6体積%であれば、導電性粒子の一粒子が被着体表面の凹部に埋もれた場合でも粒子間での導通性が得られ、被着体同士間の電気的接続を十分に確保することができる。   The ratio (t / r) between the average particle diameter r of the conductive particles 1 and the thickness t of the conductive adhesive film 10 is 0.75 to 17.5, and the blending amount of the conductive particles 1 is conductive adhesive. If the total volume of the film 10 is 1.7 to 15.6% by volume, even when one particle of the conductive particles is buried in the concave portion on the surface of the adherend, conductivity between the particles can be obtained. A sufficient electrical connection between the attachments can be ensured.

図2は、導電性接着フィルムを用いて被着体同士を接続する場合を説明するための説明図である。図2(a)〜(d)では、上記(t/r)の値が異なる導電性接着フィルムをそれぞれ用いた場合の接続状態を示しており、図2(a)では(t/r)の値が1〜17.5である導電性接着フィルム20を用いた場合、図2(b)では(t/r)の値が0.75以上1未満である導電性接着フィルム30を用いた場合、図2(c)では(t/r)の値が0.75未満である導電性接着フィルム40を用いた場合、図2(d)では(t/r)の値が17.5を超える導電性接着フィルム50を用いた場合、をそれぞれ示している。また、被着体としては、太陽電池セルの表面電極3と、太陽電池セル同士を接続するための配線部材4とを用いており、表面電極3は、表面に凹凸を有している。そして、図2は、これらの被着体の間に導電性接着フィルムを配置し、熱圧着により接続した場合を示している。   FIG. 2 is an explanatory diagram for explaining a case where adherends are connected to each other using a conductive adhesive film. 2 (a) to 2 (d) show connection states when conductive adhesive films having different values of the above (t / r) are used. In FIG. 2 (a), (t / r) When the conductive adhesive film 20 having a value of 1 to 17.5 is used, the conductive adhesive film 30 having a value of (t / r) of 0.75 or more and less than 1 in FIG. 2C, when the conductive adhesive film 40 having a value of (t / r) less than 0.75 is used, the value of (t / r) exceeds 17.5 in FIG. 2D. When the electroconductive adhesive film 50 is used, each is shown. Moreover, as the adherend, the surface electrode 3 of the solar battery cell and the wiring member 4 for connecting the solar battery cells are used, and the surface electrode 3 has irregularities on the surface. And FIG. 2 has shown the case where a conductive adhesive film is arrange | positioned between these adherends and it connects by thermocompression bonding.

図2(a)に示す導電性接着フィルム20を用いた場合には、表面電極3の凹凸を導電性粒子1で十分に埋め込むことができ、表面電極3と配線部材4との接着及び電気的接続を十分に達成することができる。また、図2(b)に示す導電性接着フィルム30を用いた場合には、導電性粒子1の変形や表面電極への埋没が生じ、表面電極3の凹凸を導電性粒子1で十分に埋め込んで、表面電極3と配線部材4との接着及び電気的接続を十分に達成することができる。   When the conductive adhesive film 20 shown in FIG. 2A is used, the unevenness of the surface electrode 3 can be sufficiently embedded with the conductive particles 1, and adhesion between the surface electrode 3 and the wiring member 4 and electrical The connection can be fully achieved. In addition, when the conductive adhesive film 30 shown in FIG. 2B is used, the conductive particles 1 are deformed and embedded in the surface electrode, and the unevenness of the surface electrode 3 is sufficiently embedded with the conductive particles 1. Thus, adhesion and electrical connection between the surface electrode 3 and the wiring member 4 can be sufficiently achieved.

一方、図2(c)に示す導電性接着フィルム40を用いた場合には、フィルムの厚さに対して導電性粒子1の平均粒子径が大きすぎるため、例え導電性粒子1の変形や表面電極への埋没等が生じたとしても、絶縁性接着剤2と配線部材4とが接触せず、これらを接着することができない。更に、図2(d)に示す導電性接着フィルム50を用いた場合には、フィルムの厚さに対して導電性粒子1の平均粒子径が小さすぎるため、導電性粒子1が表面電極3の凹部に埋まり、これらの電気的接続を確保することができない。   On the other hand, when the conductive adhesive film 40 shown in FIG. 2 (c) is used, the average particle diameter of the conductive particles 1 is too large with respect to the thickness of the film. Even if the electrode is buried, the insulating adhesive 2 and the wiring member 4 are not in contact with each other, and cannot be bonded. Furthermore, when the conductive adhesive film 50 shown in FIG. 2D is used, the average particle diameter of the conductive particles 1 is too small with respect to the thickness of the film. They are buried in the recesses, and these electrical connections cannot be ensured.

このように、導電性接着フィルムにおける(t/r)の値が0.75〜17.5の範囲内であることにより、被着体同士間の良好な接続を確保することができる。また、被着体同士間の接続をより良好なものとする観点から、(t/r)の値は1.0〜12.0であることが好ましく、2.0〜9.0であることがより好ましい。   Thus, the favorable connection between adherends is securable because the value of (t / r) in a conductive adhesive film exists in the range of 0.75-17.5. Further, from the viewpoint of improving the connection between adherends, the value of (t / r) is preferably 1.0 to 12.0, and preferably 2.0 to 9.0. Is more preferable.

本発明の導電性接着フィルム10は、絶縁性の接着剤成分2と導電性粒子1とを少なくとも含むものである。この絶縁性接着剤成分2としては特に制限はないが、接続信頼性の観点から、熱硬化性樹脂を使用することが好ましい。   The conductive adhesive film 10 of the present invention includes at least an insulating adhesive component 2 and conductive particles 1. Although there is no restriction | limiting in particular as this insulating adhesive component 2, It is preferable to use a thermosetting resin from a viewpoint of connection reliability.

熱硬化性樹脂としては公知のものを使用できるが、例えば、エポキシ樹脂、フェノキシ樹脂、アクリル樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリカーボネート樹脂等が挙げられ、その中でも、より十分な接続信頼性を得る観点から、エポキシ樹脂、フェノキシ樹脂及びアクリル樹脂のうちの少なくとも1種を含むことが好ましい。   Known thermosetting resins can be used, for example, epoxy resins, phenoxy resins, acrylic resins, polyimide resins, polyamide resins, polycarbonate resins, etc. Among them, the viewpoint of obtaining more sufficient connection reliability Therefore, it is preferable to include at least one of an epoxy resin, a phenoxy resin, and an acrylic resin.

また、樹脂の流動性やフィルムの物性制御の観点から、導電性接着フィルム10は、絶縁性接着剤成分2としてゴム成分を含むことが好ましい。ゴム成分としては公知のものが使用できるが、例えば、アクリルゴム、ブチルゴム、シリコーンゴム、ウレタンゴム、フッ素ゴム等が挙げられ、熱硬化性樹脂との混合性、及び、被着体との密着性の観点からアクリルゴムが好ましい。   Moreover, it is preferable that the electroconductive adhesive film 10 contains a rubber component as the insulating adhesive component 2 from a viewpoint of the fluidity | liquidity of resin and the physical property control of a film. As the rubber component, known materials can be used. Examples thereof include acrylic rubber, butyl rubber, silicone rubber, urethane rubber, and fluororubber, and are miscible with thermosetting resin and adherence to an adherend. In view of the above, acrylic rubber is preferable.

ゴム成分の配合量は、絶縁性接着剤成分2全量を基準として9〜34質量%であることが好ましい。ゴム成分の配合量が、絶縁性接着剤成分2全量を基準として9〜34質量%であれば、導電性接着フィルム10と被着体との密着性に優れるとともに、環境変化による被着体の物理的変動にも追随性がよく、被着体同士間の接続不良を十分に抑制することができる。   The blending amount of the rubber component is preferably 9 to 34% by mass based on the total amount of the insulating adhesive component 2. When the blending amount of the rubber component is 9 to 34% by mass based on the total amount of the insulating adhesive component 2, the adhesiveness between the conductive adhesive film 10 and the adherend is excellent, and the adherend due to environmental changes The followability is also good for physical fluctuations, and poor connection between adherends can be sufficiently suppressed.

導電性粒子1としては、特に制限はないが、例えば、金粒子、銀粒子、銅粒子、ニッケル粒子、金めっき粒子、銅めっき粒子、ニッケルめっき粒子等が挙げられる。また、導電性粒子1は、接続時に被着体の表面凹凸を十分に埋め込んで被着体同士間の電気的接続を十分に確保する観点から、毬栗状又は球状の粒子形状をしたものであることが好ましい。すなわち、導電性粒子1の形状が毬栗状又は球状のものであれば、被着体表面の複雑な凹凸形状に対しても、その凹凸を十分に埋め込むことができ、接続後の振動や膨張などの変動に対して導電性粒子1の追随性が高くなるため、好ましい。   Although there is no restriction | limiting in particular as the electroconductive particle 1, For example, a gold particle, a silver particle, a copper particle, a nickel particle, a gold plating particle, a copper plating particle, a nickel plating particle etc. are mentioned. Moreover, the electroconductive particle 1 is made into the shape of a chestnut shape or a spherical particle | grain shape from a viewpoint which fully embeds the surface unevenness | corrugation of a to-be-adhered body at the time of a connection, and ensures sufficient electrical connection between to-be-adhered bodies. It is preferable. That is, if the shape of the conductive particles 1 is a chestnut shape or a spherical shape, the unevenness can be sufficiently embedded even in a complicated uneven shape on the surface of the adherend, and vibration or expansion after connection can be achieved. Since the followability of the electroconductive particle 1 becomes high with respect to the fluctuation | variation of this, it is preferable.

導電性粒子1の平均粒子径rは、(t/r)の値が0.75〜17.5の範囲内となる平均粒子径であれば特に制限されないが、2〜30μmであることが好ましく、10〜20μmであることがより好ましい。特に、被着体の表面粗さRzが3〜30μm(更には8〜18μm)の範囲内である場合、導電性粒子1の平均粒子径が上記範囲内であることにより、被着体同士間の接着性及び導通性をより良好なものとすることができる。また、導電性粒子1の平均粒子径rは、被着体の表面粗さ(十点平均表面粗さRz、最大高さRy)に対して、1/2Rz以上であることが好ましく、Rz以上であることがより好ましく、Ry以上であることが更に好ましい。   The average particle size r of the conductive particles 1 is not particularly limited as long as the value of (t / r) is within the range of 0.75 to 17.5, but is preferably 2 to 30 μm. 10 to 20 μm is more preferable. In particular, when the surface roughness Rz of the adherends is in the range of 3 to 30 μm (more preferably 8 to 18 μm), the average particle diameter of the conductive particles 1 is within the above range. The adhesiveness and electrical conductivity of can be made better. The average particle diameter r of the conductive particles 1 is preferably ½ Rz or more, more than Rz, with respect to the surface roughness (ten-point average surface roughness Rz, maximum height Ry) of the adherend. It is more preferable that it is Ry or more.

また、導電性接着フィルム10中の導電性粒子1の含有量は、導電性接着フィルム10の全体積を基準として1.7〜15.6体積%であることが必要であるが、被着体同士間の接着性及び導通性をより良好なものとする観点から、2〜12体積%であることが好ましく、3〜8体積%であることがより好ましい。なお、導電性粒子1の含有量が1.7〜15.6体積%であることにより、導電性接着フィルム10は異方導電性を示すことができる。   Moreover, although content of the electroconductive particle 1 in the electroconductive adhesive film 10 needs to be 1.7-15.6 volume% on the basis of the whole volume of the electroconductive adhesive film 10, it adheres From the viewpoint of improving the adhesiveness and electrical conductivity between each other, the content is preferably 2 to 12% by volume, and more preferably 3 to 8% by volume. In addition, the electroconductive adhesive film 10 can show anisotropic conductivity because content of the electroconductive particle 1 is 1.7-15.6 volume%.

本発明の導電性接着フィルム10には、上記成分以外に、硬化剤、硬化促進剤及び基材との接着性や濡れ性を改善する為に、シラン系カップリング剤、チタネート系カップリング剤やアルミネート系カップリング剤等の改質材料、また導電性粒子の分散性を向上させる為に、燐酸カルシウム、炭酸カルシウム等の分散剤、銀や銅マイグレーションなどを抑制する為のキレート材料等を含有させることができる。   In the conductive adhesive film 10 of the present invention, in addition to the above components, a silane coupling agent, a titanate coupling agent, Contains modifying materials such as aluminate coupling agents, dispersing agents such as calcium phosphate and calcium carbonate, and chelating materials for suppressing silver and copper migration, etc., in order to improve the dispersibility of conductive particles Can be made.

本発明の導電性接着フィルム10は、ペースト状の導電性接着剤組成物と比較して、膜厚寸法精度や圧着時の圧力配分の点で優れている。かかる導電性接着フィルム10は、例えば、上述した各種材料を溶剤に溶解又は分散させてなる塗布液をポリエチレンテレフタレートフィルム等の剥離フィルム上に塗布し、溶剤を除去することにより作製することができる。導電性接着フィルム10の膜厚は、上記塗布液中の不揮発分の調整およびアプリケータやリップコータのギャップ調整によって制御することができる。   The conductive adhesive film 10 of the present invention is superior to the paste-like conductive adhesive composition in terms of film thickness dimensional accuracy and pressure distribution during pressure bonding. Such a conductive adhesive film 10 can be produced, for example, by applying a coating solution obtained by dissolving or dispersing the above-described various materials in a solvent onto a release film such as a polyethylene terephthalate film and removing the solvent. The film thickness of the conductive adhesive film 10 can be controlled by adjusting the non-volatile content in the coating solution and adjusting the gap of the applicator or lip coater.

また、導電性接着フィルム10の弾性率は、0.5〜4.0GPaであることが好ましい。弾性率が0.5GPa未満であると、フィルム強度が弱く接着力が低下する傾向があり、4.0GPaを超えると、フィルムが硬くなり、被着体間の応力緩和性が劣る傾向がある。   The elastic modulus of the conductive adhesive film 10 is preferably 0.5 to 4.0 GPa. When the elastic modulus is less than 0.5 GPa, the film strength tends to be weak and the adhesive force tends to decrease, and when it exceeds 4.0 GPa, the film becomes hard and the stress relaxation property between adherends tends to be poor.

導電性接着剤フィルム10の厚さtは、(t/r)の値が0.75〜17.5の範囲内となる厚さであれば特に制限されないが、5〜50μmであることが好ましく、10〜35μmであることがより好ましい。特に、被着体の表面粗さRzが3〜30μm(更には8〜18μm)の範囲内である場合、導電性接着フィルム10の厚さが上記範囲内であることにより、被着体同士間の接着性及び導通性をより良好なものとすることができる。また、導電性接着剤フィルム10の厚さtは、被着体の表面粗さ(十点平均表面粗さRz、最大高さRy)に対して、Rz以上であることが好ましく、Ry以上であることがより好ましい。   The thickness t of the conductive adhesive film 10 is not particularly limited as long as the value of (t / r) falls within the range of 0.75 to 17.5, but is preferably 5 to 50 μm. 10 to 35 μm is more preferable. In particular, when the surface roughness Rz of the adherends is within a range of 3 to 30 μm (more preferably 8 to 18 μm), the thickness of the conductive adhesive film 10 is within the above range, so The adhesiveness and electrical conductivity of can be made better. Further, the thickness t of the conductive adhesive film 10 is preferably Rz or more with respect to the surface roughness (ten-point average surface roughness Rz, maximum height Ry) of the adherend, and is Ry or more. More preferably.

本発明の導電性接着フィルム10は、太陽電池セルに最も好適に用いることができる。太陽電池は、太陽電池セルを複数個、直列及び/又は並列に接続し、耐環境性のために強化ガラスなどで挟み込み、間隙を透明性のある樹脂によって埋められた外部端子を備えた太陽電池モジュールとして用いられる。本発明の導電性接着フィルム10は、複数の太陽電池セルを直列及び/又は並列に接続するための配線部材と、太陽電池セルの表面電極とを接続する用途に好適に用いられる。   The conductive adhesive film 10 of the present invention can be most suitably used for solar cells. A solar cell includes a plurality of solar cells connected in series and / or in parallel, sandwiched with tempered glass or the like for environmental resistance, and provided with external terminals whose gaps are filled with a transparent resin. Used as a module. The conductive adhesive film 10 of the present invention is suitably used for applications in which a wiring member for connecting a plurality of solar cells in series and / or in parallel and a surface electrode of the solar cells.

本発明の太陽電池モジュールは、上記のように表面電極を有する複数の太陽電池セルが、表面電極に電気的に接続された配線部材を介して接続された構造を有してなるものであり、表面電極と配線部材とが、本発明の導電性接着フィルムにより接続されてなるものである。   The solar cell module of the present invention has a structure in which a plurality of solar cells having a surface electrode as described above are connected via a wiring member electrically connected to the surface electrode, The surface electrode and the wiring member are connected by the conductive adhesive film of the present invention.

ここで、図3は、本発明の太陽電池モジュールの要部を示す模式図であり、複数の太陽電池セルが相互に配線接続された構造の概略を示している。図3(a)は太陽電池モジュールの表面側を示し、図3(b)は裏面側を示し、図3(c)は側面側を示す。   Here, FIG. 3 is a schematic diagram showing a main part of the solar cell module of the present invention, and shows an outline of a structure in which a plurality of solar cells are connected to each other by wiring. 3A shows the front side of the solar cell module, FIG. 3B shows the back side, and FIG. 3C shows the side.

図3(a)〜(c)に示すように、太陽電池モジュール100は、半導体ウエハ6の表面側にグリッド電極7及びバス電極(表面電極)3aが、裏面側に裏面電極8及びバス電極(表面電極)3bがそれぞれ形成された太陽電池セルが、配線部材4により複数相互に接続されている。そして、配線部材4は、その一端が表面電極としてのバス電極3aと、他端が表面電極としてのバス電極3bと、それぞれ本発明の導電性接着フィルム10を介して接続されている。   As shown in FIGS. 3A to 3C, the solar cell module 100 includes a grid electrode 7 and a bus electrode (front electrode) 3a on the front side of the semiconductor wafer 6, and a back electrode 8 and a bus electrode (front electrode) on the back side. A plurality of solar cells each having a surface electrode 3 b are connected to each other by a wiring member 4. The wiring member 4 has one end connected to the bus electrode 3a as the surface electrode and the other end connected to the bus electrode 3b as the surface electrode via the conductive adhesive film 10 of the present invention.

かかる構成を有する太陽電池モジュール100は、上述した本発明の導電性接着フィルムにより表面電極と配線部材とが接続されているため、太陽電池セルへの悪影響がなく、且つ、十分な接続信頼性を得ることができる。   In the solar cell module 100 having such a configuration, the surface electrode and the wiring member are connected by the above-described conductive adhesive film of the present invention, so that there is no adverse effect on the solar cells and sufficient connection reliability is achieved. Can be obtained.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.

<各物性の測定方法>
(1)導電性接着フィルムの膜厚:マイクロメータ(Mitutoyo Corp社製、ID−C112)により測定を行った。なお、t/rが1未満の場合は、焦点深度計を用いて、導電性粒子の存在しない部分の膜厚を測定した。
<Measurement method of each physical property>
(1) Film thickness of conductive adhesive film: Measured with a micrometer (manufactured by Mitutoyo Corp, ID-C112). In addition, when t / r was less than 1, the film thickness of the part in which electroconductive particle does not exist was measured using the focal depth meter.

(2)被着体の表面粗さ(十点平均表面粗さRz、最大高さRy):超深度形状測定顕微鏡(KEYENCE社製、VK−8510)を用いて観察を行い、画像計測・解析ソフト(KEYENCE社製、VK−H1A7)を用いて算出した。なお、十点平均表面粗さRz及び最大高さRyの記載は、JIS B0601−1994に従い行った。 (2) Surface roughness (10-point average surface roughness Rz, maximum height Ry) of the adherend: Observation using an ultra-deep shape measuring microscope (manufactured by KEYENCE, VK-8510), image measurement / analysis Calculation was performed using software (manufactured by KEYENCE, VK-H1A7). The ten-point average surface roughness Rz and the maximum height Ry were described in accordance with JIS B0601-1994.

(3)導電性接着フィルムの弾性率:表面をシリコーン処理したポリエチレンテレフタレートフィルム上に導電性接着剤組成物をアプリケータ(YOSHIMISU社製)を使用して塗布した後、オーブンで170℃、20分の条件で乾燥した。その後、ポリエチレンテレフタレートフィルムを剥がし、厚さ35μmの導電性接着フィルムを得た。得られた導電性接着フィルムを幅5mm、長さ35mmの短冊状に切り取り、動的粘弾性測定装置(Rheometric Scientific社製、SOLIDS ANALYZER、チャック間距離2cm)で25℃での弾性率を測定した。 (3) Elastic modulus of conductive adhesive film: A conductive adhesive composition was applied on a polyethylene terephthalate film whose surface was treated with silicone using an applicator (manufactured by YOSHIMISU), and then 170 ° C for 20 minutes in an oven. It dried on the conditions of. Thereafter, the polyethylene terephthalate film was peeled off to obtain a conductive adhesive film having a thickness of 35 μm. The obtained conductive adhesive film was cut into a strip shape having a width of 5 mm and a length of 35 mm, and the elastic modulus at 25 ° C. was measured with a dynamic viscoelasticity measuring device (Rheometric Scientific, SOLIDS ANALYZER, distance between chucks: 2 cm). .

(4)ピール強度測定(MPa):タブ線付き太陽電池セルを作製した後、タブ線の端部を垂直に折り曲げ、ピール強度測定装置(ORIENTEC社製、STA−1150)のチャックに固定し、引っ張り速度2cm/sで引き上げてピール強度を測定した。このとき、タブ線が剥がれる前にウエハに割れが生じた場合には、十分なピール強度を有しているといえる。 (4) Peel strength measurement (MPa): After producing a solar cell with a tab wire, the end of the tab wire is bent vertically and fixed to a chuck of a peel strength measuring device (ORIENTEC, STA-1150) The peel strength was measured by pulling up at a pulling speed of 2 cm / s. At this time, if the wafer is cracked before the tab wire is peeled off, it can be said that it has sufficient peel strength.

(5)ウエハの反り(%):平滑面上に、タブ線付き太陽電池セルをその凸面側(タブ線貼り付け面の反対側)が平滑面と接するように載せ、その一端部(タブ線の長手方向に対する端部)を平滑面上に固定し、反対側の端部の平滑面上からの浮きを、焦点深度計により5点測定して平均値を算出した。太陽電池セルの一辺の長さに対する上記浮きの平均値の割合をウエハの反り量(%)として求めた。 (5) Wafer warpage (%): A solar cell with a tab line is placed on a smooth surface so that the convex side (opposite side of the tab line attaching surface) is in contact with the smooth surface, and one end (tab line) (End part with respect to the longitudinal direction) was fixed on a smooth surface, and the floating of the opposite end part from the smooth surface was measured at five points with a depth of focus meter to calculate an average value. The ratio of the average value of the float to the length of one side of the solar battery cell was determined as the amount of warpage (%) of the wafer.

(6)F.F.(500h)/F.F.(0h):タブ線付き太陽電池セルについて、ワコム電創社製のソーラシミュレータ(WXS−155S−10、AM1.5G)を用いてIVカーブを測定し、初期のF.F.(曲線因子)と、85℃、85%RHの雰囲気下にて500時間経過した後のF.F.とを求めた。そして、500時間経過後のF.F.から初期のF.F.を除した値をF.F.(500h)/F.F.(0h)として求めた。t/rの値と、F.F.(500h)/F.F.(0h)の値との関係を図4のグラフに示す。なお、図4において、500時間経過後のF.F.(500h)/F.F.(0h)の値が0.98以下の場合、接続信頼性が不十分であると判断することができる。 (6) F.R. F. (500h) / F. F. (0h): For a solar cell with a tab line, an IV curve was measured using a solar simulator (WXS-155S-10, AM1.5G) manufactured by Wacom Denso Co., Ltd. F. (Curve factor) and F. after 500 hours in an atmosphere of 85 ° C. and 85% RH. F. And asked. And after 500 hours, F.I. F. To early F. F. Is the value obtained by dividing F. F. (500h) / F. F. Calculated as (0h). the value of t / r; F. (500h) / F. F. The relationship with the value of (0h) is shown in the graph of FIG. Note that in FIG. F. (500h) / F. F. When the value of (0h) is 0.98 or less, it can be determined that the connection reliability is insufficient.

(7)セル歩留まり:太陽電池セル10枚中、タブ線貼り付け後のセル状態を観察し、割れや剥離のあるものを除いた割合(%)を歩留まりとして求めた。 (7) Cell yield: In 10 solar cells, the cell state after attaching the tab line was observed, and the ratio (%) excluding those with cracks or peeling was determined as the yield.

(参考例1−1〜1−3)
まず、ブチルアクリレート40質量部と、エチルアクリレート30質量部と、アクリロニトリル30質量部と、グリシジルメタクリレート3質量部とを共重合してなるアクリルゴム(製品名:KS8200H、日立化成工業社製、分子量:85万)を用意した。このアクリルゴム125gと、フェノキシ樹脂(製品名:PKHC、ユニオンカーバイド社製、重量平均分子量45,000)50gとを、酢酸エチル400gに溶解し、30%溶液を得た。次いで、マイクロカプセル型潜在性硬化剤を含有する液状エポキシ(製品名:ノバキュアHX−3941HP、旭化成ケミカルズ社製、エポキシ当量185)325gを上記の溶液に加えて撹拌し、接着剤組成物を得た。なお、この接着剤組成物における各材料の配合量を表1に示した。
(Reference Examples 1-1 to 1-3)
First, an acrylic rubber obtained by copolymerizing 40 parts by mass of butyl acrylate, 30 parts by mass of ethyl acrylate, 30 parts by mass of acrylonitrile, and 3 parts by mass of glycidyl methacrylate (product name: KS8200H, manufactured by Hitachi Chemical Co., Ltd., molecular weight: 850,000) were prepared. 125 g of this acrylic rubber and 50 g of phenoxy resin (product name: PKHC, manufactured by Union Carbide, weight average molecular weight 45,000) were dissolved in 400 g of ethyl acetate to obtain a 30% solution. Next, 325 g of a liquid epoxy containing a microcapsule-type latent curing agent (product name: NovaCure HX-3941HP, manufactured by Asahi Kasei Chemicals, epoxy equivalent 185) was added to the above solution and stirred to obtain an adhesive composition. . In addition, Table 1 shows the blending amount of each material in the adhesive composition.

Figure 2017224859
Figure 2017224859

この接着剤組成物に対し、平均粒子径が2μmの導電性粒子(直径1.8μmのポリスチレン系核体の表面にNi及びAu層をそれぞれ0.1μmの厚さで形成してなる導電性粒子、球状、比重2.8)を分散させて導電性接着剤組成物を得た。このとき、導電性粒子は、その含有量が導電性接着剤組成物の固形分全体積を基準として5体積%となるように配合した。導電性接着剤組成物を得た。なお、導電性粒子の平均粒子径は、導電性粒子をSEM(装置名:S−510、日立製作所製社製)により倍率3000倍で観察して任意の20個の導電性粒子の粒子径を測定し、その平均値として算出した。また、導電性粒子の配合量は粒子比重から算出した。   Conductive particles having an average particle diameter of 2 μm (conductive particles formed by forming a Ni and Au layer with a thickness of 0.1 μm on the surface of a polystyrene core having a diameter of 1.8 μm) for this adhesive composition , Spherical, specific gravity 2.8) was dispersed to obtain a conductive adhesive composition. At this time, the conductive particles were blended so that the content would be 5% by volume based on the total solid content of the conductive adhesive composition. A conductive adhesive composition was obtained. The average particle size of the conductive particles is determined by observing the conductive particles with a SEM (device name: S-510, manufactured by Hitachi, Ltd.) at a magnification of 3000 times, and the particle size of any 20 conductive particles. Measured and calculated as the average value. Moreover, the compounding quantity of electroconductive particle was computed from particle | grain specific gravity.

得られた導電性接着剤組成物をポリエチレンテレフタレートフィルム上にアプリケータ(YOSHIMISU社製)を用いて塗布し、ホットプレート上で70℃、3分間乾燥し、膜厚が15μm(参考例1−1)、25μm(参考例1−2)及び35μm(参考例1−3)の導電性接着フィルムをそれぞれ作製した。なお、膜厚の調整は、アプリケータのギャップを変更することで行った。このとき、ギャップと乾燥後の膜厚との関係式から、所望の膜厚が得られるようにギャップの調整を行った。   The obtained conductive adhesive composition was applied onto a polyethylene terephthalate film using an applicator (manufactured by YOSHIMISU), dried on a hot plate at 70 ° C. for 3 minutes, and a film thickness of 15 μm (Reference Example 1-1). ), 25 μm (Reference Example 1-2) and 35 μm (Reference Example 1-3), respectively. The film thickness was adjusted by changing the gap of the applicator. At this time, the gap was adjusted from the relational expression between the gap and the film thickness after drying so that a desired film thickness was obtained.

得られた導電性接着フィルムを、太陽電池セル(125mm×125mm、厚さ310μm)上に形成されている電極配線(材質:銀ガラスペースト、2mm×12.5cm、Rz=10μm、Ry=14μm)の幅(2mm幅)に裁断し、配線部材としての日立電線社製のTAB線(日立電線(株)製、A−TPS)と上記太陽電池セルの表面電極との間に配置した。次いで、圧着ツール(装置名:AC−S300、日化設備エンジニアリング(株)製)を用いて、170℃、2MPa、20秒の条件で接着を行い、図3に示したように太陽電池セルの表面側の電極配線(表面電極)とTAB線(配線部材)とを導電性接着フィルムを介して接続した。得られたタブ線付き太陽電池セルについて、外観の確認(セル割れやタブ線の剥がれの有無)と、ピール強度及び太陽電池のF.F.(500h)/F.F.(0h)の測定とを行った。ここで、外観は目視にて観察し、セル割れやタブ線の剥がれがない場合をA、セルの一部にクラックが生じている場合をBとして評価した。これらの評価結果を表2及び3に示す。   Electrode wiring (material: silver glass paste, 2 mm × 12.5 cm, Rz = 10 μm, Ry = 14 μm) formed on the solar cell (125 mm × 125 mm, thickness 310 μm) with the obtained conductive adhesive film (2 mm width), and arranged between a TAB wire (manufactured by Hitachi Cable Ltd., A-TPS) as a wiring member and the surface electrode of the solar battery cell. Next, using a crimping tool (device name: AC-S300, manufactured by Nikka Equipment Engineering Co., Ltd.), adhesion was performed under the conditions of 170 ° C., 2 MPa, 20 seconds, and as shown in FIG. The surface side electrode wiring (surface electrode) and the TAB line (wiring member) were connected via a conductive adhesive film. About the obtained photovoltaic cell with a tab wire, confirmation of appearance (presence or absence of cell crack or tab wire peeling), peel strength, and F. of the solar cell. F. (500h) / F. F. (0h) was measured. Here, the appearance was visually observed, and the case where there was no cell cracking or peeling of the tab line was evaluated as A, and the case where a part of the cell was cracked was evaluated as B. The evaluation results are shown in Tables 2 and 3.

(参考例2−1〜2−3)
導電性粒子として、平均粒子径が5μmの導電性粒子(直径4.8μmのポリスチレン系核体の表面にNi及びAu層をそれぞれ0.1μmの厚さで形成してなる導電性粒子、球状、比重2.8)を用いた以外は参考例1−1〜1−3と同様の材料を使用し、参考例1−1〜1−3と同様の作業を行い、参考例1−1〜1−3と同様の評価を行った。評価結果を表2及び3に示す。
(Reference Examples 2-1 to 2-3)
As the conductive particles, conductive particles having an average particle diameter of 5 μm (conductive particles formed by forming Ni and Au layers with a thickness of 0.1 μm on the surface of a polystyrene core having a diameter of 4.8 μm, spherical, The same materials as those of Reference Examples 1-1 to 1-3 were used except that the specific gravity 2.8) was used, and the same operations as those of Reference Examples 1-1 to 1-3 were performed. Evaluation similar to -3 was performed. The evaluation results are shown in Tables 2 and 3.

(実施例3−1〜3−3)
導電性粒子として、平均粒子径が10μmの導電性粒子(直径9.8μmのポリスチレン系核体の表面にNi及びAu層をそれぞれ0.1μmの厚さで形成してなる導電性粒子、球状、比重2.8)を用いた以外は参考例1−1〜1−3と同様の材料を使用し、参考例1−1〜1−3と同様の作業を行い、参考例1−1〜1−3と同様の評価を行った。評価結果を表2及び3に示す。
(Examples 3-1 to 3-3)
As conductive particles, conductive particles having an average particle diameter of 10 μm (conductive particles formed by forming Ni and Au layers with a thickness of 0.1 μm on the surface of a polystyrene core having a diameter of 9.8 μm, spherical, The same materials as those of Reference Examples 1-1 to 1-3 were used except that the specific gravity 2.8) was used, and the same operations as those of Reference Examples 1-1 to 1-3 were performed. Evaluation similar to -3 was performed. The evaluation results are shown in Tables 2 and 3.

(実施例4−1〜4−3)
導電性粒子として、平均粒子径が20μmの導電性粒子(直径19.8μmのポリスチレン系核体の表面にNi及びAu層をそれぞれ0.1μmの厚さで形成してなる導電性粒子、球状、比重2.8)を用いた以外は参考例1−1〜1−3と同様の材料を使用し、参考例1−1〜1−3と同様の作業を行い、参考例1−1〜1−3と同様の評価を行った。評価結果を表2及び3に示す。
(Examples 4-1 to 4-3)
As the conductive particles, conductive particles having an average particle diameter of 20 μm (conductive particles formed by forming Ni and Au layers with a thickness of 0.1 μm on the surface of a polystyrene core having a diameter of 19.8 μm, spherical, The same materials as those of Reference Examples 1-1 to 1-3 were used except that the specific gravity 2.8) was used, and the same operations as those of Reference Examples 1-1 to 1-3 were performed. Evaluation similar to -3 was performed. The evaluation results are shown in Tables 2 and 3.

(実施例5−1〜5−3)
導電性粒子として、平均粒子径が12μmの導電性粒子(ニッケル粒子、毬栗状、比重3.36)を用いた以外は参考例1−1〜1−3と同様の材料を使用し、参考例1−1〜1−3と同様の作業を行い、参考例1−1〜1−3と同様の評価を行った。評価結果を表2及び3に示す。
(Examples 5-1 to 5-3)
As the conductive particles, the same materials as those in Reference Examples 1-1 to 1-3 were used except that conductive particles having an average particle diameter of 12 μm (nickel particles, chestnut shape, specific gravity 3.36) were used. The same work as 1-1 to 1-3 was performed, and the same evaluation as in Reference Examples 1-1 to 1-3 was performed. The evaluation results are shown in Tables 2 and 3.

(参考例6−1〜6−3)
導電性粒子として、平均粒子径が8μmの導電性粒子(直径7.8μmのポリスチレン系核体の表面にNi及びAu層をそれぞれ0.1μmの厚さで形成してなる導電性粒子、球状、比重8.6)を用いた以外は参考例1−1〜1−3と同様の材料を使用し、参考例1−1〜1−3と同様の作業を行い、参考例1−1〜1−3と同様の評価を行った。評価結果を表2及び3に示す。
(Reference Examples 6-1 to 6-3)
As the conductive particles, conductive particles having an average particle diameter of 8 μm (conductive particles formed by forming Ni and Au layers with a thickness of 0.1 μm on the surface of a polystyrene core having a diameter of 7.8 μm, spherical, The same materials as in Reference Examples 1-1 to 1-3 were used except that the specific gravity was 8.6), and the same operations as in Reference Examples 1-1 to 1-3 were performed. Evaluation similar to -3 was performed. The evaluation results are shown in Tables 2 and 3.

(比較例1)
TAB線(日立電線(株)製、A−TPS)と太陽電池セルとを、ランプヒーターでTAB線を加熱して溶融することではんだ接続した。得られたタブ線付き太陽電池セルについて、参考例1−1〜1−3と同様の評価を行った。評価結果を表2及び3に示す。
(Comparative Example 1)
A TAB wire (A-TPS, manufactured by Hitachi Cable, Ltd.) and a solar battery cell were soldered by heating and melting the TAB wire with a lamp heater. About the obtained photovoltaic cell with a tab wire, evaluation similar to Reference Examples 1-1 to 1-3 was performed. The evaluation results are shown in Tables 2 and 3.

Figure 2017224859
Figure 2017224859

Figure 2017224859
Figure 2017224859

1…導電性粒子、2…絶縁性接着剤、3…表面電極、3a…バス電極(表面電極)、3b…バス電極(表面電極)、4…配線部材、6…半導体ウエハ、7…グリッド電極、8…裏面電極、10…導電性接着フィルム、100…太陽電池モジュール。   DESCRIPTION OF SYMBOLS 1 ... Conductive particle, 2 ... Insulating adhesive, 3 ... Surface electrode, 3a ... Bus electrode (surface electrode), 3b ... Bus electrode (surface electrode), 4 ... Wiring member, 6 ... Semiconductor wafer, 7 ... Grid electrode , 8 ... back electrode, 10 ... conductive adhesive film, 100 ... solar cell module.

Claims (9)

表面電極を有する複数の太陽電池セルが、前記表面電極に電気的に接続された配線部材を介して接続された構造を有する太陽電池モジュールの製造方法であって、
前記表面電極と前記配線部材とを導電性接着フィルムにより接続する工程を有し、
前記導電性接着フィルムは絶縁性接着剤と導電性粒子とを含有し、
前記導電性粒子の平均粒子径をr(μm)、前記導電性接着フィルムの厚さをt(μm)として、(t/r)の値が0.75〜17.5の範囲内であり、
前記導電性粒子の含有量が、前記導電性接着フィルムの全体積を基準として1.7〜15.6体積%であり、
前記導電性粒子の平均粒子径rが、前記表面電極の十点平均表面粗さRz以上である、太陽電池モジュールの製造方法。
A solar cell module manufacturing method having a structure in which a plurality of solar cells having a surface electrode are connected via a wiring member electrically connected to the surface electrode,
Connecting the surface electrode and the wiring member with a conductive adhesive film;
The conductive adhesive film contains an insulating adhesive and conductive particles,
The average particle diameter of the conductive particles is r (μm), the thickness of the conductive adhesive film is t (μm), and the value of (t / r) is in the range of 0.75 to 17.5,
The content of the conductive particles is 1.7 to 15.6% by volume based on the total volume of the conductive adhesive film,
The method for manufacturing a solar cell module, wherein an average particle diameter r of the conductive particles is not less than a ten-point average surface roughness Rz of the surface electrode.
前記(t/r)の値が2.0〜9.0の範囲内である、請求項1記載の太陽電池モジュールの製造方法。   The method for manufacturing a solar cell module according to claim 1, wherein the value of (t / r) is within a range of 2.0 to 9.0. 前記導電性粒子の平均粒子径rが10〜20μmである、請求項1又は2記載の太陽電池モジュールの製造方法。   The manufacturing method of the solar cell module of Claim 1 or 2 whose average particle diameter r of the said electroconductive particle is 10-20 micrometers. 前記絶縁性接着剤が、該絶縁性接着剤全量を基準として9〜34質量%のゴム成分を含むものである、請求項1〜3のうちのいずれか一項に記載の太陽電池モジュールの製造方法。   The manufacturing method of the solar cell module as described in any one of Claims 1-3 in which the said insulating adhesive contains 9-34 mass% rubber | gum component on the basis of this insulating adhesive whole quantity. 前記導電性接着フィルムの弾性率が0.5〜4.0GPaである、請求項1〜4のうちのいずれか一項に記載の太陽電池モジュールの製造方法。   The manufacturing method of the solar cell module as described in any one of Claims 1-4 whose elasticity modulus of the said electroconductive adhesive film is 0.5-4.0GPa. 前記導電性粒子の形状が毬栗状又は球状である、請求項1〜5のうちのいずれか一項に記載の太陽電池モジュールの製造方法。   The manufacturing method of the solar cell module as described in any one of Claims 1-5 whose shape of the said electroconductive particle is a chestnut shape or spherical shape. 前記表面電極がバス電極である、請求項1〜6のうちのいずれか一項に記載の太陽電池モジュールの製造方法。   The manufacturing method of the solar cell module as described in any one of Claims 1-6 whose said surface electrode is a bus electrode. 前記バス電極上に前記導電性接着フィルムを配置する、請求項7記載の太陽電池モジュールの製造方法。   The manufacturing method of the solar cell module of Claim 7 which arrange | positions the said electroconductive adhesive film on the said bus electrode. 前記表面電極が、銀を含有したガラスペーストにより形成された電極である、請求項1〜8のうちのいずれか一項に記載の太陽電池モジュールの製造方法。   The manufacturing method of the solar cell module as described in any one of Claims 1-8 whose said surface electrode is an electrode formed with the glass paste containing silver.
JP2017176035A 2006-01-16 2017-09-13 Manufacturing method of solar cell module Pending JP2017224859A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006007276 2006-01-16
JP2006007276 2006-01-16

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015040352A Division JP2015128179A (en) 2006-01-16 2015-03-02 Method for manufacturing solar battery module

Publications (1)

Publication Number Publication Date
JP2017224859A true JP2017224859A (en) 2017-12-21

Family

ID=43835558

Family Applications (6)

Application Number Title Priority Date Filing Date
JP2010276041A Withdrawn JP2011049612A (en) 2006-01-16 2010-12-10 Method of manufacturing solar cell module
JP2012056061A Pending JP2012151486A (en) 2006-01-16 2012-03-13 Conductive adhesive film
JP2013127682A Pending JP2013239715A (en) 2006-01-16 2013-06-18 Method for manufacturing solar battery module
JP2015040352A Pending JP2015128179A (en) 2006-01-16 2015-03-02 Method for manufacturing solar battery module
JP2017176035A Pending JP2017224859A (en) 2006-01-16 2017-09-13 Manufacturing method of solar cell module
JP2018168934A Pending JP2019024097A (en) 2006-01-16 2018-09-10 Conductive adhesive film and solar battery module

Family Applications Before (4)

Application Number Title Priority Date Filing Date
JP2010276041A Withdrawn JP2011049612A (en) 2006-01-16 2010-12-10 Method of manufacturing solar cell module
JP2012056061A Pending JP2012151486A (en) 2006-01-16 2012-03-13 Conductive adhesive film
JP2013127682A Pending JP2013239715A (en) 2006-01-16 2013-06-18 Method for manufacturing solar battery module
JP2015040352A Pending JP2015128179A (en) 2006-01-16 2015-03-02 Method for manufacturing solar battery module

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2018168934A Pending JP2019024097A (en) 2006-01-16 2018-09-10 Conductive adhesive film and solar battery module

Country Status (1)

Country Link
JP (6) JP2011049612A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6431998B1 (en) * 2018-03-20 2018-11-28 タツタ電線株式会社 Conductive adhesive layer

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5891599B2 (en) * 2011-04-14 2016-03-23 日立化成株式会社 Paste composition for silicon solar cell electrode
TWI433331B (en) 2011-05-17 2014-04-01 Neo Solar Power Corp Machine for manufacturing electrode tape
JP2013175502A (en) * 2012-02-23 2013-09-05 Jx Nippon Oil & Energy Corp Solar cell module
WO2014091681A1 (en) * 2012-12-13 2014-06-19 三洋電機株式会社 Solar cell
JP6044503B2 (en) * 2013-10-08 2016-12-14 住友金属鉱山株式会社 Conductive adhesive film and multi-junction solar cell using the same
US11987734B2 (en) 2020-06-29 2024-05-21 Hangzhou First Applied Material Co., Ltd. Anti-PID encapsulation adhesive film, photovoltaic module, and photovoltaic module manufacturing method
CN111704866B (en) * 2020-06-29 2022-04-15 杭州福斯特应用材料股份有限公司 Anti PID encapsulation glued membrane and photovoltaic module

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06103819A (en) * 1992-09-21 1994-04-15 Hitachi Chem Co Ltd Anisotropic conductive adhesive film
JPH07147424A (en) * 1993-11-25 1995-06-06 Fuji Electric Co Ltd Manufacture of thin film solar cell module
JPH07221422A (en) * 1994-01-31 1995-08-18 Mitsui Mining & Smelting Co Ltd Printed circuit board and production thereof
JPH10298525A (en) * 1997-04-23 1998-11-10 Matsushita Electric Works Ltd Anisotropic conductive adhesive resin composition and anisotropic conductive adhesive film
JP2001343903A (en) * 2000-05-31 2001-12-14 Canon Inc Interconnecting structure of electrode, method for interconnecting electrode, image display device and method for manufacturing the same
US20030047208A1 (en) * 2001-09-11 2003-03-13 The Boeing Company Low cost high solar flux photovoltaic concentrator receiver
US20030203668A1 (en) * 2002-04-25 2003-10-30 Micron Technology, Inc. Electrical interconnect using locally conductive adhesive
JP2005101519A (en) * 2003-09-05 2005-04-14 Hitachi Chem Co Ltd Solar cell unit and solar cell module
JP2005252062A (en) * 2004-03-05 2005-09-15 Sanyo Electric Co Ltd Solar cell device

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04297044A (en) * 1991-03-26 1992-10-21 Toshiba Corp Semiconductor device
JPH04296723A (en) * 1991-03-26 1992-10-21 Toshiba Corp Manufacture of semiconductor device
JPH0565348A (en) * 1991-09-05 1993-03-19 Sumitomo Bakelite Co Ltd Anisotropically conductive film
JP4032439B2 (en) * 1996-05-23 2008-01-16 日立化成工業株式会社 Connection member, electrode connection structure and connection method using the connection member
AU3460997A (en) * 1996-07-15 1998-02-09 Hitachi Chemical Company, Ltd. Film-like adhesive for connecting circuit and circuit board
JPH10162646A (en) * 1996-11-28 1998-06-19 Asahi Chem Ind Co Ltd Conductive resin composition
JPH11120820A (en) * 1997-10-20 1999-04-30 Asahi Chem Ind Co Ltd Anisotropic conductive film
JP3754208B2 (en) * 1998-04-28 2006-03-08 三洋電機株式会社 Solar cell module and manufacturing method thereof
EP1229555B1 (en) * 2000-07-12 2006-10-18 Kabushiki Kaisha Bridgestone Shielded flat cable
JP2002204052A (en) * 2000-12-28 2002-07-19 Hitachi Chem Co Ltd Circuit connecting material and method for connecting circuit terminal using the same as well as connecting structure
JP2002226808A (en) * 2001-01-31 2002-08-14 Hitachi Chem Co Ltd Adhesive for connecting circuit
JP2003082318A (en) * 2001-09-13 2003-03-19 Three M Innovative Properties Co Cationically polymerizable adhesive composition and anisotropically electroconductive adhesive composition
JP2003234020A (en) * 2002-02-06 2003-08-22 Sekisui Chem Co Ltd Conductive minute particle
JP4255248B2 (en) * 2002-06-03 2009-04-15 シャープ株式会社 Solar cell and method for manufacturing the same
JP2004196977A (en) * 2002-12-19 2004-07-15 Kyoritsu Kagaku Sangyo Kk Cation-curable silicone resin composition
JP4055583B2 (en) * 2003-01-15 2008-03-05 日立化成工業株式会社 Adhesive composition for circuit connection, circuit terminal connection method using the same, and circuit terminal connection structure
JP4325379B2 (en) * 2003-12-02 2009-09-02 日立化成工業株式会社 Circuit connection material, film-like circuit connection material using the same, circuit member connection structure, and manufacturing method thereof
KR100601341B1 (en) * 2004-06-23 2006-07-14 엘에스전선 주식회사 Anisotropic conductive adhesive and the adhesive flim using thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06103819A (en) * 1992-09-21 1994-04-15 Hitachi Chem Co Ltd Anisotropic conductive adhesive film
JPH07147424A (en) * 1993-11-25 1995-06-06 Fuji Electric Co Ltd Manufacture of thin film solar cell module
JPH07221422A (en) * 1994-01-31 1995-08-18 Mitsui Mining & Smelting Co Ltd Printed circuit board and production thereof
JPH10298525A (en) * 1997-04-23 1998-11-10 Matsushita Electric Works Ltd Anisotropic conductive adhesive resin composition and anisotropic conductive adhesive film
JP2001343903A (en) * 2000-05-31 2001-12-14 Canon Inc Interconnecting structure of electrode, method for interconnecting electrode, image display device and method for manufacturing the same
US20030047208A1 (en) * 2001-09-11 2003-03-13 The Boeing Company Low cost high solar flux photovoltaic concentrator receiver
US20030203668A1 (en) * 2002-04-25 2003-10-30 Micron Technology, Inc. Electrical interconnect using locally conductive adhesive
JP2005101519A (en) * 2003-09-05 2005-04-14 Hitachi Chem Co Ltd Solar cell unit and solar cell module
JP2005252062A (en) * 2004-03-05 2005-09-15 Sanyo Electric Co Ltd Solar cell device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6431998B1 (en) * 2018-03-20 2018-11-28 タツタ電線株式会社 Conductive adhesive layer
JP2019163419A (en) * 2018-03-20 2019-09-26 タツタ電線株式会社 Conductive adhesive layer
KR20190110480A (en) * 2018-03-20 2019-09-30 타츠타 전선 주식회사 Conductive adhesive films
KR102433740B1 (en) 2018-03-20 2022-08-17 타츠타 전선 주식회사 Conductive adhesive films

Also Published As

Publication number Publication date
JP2012151486A (en) 2012-08-09
JP2013239715A (en) 2013-11-28
JP2011049612A (en) 2011-03-10
JP2019024097A (en) 2019-02-14
JP2015128179A (en) 2015-07-09

Similar Documents

Publication Publication Date Title
JP2007214533A (en) Conductive bonding film and solar cell module
KR101040002B1 (en) Conductive adhesive film and solar cell module
JP2019024097A (en) Conductive adhesive film and solar battery module
JP5323310B2 (en) Connection structure and manufacturing method thereof
CN101529603B (en) Connected structure and method for manufacture thereof
JP4697194B2 (en) Solar cell connection method and solar cell module
JP5446420B2 (en) Solar cell module and manufacturing method thereof
JP2012216843A (en) Adhesive tape and solar cell module using the same
JP5158238B2 (en) Adhesive film for solar cell electrode and method for producing solar cell module using the same
JP2013239726A (en) Conductive adhesive film
JP5692347B2 (en) Conductive adhesive

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190108